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Abstract

Metamaterial slab coupling to another metamaterial slab or to a dielectric slab has been studied,
taking into consideration regular trigonometric modes as well as hyperbolic modes. The first TM even
mode has been given special attention since it exhibits interesting filtering properties. The coupling
coefficient frequency variation of the structures has been investigated. It has been found that, for a
given frequency, the thinner the width of the slabs, or the lower their permittivity, the higher the

coupling between them.
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1. Introduction

Veselago [1] has shown that the Poynting vector of a plane wave is anti-parallel to its phase-velocity
vector in materials whose permittivity and permeability are both negative. These materials have
been consequently termed metamaterials, backward-wave materials, left-handed materials, etc. Lin-
dell et al. [2] and Lakhtakia et al. [3] have reviewed these materials. Pendry [4] has shown that a
metamaterial slab could focus evanescent modes and resolve objects only a few nanometers wide
in the optical domain. Ziolkowsky et al. [5] have studied metamaterials both analytically and nu-
merically. Engheta [6] has made a theoretical analysis on thin subwavelength cavity resonators
containing metamaterials. Alu et al. [7] have studied the radiation from a traveling-wave current
sheet at the interface between a conventional material and a metamaterial. Cory et al. [8] have
studied the longitudinal propagation coefficient dependence on frequency of regular modes having
a real transverse wave-number. Wu et al. [9] have shown that additional modes having an imag-
inary transverse wave-number coexist with the regular modes. In this work we have taken into

consideration the contribution of the two kinds of modes to the coupling processes.

2. The propagation coefficients

We have studied the coupling between two slabs of widths 2¢; and 2ty respectively separated by
a distance 2d as shown in Fig. 1. These slabs could be both metamaterial with permittivities
—k1€0 and —kag( respectively (k1 and kg are positive numbers), and permeability —pg, or one of
them could be dielectric with permittivity x1 269 and permeability po. The surrounding medium
is air. We have assumed throughout that the field components of the electromagnetic waves have

a time-dependence e/** and that they propagate in the z-direction with an e~7%# variation.

The transverse propagation coefficient k, of regular trigonometric modes (k; 2 £ inside the slab
and k, £ —jh outside it) for a single metamaterial slab [8]-[9] could be found from the following

equation:
(&'ti)2 + (hiti)Q = (koti)Q(lﬁi -1) (1=1,2) (1)

where ky = w,/eopo and k; is the relative permittivity of slab ¢, in conjunction with one of the



following equations:

(tits) - tan(lit;) = —r;(hit;) (TM ODD) (i =1,2) (2a)
(Lit:) - cot (€its) = ri(haty) (TM EVEN) (i =1,2) (2b)
(tit:) - tan(lit;) = —(haty) (TEODD) (i =1,2) (3a)
(Lit:) - cot (6it;) = (hats) (TE EVEN)  (i=1,2). (3b)

The longitudinal propagation coefficient (; for the single metamaterial slab could be found sub-
sequently, once the transverse propagation coefficients have been determined, according to the

following equation:
Bl =kik2— 07 =kij+h? (i=12). (4)

Explicit expressions for the field components of these modes can be found in [8]-[9].

The transverse propagation coefficient &, of additional hyperbolic modes [9] (k; £ +j/ inside

the slab and k, £ —jh outside it) for a single metamaterial slab, could be found from the following

equation:
—(it;)* + (hity)® = (kot;)* (ki — 1) (i=1,2) (5)

in conjunction with one of the following equations:

(4it;) - tanh(£it;) = ri(hit;) (TM ODD) (i =1,2) (6a)
(6iti) - coth(£it;) = ri(hits) (TM EVEN) (i =1,2) (6b)
(6it;) - tanh(£it;) = (hit;) (TEODD) (i =1,2) (7a)
(tit:) - coth(£it;) = (hat;) (TE EVEN)  (i=1,2). (7b)

The longitudinal propagation coefficient (; for the single metamaterial slab could be found sub-
sequently, once the transverse propagation coefficients have been determined, according to the

following equation:

B =kikia +E2=k+h: (i=1,2). (8)



Explicit expressions for the field components of these modes can be found in [9].

We will be principally concerned with the first TM even propagation mode since its dispersion
diagram has shown interesting filtering properties [8]. The hyperbolic first TM even mode has no
cut-off [9]. When kot = 0, St = ¢t = ht = arc cothk as can be seen from Egs. (5), (6b) and
(8). This mode ends when ¢t = 0, from which we deduce that ht = 1/, kot = 1/kv/k — 1 and
gt=1/ \/m , according to the same equations. Precisely at this point begins the trigonometric
first TM even mode as can be seen from Egs. (1), (2b) and (4). This mode ends when ht = 0, from
which we deduce that £t = w/2 and kot = 8t = m/2v/k — 1, according to the same equations.

3. The coupling coefficient

It can be shown [10] that for weak coupling, the total electric field is given as follows:
E = A(z)e(z,y)e 77 + B(2)ex(x,y)e 7 (9)

where e;(z,y) and ez(z,y) describe the fields variation with the transverse coordinates (z,y) for
guides 1 and 2, while 8; and 32 are the longitudinal propagation coefficients for these guides when
they are separated. It is assumed that only one mode propagates along the guides. The differential

equation of the (z-dependent) amplitude A(z) is given as follows [10]:

d*A(z2)
dz?

dA(z)
dz

+ j2¢ + K2A(z) =0 (10)

where ¢ = (8, — 1) and K is the coupling coefficient of the guides.

The coupling coefficient K which appears in Eq. (10) depends on e;(z,y) and on ex(z,y), and
is not a function of z. Numerous methods have been devised to evaluate this quantity and the
method due to Arnaud [11] has been adopted in this paper. It has been used successfully to find

the transverse coupling between adjacent guides of various shapes and composition [12]. It is given

by:

[%(EleJ“ ES x Hy) - dL]2 2

[/ / (E; x Hy) zdxdy] [/ / (Eg x Hy) zdxdy] P1P2

(11)



The indices 1 and 2 refer to the appropriate guides, the adjoint fields (E™,H") are given by
E* = (E,;,E,,—E,), H* = (—H,,—H,, H,), and the contour C runs along the y-axis and closes
at infinity. Only the y-axis contribution is to be taken into consideration [11] so that dL = —xdy.

The terms C,P; and P; are given by:

1 o0
c=2 / (ByoHyy + By Hy, — Ey,Hay — EryHoy)dy (12)
—0Q
Pio= / / (E12 x Hyp) - 2dzdy . (13)

The general pattern of the frequency dependence of the coupling coefficient K could be broadly
predicted as follows, taking into consideration both hyperbolic and trigonometric solutions. We
note that Poynting’s vector in the surrounding medium, P = A%Re(EzH;) o Bh2e 2 . Then,
in this region, assuming the slab has a given t and a given k, at the higher end of the frequency
range (kot ~ 7/2v/k — 1), ht is very low (ht ~ 0), so that the coupling is very low (due to the
h? term), because the energy density of each slab is very low in the vicinity of the neighbouring
slab. Afterwards, the coupling grows as the frequency diminishes, and at the lower end of the
frequency range (kot ~ 0), ht reaches its highest value (ht ~ arc coth k). Between the two limits of
the frequency range, the coupling could grow steadily, or it could reach a maximum, and decline
to zero if for very low frequencies ht is so high that most of the energy density of each slab
concentrates near its own surface and scarcely reaches the surface of the neighbouring slab (due to
the e72"* term). One sees then that the value of the coupling in the frequency range depends on
the interplay between the various frequency-dependent terms composing the energy density. For
a given frequency, h grows as ¢t diminishes or s diminishes, and the coupling dependence on ¢ or
k follows its dependence on h as described above. The same pattern of coupling variation with

frequency has been generally observed in [12].

4. Numerical results
4.1. The propagation coeflicients

The normalized transverse propagation coefficient in the surrounding medium (ht) is given as a

function of the normalized transverse propagation coefficient in the metamaterial slab (¢¢) for the



hyperbolic and for the trigonometric modes with x as parameter (x = 1.5,2,3) in Fig. 2. The
longitudinal propagation coefficient 3 is given as a function of the frequency f for the hyperbolic
and for the trigonometric modes with « as parameter (k = 1.5,2,3) in Fig. 3. The width of the
slab 2¢ = 7.5 mm in these two figures. We see that the hyperbolic solution, which begins at kyt =0
and ends at kot = 1/ky/k — 1, is followed by the trigonometric solution, which begins where the

hyperbolic solution ends, and ends at kot = 7/2v/k — 1.

4.2. Coupling between two metamaterial slabs

We first study the coupling between two similar metamaterial slabs whose separation is 2d = 1 mm,
of width 2¢ = 7.5 mm, and permittivities € = —1.5¢¢, —2¢€¢, —3¢g, as described in section 4.1. The
coupling coefficient K frequency variation is shown in Fig. 4. We note that for a given frequency,

the lower the refractive index, the higher the coupling.

The dispersion diagrams for three metamaterial slabs having the same permittivity (¢ = —2¢q)
and various widths (2¢ = 5, 7.5, 10 mm) are given in Fig. 5. The coupling coefficient K frequency
variation for two such identical metamaterial waveguides separated by a distance 2d = 1mm is

given in Fig. 6. We note that for a given frequency, the thinner the slab, the higher the coupling.

4.3. Coupling between a metamaterial slab and a dielectric slab

The coupling between a dielectric slab and a metamaterial or another dielectric slab has also been

studied. Three cases have been considered: 2t; = 5mm, £; = —2¢y and 2ty = 10 mm, g9 = 3ep;
2t1 = dmm, 1 = —2¢p and 2ty = 15mm, g9 = 3ep; 2t1 = 10mm, ;1 = 3¢y and 2t, = 15 mm,
€2 = 3g9. The distance between the slabs is always 2d = 1mm. The frequency variation of

the longitudinal propagation coefficient § is shown in Fig. 7 and the frequency variation of the
coupling coefficient K is shown in Fig. 8 for these three cases. The graphs of the coupling show
very interesting features. The metamaterial-dielectric structures possess a pass-band and show a
maximum. This maximum occurs at the frequency for which the §’s of the two slabs are roughly
equal. In this case the surface waves propagating along the two slabs decay almost identically away

from their surface.

The above results show that a single metamaterial slab or a pair of coupled metamaterial

slabs in the first TM even mode could be used as a low-pass filter. On the other hand, one



could devise a band-pass filter by coupling a metamaterial slab to a dielectric slab in the first TM
even mode. The band-pass would extend from the frequency for which h = 0 for the dielectric

slab (), koj = 7/2tjy/k; — 1, to the frequency for which h = 0 for the metamaterial slab (i),
koi = m/2t;\/k; — 1. Evidently k, must be larger than k,;.

5. Conclusion

The coupling between two metamaterial slabs, or between a metamaterial slab and a dielectric slab,
has been studied, taking into consideration the regular trigonometric modes as well as the hyperbolic
modes. The first TM even mode has been especially studied because it shows interesting filtering
properties. A bandpass filter could be devised by coupling a metamaterial slab to a dielectric one,
the limits of the passband being determined by the cutoff frequencies of the two slabs. The coupling
coefficient frequency variation of these structures has been studied, with the slab width or the slab
permittivity as parameter. It has been found that, for a given frequency, the thinner the width or

the lower the permittivity, the higher the coupling between the slabs.
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Figure captions

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

The coupled metamaterial slabs structure.

The normalized transverse propagation coefficient in the slab, ¢t, as a function of the
normalized transverse propagation coefficient in the surrounding medium, ht, for a slab
width 2¢ = 7.5 mm and for various values of the slab relative permittivity

er = —1.5,—-2,-3:

* % * x * hyperbolic solution

o o o o o trigonometric solution.

The longitudinal propagation coefficient 8 as a function of the frequency f for a slab
width 2¢t = 7.5 mm and for various values of the slab relative permittivity

er = —1.5,-2,-3:

* % * x % hyperbolic solution

o o o o o trigonometric solution.

The coupling coefficient K as a function of the frequency f for a pair of slabs of width
2t = 7.5 mm each and various values of relative permittivity ¢, = —1.5, -2, —3:

% % % x * hyperbolic solution

c o o o o trigonometric solution.

The distance between the slabs is 2d = 1 mm.

The longitudinal propagation coefficient 8 as a function of the frequency f for a slab
relative permittivity e, = —2 and for various values of the slab width 2¢ = 5,7.5,10 mm:
% * * % % hyperbolic solution

© o o o o trigonometric solution.

The coupling coefficient K as a function of the frequency f for a pair of slabs of relative
permittivity €, = —2 each and various values of width 2¢ = 5,7.5,10 mm:

% % * * * hyperbolic solution

o o o o o trigonometric solution.

The distance between the slabs is 2d = 1 mm.
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Figure 7:

Figure 8:

The longitudinal propagation coefficient 8 as a function of the frequency f for three
slabs of different widths 2¢ and different relative permittivities €,.:

1.2t =10mm, &, = 3

2.2t =15mm, &, =3

3.2t =5mm, g, = —2.

The coupling coefficient K as a function of the frequency f for three pairs of slabs of
different widths 2¢ and different relative permittivities ,:

1. 2ty = 5mm, ¢,1 = —2 and 2t = 10mm, g0 = 3

2.2ty = 5mm, £,1 = —2 and 2¢5 = 15mm, .0 = 3

3. 2t1 = 10mm, €,1 = 3 and 2{3 = 15mm, &, = 3.

The distance between the slabs is 2d = 1 mm.
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