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Abstract

We develop a uniform Cramer-Rao lower bound (UCRLB) on the total variance of any estimator of
an unknown vector of parameters, with bias gradient matrix whose norm is bounded by a constant. We
consider both the Frobenius norm and the spectral norm of the bias gradient matrix, leading to two
corresponding lower bounds.

We then develop optimal estimators that achieve these lower bounds. In the case in which the measure-
ments are related to the unknown parameters through a linear Gaussian model, Tikhonov regularization
is shown to achieve the UCRLB when the Frobenius norm is considered, and the shrunken estimator
is shown to achieve the UCRLB when the spectral norm is considered. For more general models, the
penalized maximum likelihood (PML) estimator with a suitable penalizing function is shown to asymptot-
ically achieve the UCRLB. To establish the asymptotic optimality of the PML estimator, we first develop
the asymptotic mean and variance of the PML estimator for any choice of penalizing function satisfying
certain regularity constraints, and then derive a general condition on the penalizing function under which
the resulting PML estimator asymptotically achieves the UCRLB. This then implies that from all linear
and nonlinear estimators with bias gradient whose norm is bounded by a constant, the proposed PML
estimator asymptotically results in the smallest possible variance.
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1 Introduction

Estimation theory arises in a vast variety of areas in science and engineering including, for example, com-

munication, economics, signal processing, seismology, and control. A common approach to developing well

behaved estimators in overparameterized estimation problems is to use regularization techniques, which

where first systematically studied by Tikhonov [1, 2]. In general, regularization methods measure both the

fit to the observed data and the physical plausibility of the estimate. In many cases the use of regularization

can reduce the variance of the resulting estimator at the expense of increasing the bias, so that the design

of such estimators is typically subject to a tradeoff between variance and bias.

Biased estimation methods are used extensively in a variety of different signal processing applications.

Examples include regularization methods in image restoration [3] where the bias corresponds to spatial

resolution, smoothing techniques in time series analysis [4, 5], and spectrum estimation [6, 7].

We consider the class of estimation problems in which we seek to estimate an unknown deterministic

parameter vector x0 from some given measurements y, where the relationship between y and x0 is described

by the joint probability density function (pdf) p(y;x0) of y characterized by x0.

It is well known that the total variance of any unbiased estimator of x0 is bounded by the Cramer-Rao

lower bound (CRLB) [8, 9, 10, 11]. In the case in which the measurements y are related to the unknowns

x0 through a linear Gaussian model, the maximum likelihood (ML) estimate of x0, which is given by the

value of x that maximizes p(y;x), achieves the CRLB. Furthermore, when x0 is estimated from independent

identically distributed (iid) measurements, under suitable regularity assumptions on the pdf p(y;x0), the

ML estimator is asymptotically unbiased and achieves the CRLB [9, 10, 12].

Since the estimators resulting from regularization methods are typically biased, their variance cannot be

bounded by the CRLB. The total variance of any estimator with a given bias is bounded by the biased CRLB

[13], which is an extension of the CRLB for unbiased estimators. It turns out that the biased CRLB does

not depend directly on the bias, but only on the bias gradient matrix, which makes intuitive sense. Indeed,

any constant bias is removable, even if it is very large, and therefore should not effect the performance of

the estimator.

Given a desired bias gradient, the biased CRLB serves as a bound on the smallest attainable variance.

However, in applications it may not be obvious how to choose a particular bias gradient. In such cases,

it would be useful to have a lower bound on the smallest attainable variance using any estimator whose

bias gradient belongs to a suitable class. A bound of this form was first developed by Hero et al. [14, 15].

Specifically, they consider the problem of estimating a scalar function of a deterministic vector parameter.

To quantify the fundamental tradeoff between bias and variance they propose the uniform CRLB (UCRLB),

which is a bound on the smallest attainable variance that can be achieved using any estimator with bias

gradient whose norm is bounded by a constant. In the case of a linear Gaussian model, they show that the

UCRLB is achievable using a linear estimator. For a Poison model, the UCRLB is shown to be approximately

achievable asymptotically. However, for more general models, the UCRLB is not shown to be achievable.

In this paper we extend the results of [14, 15] in two ways. First, we derive a UCRLB for vector param-

eters. Second, we develop a class of estimators that asymptotically achieve the UCRLB when estimating an

unknown vector from iid vector measurements.

In the case in which it is desired to estimate an unknown vector x0, we may use the results in [14, 15] to

obtain bounds on the variance of the estimation error in each of the individual components to be estimated,



subject to a constraint on the norm of the individual bias gradients. However, in many contexts, it is of

interest to bound the total variance achievable in estimating the vector x0, subject to a constraint on the

total bias gradient norm, rather than bounds on the individual variances subject to individual constraints. In

order to obtain results on the total variance, in Sections 3 and 4, we extend the UCRLB to vector parameters.

Specifically, we derive bounds on the total variance of any estimator x̂ of x0, with bias gradient matrix whose

norm is bounded by a constant. We consider two different matrix norms which lead to two lower bounds:

in Section 3 we consider the Frobenius norm corresponding to an average bias gradient measure, and in

Section 4 we consider the spectral norm corresponding to a worst case bias gradient measure. As we show

in Section 2, these measures characterize the (possibly weighted) average and worst-case variation of the

bias, respectively, over an ellipsoidal region around the true parameters x0.

In Sections 3.1 and 5 we show that the estimator achieving the vector UCRLB can result in a smaller

total variance than the estimator achieving the scalar UCRLB of [15], so that by treating the parameters to

be estimated jointly, we can reduce the total variance in the estimation.

To establish the fact that the UCRLB is achievable, in Section 5 we consider the case in which the

measurements y are related to the unknown parameters x0 through a linear Gaussian model, and derive

linear estimators of x0 that achieve the UCRLB. In particular, we show that among all estimators with bias

gradient matrix whose Frobenius norm is bounded by a constant, the ridge estimator proposed by Hoerl

and Kennard [16] (also known as Tikhonov regularization [2]), with an appropriate regularization factor,

minimizes the total variance. We also show that among all estimators with bias gradient matrix whose

spectral norm is bounded by a constant, the shrunken estimator proposed by Mayer and Willke [17] with

an appropriate shrinkage factor, minimizes the total variance.

An important question is whether the UCRLB is achievable for more general, not necessarily Gaussian,

models. In Section 6 we consider the case of estimating x0 from iid measurements, and develop a class of

penalized maximum likelihood (PML) estimators that asymptotically achieve the UCRLB. Thus we establish

that asymptotically, the UCRLB is achievable in many cases.

The PML estimator was first proposed by Good and Gaskins [18, 19] as a modification of the ML

estimator, and is given by the value that maximizes a penalized likelihood function. This approach is

equivalent to the maximum-a-posteriori (MAP) method in Baysian estimation, if we interpret the penalizing

factor as the log-likelihood of the prior pdf of x0. Note, however, that the analysis of the PML and MAP

estimators is fundamentally different; while in the Baysian approach the unknown parameters are assumed

to be random, in the PML approach the unknown parameters are deterministic but unknown. Therefore,

performance measures such as MSE average the performance over both the noise and the parameters in the

Baysian approach, while in the PML approach case the performance is only averaged over the noise, but

not over the parameters, which are assumed to be fixed.

The PML method has been widely used in many engineering applications; see e.g., [20, 21, 22, 23, 24]. We

may interpret the PML approach as a method for obtaining biased estimators where the tradeoff between

variance and bias depends on the penalizing function. Although various penalizing functions have been

proposed for a variety of problems, no general assertions of optimality properties for the various choices of

the penalizing functions are known. A possible approach is to choose the penalizing function to achieve an

optimal bias-variance tradeoff in some sense.

In Section 6 we consider estimation of a vector parameter from iid measurements, and develop the

asymptotic bias and covariance of any PML estimator with a penalizing function that satisfies certain



regularity constraints. Using these asymptotic results, we develop a condition on the penalizing function

such that the resulting PML estimator achieves the UCRLB. In Section 7 we consider an example illustrating

the asymptotic optimality properties of the PML estimator.

In the sequel, we denote vectors in C
m (m arbitrary) by boldface lowercase letters and matrices in

C
n×m by boldface uppercase letters. I denotes the identity matrix of appropriate dimension, (·)∗ denotes

the Hermitian conjugate of the corresponding matrix, and (̂·) denotes an estimated vector or matrix. The

ith column of the matrix D is denoted by [D]i, the ijth element of D is denoted by [D]ij , and the ith

component of a vector x is denoted by xi. The true value of an unknown vector parameter x is denoted by

x0, and the true value of an unknown scalar parameter x is denoted by x0. ∂f(x0)/∂x denotes the gradient

of the function f(x) evaluated at the point x0, and is a row vector with j element equal to ∂f(x0)/∂xj . The

gradient of a vector ∂b(x0)/∂x is a matrix, with ijth element equal to ∂bi(x0)/∂xj , i.e., the derivative of the

ith component of the vector b(x0) with respect to xj . Using the notation in [25],
a∼ denotes “asymptotically

distributed according to”, and N (µ, σ2) denotes the Gaussian distribution with mean µ and variance σ2.

2 Biased Cramer-Rao Lower Bound

We consider the problem of estimating an unknown deterministic parameter vector x0 ∈ C
m from given

measurements y ∈ C
n, where the relationship between y and x0 is described by the pdf p(y;x0) of y,

characterized by x0.

Under suitable regularity conditions on p(y;x) (see e.g., [8, 10]), the covariance of any unbiased estimator

x̂ of x0 is bounded by the CRLB. A similar bound is also given for the covariance of a biased estimator,

which is known as the biased CRLB [13]. Specifically, let x̂ denote an arbitrary estimator of x0 with bias

b(x0) = E(x̂) − x0, (1)

and covariance

Cx̂ = E {[x̂ − E(x̂)][x̂ − E(x̂)]∗} . (2)

Then the covariance Cx̂ must satisfy

Cx̂ ≥ (I + D)J−1 (I + D)∗
△
= C(D), (3)

where J is the Fisher information matrix defined by

J = E

{[
∂ log p(y;x0)

∂x

]∗ [
∂ log p(y;x0)

∂x

]}
, (4)

and is assumed to be nonsingular1, and D is the bias gradient matrix defined by

D =
∂b(x0)

∂x
. (5)

For a given bias gradient D, the total variance that is achievable using any linear or nonlinear estimator

with this bias gradient is bounded below by Tr(C(D)), where the total variance
∑m

i=1 E
{

[x̂i − E(x̂i)]
2
}

is

1This assumption is made to simplify the derivations.



the sum of the variances in estimating the individual components of x0. Typically in estimation problems

there are two conflicting objectives that we would like to minimize: We would like to choose an estimator x̂

to achieve the smallest possible total variance and the smallest possible bias. However, generally, minimizing

the bias results in an increase in variance and vice versa. To quantify the best achievable performance of

any estimator x̂ of x0 taking both the bias and the total variance into account, we choose to minimize the

total variance

C(D) = Tr(C(D)) = Tr
(
(I + D)J−1 (I + D)∗

)
, (6)

subject to a constraint on the bias gradient matrix D. Note that D is invariant to a constant bias term, so

that in effect it characterizes the part of the bias that cannot be removed.

2.1 Bias Gradient Matrix

To develop a meaningful constraint on D, following [15], we first show that the norm of the bias gradient

matrix is a measure of the sensitivity of the bias b(x) to changes in x over a neighborhood of x0.

Using a Taylor expansion, to the first order approximation we have that

b(x) − b(x0) ≈ D(x − x0)
△
=Du, (7)

where u = x − x0. Therefore, the squared norm of the bias variation b(x) − b(x0) at a point x in the

neighborhood of x0 is approximately given by

‖b(x) − b(x0)‖2 ≈ u∗D∗Du
△
=V. (8)

Let

S = {x|(x − x0)
∗M−1(x − x0) ≤ 1} (9)

be the set of vectors x that lie in the ellipsoidal region around x0 defined by M, where M is an arbitrary

positive definite weighting matrix. Then the maximal variation of the bias norm over the region S is

max
u∈S

V = max
z∗z≤1

z∗M1/2D∗DM1/2z = ‖DM1/2‖2 (10)

where z = M−1/2u, and ‖A‖ denotes the spectral norm of the matrix A [26], i.e., the largest singular value

of A. The worst case variation ‖DM1/2‖2 occurs when z is chosen to be a unit-norm vector in the direction

of the eigenvector corresponding to the largest eigenvalue of M1/2D∗DM1/2. It follows from (10) that the

spectral norm ‖DM1/2‖ is approximately equal to the largest variation in the norm of the bias over the

ellipsoid S, and is therefore a reasonable worst-case bias measure.

To develop an average bias measure, instead of choosing z to be in the direction of the worst-case

eigenvector, we may choose z =
∑m

i=1 aivi where vi, 1 ≤ i ≤ m are the eigenvectors of M1/2D∗DM1/2, and

ai are arbitrary coefficients satisfying
∑m

i=1 a2
i = 1, so that ‖z‖ = 1. For this choice of z,

V = z∗M1/2D∗DM1/2z =

m∑

i=1

a2
i λi, (11)

where λi are the eigenvalues of M1/2D∗DM1/2. Denoting by A the diagonal matrix with diagonal elements



a2
i , we can express V of (11) as

V = Tr
(
VAV∗M1/2D∗DM1/2

)
= Tr (D∗DQ) (12)

where V is the matrix of eigenvectors vi, and Q = M1/2VAV∗M1/2. If follows from (12) that the weighted

Frobenius norm Tr(D∗DQ) of D is a measure of the average variation in the norm of the bias over the

ellipsoid S, and is therefore a reasonable average bias measure. More generally, we can consider the weighted

Frobenius norm Tr(D∗DW) for an arbitrary nonnegative definite matrix W, as an average bias measure.

We conclude that the weighted spectral norm and the weighted Frobenius norm of D measure the worst-

case and average variation, respectively, in the bias norm, over an ellipsoidal region around x0, and therefore

represent reasonable measures of bias. Motivated by these measurements, in our development we consider

the following two measures of bias gradient: an average bias gradient measure corresponding to a weighted

squared Frobenius norm,

DAVG = Tr (D∗DW) , (13)

where now W is an arbitrary nonnegative definite weighting matrix, and a worst case bias gradient measure

corresponding to a weighted squared spectral norm,

DWC = max
z∈Cm,‖z‖=1

z∗SD∗DSz, (14)

for some nonnegative definite matrix S.

In Section 3 we develop the UCRLB with an average bias constraint, and in Section 4 we develop the

UCRLB with a worst-case bias constraint. Which bound to use in practice depends strongly on the specific

application. For example, in the context of image restoration, the bias gradient norm can be viewed as a

measure of the geometric resolution of the estimator [15, 27]. In applications, we may wish to constraint

the average geometric resolution, in which case the UCRLB with average bias constraint is appropriate, or

we may wish to constraint the worst-case geometric resolution, in which case the UCRLB with worst-case

bias constraint should be considered.

3 UCRLB With Average Bias Constraint

We first consider the problem of minimizing C(D) of (6) subject to

DAVG = Tr (D∗DW) ≤ γ. (15)

If γ ≥ Tr(W), then we can choose D = −I which results in C(D) = 0.

We next consider the case γ < Tr(W). To find the optimal D we form the Lagrangian

L = Tr
(
(I + D)J−1 (I + D)∗

)
+ α (Tr (D∗DW) − γ) , (16)

where from the Karush-Kuhn-Tucker (KKT) conditions [28] we must have α ≥ 0. Since L is strictly convex,

it has a unique minimum, which can be determined by setting the derivative of L to 0.



Differentiating2 L with respect to D and equating to 0,

(I + D)J−1 + αDW = 0, (17)

so that the minimum of L is given by D = D̂AVG with

D̂AVG = −J−1
(
J−1 + αW

)−1

= (I + αWJ)−1

= −I + α (I + αWJ)−1 WJ, (18)

where we used the matrix inversion lemma [26].

If α = 0, then D̂AVG = −I which violates the constraint (15). Therefore, α > 0 which from the KKT

conditions imply that (15) must be satisfied with equality. Thus, the optimal D is D = D̂AVG given by (18)

where α > 0 is chosen such that

Tr(D̂∗
AVGD̂AVGW) = Tr

(
(I + αJW)−1 (I + αWJ)−1 W

)
= γ. (19)

If W is positive definite, then

Tr(D̂∗
AVGD̂AVGW) = Tr

((
W−1 + αJ

)−2
W−1

)
, (20)

so that α > 0 is chosen such that

Tr
((

W−1 + αJ
)−2

W−1
)

= γ. (21)

We now show that there is a unique α > 0 satisfying (19). To this end let

T (α) = Tr
(
(I + αJW)−1 (I + αWJ)−1 W

)
− γ, (22)

so that any α satisfying (19) is a root of T (α). We can immediately verify that T (α) is monotonically

decreasing in α. Since T (0) = Tr(W) − γ > 0 and T (α) → −γ < 0 for α → ∞, there exists exactly one

α > 0 for which T (α) = 0.

We conclude that the total variance of any estimator x̂ of x0 with bias gradient D satisfying (15) with

γ < Tr(W) is bounded by

Tr(Cx̂) ≥ Tr
((

I + D̂AVG

)
J−1

(
I + D̂AVG

)∗)

= α2Tr
(
(I + αWJ)−1 WJW (I + αJW)−1

)
, (23)

where α > 0 is given by (19).

If W is positive definite, then

Tr(Cx̂) ≥ α2Tr
((

W−1 + αJ
)−2

J
)

, (24)

where α > 0 is given by (21).

2In our derivations we use the following derivative: For any Hermitian A,
∂Tr(BAB

∗)
∂B

= 2BA.



We summarize our results in the following theorem:

Theorem 1. Let x0 denote an unknown deterministic parameter vector, let y denote measurements of x0,

and let p(y;x0) denote the pdf of y characterized by x0. Let J denote the Fisher information matrix and D

denote the bias gradient matrix defined by (4) and (5) respectively, and let W be a nonnegative Hermitian

weighting matrix. Then the total variance C = C(D) defined by (6) of any estimator of x0 with bias gradient

matrix D such that Tr(D∗DW) ≤ γ < Tr(W) satisfies

C ≥ α2Tr
(
(I + αWJ)−1 WJW (I + αJW)−1

)
,

where α > 0 is chosen such that

Tr
(
(I + αWJ)−1 W (I + αJW)−1

)
= γ.

If in addition W is positive definite, then

C ≥ α2Tr
((

W−1 + αJ
)−2

J
)

,

where α > 0 is chosen such that

Tr
((

W−1 + αJ
)−2

W−1
)

= γ.

3.1 Comparison With the Scalar UCRLB

In the previous section we developed a lower bound on the total variance attainable using an arbitrary

estimator x̂ of x0 with average bias gradient bounded by a constant, by treating the unknowns to be

estimated jointly. Alternatively, we can obtain a lower bound on the total variance by using the scalar

UCRLB of Hero et al. [14, 15] to bound the variance in estimating each of the individual components of x0.

We now show that in general the UCRLB of Theorem 1 on the total variance is lower than the bound on the

total variance resulting from the scalar UCRLB. This implies that if the UCRLB is achievable, as it is, for

example, in the case of a linear Gaussian model (see Section 5), then we can obtain a lower variance when

estimating the parameters jointly subject to a joint constraint, than by estimating each of the components

individually subject to individual constraints.

To develop a lower bound on the total variance of any estimator x̂ of x0 with bias gradient Frobenius

norm that is bounded by a constant γ using the scalar UCRLB, denote by bi = E(x̂i) − xi the bias in

estimating the ith component of x0, and by di = ∂bi(x0)/∂x the corresponding bias gradient. The scalar

UCRLB minimizes

[C(D)]ii = ([I]∗i + di)J
−1 ([I]i + d∗

i ) (25)

for each 1 ≤ i ≤ m, subject to the constraint that

diWd∗
i ≤ γi (26)

for some nonnegative definite matrix W, where
∑m

i=1 γi = γ. The total variance in estimating x0 using any



estimator x̂ with bias gradient vectors satisfying (26) is then bounded by

m∑

i=1

min
di

{
([I]∗i + di)J

−1([I]i + d∗
i )

}
, (27)

which can equivalently be expressed as

min
D

{
m∑

i=1

([I]∗i + di)J
−1([I]i + d∗

i )

}
= min

D

{
Tr

(
(I + D)J−1(I + D)∗

)}
= minC(D), (28)

where D is the matrix with rows di, subject to

[DWD∗]ii ≤ γi, 1 ≤ i ≤ m. (29)

In contrast, the vector UCRLB is obtained by minimizing (28) subject to

m∑

i=1

[DWD∗]ii ≤
m∑

i=1

γi = γ. (30)

Note, that any matrix D satisfying (29), also satisfies (30); however, the reverse implication is not true.

Therefore, we have immediately that the vector UCRLB is no larger than the bound on the total variance

resulting from the scalar UCRLB. In the case in which the vector UCRLB is achievable, this implies that a

lower total variance may be achieved by treating the parameters to be estimated jointly, as we demonstrate

in the context of a concrete example in Section 5.

4 UCRLB With Worst Case Bias Constraint

We now consider the problem of minimizing C(D) of (6) subject to

DWC = max
z∈Cm,‖z‖=1

z∗SD∗DSz ≤ γ, (31)

for some nonnegative definite matrix S. In Section 4.1, we consider the case in which S is a positive definite

matrix that has the same eigenvector matrix as J. As we will show, in this case there is a closed form

solution for the optimal bias gradient matrix D. In Section 4.2 we consider an arbitrary weighting S. In this

case, the optimal D can be found as a solution to a semidefinite programming problem (SDP) [29, 30, 31],

which is a convex optimization problem that can be solved very efficiently, e.g., using interior point methods

[31, 32].

4.1 UCRLB With S and J Jointly Diagonalizable

We first consider the problem of minimizing C(D) of (6) subject to (31), where S is positive definite and

is jointly diagonalizable with J. Specifically, Let J−1 have an eigendecomposition J−1 = QΛQ∗ where Q is

a unitary m × m matrix and Λ is a diagonal matrix with diagonal elements λi > 0, and let qi, 1 ≤ i ≤ m

denote the columns of Q. Then we assume that S has the form S =
∑m

i=1 βiqiq
∗
i for some βi > 0.



We first note that we can express (31) as

z∗SD∗DSz ≤ γ, z ∈ C
m, z∗z = 1. (32)

If γ ≥ λ2
max, where λmax = maxi βi is the largest eigenvalue of S, then we can choose D = −I which results

in C(D) = 0.

We next consider the case in which γ < λmax. In (32) we have infinitely may constraints on the matrix

D, so that the problem is hard to solve. Instead we first consider the simpler problem of minimizing C(D)

subject to a finite subset of the constraints (32), i.e., we consider (32) for a finite set of choices z. With Ĉ

and Ĉ ′ denoting the minimum attainable total variance subject to (32) and a subset of (32) respectively, we

have immediately that Ĉ ≥ Ĉ ′. Thus our approach is to first find the optimal D that achieves the minimum

total variance Ĉ ′, and then show that this optimal D also satisfies (32), so that Ĉ = Ĉ ′.

Thus, we now consider minimizing C(D) subject to

q∗
i SD∗DSqi =≤ γ, 1 ≤ i ≤ m. (33)

Since Sqi = βiqi, the constraints (33) become

β2
i q

∗
i D

∗Dqi ≤ γ, 1 ≤ i ≤ m. (34)

To find the optimal D we form the Lagrangian

L = Tr
(
(I + D)J−1 (I + D)∗

)
+

m∑

i=1

αiβ
2
i (q∗

i D
∗Dqi − γ) , (35)

where from the KKT conditions αi ≥ 0. Differentiating with respect to D and equating to 0,

(I + D)J−1 +
m∑

i=1

αiβ
2
i Dqiq

∗
i = 0, (36)

so that

D = −J−1

(
J−1 +

m∑

i=1

αiβ
2
i qiq

∗
i

)−1

= −
m∑

i=1

λi

λi + αiβ2
i

qiq
∗
i . (37)

Let I denote the set of indices for which β2
i > γ. Since γ < λ2

max, the set I is not empty. If αj = 0 for some

j ∈ I, then

β2
j q

∗
jD

∗Dqj = β2
j > γ, (38)

which violates the jth constraint of (34). Therefore, for all i ∈ I, αi > 0, and (34) is satisfied with equality,

which implies that
λi

λi + αiβ2
i

=

√
γ

βi
, i ∈ I. (39)

For j /∈ I, the choice αj = 0 does not violate the constraints (34), so that we may choose αj = 0 or αj > 0

which implies that λj/(λj +αjβ
2
j ) =

√
γ/βj . We can immediately verify that C(D) is minimized for αj = 0,

so that

αi = 0, i /∈ I. (40)



Substituting (39) and (40) into (37),

D = −√
γ

∑

i∈I

1

βi
qiq

∗
i −

∑

i/∈I
qiq

∗
i = −√

γS−1P − (I − P) =
(
I −√

γS−1
)
P − I, (41)

where P =
∑

i∈I qiq
∗
i is the orthogonal projection onto the space spanned by the eigenvectors of S corre-

sponding to eigenvalues β2
i > γ.

We conclude that the optimal D that minimizes the total variance C(D) subject to (33) is D = D̂WC

where

D̂WC =
(
I −√

γS−1
)
P − I. (42)

For this choice of bias gradient,

SD̂∗
WCD̂WCS = γP + S2 (I − P) . (43)

Since for i /∈ I, γ ≥ β2
i , we have that S2 (I − P) ≤ γ (I − P), and

SD̂∗
WCD̂WCS ≤ γP + γ(I − P) = γI, (44)

so that (32) is satisfied. Therefore, D̂WC also minimizes the total variance subject to (32).

Thus the total variance of any estimator x̂ of x0 with bias gradient D satisfying (32) with γ < λmax is

bounded by

Tr(Cx̂) ≥ Tr
((

I −√
γS−1

)
PJ−1P

(
I −√

γS−1
))

= Tr
((

I −√
γS−1

)2
PJ−1

)
, (45)

where we used the fact that J−1,P and S−1 all commute.

In the special case in which S = I, all the eigenvalues of S, which are equal to 1, are larger than γ, which

is constrained to be smaller than λ2
max = 1. Thus, P = I, and

Tr(Cx̂) ≥ Tr
(
(1 −√

γ)2 J−1
)

. (46)

4.2 UCRLB With Arbitrary S

We now consider the problem of minimizing C(D) of (6) subject to (31) for an arbitrary nonnegative definite

matrix S. This problem can equivalently be expressed as

min
t,D

t (47)

subject to

Tr
(
(I + D)J−1 (I + D)∗

)
≤ t (48)

S∗D∗DS ¹ γI, (49)

where the matrix inequality A ¹ B means that B − A is positive semidefinite.

If γ ≥ λ2
max, where λ2

max denotes the largest eigenvalue of S, then we can choose D = −I which results

in t = 0. We next consider the case in which γ < λ2
max.

As we now show, the problem of (47) subject to (48) and (49) can be formulated as a standard SDP



[29, 30, 31], which is the problem of minimizing a linear functional subject to linear matrix inequality

(LMI) constraints, i.e., matrix constraints in which the matrices involved depend linearly on the unknowns

to be optimized. By exploiting the many well known algorithms for solving SDPs [30, 29], e.g., interior

point methods3 [31, 32], the optimal D can be computed very efficiently in polynomial time. In addition,

SDP-based algorithms are guaranteed to converge to the global optimum.

To formulate our problem as an SDP, let g = vec(J−1/2(I+D)∗), where m = vec(M) denotes the vector

obtained by stacking the columns of M. With this notation, our problem reduces to minimizing (47) subject

to the constraints

g∗g ≤ t

S∗D∗DS ¹ γI. (50)

The constraints (50) are not in the form of LMIs because of the terms g∗g and S∗D∗DS in which the

elements of D do not appear linearly. To express these inequalities as LMIs we rely on the following lemma

[26, p. 472]:

Lemma 1 (Schur’s complement). Let

M =

[
A B∗

B C

]

be a Hermitian matrix. Then with C ≻ 0, M º 0 if and only if ∆C º 0, where ∆C is the Schur complement

of C in M and is given by

∆C = A − B∗C−1B.

Using Lemma 1 we can express the constraints (50) as

[
t g∗

g I

]
º 0;

[
γI SD∗

DS I

]
º 0, (51)

which are LMIs in t and D.

We conclude that the problem of minimizing C(D) of (6) subject to (31) is equivalent to the SDP

problem of (47) subject to (51).

We summarize our results in the following theorem:

Theorem 2. Let x0 denote an unknown deterministic parameter vector, let y denote measurements of x0,

and let p(y;x0) denote the pdf of y characterized by x0. Let J denote the Fisher information matrix and

D denote the bias gradient matrix defined by (4) and (5) respectively, let S denote an arbitrary nonnegative

definite matrix, and let λmax denote the largest eigenvalue of S. Then the total variance C = C(D) of

3Interior point methods are iterative algorithms that terminate once a pre-specified accuracy has been reached. A worst case

analysis of interior point methods shows that the effort required to solve an SDP to a given accuracy grows no faster than a

polynomial of the problem size. In practice, the algorithms behave much better than predicted by the worst case analysis, and

in fact in many cases the number of iterations is almost constant in the size of the problem.



any estimator of x0 with bias gradient matrix D such that maxz∈Cm,‖z‖=1 z∗SD∗DSz ≤ γ < λ2
max satisfies

C ≥ Cmin where Cmin is the solution to the semidefinite programming problem

Cmin = min
t,D

t

subject to

[
t g∗

g I

]
º 0;

[
γI SD∗

DS I

]
º 0,

where g = vec(J−1/2(I + D)∗).

If S =
∑m

i=1 βiqiq
∗
i for some βi > 0, where qi are the eigenvectors of J, then

Cmin = Tr
((

I −√
γS−1

)2
PJ−1

)
,

where P =
∑

i∈I qiq
∗
i is the orthogonal projection onto the space spanned by the eigenvectors of S corre-

sponding to eigenvalues βj , j ∈ I, where I is the set indices for which β2
j > γ. If in addition, S = I,

then

Cmin = Tr
(
(1 −√

γ)2J−1
)
.

Note from Theorems 1 and 2, that as we expect, the two UCRLB bounds coincide for the scalar case.

Theorems 1 and 2 characterize the smallest possible total variance of any estimator with bias gradient

matrix whose norm is bounded by a constant. However, the theorems do not guarantee that there exists

estimators achieving these lower bounds. In the next section we show that for the case of a linear Gaussian

model, both lower bounds are achievable using a linear estimator. In Section 6 we consider more general,

not necessarily Gaussian models, and develop a class of estimators that asymptotically achieve the UCRLB.

5 Optimal Estimators For The Linear Gaussian Model

We now consider the class of estimation problems represented by the linear model

y = Hx0 + n, (52)

where x0 ∈ C
m is a deterministic vector of unknown parameters, H is a known n×m matrix with rank m,

and n ∈ C
n is a zero-mean Gaussian random vector with positive definite covariance Cn.

For the model (52), the Fisher information matrix is given by [25]

J = H∗C−1
n H. (53)

Let D̂ denote the optimal gradient bias that minimizes C(D) subject to (15) or (32), so that D̂ is given by

(18) or (42) with J given by (53). Then the total variance of any linear or nonlinear estimator x̂ of x0 is



bounded by

Tr(Cx̂) ≥ Tr
(
(I + D̂)(H∗C−1

n H)−1(I + D̂)∗
)

. (54)

We now derive a linear estimator x̂ = Gy of x0 that achieves the bound (54). Let

G = (I + D̂)(H∗C−1
n H)−1H∗C−1

n . (55)

The bias of this estimator is b = (GH − I)x0 so that the bias gradient matrix is

D = GH − I = D̂, (56)

and therefore satisfies (15) or (32). The total variance of x̂ = Gy is

Tr(Cx̂) = Tr(GCnG
∗) = Tr

(
(I + D̂)(H∗C−1

n H)−1(I + D̂)∗
)

, (57)

so that this estimator achieves the lower bound (54).

Note that from (55)–(57) it follows that the estimator of the form

G = (I + D)(H∗C−1
n H)−1H∗C−1

n , (58)

achieves the biased CRLB for estimators with bias gradient D. Thus, in the case of a linear Gaussian model

the biased CRLB is always achieved by a linear estimator.

We conclude that among all estimators with bias gradient D satisfying Tr(D∗DW) ≤ γ < Tr(W) for

some nonnegative Hermitian matrix W, the estimator that results in the smallest possible total variance is

x̂ = Gy where G is given by (55) with D̂ = D̂AVG . Thus,

x̂ =

{
(WH∗C−1

n H + δI)−1WH∗C−1
n y, 0 ≤ γ < Tr(W);

0, γ ≥ Tr(W),
(59)

where the regularization parameter δ > 0 is chosen such that

Tr
(
(I + (1/δ)WH∗C−1

n H)−1W(I + (1/δ)H∗C−1
n HW)−1

)
= γ.

In the case in which W is invertible

x̂ =

{
(H∗C−1

n H + δW−1)−1H∗C−1
n y, 0 ≤ γ < Tr(W);

0, γ ≥ Tr(W),
(60)

where δ > 0 is chosen such that Tr
(
(W−1 + (1/δ)H∗C−1

n H)−2W−1
)

= γ.

The estimator x̂ of (60) is equal to the ridge estimator proposed by Hoerl and Kennard [16] (also known

as Tikhonov regularization [2]), and is widely used for solving inverse problems [33] and ill-conditioned

least-squares problems [34]. We therefore conclude that the ridge estimator has a strong optimal property:

among all linear and nonlinear estimators of x0 in the linear Gaussian model (52) with bounded average

weighted bias gradient, the ridge estimator minimizes the total variance. A similar result was obtained in

[15] for the scalar case.

It is interesting to note that for the model (52), Tikhonov regularization is also minimax optimal [35].

Specifically, it minimizes the maximum energy gain from the unknowns x0 and n to the estimation error



x̂ − x0. This result holds true for any noise vector n, not necessarily Gaussian. It also minimizes the

total variance among all linear estimators with average bias gradient bounded by a constant, for any noise

distribution [36].

Similarly, among all estimators with bias gradient D satisfying z∗SD∗DSz ≤ γ < λ2
max for all z ∈ C

m

such that z∗z = 1, where S is a positive definite matrix that commutes with H∗C−1
w H and with eigenvalues

βi, and λmax = maxi βi, the estimator that results in the smallest possible total variance is x̂ = Gy where

G is given by (55) with D̂ = D̂WC . Thus,

x̂ =

{
(I −√

γS−1)P(H∗C−1
n H)−1H∗C−1

n y, 0 ≤ γ < λ2
max;

0, γ ≥ λ2
max,

(61)

where P is an orthogonal projection onto the space spanned by the eigenvectors of S corresponding to

eigenvalues β2
i > γ.

The estimator x̂ of (61) with S = I is equal to the shrunken estimator proposed by Mayer and Willke [17],

which is simply a scaled version of the least-squares estimator. We therefore conclude that the shrunken

estimator also has a strong optimality property: among all linear and nonlinear estimators of x0 in the

linear Gaussian model (52) with bounded worst case bias gradient, the shrunken estimator minimizes the

total variance. For more general choices of S, the estimator of (61) can be viewed as a generalization of the

shrunken estimator.

We note that the shrunken estimator of (61) also minimizes the worst-case bias gradient among all linear

estimators in the case in which the noise vector n is not necessarily Gaussian [36].

5.1 Application to System Identification

We now compare the performance of the estimator achieving the UCRLB with an average bias constraint,

and that of the estimator achieving the scalar UCRLB, in the context of a system identification problem.

Suppose we are given noisy measurements y[k], 0 ≤ k ≤ n − 1 of a filtered signal, which is obtained by

filtering an input sequence u[k] with a length-n filter with unknown impulse response h[k]. Thus,

y[k] = h[k] ∗ u[k] + η[k] =
n−1∑

m=0

h[m]u[k − m] + η[k], 0 ≤ k ≤ n − 1, (62)

where ∗ denotes discrete-time convolution, and η[k] is an iid Gaussian noise process with variance σ2.

Denoting by y,x0 and n the length-n vectors with components y[k], h[k], and η[k] respectively, and

defining

H =





u[0] 0 0 · · · 0

u[1] u[0] 0 · · · 0

u[2] u[1] u[0] · · · 0
. . .

. . .

u[n − 1] u[n − 2] · · · u[1] u[0]





, (63)

we can express (62) in the form of a linear model

y = Hx0 + n. (64)



Our problem then is to estimate x0 from the measurements y.

Since (64) is a linear Gaussian model, the UCRLB is achievable using a linear estimator. In Fig. 1

we plot the minimal attainable total variance for any estimator with bias gradient matrix D satisfying

Tr(D∗D) ≤ γ, as a function of γ, for the case in which

u[0] = 0.4, u[1] = 0.6, u[2] = 0.5, u[3] = 0.6, u[4] = 0.2, u[5] = 0.3. (65)

We also plot the total variance resulting from the Tikhonov estimator (60), which in our case reduces to

x̂ = α(αH∗H + σ2I)−1H∗y, (66)

where α is chosen such that Tr
((

I + α/σ2H∗H
)−2

)
= γ. The variance is computed by averaging the

performance over 1000 noise realizations, where the true parameters are chosen as

x0 =
[

1 0.6 0.5 0.3 0.2 0.1
]∗

, (67)

and σ2 = 0.3. As we expect, the Tikhonov estimator achieves the UCRLB for all values of γ.
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Figure 1: Variance of the vector Tikhonov estimator (66) and the scalar Tikhonov estimator (68) as a
function of the squared-norm bias gradient, in comparison with the vector and scalar UCRLB. The line
denotes the vector UCRLB, o’s denote the performance of the vector Tikhonov estimator, the dashed line
denotes the scalar UCRLB and the x’s denote the scalar Tikhonov estimator.

For comparison, we also plot the total variance using the Tikhonov estimator that achieves the scalar

UCRLB, which is given by [15]

x̂i = α[(αH∗H + σ2I)]−1
i H∗y, (68)

where α is chosen such that [
(
I + α/σ2H∗H

)−2
]ii = γ/n. The total variance in estimating x using the scalar

UCRLB where the bias gradient norm of each of the components x̂i of x̂ is bounded by γ/n, is depicted by

the dashed line in Fig. 1. We see from Fig. 1 that by treating the parameters x0 to be estimated jointly, we

can improve the estimation performance over individual estimation of each of the components.



6 Asymptotic Optimality of the PML estimator

In general, there is no guarantee that an estimator exists that achieves the UCRLB. In the previous section

we showed that in the case of a linear Gaussian model, there exists a linear estimator achieving the UCRLB.

When the average bias is considered, the estimator takes on the form of Tikhonov regularization. It is well

known that Tikhonov regularization also maximizes the penalized log-likelihood

x̂ = arg max

{
log p(y;x) − β

2
x∗Wx

}
= arg min

{
(y − Hx)∗C−1

n (y − Hx) + βx∗Wx
}

, (69)

where p(y;x) is a Gaussian distribution with mean Hx and covariance Cn. When the worst-case bias is

considered with weighting S = I, the shrunken estimator achieves the UCRLB. We can immediately verify

that the shrunken estimator also maximizes (69), with W = −H∗H. A similar result holds for the case

in which S has the same eigenvector matrix as J. Thus, we conclude that in the case of a linear Gaussian

model, the PML estimator with an appropriate choice of penalizing function achieves the UCRLB.

In this section we demonstrate that this optimality property of the PML estimator is more general.

Specifically, we show that the PML estimator asymptotically achieves the UCRLB for many other statistical

models. To this end, we first develop the asymptotic bias and variance of the PML estimator for a general

class of penalizing functions. We then show that in many cases we can choose the penalizing function such

that the PML estimator asymptotically achieves the UCRLB.

6.1 The PML Estimator

The PML estimator of x0, denoted x̂PML , is chosen to maximize the penalized log-likelihood function

log p(y;x) − βR(x), (70)

where β > 0 is a regularization parameter, and R(x) is a penalizing function. The PML approach is

equivalent to the maximum a posteriori method in Baysian estimation if we interpret e−βR(x) as the prior

pdf of x0.

In the case in which we seek to estimate x0 from N iid (vector) measurements y1, . . . ,yN , x̂PML is chosen

to maximize

PL(x) =
N∑

i=1

log p(yi;x) − βNR(x), (71)

where βN is a regularization parameter that may depend on N .

Although many different choices of penalizing functions R(x) have been proposed in the literature for

various problems [20, 21, 22, 23, 24], no general assertions of optimality are known for these different choices.

In the next subsection we show that in many cases the penalizing function R(x) can be chosen such that

the resulting PML estimator achieves the UCRLB. To this end we first derive the asymptotic properties of

the PML estimator. Specifically, we show that under certain regularity conditions, the PML estimator of x0

from N iid measurements is asymptotically Gaussian, and we derive explicit expressions for the asymptotic

mean and variance.



6.2 Asymptotic Properties of the PML Estimator

Suppose we wish to estimate a vector x0 from N iid measurements y1, . . . ,yN . We consider the PML

estimator x̂PML which is chosen to maximize (71), where βN is a parameter satisfying βN/N → β0 for some

constant β0 as N → ∞, and R(x) is an arbitrary function of x such that ∂3R(x)/∂xj∂xk∂xl is bounded for

all j, k, l. To develop the asymptotic properties of the PML estimator, we make the following assumptions

on the pdf p(y;x):

Assumption 1: The derivatives ∂ log p(y;x)/∂xj , ∂2 log p(y;x)/∂xj∂xk and ∂3 log p(y;x)/∂xj∂xk∂xl exist

for all j, k, l and x ∈ X , where X is an open interval including x̌, with

x̌ = arg max {E {log p(y;x)} − β0R(x)} . (72)

Assumption 2: For each x ∈ X ,

∣∣∣∣
∂3 log p(y;x)

∂xj∂xk∂xl

∣∣∣∣ ≤ d(y), 1 ≤ j, k, l ≤ m, (73)

where Ex {d(y)} < ∞ for all x ∈ X .

Assumption 3:

−E

{
∂2 log p(y; x̌)

∂x2

}
+ β0

∂2R(x)

∂x2
> 0. (74)

Note that these assumptions are similar to the assumptions made on p(y;x) in proving the asymptotic

optimality of the ML estimator [10].

Under these assumptions we have the following theorem:

Theorem 3. Let x0 denote an unknown deterministic parameter vector, let y1, . . . ,yN denote N iid mea-

surements of x0, and let x̂PML denote the PML estimator of x0 from the measurements y1, . . . ,yN that

maximizes the penalized log-likelihood (71). Then under Assumptions 1–3,

√
N(x̂PML − x̌)

a∼N
(
0, (J(x̌) + β0M(x̌))−1 C(x̌) (J(x̌) + β0M(x̌))−1

)
,

where β0 = limN→∞ βN/N ,

x̌ = arg max {E {log p(y;x)} − β0R(x)} ;

C(x̌) = cov

{
∂ log p(y; x̌)

∂x

}
;

J(x̌) = −E

{
∂2 log p(y; x̌)

∂x2

}
;

and

M(x̌) =
∂2R(x̌)

∂x2
.

Proof. See Appendix A.



6.3 The PML Estimator and the UCRLB

From Theorem 3, the asymptotic total variance of x̂PML is

1

N
Tr

(
(J(x̌) + β0M(x̌))−1 C(x̌) (J(x̌) + β0M(x̌))

)
, (75)

and the asymptotic bias gradient DPML is

DPML =
∂x̌

∂x0
− I. (76)

To develop an expression for ∂x̌/∂x0, we note that from (72),

E

{
∂ log p(y; x̌)

∂x

}
− β0

∂R(x̌)

∂x
= 0. (77)

Differentiating (77) with respect to x0,

(
E

{
∂2 log p(y; x̌)

∂x2

}
− β0

∂2R(x̌)

∂x2

)
∂x̌

∂x0
+

∂

∂x0
E

{
∂ log p(y; x̌)

∂x

}
= 0, (78)

or, equivalently,

(J(x̌) + β0M(x̌))
∂x̌

∂x0
=

∂

∂x0
E

{
∂ log p(y; x̌)

∂x

}
, (79)

so that
∂x̌

∂x0
= (J(x̌) + β0M(x̌))−1 ∂

∂x0
E

{
∂ log p(y; x̌)

∂x

}
. (80)

With γ = D∗
PMLDPML , it follows from Theorem 1 that the total variance of any estimate of x0 with bias

gradient D such that Tr(D∗D) ≤ Tr(D∗
PMLDPML) satisfies

C ≥ α2

N
Tr

(
(I + αJ1)

−2 J1

)
, (81)

where α > 0 is chosen such that

Tr
(
(I + αJ1)

−2
)

= Tr

((
∂x̌

∂x0
− I

)∗ (
∂x̌

∂x0
− I

))
, (82)

and

J1 = E

{(
∂ log p(y1;x0)

∂x

∗∂ log p(y1;x0)

∂x

)}
, (83)

is the Fisher information from a single observation. Therefore, if we can choose R(x) such that

Tr
(
(J(x̌) + β0M(x̌))−1 C(x̌) (J(x̌) + β0M(x̌))−1

)
= α2Tr

(
(I + αJ1)

−2 J1

)
, (84)

where α is given by (82), with ∂x̌/∂x0 given by (80), then the corresponding PML estimator achieves the

UCRLB with average bias constraint, so that asymptotically there is no linear or non linear estimator with

bias gradient D satisfying Tr(D∗D) ≤ Tr(D∗
PMLDPML) and with smaller total variance than that of the PML

estimator.

From Theorem 2, the variance of any estimate of x0 with bias gradient D such that ‖D‖2 ≤ ‖DPML‖2



satisfies

C ≥ 1

N
Tr

(
(1 − ‖DPML‖)2 J−1

1

)
=

1

N
Tr

((
1 −

∥∥∥∥
∂x̌

∂x0
− I

∥∥∥∥

)2

J−1
1

)
. (85)

Thus, if we can choose R(x) such that

Tr
(
(J(x̌) + β0M(x̌))−1 C(x̌) (J(x̌) + β0M(x̌))−1

)
= Tr

((
1 −

∥∥∥∥
∂x̌

∂x0
− I

∥∥∥∥

)2

J−1
1

)
, (86)

where ∂x̌/∂x0 is given by (80), then the corresponding PML estimator achieves the UCRLB with worst-

case bias constraint, so that asymptotically there is no linear or non linear estimator with bias gradient D

satisfying ‖D‖ ≤ ‖DPML‖ and with smaller total variance than that of the PML estimator.

The conditions (84) and (86) are not very insightful. To develop some intuition into the optimal choice

of R(x), we now consider the case in which we seek to estimate a scalar x0 from N iid measurements. In

this case, the average and worst-case UCRLB coincide, so that the variance C of any estimate of x0 with

bias gradient D such that D2 ≤ D2
PML = (∂x̌/∂x0 − 1)2 satisfies

C ≥
(

1 −
∣∣∣∣
∂x̌

∂x0
− 1

∣∣∣∣

)2 1

NJ1
. (87)

Here

J1 = E

{(
∂ log p(y;x0)

∂x

)2
}

; (88)

x̌ = arg max {E {log p(y; x)} − β0R(x)} , (89)

and
∂x̌

∂x0
=

1

J(x̌) + β0M(x̌)

∂

∂x0
E

{
∂ log p(y; x̌)

∂x

}
, (90)

with

C(x̌) = var
{

∂ log p(y;x̌)
∂x

}
;

J(x̌) = −E
{

∂2 log p(y;x̌)
∂x2

}
;

M(x̌) = ∂2R(x̌)
∂x2 . (91)

The asymptotic variance of the PML estimator is given from Theorem 3 by

CPML =
C(x̌)

N(J(x̌) + β0M(x̌))2
. (92)

It thus follows that if we can choose R(x) such that

(
1 −

∣∣∣∣
∂x̌

∂x0
− 1

∣∣∣∣

)2 1

J1
=

C(x̌)

(J(x̌) + β0M(x̌))2
, (93)

where ∂x̌/∂x0 is given by (90), then the corresponding PML estimator achieves the UCRLB. In Appendix B,

we develop a general condition under which (93) is satisfied, which is summarized in the following theorem.

Theorem 4. Let x0 denote an unknown deterministic parameter, let y1, . . . ,yN denote N iid vector mea-



surements of x0, and let x̂PML denote the PML estimator of x0 from the measurements y1, . . . ,yN that

maximizes the penalized log-likelihood with penalizing function R(x). Then x̂PML asymptotically achieves the

UCRLB if and only if R(x) is chosen such that

(
1 −

∣∣∣∣
∂x̌

∂x0
− 1

∣∣∣∣

)2 1

J1
=

C(x̌)

(J(x̌) + β0M(x̌))2
,

where J1 is the Fisher information from a single observation given by (88), x̌ is defined in (89), C(x̌), J(x̌)

and M(x̌) are defined in (91), and

∂x̌

∂x0
=

1

J(x̌) + β0M(x̌)

∂

∂x0
E

{
∂ log p(y; x̌)

∂x

}
.

In addition, if ∂x̌/∂x0 ≤ 1, then x̂PML asymptotically achieves the UCRLB if and only if R(x) is chosen

such that
∂ log p(y; x̌)

∂x
− E

{
∂ log p(y; x̌)

∂x

}
= c

∂ log p(y; x0)

∂x
, (94)

for some deterministic constant c.

In many cases, the condition (94) is satisfied for all R(x), so that any R(x) such that ∂x̌/∂x ≤ 1 is

asymptotically optimal. For example, suppose we are given measurements yi = m+σ0ni, 1 ≤ i ≤ N , where

m is a known length-n vector, ni are iid random vectors with n1 ∼ N (0, I), and σ0 is unknown. In this

example,
∂ log p(y; σ̌)

∂σ
= −n

σ̌
+

1

σ̌3
(y − m)∗(y − m). (95)

Since E {(y − m)∗(y − m)} = nσ2
0, we have that

∂ log p(y; x̌)

∂x
− E

{
∂ log p(y; x̌)

∂x

}
=

1

σ̌3

(
(y − m)∗(y − m) − nσ2

0

)
=

σ̌3

σ3
0

∂ log p(y; x0)

∂x
, (96)

so that (94) is satisfied for all R(x). The same conclusion holds when estimating the mean m, assuming σ0

is known. Another, non-Gaussian example, is considered in the next section.

7 Example

We now consider an example illustrating the PML estimator and its asymptotic optimality.

Consider the case in which we are given N scalar iid measurements y1, . . . , yN of an exponential random

variable with unknown mean 1/x0 > 0. Thus,

p(yi; x0) = x0e
−yix0 , 1 ≤ i ≤ N. (97)

The PML estimate x̂PML with penalizing function R(x) is given by the value of x that maximizes

PL(x) = N log x − x
N∑

i=1

yi − βNR(x), (98)

for some parameter βN > 0 such that βN/N → β0 as N → ∞. We seek a penalizing function R(x) that is

optimal in the sense that the resulting estimator asymptotically achieves the UCRLB.



From (97),
∂ log p(y; x)

∂x
=

1

x
− y, (99)

so that

E

{
∂ log p(y; x̌)

∂x

}
=

1

x̌
− 1

x0
. (100)

Therefore,
∂ log p(y; x̌)

∂x
− E

{
∂ log p(y; x̌)

∂x

}
=

1

x0
− y, (101)

and
∂ log p(y; x0)

∂x0
=

1

x0
− y, (102)

so that from Theorem 4 it follows that for any choice of R(x) such that ∂x̌/∂x0 ≤ 1, the resulting PML

estimator asymptotically achieves the UCRLB. Note, however, that for finite values of N , the performance

of the PML estimator will depend on the specific choice of R(x).

To compute the derivative ∂x̌/∂x0, we note that from (100),

∂

∂x0
E

{
∂ log p(y; x̌)

∂x

}
=

1

x2
0

. (103)

Differentiating (99) with respect to x,
∂2 log p(y;x)

∂x2
= − 1

x2
, (104)

so that

J(x̌) =
1

x̌2
. (105)

Combining (80), (103) and (105),
∂x̌

∂x0
=

1/x2
0

1/x̌2 + β0M(x̌)
. (106)

If ∂R(x̌)/∂x, ∂2R(x̌)/∂x2 ≥ 0, then from the definition of x̌,

1

x̌
=

1

x0
+ β0

∂R(x̌)

∂x
≥ 1

x0
, (107)

so that
∂x̌

∂x0
=

1/x2
0

1/x̌2 + β0M(x̌)
≤ 1, (108)

and the PML estimator is optimal.

As an example, suppose that R(x) = x. The resulting PML estimator is given by

x̂PML = arg max

{
N log x − x

(
N∑

i=1

yi + βN

)}
=

N
∑N

i=1 yi + βN

. (109)

Since ∂R(x̌)/∂x = 1 ≥ 0 and ∂2R(x̌)/∂x2 = 0, it follows that the estimator of (109) asymptotically achieves

the UCRLB.

As another example, suppose that R(x) = log x. In this case, ∂2R(x̌)/∂x2 ≤ 0. Nonetheless, we as we

now show, ∂x̌/∂x0 < 1 so that the resulting PML estimator is optimal.



From (107),

x̌ = (1 − β0)x0, (110)

so that from (106),
∂x̌

∂x0
=

1/x2
0

(1 − β0)/x̌2
= 1 − β0 ≤ 1. (111)

We therefore conclude that the resulting PML estimator, given by

x̂PML = arg max

{
(N − βN ) log x − x

N∑

i=1

yi

}
=

N − βN∑N
i=1 yi

, (112)

asymptotically achieves the UCRLB.

We now compare the performance of the PML estimators of (109) and (112) with the UCRLB, for

different values of N . To this end, we need to determine the variance σ2
x̂ of the estimators and the squared

bias gradient D2. Rather than attempting to determine these quantities analytically, we propose to estimate

them from the measurements. Thus, for each value of γ, and each of the estimators, we generate an estimate

σ̂2 of the estimator’s variance σ2
x̂ and an estimate D̂2 of the squared bias gradient D2.

To estimate the variance of each of the estimators, for each γ we generate L = 5000 PML estimators,

where each estimator is based on N iid measurements. Let (x̂PML)(i) denote the ith estimator. The variance

is then estimated as

σ̂2 =
1

L

L∑

i=1

(
(x̂PML)(i) − x̄PML

)2
, (113)

where x̄PML is the sample mean and is given by

x̄PML =
1

L

L∑

i=1

(x̂PML)(i). (114)

To estimate the squared bias gradient of the estimator we used the procedure detailed in [15]. Specifically,

in [15] the authors propose to estimate the squared bias gradient of an estimator x̂ of x as D̂2 where

D̂ =
1

L

L∑

i=1




(
x̂(i) − ζ(i)

) N∑

j=1

∂ log p(y
(i)
j ; x)

∂x



 − 1. (115)

Here

ζ(i) =
1

L − 1




L∑

j=1

x̂(j) − x̂(i)



 , (116)

and y
(i)
j denotes the jth observation used in computing the ith estimator.

In our example,

∂ log p(y
(i)
j ; x)

∂x
=

1

x
− y

(i)
j , (117)

so that

D̂ =
1

L

L∑

i=1




(
(x̂PML)(i) − ζ(i)

)


N

x
−

N∑

j=1

y
(i)
j







 − 1. (118)

In Figs. 2, 3 and 4 we plot the estimated variance of the PML estimators as a function of the estimated



squared bias gradient for N = 10, 20 and 30, respectively. For comparison, we also plot the UCRLB.
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Figure 2: Performance of the PML estimators (109) (denoted ”1”) and (112) (denoted ”2”) with N = 10
in comparison with the UCRLB. The line denotes the UCRLB, the circles denote the performance of the
PML estimator 1, and the stars denote the performance of the PML estimator 2.
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Figure 3: Performance of the PML estimators (109) (denoted ”1”) and (112) (denoted ”2”) with N = 20
in comparison with the UCRLB. The line denotes the UCRLB, the circles denote the performance of the
PML estimator 1, and the stars denote the performance of the PML estimator 2.

From the figures it is apparent that even for small N the UCRLB serves as a good approximation to the

estimator’s variance, particularly for large values of bias gradient norm. However, for small values of the

squared bias gradient, the actual variance is larger than the bound. We note, that the variance of the bias

gradient estimate (118) is larger for small bias gradients, which may partially explain the large deviation

in this regime. As we expect from our analysis, for increasing values of N the variance of both estimators

approaches that of the UCRLB for all values of squared bias gradient, as can be seen from Figs. 3 and 4.

Note, however, that for small values of N the performance of the two estimators is different. In particular,

the estimator given by (109) results in a smaller variance than the estimator given by (112) for finite values
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Figure 4: Performance of the PML estimators (109) (denoted ”1”) and (112) (denoted ”2”) with N = 30
in comparison with the UCRLB. The line denotes the UCRLB, the circles denote the performance of the
PML estimator 1, and the stars denote the performance of the PML estimator 2.

of N .

8 Conclusion

In this paper we characterized the fundamental tradeoff between variance and bias in estimating an unknown

deterministic parameter vector, by deriving lower bounds on the minimal achievable total variance subject

to constraints on the norm of the bias gradient matrix. In the case in which the unknown deterministic

parameters are related to the measurements through a linear Gaussian model, we demonstrated that the

lower bounds are achievable using linear estimators. In particular, we showed that Tikhonov regularization

minimizes the total variance from all estimators with a bounded average bias gradient, and the shrunken

estimator minimizes the total variance from all estimators with a bounded worst case bias gradient.

We then derived the asymptotic mean and covariance of the PML estimator when estimating an unknown

vector from iid measurements, and showed, that for an appropriate choice of penalizing function, the PML

estimator asymptotically achieves the UCRLB.

Although in many cases there are several PML estimators that asymptotically achieve the UCRLB, as we

demonstrated in the context of a concrete example in Section 7, the performance of these estimators differ

for finite values of the number N of measurements. An interesting direction for future research, therefore,

is to analyze the performance of the PML estimator for finite values of N . Another interesting question

is whether or not there are other cases besides the linear Gaussian model, in which the PML estimator

achieves the UCRLB for all values of N . Finally, throughout the paper, we explicitly assume that the Fisher

information matrix is nonsingular. It would also be of interest to extend the results to the case of a singular

Fisher information matrix.
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A Proof of Theorem 3

The proof of Theorem 3 relies on the following lemma.

Lemma 2. Let x0 denote an unknown deterministic vector, let y1, . . . ,yN denote N iid measurements of

x0, let x̂PML denote the PML estimator of x0 from the measurements y1, . . . ,yN that maximizes the penalized

likelihood (71), and let x̌ be defined by (72). Then x̂PML → x̌ as N → ∞ with probability one.

Proof. For N → ∞ we have that

1

N
PL(x) =

1

N

N∑

i=1

log p(yi;x) − βN

N
R(x) → E {log p(y;x)} − β0R(x). (119)

Therefore,

x̂PML → arg max

{
lim

N→∞
1

N
PL(x)

}
= arg max {E {log p(y;x)} − β0R(x)} = x̌. (120)

We now expand ∂ log PL(x)/∂x about x̌ using a Taylor expansion. Note that Assumption 1 insures that

such a Taylor expansion exists. By the mean value theorem, for each 1 ≤ j ≤ m,

∂ log PL(x̂PML)

∂xj
=

∂ log PL(x̌)

∂xj
+

m∑

k=1

(x̂PML
k − x̌k)

∂2 log PL(x̌)

∂xj∂xk
+

1

2

m∑

k,l=1

(x̂PML
k − x̌k)(x̂

PML
l − x̌l)

∂3 log PL(x̃)

∂xj∂xk∂xl
,

(121)

where x̃ is a point on the line segment connecting x̂PML and x̌. By the definition of x̂PML we have that

∂ log PL(x̂PML)

∂x
= 0, (122)

so that from (121),

− 1√
N

∂ log PL(x̌)

∂xj
=

√
N

(
m∑

k=1

(x̂PML
k − x̌k)

(
1

N

∂2 log PL(x̌)

∂xj∂xk
+

1

2N

m∑

l=1

(x̂PML
l − x̌l)

∂3 log PL(x̃)

∂xj∂xk∂xl

))
,

(123)

which can be expressed in vector form as

z = Au, (124)

where

z = − 1√
N

(
∂ log PL(x̌)

∂x

)∗
;



u =
√

N(x̂PML − x̌);

Ajk = 1
N

∂2 log PL(x̌)
∂xj∂xk

+ 1
2N

∑m
l=1(x̂

PML
l − x̌l)

∂3 log PL(x̃)
∂xj∂xk∂xl

. (125)

Here Ajk denotes the jkth element of the matrix A.

Now, from the strong law of large numbers we have that

1

N

∂2 log PL(x̌)

∂x2
=

1

N

N∑

i=1

∂2 log p(yi; x̌)

∂x2
− βN

N

∂2R(x̌)

∂x2

→ E

{
∂2 log p(y; x̌)

∂x2

}
− β0

∂2R(x̌)

∂x2

= −J(x̌) − β0M(x̌). (126)

Similarly, from the strong law of large numbers and Assumption 2,

1

N

∂3 log PL(x̃)

∂xj∂xk∂xl
=

1

N

N∑

i=1

∂3 log p(yi; x̃)

∂xj∂xk∂xl
−βN

N

∂3R(x̌)

∂xj∂xk∂xl
→ E

{
∂3 log p(y; x̃)

∂xj∂xk∂xl

}
−β0

∂3R(x̌)

∂xj∂xk∂xl
< ∞, (127)

with probability 1. From Lemma 2, x̂PML − x̌ → 0 as N → ∞, which implies that

(x̂PML − x̌)

N

∂3 log PL(x̃)

∂xj∂xk∂xl
→ 0 (128)

with probability 1. Therefore, the matrix A converges to J(x̌) + β0M(x̌) with probability 1.

We now consider the asymptotic distribution of z, which we express as

z =
1√
N

(
∂ log PL(x̌)

∂x

)∗
=

1√
N

N∑

i=1

vi −
βN√
N

(
∂R(x̌)

∂x

)∗
= tN − βN√

N

(
∂R(x̌)

∂x

)∗
, (129)

where

vi =

(
∂ log p(yi; x̌)

∂x

)∗
, (130)

and

tN =
1√
N

N∑

i=1

vi. (131)

Since the random vectors vi are iid, it follows from the multivariate central limit theorem [12] that tN is

asymptotically Gaussian. To complete the description of tN we need to determine its mean and covariance.

From (72) it follows that
∂E {log p(y; x̌)}

∂x
− β0

∂R(x̌)

∂x
= 0, (132)

so that

E {tN} =
√

Nβ0

(
∂R(x̌)

∂x

)∗
. (133)

Also,

E {(tN − E {tN})(tN − E {tN})∗} = E {(v1 − E {v1})∗(v1 − E {v1})} = C(x̌). (134)

Thus we conclude that

tN =
a∼N

(√
Nβ0

(
∂R(x̌)

∂x

)∗
,C(x̌)

)
. (135)



To develop the asymptotic distribution of z we rely on the following Lemma [37, p. 19]:

Lemma 3. Let tN denote a sequence of random vectors that converges in distribution to t, and let sN denote

a sequence of random vectors that converges in probability to a finite vector s. Then tN + sN converges in

distribution to t + s.

We can express z as z = tN + sN where sN = −(βN/
√

N) (∂R(x̌)/∂x)∗. It then follows from Lemma 3

and (135) that

z =
a∼N (0,C(x̌)) . (136)

To complete the proof of Theorem 3, we rely on the fact that if z = Au where A converges in probability

to an invertible matrix, then u converges in distribution to A−1z [12, p. 465]. Since A converges to

J(x̌) + β0M(x̌),

u =
√

N(x̂PML − x̌)
a∼N

(
0, (J(x̌) + β0M(x̌))−1 C(x̌) (J(x̌) + β0M(x̌))−1

)
. (137)

B Proof of Theorem 4

Using the equality,

∂

∂x0
E

{
∂ log p(y; x̌)

∂x

}
=

∫
∂ log p(y; x̌)

∂x

∂p(y; x0)

∂x0
dy

=

∫
∂ log p(y; x̌)

∂x

∂ log p(y;x0)

∂x0
p(y; x0)dy

= E

{
∂ log p(y; x̌)

∂x

∂ log p(y; x0)

∂x0

}
, (138)

we have that
∂x̌

∂x0
=

1

J(x̌) + β0M(x̌)
E

{
∂ log p(y; x̌)

∂x

∂ log p(y;x0)

∂x0

}
. (139)

Now, suppose that ∂x̌/∂x0 ≤ 1. In this case using (139), the condition (93) becomes

E2

{
∂ log p(y; x̌)

∂x

∂ log p(y; x0)

∂x0

}
= J1C(x̌). (140)

To see when there exists an R(x) such that (140) is satisfied, define

A′ =
∂ log p(y; x̌)

∂x
;

A = A′ − E
{
A′} ;

B =
∂ log p(y; x0)

∂x0
. (141)

We have immediately that E {B} = 0, E
{
B2

}
= J1, and E

{
A2

}
= C(x̌). In addition, since E {B} = 0,

E(A′B) = E(AB). Therefore, (140) is equivalent to

E2 {AB} = E
{
B2

}
E

{
A2

}
. (142)



From the Cauchy-Schwarz inequality we have that for any random variables A and B,

E2 {AB} ≤ E
{
B2

}
E

{
A2

}
, (143)

with equality if and only if A = cB for some deterministic constant c. It follows that (142) can be satisfied

if and only if
∂ log p(y; x̌)

∂x
− E

{
∂ log p(y; x̌)

∂x

}
= c

∂ log p(y; x0)

∂x
(144)

for some deterministic constant c.
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