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Abstract

We develop a new linear estimator for estimating an unknown vector of parameters x in a linear

model, in the presence of bounded data uncertainties. The estimator is designed to minimize the worst-

case regret over all bounded data vectors, namely the worst-case difference between the MSE attainable

using a linear estimator that does not know the true parameters x, and the optimal MSE attained using

a linear estimator that knows x. We demonstrate through several examples that the minimax regret

estimator can significantly increase the performance over the conventional least-squares estimator, as well

as several other least-squares alternatives.

1 Introduction

The problem of estimating a vector of unknown parameters x from noisy observations y = Hx + w, where

H is a known matrix and w is a noise vector, arises in many different fields in science and engineering, and

consequently attracted much attention in the estimation literature.

If the unknown parameters x are assumed to be random variables with known second-order statistics,

then the linear estimator minimizing the mean-squared error (MSE) is the well-known Wiener estimator

[1, 2]. However, in many problems of practical interest there is no statistical information available on x, so

that x is treated as an unknown set of deterministic parameters. In this case, the MSE of an estimator x̂ of

x depends explicitly on the unknown parameters x, and therefore cannot be minimized directly.

Since the MSE between x̂ and x depends on x, a common approach is to seek estimators that minimize

some function of the data error ŷ − y, where ŷ = Hx̂ is the estimated data vector. The celebrated least-
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squares estimator, first studied by Gauss [3], seeks the estimator x̂ of x that minimizes the squared-norm

of the data error ‖ŷ − y‖2. It is well known that the least-squares estimate is also the best linear unbiased

estimator [4], i.e., it has the smallest variance among all linear unbiased estimators. On the negative side,

an unbiased estimator does not necessarily lead to a small MSE. In fact, it is well known that in many cases

the least-squares estimator can result in a large MSE.

Various modifications of the least-squares estimator for the case in which the data model holds, so that

y = Hx + w with H and y known exactly, and x represents deterministic unknown parameters, have been

proposed. Among the alternatives are Tikhonov regularization [5], also known in the statistical literature

as the ridge estimator [6], the shrunken estimator [7], and the covariance shaping least-squares estimator

[8]. In general, these least-squares alternatives attempt to reduce the MSE in estimating x by allowing for a

bias. Each of the estimators above can be shown to be a solution to an optimization problem which involves

minimizing some function that depends on the data error.

In an estimation context, we typically would like to minimize the estimation error, rather than the data

error. To this end we assume that x is known to satisfy a (possibly weighted) norm constraint, and then seek

a robust estimator whose performance is reasonably good across all possible choices of the parameters x, in

the region of uncertainty. The most common approach for designing robust estimators is the minimax MSE

approach, initiated by Huber [9, 10], in which we seek the estimator that minimizes the worst-case MSE

in the region of uncertainty. This approach has been applied to a variety of different estimation problems

in which the unknown parameters x are assumed to be random, but the statistics of x are not completely

specified [11, 12, 13, 14, 15, 16, 17]. The minimax approach, in which the goal is to optimize the worst-

case performance, is one of the major techniques for designing robust systems with respect to modelling

uncertainties, and has been applied to many problems in detection and estimation [18, 19, 20].

Following the popular minimax approach, we may seek the linear estimator that minimizes the worst-

case MSE over all possible values of x that satisfy a weighted norm constraint. The minimax estimator of

this form is developed in [21], in which the case of uncertainties in the model matrix H is also considered.

Although the minimax approach has enjoyed widespread use in the design of robust methods for signal

processing and communication [18, 20], its performance is often unsatisfactory. The main limitation of this

approach is that it tends to be overly conservative since it optimizes the performance for the worst possible

choice of unknowns. As we show in the context of concrete examples in Section 6, this can often lead to

degraded performance.

To improve the performance of the minimax MSE estimator, we propose, in Section 3, a new approach to

2



linear estimation, in which we seek a linear estimator whose performance is as close as possible to that of the

optimal linear estimator, i.e., the one minimizing the MSE when x is assumed to be known. Specifically, we

seek the estimator that minimizes the worst-case regret, which is the difference between the MSE of the linear

estimator which does not know x, and the smallest attainable MSE with a linear estimator that knows x.

Note that as we show in Section 3, since we are restricting ourselves to linear estimators, we cannot achieve

zero MSE even in the case in which the parameters x are known. By considering the difference between the

MSE and the optimal MSE rather than the MSE directly, we can counterbalance the conservative character

of the minimax approach, as is evident in the examples we consider in Section 6.

The minimax regret concept has recently been used to develop a linear estimator for the unknowns x

in the same linear model considered in this paper, but for the case that x is random with an unknown

covariance matrix [17]. Similar competitive approaches have been used in a variety of other contexts, for

example, universal source coding [22], hypothesis testing [23, 24], and prediction [25].

The paper is organized as follows. In Section 2, we provide an overview of our problem. In Section 3,

we develop the form of the minimax regret estimator when the uncertainty region is defined by x∗Tx ≤ L2

for positive definite weighting matrices T that commute with HC−1
w H, where Cw is the noise covariance

matrix. We then specialize the results to the case in which T = HC−1
w H in Section 4, and to the case in

which T = I in Section 5. In these special cases, we show that the minimax regret estimator can be derived

as the solution to explicit, simple, and computationally tractable convex optimization problems. Section 6

presents several examples illustrating the performance advantage of the minimax regret estimator.

2 Problem Formulation and Main Results

We denote vectors in C
m by boldface lowercase letters and matrices in C

n×m by boldface uppercase let-

ters. I denotes the identity matrix of appropriate dimension, (·)∗ denotes the Hermitian conjugate of the

corresponding matrix, and (̂·) denotes an estimated vector or matrix.

Consider the problem of estimating the unknown deterministic parameters x in the linear model

y = Hx + w, (1)

where H is a known n × m matrix with full rank m, and w is a zero-mean random vector with covariance

Cw. We assume that x is known to satisfy the weighted norm constraint ‖x‖T ≤ L for some positive definite

covariance T and scalar L > 0, where ‖x‖2
T = x∗Tx.

3



We estimate x using a linear estimator so that x̂ = Gy for some m × n matrix G. The variance of the

estimator x̂ = Gy is given by

V (x̂) = E(‖x̂ − E(x̂)‖2) = Tr(GCwG∗), (2)

and the bias of the estimator is

B(x̂) = x − E(x̂) = (I − GH)x. (3)

We would like to design an estimator x̂ of x to minimize the MSE, which is given by

E(‖x̂ − x‖2) = V (x̂) + ‖B(x̂)‖2 = Tr(GCwG∗) + x∗(I − GH)∗(I − GH)x. (4)

Since B(x̂) depends explicitly on the unknown parameters x, we cannot choose an estimate to directly

minimize the MSE (4).

A common approach is to restrict the estimator x̂ to be unbiased, so that B(x̂) = 0, and then seek

the estimator of this form that minimizes the variance V (x̂), or the MSE. The resulting estimator is the

(weighted) least-squares estimator [4], which is given by

x̂ = (H∗C−1
w H)−1H∗C−1

w y. (5)

If w is a zero-mean Gaussian random vector, then the least-squares estimator is also the minimum variance

unbiased estimator, i.e., it minimizes the variance from all linear and nonlinear unbiased estimators.

The least-squares estimator has a variety of optimality properties in the class of unbiased estimators.

However, an unbiased estimator does not necessarily lead to a small MSE. To improve the performance

over the least-squares estimator in the case in which the model (1) is assumed to hold perfectly, various

modifications of the least-squares estimator have been proposed. These modifications attempt to reduce the

MSE of the least-squares estimator by allowing for a bias. Among the alternatives are Tikhonov regulariza-

tion [5, 6], the shrunken estimator [7], and the covariance shaping least-squares estimator [8]. In general,

these least-squares alternatives attempt to reduce the MSE in estimating x by allowing for a bias. However,

each of the estimators above is designed to optimize an objective which depends on the data error, and not

directly on the MSE.

In this paper we consider an alternative method for developing optimal linear estimators. Specifically, we
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develop estimators that minimize the worst-case regret, i.e., the difference between the MSE of an estimator

x̂ of x and the best possible MSE attainable using any estimator of the form x̂ = G(x)y where x is assumed

to be known, so that G can depend explicitly on x. As we show in Section 3, since we are restricting

ourselves to linear estimators of the form x̂ = Gy, even in the case in which the parameters x are known we

cannot achieve zero MSE. The best possible MSE is illustrated schematically in Fig. 1. Instead of seeking

an estimator to minimize the worst-case MSE, we therefore propose seeking an estimator to minimize the

worst-case difference between its MSE and the best possible MSE, as illustrated in Fig. 1.

Figure 1: The line represents the best attainable MSE as a function of x when x is known, and the dashed
line represents a desirable graph of MSE with small regret as a function of x using some linear estimator
that does not depend on x.

In Section 3 we develop the form of the estimator minimizing the worst-case regret for the case in which

T commutes with H∗C−1
w H. We show that the minimax regret estimator can be described by m parameters,

which are the solution to a convex optimization problem (Theorem 1). In Section 4 we consider the case in

which T = H∗C−1
w H. As we show, when L is large enough with respect to m, the optimal minimax regret

estimator is a shrunken estimator with a specific choice of shrinkage factor. For small values of L, the optimal

estimator is given in terms of a single parameter, which is the solution to a nonlinear equation (Theorem 2).

In Section 5 we consider the case in which T = I, and show that the minimax regret estimator can be

determined by solving m convex optimization problems, each in 3 unknowns (Theorem 3). In Section 6

we demonstrate by examples, that the minimax regret estimator can significantly improve the performance

over the traditional least-squares estimator. Furthermore, its performance is often better than that of the

minimax estimator that minimizes the worst-case MSE [21], and the Wiener estimator which results from
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assuming that x is a random vector with covariance L2I.

3 The Minimax Regret Estimator

The minimax regret estimator x̂ is designed to minimize the worst-case regret, where the regret R(x,G)

is defined as the difference between the MSE using an estimator x̂ = Gy and the smallest possible MSE

attainable with an estimator of the form x̂ = G(x)y when the parameters x are known, which we denote

by MSEo.

To develop an explicit expression for MSEo we first determine the estimator x̂ = G(x)y that minimizes

the MSE when x is known. To this end we differentiate1 the MSE of (4) with respect to G and equate to

0, which results in

(G(x)H − I)xx∗H∗ + G(x)Cw = 0, (6)

so that

G(x) = xx∗H∗(Cw + Hxx∗H∗)−1. (7)

Using the Matrix Inversion Lemma [26] we can express G as

G(x) =
1

1 + x∗H∗C−1
w Hx

xx∗H∗C−1
w . (8)

Substituting G(x) back into (4), MSE0 is given by

MSEo =
x∗x

1 + x∗H∗C−1
w Hx

. (9)

Since x is unknown, we cannot implement the optimal estimator (8). Instead we seek the estimator

x̂ = Gy that minimizes the worst-case regret R(x,G), where

R(x,G) = E(‖Gy − x‖2) − MSEo = Tr(GCwG∗) + x∗(I − GH)∗(I − GH)x − x∗x
1 + x∗H∗C−1

w Hx
, (10)

1We use the following derivatives: For any Hermitian A,

∂Tr(BAB∗)
∂B

= 2BA,

and
∂x∗B∗Bx

∂B
= 2Bxx∗.
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subject to the constraint ‖x‖T ≤ L. Thus we seek the matrix G that is the solution to the problem

min
G

max
x∗Tx≤L2

R(x,G). (11)

For analytical tractability, we restrict our attention to weighting matrices T that commute with H∗C−1
w H,

so that they can be jointly diagonalized. Thus, if H∗C−1
w H has an eigendecomposition H∗C−1

w H = VΣV∗

where V is a unitary matrix and Σ is a diagonal matrix, then T = VΛV∗ for some diagonal matrix Λ.

Theorem 1 below establishes the general form of the solution to (11) for any T that commutes with

H∗C−1
w H. In Sections 4 and 5 we use Theorem 1 to develop the solution for the case in which T = H∗C−1

w H

and T = I, respectively.

Theorem 1. Let x denote the deterministic unknown parameters in the model y = Hx + w, where H

is a known n × m matrix with rank m, and w is a zero-mean random vector with covariance Cw. Let

H∗C−1
w H = VΣV∗ where V is a unitary matrix and Σ is an m×m diagonal matrix with diagonal elements

σi > 0 and let T = VΛV∗ where Λ is an m × m diagonal matrix with diagonal elements λi > 0. Then the

solution to the problem

min
x̂=Gy

max
‖x‖T≤L

{
E(‖x̂ − x‖2) − min

x̂=G(x)y
E(‖x̂ − x‖2)

}
=

= minG max‖x‖T≤L

{
Tr(GCwG∗) + x∗(I − GH)∗(I − GH)x − x∗x

1+x∗H∗C−1
w Hx

}

has the form

x̂ = VDV∗(H∗C−1
w H)−1H∗C−1

w y,

where D is an m × m diagonal matrix with diagonal elements di which are the solution to the convex

optimization problem

min
τ,di


τ :

∑m
i=1

d2
i

σi
≤ τ

maxsi≥0,
∑

i λisi=L2

{∑m
i=1(1 − di)2si −

∑m
i=1 si

1+
∑m

i=1 σisi

}
+

∑m
i=1

d2
i

σi
≤ τ


 . (12)

Proof. The proof of Theorem 1 is comprised of three parts. We first show that the optimal G minimizing

the worst-case regret has the form

G = VDV∗(H∗C−1
w H)−1H∗C−1

w , (13)
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for some m × m matrix D. We then show that D must be a diagonal matrix. Finally, we show that the

diagonal elements of D, denoted di, are the solution to (12).

We begin by showing that the optimal G has the form given by (13). To this end, note that the regret

R(Cx,G) of (10) depends on G only through GH and Tr(GCwG∗). Now, for any choice of G,

Tr(GCwG∗) = Tr(GC1/2
w PC1/2

w G∗) + Tr(GC1/2
w (I − P)C1/2

w G∗) ≥ Tr(GC1/2
w PC1/2

w G∗) (14)

where

P = C−1/2
w H(H∗C−1

w H)−1H∗C−1/2
w (15)

is the orthogonal projection onto the range space of C−1/2
w H. In addition, GH = GC1/2

w PC−1/2
w H since

PC−1/2
w H = C−1/2

w H. Thus, to minimize Tr(GCwG∗) it is sufficient to consider matrices G that satisfy

GC1/2
w = GC1/2

w P. (16)

Substituting (15) into (16), we have

G = GC1/2
w PC−1/2

w = GH(H∗C−1
w H)−1H∗C−1

w = B(H∗C−1
w H)−1H∗C−1

w , (17)

for some m × m matrix B. Denoting B = VDV∗, (17) reduces to (13).

We now show that D must be a diagonal matrix. Since H∗C−1
w H = VΣV∗ we can express R(x,G) as

R(x,G) = Tr(VD∗DV∗(H∗C−1
w H)−1) + x∗(I − VDV∗)∗(I − VDV∗)x − x∗x

1 + x∗H∗C−1
w Hx

= Tr(D∗DΣ−1) + x∗V(I − D)∗(I − D)V∗x − x∗x
1 + x∗H∗C−1

w Hx

= Tr(D∗DΣ−1) + z∗(I − D)∗(I − D)z − z∗z
1 + z∗Σz

, (18)

where z = V∗x. Combining (18) with

x∗Tx = x∗VΛV∗x = z∗Λz, (19)
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we conclude that the problem (11) reduces to finding D that minimizes

G(D) = max
z∗Λz≤L2

{
Tr(D∗DΣ−1) + z∗(I − D)∗(I − D)z − z∗z

1 + z∗Σz

}
. (20)

Let J be a diagonal matrix with diagonal elements equal to ±1. Then

G(JDJ) = max
z∗Λz≤L2

{
Tr(D∗DJΣ−1J) + z∗(I − JDJ)∗(I − JDJ)z − z∗z

1 + z∗Σz

}

= max
z∗Λz≤L2

{
Tr(D∗DΣ−1) + z∗J(I − D)∗(I − D)Jz − z∗z

1 + z∗Σz

}

= max
z′∗Λz′≤L2

{
Tr(D∗DΣ−1) + z′∗(I − D)∗(I − D)z′ − z′∗z′

1 + z′∗Σz′

}
= G(D), (21)

where z′ = Jz and we used the fact that J2 = I and for any diagonal matrix M, JMJ = M. Therefore, if

D minimizes G(D), then JDJ also minimizes G(D). Now, since the problem of minimizing G(D) is convex,

the set of optimal solutions is also convex [27], which implies that if JDJ is optimal for any diagonal J

with diagonal elements ±1, then so is D′ = (1/2m)
∑

J JDJ where the summation is over all 2m diagonal

matrices J with diagonal elements ±1. It is easy to see that D′ has diagonal elements. Therefore, we have

shown that there exists an optimal diagonal solution D.

Denote by di the diagonal elements of D, and further denote si = |zi|2 where zi are the components of

z. Then we can express G(D) as

G(D) = max
si≥0,

∑m
i=1 λisi≤L2

{
m∑

i=1

(1 − di)2si −
∑m

i=1 si

1 +
∑m

i=1 σisi

}
+

m∑
i=1

d2
i

σi

= max
s∈I

Φ(s) +
m∑

i=1

d2
i

σi
, (22)

where

Φ(s) =
m∑

i=1

(1 − di)2si −
∑m

i=1 si

1 +
∑m

i=1 σisi
, (23)

and I is the set of vectors s ∈ Rm with components si such that si ≥ 0 and
∑m

i=1 λisi ≤ L2, i.e.,

I�
=

{
s ∈ Rm | si ≥ 0,

m∑
i=1

λisi ≤ L2

}
. (24)

To complete the proof of Theorem 1 we rely on the following lemma.
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Lemma 1. Let

Φ(s) =
m∑

i=1

(1 − di)2si −
∑m

i=1 si

1 +
∑m

i=1 σisi

for some given σi, 1 ≤ i ≤ m and di, 1 ≤ i ≤ m. If

ŝ = arg max
s∈I

Φ(s),

where I is defined by (24), then s = 0 or
∑m

i=1 λisi = L2.

Proof. Let S be the set of vectors s such that s = 0 or
∑m

i=1 λisi = L2. To establish the lemma we need to

show that for any s ∈ I, Φ(s) ≤ Φ(s′) for some s′ ∈ S.

Fix s ∈ I such that s �= 0 and let h(r) = Φ(rs) be defined on the segment [0, r∗], where r∗ is the largest

value of r for which rs ∈ I. Clearly, r∗s ∈ S and r∗ ≥ 1. Since h(1) = Φ(s), h(0) = Φ(0) and h(r∗) = Φ(s′)

where s′ = r∗s ∈ S, to prove that Φ(s) ≤ Φ(s′) for some s′ ∈ S it suffices to show that

h(1) ≤ max(h(0), h(r∗)). (25)

We now establish (25) by first showing that h(r) is convex. It then follows that h(r) obtains its maximum

at one of its end points. Since h(r) is defined on [0, r∗] this implies that h(r) ≤ max(h(0), h(r∗)) for any

r ∈ [0, r∗], and in particular for r = 1 which established (25). It remains to show that h(r) is convex.

Writing

h(r) = αr − βr

1 + γr
, (26)

where α =
∑m

i=1(1 − di)2si ≥ 0, β =
∑m

i=1 si > 0 and γ =
∑m

i=1 σisi > 0, we can express h(r) as

h(r) = αr − β

γ

1 + γr − 1
1 + γr

= αr +
β

γ

1
1 + γr

− β

γ
. (27)

Since 1/r is convex in r, h(r) is convex.

From (22) and Lemma 1 it follows that finding D to minimize G(D) is equivalent to the problem of

finding di to minimize

max
(

Φ(0), max
si≥0,

∑m
i=1 λisi=L2

Φ(s)
)

+
m∑

i=1

d2
i

σi
. (28)
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Since Φ(0) = 0, this problem can be written as

min
τ,di


τ :

∑m
i=1

d2
i

σi
≤ τ

maxsi≥0,
∑

i λisi=L2

{∑m
i=1(1 − di)2si −

∑m
i=1 si

1+
∑m

i=1 σisi

}
+

∑m
i=1

d2
i

σi
≤ τ


 , (29)

completing the proof of Theorem 1.

Theorem 1 reduces the problem of minimizing the regret to the simpler optimization problem (12). As we

show in Sections 4 and 5, for certain choices of T, the problem can be further simplified, and in some cases

a closed form solution for the minimax regret estimator exists. In Section 4 we consider the case in which

the weighting T = H∗CwH, and in Section 5 we consider the case in which T = I. As we show, when L is

large enough and T = H∗CwH, the minimax regret estimator of Theorem 1 reduces to a shrunken estimator

with a shrinkage factor that depends only on L. For small values of L, the minimax regret estimator is a

function of a single parameter, that is the solution to a nonlinear equation. In the case in which T = I the

minimax regret estimator depends on 3 parameters, which can be found by solving m convex optimization

problems in 3 unknowns.

4 Minimax Regret Estimator With T = H∗C−1
w H

We now consider the case in which the weighting T is given by T = H∗C−1
w H, so that the eigenvalues λi of

T are equal to σi. As we show, for large enough values of L with respect to m, the estimator minimizing

the worst-case regret is a shrunken estimator with a shrinkage factor that depends only on the bound L.

From Theorem 1, the optimal G that minimizes the regret with T = H∗C−1
w H is given by (13), where

the diagonal elements di of D are the solution to the problem (∆) given by

(∆) : min
τ,di


τ :

∑m
i=1

d2
i

σi
≤ τ

maxsi≥0,
∑m

i=1 σisi=L2

{∑m
i=1(1 − di)2si −

∑m
i=1 si

1+L2

}
+

∑m
i=1

d2
i

σi
≤ τ


 . (30)

To develop a solution to (∆), define the set P as

P�
=

{
s ∈ Rm | si ≥ 0,

m∑
i=1

σisi = L2

}
. (31)
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Then

max
s∈P

{
m∑

i=1

(1 − di)2si −
∑m

i=1 si

1 + L2

}
,

is a linear program2 [28]. From linear programming duality theory it follows that

max
s∈P

{
m∑

i=1

(
(1 − di)2 − 1

1 + L2

)
si

}
= min

y∈D
L2y (32)

where D is the set of scalars y for which

y ≥ 1
σi

(
(1 − di)2 − 1

1 + L2

)
, 1 ≤ i ≤ m. (33)

Thus the problem (∆) can be written as

(Γ) : min
τ,di,y




τ :

∑m
i=1

d2
i

σi
≤ τ

L2y +
∑m

i=1
d2

i
σi

≤ τ

1
σi

(
(1 − di)2 − 1

1+L2

)
≤ y, 1 ≤ i ≤ m




. (34)

Since (Γ) is a convex optimization problem, from Lagrange duality theory [29] it follows that A = min τ

in the problem (Γ) is equal to the optimal value of the dual problem, namely,

A = max
α,β,γi≥0

min
τ,di,y

L(τ, di, y), (35)

where the Lagrangian L is given by

L(τ, di, y) = τ + α

(
m∑

i=1

d2
i

σi
− τ

)
+ β

(
L2y +

m∑
i=1

d2
i

σi
− τ

)
+

m∑
i=1

γi

[
(1 − di)2 − 1

1 + L2
− σiy

]
. (36)

Substituting (36) into (35), we have

A =

=max
α,β,γi≥0

{
− 1

1 + L2

m∑
i=1

γi + min
τ

{(1 − α − β)τ} + min
y

{(
βL2 −

m∑
i=1

σiγi

)
y

}
+

m∑
i=1

min
di

{
α + β

σi
d2

i + γi(1 − di)2
}}

2A linear program is a problem of the form minx∈P c∗x for some given vector c where P is the set of vectors x satisfying
Ax = b for some given matrices A and b and x ≥ 0, where the inequality is to be understood as a component-wise inequality.
From linear programming duality theory, minx∈P c∗x = maxy∈D b∗y where D is the set of vectors y for which A∗y ≤ c.
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=max
α,β,γi≥0

{
− 1

1 + L2

m∑
i=1

γi +
m∑

i=1

γi

1 + σiγi
: α + β = 1, βL2 =

m∑
i=1

σiγi

}

= max
γi≥0

{
− 1

1 + L2

m∑
i=1

γi +
m∑

i=1

γi

1 + σiγi
:

m∑
i=1

σiγi ≤ L2

}
, (37)

where we used the fact that the optimal di are given by

di =
σiγi

1 + σiγi
, 1 ≤ i ≤ m. (38)

The dual problem of (Γ) is therefore the problem

max
γi

{
− 1

1 + L2

m∑
i=1

γi +
m∑

i=1

γi

1 + σiγi

}
(39)

subject to

∑m
i=1 σiγi ≤ L2;

γi ≥ 0, 1 ≤ i ≤ m. (40)

Once we find the dual optimal values γi, the optimal values di can be calculated using (38).

Since the problem of (39) subject to (40) is a convex optimization problem, we can find an optimal

solution by forming the Lagrangian

L =
1

1 + L2

m∑
i=1

γi −
m∑

i=1

γi

1 + σiγi
+ ρ

m∑
i=1

σiγi −
m∑

i=1

ζiγi, (41)

where from the Karush-Kuhn-Tucker conditions [28] we must have that ρ, ζi ≥ 0. The values γi are optimal

if and only if they satisfy (40) and there exist ρ, ζi ≥ 0 such that

∂L
∂γi

=
1

1 + L2
− 1

(γiσi + 1)2
+ ρσi − ζi = 0, (42)

and the complementary slackness conditions are satisfied, namely,

ρ
(∑m

i=1 σiγi − L2
)

= 0;

ζiγi = 0. (43)
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Suppose first that ρ = 0. If γi = 0 then from (42), ζi = −L2/(1 + L2) < 0, which contradicts the

condition ζi ≥ 0. Therefore we must have that γi > 0, which implies from (43) that ζi = 0. Substituting

ρ = ζi = 0 into (42),
1

1 + L2
=

1
(γiσi + 1)2

, (44)

or,

γi =
1
σi

(√
1 + L2 − 1

)
, 1 ≤ i ≤ m. (45)

From (38) we then have

di = 1 − 1√
1 + L2

, 1 ≤ i ≤ m, (46)

so that from Theorem 1 the optimal estimator in this case is

x̂ =
(

1 − 1√
1 + L2

)
(H∗C−1

w H)−1H∗C−1
w y. (47)

To satisfy (40) we must have that

m
(√

1 + L2 − 1
)
≤ L2, (48)

which is equivalent to

L2 ≥ (m − 1)2 − 1. (49)

Next suppose that ρ > 0. Then the conditions (43), (40) and (42) become

∑m
i=1 σiγi = L2;

ζiγi = 0, 1 ≤ i ≤ m;

γi ≥ 0;

− 1
(1+σiγi)2

+ 1
1+L2 + σiρ − ζi = 0. (50)

Let σ1 ≥ σ2 ≥ . . . ≥ σm > 0. If γj = 0 for some 1 ≤ j ≤ m, then γi = 0, i ≥ j. For suppose that γi > 0 for

some i ≥ j. Then, from (50), ζi = 0 and

σiρ =
1

(1 + σiγi)2
− 1

1 + L2
< 1 − 1

1 + L2
. (51)
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On the other hand, since γj = 0, ζj ≥ 0 and from (50),

σjρ ≥ 1 − 1
1 + L2

, (52)

which contradicts (51) because σj ≤ σi. Thus we conclude that there exists a k such that γi = 0 for i ≤ k,

and γi > 0 for i > k.

Since γi > 0 for i > k, from (50), ζi = 0 for i > k, and

γi =
1
σi

(
1√

ρσi + 1/(L2 + 1)
− 1

)
, i > k, (53)

where ρ is chosen such that
m∑

i=k+1

σiγi = L2. (54)

Note that if ζi = 0, then from (51), ρσi + 1/(L2 + 1) < 1, so that γi defined by (53) satisfies γi > 0.

Define

G(ρ, k) =
m∑

i=k+1

σiγi − L2 =
m∑

i=k+1

(
1√

ρσi + 1/(L2 + 1)
− 1

)
− L2. (55)

It can be easily seen that G(ρ, k) is monotonically decreasing in k and ρ. In addition, G(ρ, k) → −∞ as

ρ → ∞. Therefore, G(ρ, k) = 0 for some ρ and k if and only if G(0, 0) > 0, i.e., if and only if

G(0, 0) = m
(√

1 + L2 − 1
)

> L2. (56)

Now, since γi > 0 for i ≥ k + 1, we have from (51) that

ρ <
1

σk+1

L2

L2 + 1
�
=ηk+1. (57)

Similarly, since γi = 0 for i ≤ k, we have from (52) that

ρ ≥ 1
σk

L2

L2 + 1
�
=ηk. (58)

Therefore, there exists a k such that G(ηk, k) ≥ 0 and G(ηk+1, k) < 0. The optimal value of ρ is then given
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by G(ρ, k) = 0, and from (53) and (38),

di =


 0, i ≤ k;

1 − √
ρσi + 1/(L2 + 1), i ≥ k + 1.

(59)

We summarize our results in the following theorem.

Theorem 2. Let x denote the deterministic unknown parameters in the model y = Hx + w, where H

is a known n × m matrix with rank m, and w is a zero-mean random vector with covariance Cw. Let

H∗C−1
w H = VΣV∗ where V is a unitary matrix and Σ is an m×m diagonal matrix with diagonal elements

σ1 ≥ . . . ≥ σm > 0. Then the solution to the problem

min
x̂=Gy

max
‖x‖T≤L

{
E(‖x̂ − x‖2) − min

x̂=G(x)y
E(‖x̂ − x‖2)

}
=

= minG max‖x‖T≤L

(
Tr(GCwG∗) + x∗(I − GH)∗(I − GH)x − x∗x

1+x∗H∗C−1
w Hx

)

with T = H∗C−1
w H is given by

x̂ =




(
1 −

√
1

1+L2

)
(H∗C−1

w H)−1H∗C−1
w y, L2 ≥ (m − 1)2 − 1;

VDV∗(H∗C−1
w H)−1H∗C−1

w y, L2 < (m − 1)2 − 1,

where D is an m × m diagonal matrix with diagonal elements di that are given by

di =


 0, i ≤ k;

1 − √
ρσi + 1/(L2 + 1), i ≥ k + 1.

Here k is the unique value satisfying 0 ≤ k ≤ m − 1 such that G(ηk, k) ≥ 0 and G(ηk+1, k) < 0 with

ηk =
1
σk

L2

L2 + 1
,

and G(ρ, k) defined by (55), and ρ is the unique zero of G(ρ, k) in the interval [ηk, ηk+1).

The minimax regret estimator of Theorem 2 for the case in which L2 ≥ (m − 1)2 − 1 is a shrunken

estimator proposed by Mayer and Willke [7], which is simply a scaled version of the least-squares estimator,

with an optimal choice of shrinkage factor. We therefore conclude that this particular shrunken estimator

has a strong optimality property: among all linear estimators of x such that x∗H∗C−1
w Hx ≤ L, it minimizes
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the worst-case regret.

As we expect intuitively, when L → ∞, the minimax regret estimator x̂ of Theorem 2 reduces to the

least-squares estimator (5). Indeed, when the weighted norm of x can be made arbitrarily large, the MSE,

and therefore the regret, will also be arbitrarily large unless the bias is equal to zero. Therefore, in this

limit, the worst-case regret is minimized by choosing an estimator with zero bias that minimizes the variance,

which leads to the least-squares estimator.

5 Minimax Regret Estimator With T = I

We now consider the case in which the weighting matrix T = I. In this case, it follows from Theorem 1

that the optimal G that minimizes the worst-case regret has the form given by (13), where D is a diagonal

matrix with diagonal elements di which are solution to the problem (∆), defined as

(∆) : min
τ,di


τ :

∑m
i=1

d2
i

σi
≤ τ

maxsi≥0,
∑m

i=1 si=L2

{∑m
i=1(1 − di)2si − L2

1+
∑m

i=1 σisi

}
+

∑m
i=1

d2
i

σi
≤ τ


 . (60)

Here σi > 0 are the eigenvalues of H∗C−1
w H.

To develop a solution to (∆), we note that

A = max
si≥0,

∑m
i=1 si=L2

{
m∑

i=1

(1 − di)2si − L2

1 +
∑m

i=1 σisi

}
= max

ρ,si∈P

{
m∑

i=1

(1 − di)2si − ρ

}
, (61)

where P is the set defined by

P�
=

{
s ∈ Rm, ρ ∈ R | si ≥ 0,

m∑
i=1

si = L2, ρ ≥ L2

1 +
∑m

i=1 σisi

}
, (62)

or, equivalently,

P�
=

{
s ∈ Rm, ρ ∈ R | si ≥ 0,

m∑
i=1

si = L2, ρ ≥ 0, 1 +
m∑

i=1

σisi − L2

ρ
≥ 0

}
. (63)

Since P is a convex set, and the objective in (61) is linear, (61) is a convex optimization problem. From

Lagrange duality theory [29] it then follows that A is equal to the optimal value of the dual problem, namely,

A = min
µ≥0,λ

max
si≥0,ρ≥0

L(si, ρ, λ, µ), (64)
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where the Lagrangian L is given by

L(si, ρ, λ, µ) =
m∑

i=1

(1 − di)2si − ρ + λ

(
L2 −

m∑
i=1

si

)
+ µ

(
1 +

m∑
i=1

σisi − L2

ρ

)
. (65)

Substituting (65) into (64), we have

A = min
µ≥0,λ

{
λL2 + µ +

m∑
i=1

max
si≥0

{[
(1 − di)2 − λ + µσi

]
si

}
+ max

ρ≥0

{
−ρ − µL2

ρ

}}

= min
µ≥0,λ

{
λL2 + µ − 2L

√
µ : (1 − di)2 + µσi ≤ λ, 1 ≤ i ≤ m

}
, (66)

where we used the fact that the optimal ρ is ρ = L
√

µ. The problem (∆) of (60) can therefore be expressed

as

(Γ) : min
τ,di,µ,λ




τ :

∑m
i=1

d2
i

σi
≤ τ

−2L
√

µ + µ + L2λ +
∑m

i=1
d2

i
σi

≤ τ

(1 − di)2 + σiµ ≤ λ, 1 ≤ i ≤ m

µ ≥ 0




. (67)

Since (Γ) is a convex optimization problem, we can find an optimal solution to Γ by forming the La-

grangian

L = τ + α

(
m∑

i=1

d2
i

σi
− τ

)
+ β

(
−2L

√
µ + µ + L2λ +

m∑
i=1

d2
i

σi
− τ

)
+

m∑
i=1

γi

(
(1 − di)2 + σiµ − λ

)
, (68)

where from the Karush-Kuhn-Tucker conditions [28] we must have that α, β, γi ≥ 0. Differentiating L with

respect to τ and equating to 0,

α + β = 1. (69)

Differentiating L with respect to di and equating to 0,

di =
γi

(1/σi)(α + β) + γi
=

γi

1/σi + γi
, (70)

from which we conclude that

0 ≤ di ≤ 1, 1 ≤ i ≤ m. (71)

From (67), di must satisfy

(1 − di)2 + σiµ ≤ λ. (72)
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Suppose that we have equality in (72) for some 1 ≤ j ≤ m. Then to satisfy (71), we must have that

dj = 1 − √
λ − σjµ, (73)

and

λ − σiµ ≤ 1. (74)

If for some j we have inequality in (72), so that

(1 − dj)2 + σjµ < λ, (75)

then by complementary slackness we must have that γi = 0, which from (70) implies that dj = 0.

Let σ1 ≥ . . . ≥ σm > 0. Then by (70) we have that d1 ≥ . . . ≥ dm ≥ 0. Therefore, if dj = 0 for some j,

then di = 0 for all i ≥ j.

It follows that at an optimal solution, there exists a 1 ≤ k ≤ m such that

di = 1 −√
λ − σiµ, i ≤ k;

λ ≤ 1 + σkµ;

di = 0, i ≥ k + 1;

if k < m then λ ≥ 1 + σk+1µ. (76)

We conclude that (Γ) of (67) can be solved by first solving m problems (Γk) with 3 unknowns each, where

(Γk) : min
τ,µ,λ




τ :

∑k
i=1

(1−√
λ−σiµ)2

σi
≤ τ

−2L
√

µ + µ + L2λ +
∑k

i=1
(1−√

λ−σiµ)2

σi
≤ τ

σ1µ ≤ λ ≤ 1 + σkµ

µ ≥ 0

if k < m then λ ≥ 1 + σk+1µ




, 1 ≤ k ≤ m, (77)

and then choosing the value of k and the corresponding optimal values di given by (76), that result in the

smallest possible value of τ .

Each problem (Γk) is a simple convex optimization problem involving 3 unknowns, and can therefore be

solved very efficiently, for example, using the Ellipsoidal method (see, e.g., [28, Ch. 5.2]).
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Following similar steps to those taken in (37)–(40), we can derive the dual problem of (Γ) given by (67),

which results in

max
γi,β

{
m∑

i=1

γi

1 + σiγi
− L2β2

β +
∑m

i=1 σiγi

}
(78)

subject to

∑m
i=1 γi = βL2;

0 ≤ β ≤ 1;

γi ≥ 0, 1 ≤ i ≤ m. (79)

Suppose now that σi = 1, 1 ≤ i ≤ m so that H∗C−1
w H = I. In this case the objective (78) can be written as

max
γi

{
m∑

i=1

γi

1 + γi
− 1

1 + L2

m∑
i=1

γi

}
(80)

where we used the fact that from (79),
∑m

i=1 γi = βL2. Since β no longer appears in the objective, the

constraints (79) can be expressed as

∑m
i=1 γi ≤ L2;

γi ≥ 0, 1 ≤ i ≤ m. (81)

As we expect, the resulting dual problem of (80) and (81) is equivalent to the dual problem of (39) and (40)

derived in Section 4 for the case in which T = H∗C−1
w H, when substituting σi = 1. Indeed, if H∗C−1

w H = I,

then the weighting matrices considered in Section 4 and 5 are equal, so that the corresponding optimization

problems must coincide.
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We summarize our results in the following theorem.

Theorem 3. Let x denote the deterministic unknown parameters in the model y = Hx + w, where H

is a known n × m matrix with rank m, and w is a zero-mean random vector with covariance Cw. Let

H∗C−1
w H = VΣV∗ where V is a unitary matrix and Σ is an m×m diagonal matrix with diagonal elements

σ1 ≥ . . . ≥ σm > 0. Then the solution to the problem

min
x̂=Gy

max
‖x‖≤L

{
E(‖x̂ − x‖2) − min

x̂=G(x)y
E(‖x̂ − x‖2)

}
=

= minG max‖x‖≤L

{
Tr(GCwG∗) + x∗(I − GH)∗(I − GH)x − x∗x

1+x∗H∗C−1
w Hx

}

has the form

x̂ = VDV∗(H∗C−1
w H)−1H∗C−1

w y,

where D is an m × m diagonal matrix with diagonal elements di that are given by

di =


 1 −√

λ − σiµ, i ≤ k;

0, i ≥ k + 1,

with k = arg min τi, µ = µk and λ = λk. Here τi, µi and λi are the optimal solutions to the problem (Γi)

given by (77).

We now show that, as we expect intuitively, when L → ∞, the minimax regret estimator x̂ of Theorem 3

reduces to the least-squares estimator (5). From (77) it follows that if L → ∞ and λ > 0, then −2L
√

µ+µ+

L2λ +
∑k

i=1

(
1 −√

λ − σiµ
)2

/σi → L2λ which implies that τ → ∞. Therefore, to minimize τ we must have

that λ = 0, which immediately implies that µ = 0 since we must have that λ ≥ σ1µ and µ ≥ 0. In addition,

since for k < m, λ ≥ 1 + σk+1µ, we must have that k = m. We conclude that for L → ∞, λ = µ = 0 and

k = m, which from Theorem 3 implies that D = I, and x̂ reduces to the least-squares estimator.
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6 Examples

We now present some examples, illustrating the performance advantage of the minimax regret estimator.

We consider the problem of estimating a 2D image from noisy observations, which are obtained by

blurring the image with a blurring kernel (a 2D filter), and adding random Gaussian noise. Specifically, we

generate an image x(z1, z2) which is the sum of m harmonic oscillations:

x(z1, z2) =
m∑

�=1

a� cos(ω�,1z1 + ω�,2z2 + φ�), (82)

where

ω�,i =
2πk�,i

n
, (83)

and k�,i ∈ Z
2 are given parameters. Clearly, the image x(z1, z2) is periodic with period n. Therefore, we

can represent the image by a length-n2 vector x, with components {x(z1, z2) : 0 ≤ z1, z2 ≤ n − 1}.
The observed image y(z1, z2) is given by

y(z1, z2) =
∑
τ1,τ2

H(τ1, τ2)x(z1 − τ1 − d1, z2 − τ2 − d2) + σw(z1, z2), 0 ≤ z1, z2 ≤ n − 1, (84)

where H(z1, z2) is a blurring filter defined by

H(z1, z2) = max

(
1 −

√
z2
1 + z2

2

ρ
, 0

)
, (85)

for some parameter ρ, d1 and d2 are randomly chosen shifts, and w(z1, z2) is an independent, zero-mean,

Gaussian noise process so that for each z1 and z2, w(z1, z2) is N (0, 1).

By defining the vectors y and w with components y(z1, z2) and w(z1, z2), respectively, and defining a

matrix H with the appropriate elements H(z1, z2), the observations y can be expressed in the form of a

linear model y = Hx + w.

To evaluate the performance of the minimax regret estimator, we consider 4 different data sets, with

parameters given by Table 1. The filters used in all four simulations have, up to shifts, the same support

{(0, 0); (0, 1); (0,−1); (1, 0); (−1, 0)}; however, the kernel used for the first data set is essentially different

from the kernels used for data sets # 2–4, which are identical up to shifts of each other. The distributions

of the singular values and the condition numbers of the kernels are shown in Fig. 2.

To estimate the image x(z1, z2) from the noisy observations y(z1, z2) we consider 4 different estimators:
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Data Set m n σ n · ρ (k�,1, k�,2) a� φ�

(2,1) 0.9235 1.7870
(1,2) 1.0155 2.9482

1 5 128 0.50 1.200000 (1,1) 0.8340 0.4070
(2,2) 0.9329 6.2099
(1,3) 0.7259 3.6618
(1,1) 1.0681 2.1438
(2,1) 0.8704 3.3557

2 5 128 0.50 1.414214 (1,2) 1.2027 4.5686
(2,2) 1.0466 1.9433
(3,2) 0.9449 5.2684

(16,11) 0.5784 5.0572
(4,6) 1.1408 5.7076

3 5 128 0.50 1.414214 (13,24) 0.6909 1.4570
(6,19) 1.3439 1.5036
(14,14) 0.6739 0.3126
(97,52) 1.1649 1.0072
(51,107) 1.3704 5.4843

4 5 128 0.50 1.414214 (101,41) 0.5099 1.4946
(6,66) 0.6370 4.0579

(123,39) 1.3188 6.0751

Table 1: Parameters for the 4 data sets.
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Figure 2: Distribution of the singular values of the H-matrix for data set # 1 (left) and data sets # 2–4
(right).
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The least-squares (LS) estimator of (5), the minimax regret (REG) estimator of Theorem 3, and two other

estimators, the deterministic Wiener estimator (WNR), and the minimax estimator (MMX), which we now

describe. We assume that L = ‖x‖ and the noise variance σ are known.

The least-squares estimator does not incorporate the prior knowledge on σ and the image norm L = ‖x‖.
To develop an estimator that incorporates this knowledge, we may assume that x is a random vector with

covariance L2I independent of the noise w, and design an MMSE Wiener filter matched to this covariance.

The resulting estimator is [2]

x̂ = CxH∗(HCxH∗ + Cw)−1y = (H∗C−1
w H + C−1

x )−1H∗C−1
w y =

(
H∗H +

σ2

L2
I
)−1

H∗y. (86)

The minimax estimator is developed in [21], and is designed to minimize the worst-case MSE over all

possible values of x, such that x∗x ≤ L2, i.e., it is the solution to the problem

min
x̂=Gy

max
‖x‖≤L

E
(‖x̂ − x‖2

)
, (87)

and is given by

x̂ =
L2

L2 + γ0
(H∗C−1

w H∗)−1H∗C−1
w y, (88)

where γ0 = Tr
((

H∗C−1
w H

)−1
)

is the variance of the least-squares estimator.

In Table 2 we report the relative error ε = ‖x̂ − x‖/‖x‖ corresponding to the 4 estimators, for each of

the 4 data sets. As can be seen in Fig. 2, for the first data set, where the matrix H is perfectly conditioned,

all of the methods work reasonably well. In contrast, for data sets # 2-4 where H is poorly conditioned, the

performance of the least-squares, minimax, and Wiener estimators are severely degraded. The surprising

result is that even though the matrix is ill-conditioned, the minimax regret estimator works pretty well, as

can be seen from the results of Table 2, as well as in Figs. 3 and 4 below.

In Figs. 3 and 4 we plot the original image, the observations, and the estimated image for data sets 2

and 3. Since the error in the least-squares estimate is so large, we do not show the resulting image. In the

images, the “more red” the image, the larger the signal value at that point.
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Observations, σ = 0.50 True signal

RGR, ε = 0.843 MMX, ε = 1.00 WNR, ε = 6.17

Figure 3: Data set # 2.
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Observations, σ = 0.50 True signal

RGR, ε = 0.881 MMX, ε = 1.00 WNR, ε = 6.17

Figure 4: Data set # 3.
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Data Estimator Relative Error
LS 0.748

1 MMX 0.599
WNR 0.731
RGR 0.599
LS 5.0e8

2 MMX 1.00
WNR 6.17
RGR 0.843
LS 5.0e8

3 MMX 1.00
WNR 6.65
RGR 0.881
LS 5.0e8

4 MMX 1.00
WNR 6.16
RGR 0.969

Table 2: Relative error for the data sets of Table 1.

7 Conclusion

We considered the problem of estimating an unknown deterministic vector x in the linear model y = Hx+w,

where x is known to be bounded so that ‖x‖T ≤ L for some weighting matrix T. We developed a new

linear estimator based on minimizing the worst-case regret, which is the difference between the MSE of the

estimator and the best possible MSE attainable with a linear estimator that knows x. As we demonstrated,

the minimax regret approach can significantly increase the performance over the traditional least-squares

method, even in cases where the least-squares estimator as well as other linear estimators, turn out to be

completely useless.

There are of course examples where the minimax regret, as well as all other linear estimators, will

perform poorly, in which case one may need to consider nonlinear estimators.

In our development of the minimax regret, we assumed that T commutes with HC−1
w H. An interesting

direction for future research is to develop the minimax regret estimator for more general classes of weighting

matrices T, as well as in the presence of uncertainties in H.
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