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Abstract

The widely-used speech enhancement method of Ephraim and Malaseid bn a Gaussian statistical model, presuming
spectral components are statistically independent. A major drawback tigh#manodel assumptions conflict with the
“decision-directed’a priori SNR estimation, which heavily relies on the time-correlation of speech spéatthis paper,
we propose a statistical model for speech enhancement that i) takescogant the time-correlation between successive
speech spectral components; ii) admits consistent estimators fa pn®ri SNR and the speech spectral components;
iii) retains the simplicity associated with the Ephraim-Malah statistical model; figyiges insight into the decision-
directed approach; and v) enables the extension of existing algorithmsntawmsal estimation. In the proposed model,
the sequence of speech spectral variances is a random procéds,isvborrelated with the sequence of speech spectral
components. Causal and noncausal estimators foa tiéori SNR are derived in agreement with the model assumptions
and the estimation of the speech spectral components. We show thatial spse of the causal estimator degenerates
to a “decision-directed” estimator with tme-varyingweighting factor. Experimental results demonstrate the improved
performance of the proposed algorithms.

I. INTRODUCTION

One of the most popular methods for enhancing speech, dedjtaduncorrelated additive noise, is the spectral
enhancement algorithm of Ephraim and Malah [1], [2]. Thigoaithm and its derivativese(g, [3]-[5]) have
been applied to single-channel and multi-channel speetlaree@ment in speech recognition systems [6], [7],
speech coders [8]-[10], digital hearing-aids [11], [12bice activity detectors [13]-[15], and hands-free mobile
communication systems [16]-[18].

Two decades ago, Ephraim and Malah proposed a statisticaélnfior speech enhancement [2], [19]. Accord-
ingly, the individual short-term spectral components of 8peech and noise signals are modeled as statistically
independent Gaussian random variables. The assumptibisgkatral components are statistically independent is
clearly unfulfilled. However, it facilitates a mathematigatractable derivation of useful estimators for various

distortion measures. In [2], Ephraim and Malah derived atsieom spectral amplitude (STSA) estimator, which
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minimizes the mean-square error of the spectral magnitudgl], based on the same Gaussian statistical model,
they derived a log-spectral amplitude (LSA) estimator, shininimizes the mean-square error of the log-spectra.
They found that the LSA estimator is superior to the STSAnestor, since it results in a much lower residual
noise level without further affecting the speech itself.

Capre [20] showed that the dominant factor in the Ephraim-Mallgjordthm is the decision-directed estimation
approach for thea priori SNR. Thea priori SNR estimate is obtained as a weighted sum of two terms. One
representing tha priori SNR resulting from the processing of the previous frame. dther term is a maximum
likelihood estimate for tha priori SNR, based entirely on the current frame. A weighting faatdrich represents
the importance (weight) of each term, controls the traddetiveen the noise reduction and the transient distortion
brought into the signal [2], [20]. In practice, the weighttbé first term is substantially larger than that of the latter
This indicates that tha priori SNR’s in successive short-term frames are highly corrélate

Martin [12] and Breithaupt and Martin [21] considered a @ifint statistical model, where the clean speech
spectral components are gamma distributed, and the noessrapcomponents are either Gaussian or Laplace
distributed. They assumed that distinct spectral compsnare statistically independent, and derived an estimator
for the complex speech spectral coefficients, which mingsithe mean-square error (Wiener filter), and a spectral
amplitude estimator, which minimizes the mean-squarer esfadhe spectral power. However, to estimate the
priori SNR they still used the decision-directed approach of Ephend Malah.

A major drawback of the above statistical models is that tedehassumptions conflict with the decision-directed
approach. On the one hand, spectral components are asstatistically independent when deriving analytical
expressions for the speech estimators. On the other hama, phiori SNR, which is the dominant parameter of
the speech estimators [20], [22], is obtained by the detidicected approach, which heavily relies on the strong
time-correlation between successive speech spectral @oenps. Quite remarkably, despite this inconsistency, the
performance of the LSA algorithm, versus its computatisialplicity, is outstanding.

Enhancement schemes based on hidden Morkov models (HMM'sb tcircumvent the assumption of specific
distributions for the speech and noise processes [23]-[R® probability distributions of the two processes are
first estimated from long training sequences of clean spaadnoise samples, and then used jointly with a given
distortion measure to derive an estimator for the speeafabiflormally, vectors generated from a given sequence
of states are assumed statistically independent. HowthetiIMM can be extended to take into account the time-
frequency correlation of speech signals by using non-diabcovariance matrices for each subsource, and assuming
that a sequence of vectors generated from a given sequestates is a nonzero order autoregressive process [24],
[27]. First order HMM's, for example, with a mixture of Gaims distributions in each state and minimum mean-
square error estimation results in a weighted sum of canditimean estimators, one for each mixture component
in each state, where the weights are the posterior probaibf the states and mixture components given the noisy

signal [28]. Unfortunately, the HMM-based speech enhamgmelies on the type of training data [29]. It works



best with the trained type of noise, but often worse with ptigpe of noise. Furthermore, improved performance
generally entails more complex models and higher compmutatirequirements.

In this paper, we propose a statistical model for speech rex@maent that i) takes into account the time-
correlation between successive speech spectral commpngradmits consistent estimators for thepriori SNR
and the speech spectral components; iii) retains the gitypissociated with the Ephraim-Malah statistical model;
iv) provides insight into the decision-directed approaahd v) enables the extension of existing algorithms to
noncausal estimation. In the proposed model, the sequdrsgeech spectral variances is a random process, which
is correlated with the sequence of speech spectral common@ausal and noncausal estimators for dhgriori
SNR are derived in agreement with the model assumptionstenédtimation of the speech spectral components.

The causal estimator for the priori SNR combines two steps, a “propagation” step and an “updsteg, to
recursively predict and update the estimate for the spegettral variance as new data arrive. The caasatiori
SNR estimator is closely related to the decision-directstihmator of Ephraim and Malah. A special case of the
causal estimator degenerates to a “decision-directedhatir with atime-varyingweighting factor. The weighting
factor is monotonically decreasing as a function of theainttneous SNR, resulting effectively in a larger weighting
factor during speech absence, and a smaller weightingrfdaring speech presence. This reduces both the musical
noise and the signal distortion.

The noncausah priori SNR estimator employs future spectral measurements terbptedict the spectral
variances of the clean speech. A comparison of the causahamchusal estimators indicates that the differences
are primarily noticeable during speech onsets. Theasal a prioriSNR estimator, as well as the decision-directed
estimator, cannot respond too fast to an abrupt increadeeirinstantaneous SNR, since it necessarily implies an
increase in the level of musical residual noise. By contthgtnoncausakstimator, having a few subsequent spectral
measurements at hand, is capable of discriminating betwpeach onsets and noise irregularities. Experimental
results show that the noncausal estimator yields a higherovement in the segmental SNR and lower log-spectral
distortion, than the decision-directed method and the alaestimator. The advantages of the noncausal estimator
are particularly perceived during onsets of speech andenmidy frames. Onsets of speech are better preserved,
while a further reduction of musical noise is achieved.

The paper is organized as follows. In Section II, we forneildte speech enhancement problem. In Section lll,
a statistical model is proposed that relaxes the indepeedassumption of spectral components. In Section IV, we
derive estimators for the clean speech spectral compoaendtshea priori SNR. We present causal and noncausal
recursive speech enhancement algorithms, and addresgdlaion to the decision-directed estimation approach.
Finally, in Section V, we evaluate the proposed algorithars] present experimental results, which demonstrate

their performance.



Il. PROBLEM FORMULATION

Let z(n) andd(n) denote speech and uncorrelated additive noise signafmateely, wheren is a discrete-time
index. The observed signaln), given byy(n) = z(n) + d(n), is transformed into the time-frequency domain by

applying the short-time Fourier transform (STFT). Spealfic
N—-1
Yi(k) =) yln+(M)h(n) ¢ /5 ¥ (1)
n=0
where k is the frequency-bin indexk(= 0,1,..., N — 1), ¢ is the time frame index{(= 0,1,...), h(n) is an

analysis window of sizéV (e.g.,Hamming window), and\/ is the framing step (number of samples separating two
successive frames). Given an estiméitg(k) for the STFT of the clean speech, an estimate for the cleaachpe
signal is obtained by applying the inverse STFT,
i)=Y Nzl Xo(k)h(n — M) I FR(n—tM) @)
¢ k=0

whereh(n) is a synthesis window that is biorthogonal to the analysisdeiv 4(n) [30], and the inverse STFT is
efficiently implemented by using the weighted overlap-adethad [31].

Let V¢ (k) denote a set of spectral measuremefits(k),...,Yw(k)}, and letd {Xg(k),f(g(k:) be a given
distortion measure betweeki;(k) and X,(k). Our objective is to find an estimatdt,(k), which minimizes the

conditional expected value of the distortion measure,rgifee set of spectral noisy measurements

Ko(k) = argmin £ {d [X,(k). X |3 (0)} . @3)

We consider a causal estimation &f§(k) (in which case/’ < /), as well as a noncausal estimation (in which case
¢ > ¢), while the spectral components aret assumed statistically independent. Therefore, in contoasxisting
spectral enhancement techniqueg( [1], [2], [4], [12], [32]), the estimation problem is notfimulated as that of
estimatingX, (k) from Y, (k) alone.

Let A,(k) and (k) denote respectively the magnitude and phas& dft). Then, distortion measures that are
of particular interest for speech enhancement applicatare:

1) The squared-error distortion [33]:

N A N 2
s [Xe(k), Xelk)] 2 | Xe(h) = Zo()| (4)
2) The spectral amplitude distortion [2]:
N A . 2
dsa | Xe(k), Xe(R)| £ [Ack) = Ae(R)|” ®)
3) The log-spectral amplitude distortion [1]:
disa {Xg(k:),f(g(k)] 2 [logAg(k) —logflg(k)r . (6)

INote that causality is defined with respect to the spectralpmments, rather that with respect to the samples in the time idoma



4) The spectral power distortion [21], [28], [32]:
% AT 42 12 2
dse [ Xe(k), Xe(k)] 2 [AF (k) - A3(k)] " @)

The last three distortion measures are insensitive to ttmaton error of (k). Therefore, it is constructive to

combine them with the following constrained optimizatiomlgem [2]:

ejw(k)‘ =1. (8)

min F {
e(k)

ej@i(k) _ ej@é(k‘) ‘2} Subject to
This yields an estimator for the complex exponential of thage, constrained to not affecting the spectral magnitude
estimate. Alternatively, an estimate for the spectral phagk) is obtained by minimizing the expected value of

the following distortion measure:

dy [pe(k), @e(k)] £ 1 — cos (k) — @o(k)] . ©)

This measure is invariant under module transformation of the estimation errgr (k) — @¢(k), and for small

estimation errors it closely resembles the squared-eistortion measure, since— cos 3 ~ 3%/2 for 3 < 1 [2].

IIl. SPEECHSPECTRAL MODEL

In this section, we propose a statistical model that takés &tcount the time-correlation between successive
spectral components of the speech signal. In particularGhussian statistical model of Ephraim and Malah [2] is
relaxed by assuming thdtX,(k), X; (k),...} are statistically dependent.

To see graphically the relation between successive spemraponents of a speech signal, in comparison
with a noise signal, we present scatter plots for succesgieetral magnitudes and phases, and investigate the
autocorrelation sequences (ACS’s) of STFT coefficientaigltime-trajectories (the frequency-bin indéxs held
fixed). We consider a speech signal that is constructed figndiferent utterances, without intervening pauses.
The utterances, half from male speakers and half from fesdakers, are taken from the TIMIT database [34].
The speech signal is sampledi&tkHz, and transformed into the STFT domain using Hammingyaigwindows
of 512 samples length, angb6 samples framing ste(% overlap between successive frames).

Figure 1 shows scatter plots for successive spectral matgstand phases of the speech signal, at center frequency
500 Hz (k = 17). Similar plots are obtained for other frequency-bins, teliar speech signals are taken. Figure 2
shows scatter plots for successive spectral magnitudeplaagkes of avhite Gaussian nois@NVGN) signal. These
figures imply that successive spectral magnitudes of speigolls are highly correlated, whereas successive spectra
phases are much less correlated. In contrast, successigEapnagnitudes of a WGN signal are weakly correlated.

Figure 3 shows the ACS'’s of the speech spectral componemg dlme-trajectories, for various frequency-bins
and framing steps. The5 percent confidence limitse(g, [35]) are depicted as horizontal dotted lines. In order

to prevent an upward bias of the autocorrelation estimatestd irrelevant (non-speech) spectral components, the
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Fig. 1. Scatter plots for successive spectral componentspéactsignal, at center frequend00 Hz (k = 17). (a) Scatter plot for successive
spectral magnitudes; (b) Scatter plot for successive siqutases.

ACS’s are computed from spectral components whose magstade within30 dB of the maximal magnitude.
Specifically, the autocorrelation coefficients of the sp@anagnitudes are estimated by
o E{A(k)Apem(k)}  2rer Ae(k)Arim(K)

A °F 07115 S S 15 (10)
wherem is the lag in frames, and represents the set of relevant spectral components
L= {z ‘ Ag(k) > 10730/20 m?x{Ag(k)}} .
The corresponding autocorrelation coefficients of the spephases are obtained by
(m) 2 E{ee(k) peim(k)}  Dper e(k) prrm (k) 1)

E{}(R)} T Yeceik)
Figure 4 shows the variation of the correlation between asgige spectral magnitudes on frequency and on overlap
between successive frames. Figures 3 and 4 demonstratéothspteech signals, successive spectral magnitudes
are highly correlated, while the correlation is generadlsger at lower frequencies, and it increases as the overlap
between successive frames increases.

Figure 5 shows the ACS’s of WGN spectral magnitude along timjectories, for various framing steps. Figure 6
demonstrates, for a realization of WGN, the variation of tberelation between successive spectral magnitudes
on the overlap between frames. A comparison of Figs. 6 andvédate that for a sufficiently large framing step
(M > N/2, i.e, overlap between frames 50%), successive spectral components of tleése signal, but clearly
not of thespeectsignal, can be assumed uncorrelated. For smaller framéps sthe correlation between successive
spectral noise components has also to be taken into coasimer Furthermore, since the length of the analysis

window cannot be too large (its typical length is 20-40 m9,[®8r a given framel adjacent Fourier expansion
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Fig. 2. Scatter plots for successive spectral componentsvaiige Gaussian noisseignal ¢ = 17). (a) Scatter plot for successive spectral
magnitudes; (b) Scatter plot for successive spectral phases
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Fig. 3. Autocorrelation sequences (ACS's) of clean speediTScoefficients along time-trajectories, for various freqay-bins and framing
steps. The dotted lines represefits percent confidence limits. (a) ACS of the spectral magnitudeeguency-bink = 17 (center frequency
500 Hz), framing stepM = N/2 (50% overlap between frames); (b) ACS of the spectral phase, 17, M = N/2; (c) ACS of the spectral
magnitude,k = 65 (center frequency kHz), M = N/2; (d) ACS of the spectral magnitudé, = 17, M = N/4 (75% overlap between
frames).
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Fig. 5. Autocorrelation sequences of white Gaussian ngisetsl magnitude (along time-trajectories) for variousriireg steps. The dotted
lines represent85 percent confidence limits. (&) = N/2 (50% overlap between frames); (B = N/4 (75% overlap between frames).

coefficients of the noise signal),(k) and D,(k + 1), as well as adjacent coefficients of the speech sighalk)
and X,(k + 1), are also correlated to a certain degree. Neverthelessprouary goal is to propose a valid and
consistent statistical model for both the spectral enhaece and thea priori SNR estimation, while keeping
the resulting algorithms simple. Therefore, we continuéhvtihe statistical independence assumption for distinct
frequency-bins X,(k) and X,/ (k') are assumed statistically independeni i k'), as manifested in the estimation
problem (3).

In conclusion of the above discussion, we propose the fatligwtatistical model for the speech and noise spectral

components:

1) The noise spectral component¥ (k) are statistically independent zero-mean complex Gaussiadom
variables. The real and imaginary partsiof(k) are independent and identically distributed (11D).
2) The speech spectral phasegk) are 11D uniform random variables op-7, ].

3) For a fixed frequency-bin indek, the sequence of speech spectral magnitddégk) | ¢ =0,1,...} is a
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random process. Fdr # £/, the two random processésl, (k) | £ =0,1,...} and{A,(k¥") | ¢=0,1,...} are
statistically independent.
4) For fixedk and¢, a speech spectral componéeXi(k) is a zero-mean complex Gaussian random variable. Its
real and imaginary parts are IID.
5) The sequence of speech spectral variarfces, (k) | ¢ =0,1,...}, where \x, (k) £ E{A?(k)}, is a ran-
dom process. For fixed and ¢, A\x, (k) is correlated with the sequence of speech spectral magsitud
{Ap (k)| ¢ =0,1,...}. However, given\x, (k), Aq(k) is statistically independent ol (k) for ¢/ # ¢.
Note that the fundamental difference between the proposatistical model and that of Ephraim and Malah
originates from the last assumption. Here, the varianceieseze of X,(k) is a random process, rather than a
sequence of parameters. Furthermore, successive speotrglonents are correlated, as the random processes
{Xe(k)|£=0,1,...} and{\x, (k)| £=0,1,...} are not independent.

IV. SIGNAL ESTIMATION

In this section, we derive estimators fl; (&), as formulated in (3), based on the proposed statisticaleiren
the various distortion measures specified in Section Il. Weawsthat similar to conventional spectral estimators,
X, (k) is obtained by applying a real-valued gain function to theresponding spectral measurematk). The
spectral gain depends on two parameters: ghgriori and a posteriori SNR’s. However, rather than evaluating
the a priori SNR by the decision-directed approach, theriori SNR estimation relies on the statistical model.
For notational simplicity, the frequency-bin indéxis henceforth omitted, since according to the statisticatieh,
an estimateX,(k) can be found independently for eathFurthermore, we assume knowledge of the noise PSD,

which in practice can be estimated by using Mimima Controlled Recursive Averagirapproach [36].
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A. Spectral Enhancement

Letp (Xg | yg’, )\X,Z) denote the conditional pdf of a speech spectral compoAerdiven its variance\x, and
the noisy measuremerms%'. Letp (AXZ \yé') denote the conditional pdf of the clean speech spectrahvesi at
frame ¢ given Y. Then, the spectral estimatdf, (k) is obtained from

. it Vil . . I 0 V4
min £ {d (X0, %) 1%} = n;;;l//d (%0 %) p (X198 0k ) 0 (A 198) dXedrx, . (12)

Applying Bayes’ rule to the conditional pdf of,, we have

p (Yol Xo, 570 fir A ) o (Xe | 67 Vs Ax, )

p(Xel V5 Ax, ) = 7 Y : (13)
( ’ ) S (Yel Xe, Yoo Vins Ax) p(Xe | V571 Vi, Ax,) dXe
The proposed statistical model (particularly the first amst model assumptions) implies
p(Yel X, Y71 Vi dx,) = p(VelXo) (14)
p(Xe 1V Vo dx) = p(Xelx) (15)

Approximating the conditional pdf ofx, given the noisy observatiorj%' by a Dirac delta function at position
Ax, e SE {A?(kz) \yg’}, and substituting (14) and (15) into (13), the spectranestior X, (k) is obtained from
H)lzln//d (Xg,Xg) p(Xg | Yk, /\Xz) 0 ()‘Xz — )\Xéw) ng dAX@
4

:min/d(Xg,Xg)p(Xg|Yk, )\sz) ng. (16)
Xy

That is, given the set of noisy measuremelifs, we first derive an estimate for the clean speech spectrine
Ax, e at framel. Subsequently, the estimation problem for the speech rgppeimponentX, reduces to that of
estimating X, from Y, alone, assuming knowledge of the varianceXgf The latter problem, when tha priori
SNR is defined appropriately, is essentially the classipatsal enhancement problem as formulated by Ephraim
and Malah [1], [2]. As a result, an estimate &, is obtained by applying a spectral gain function to eachynois
spectral component of the speech signal:

Xe=G (éger, 7e) Yo (17)

where thea priori anda posterioriSNR’s are defined respectively by

A AX e
Cor = ;Z‘ (18)
D,
N7k
v 2 B 19)
Dy

2Note that in [2], thea priori SNR is defined by, = Ax,/ Ap,, where the variance x, is a parameter of the prior pdf of,.
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and where\p, 2 E{|DZ|2} denotes the noise spectral variance. The specific expressicthe spectral gain
function G (52\2'7 W) depends on the particular choice of a distortion mea:w(é(g,f(g). For squared-error

distortion, the gain function is given by [33]

Gsg (&) = (20)

In case of combining the spectral amplitude, the log-spkemplitude, or the spectral power distortion measures

with the constrained optimization problem (8), the gainclions can respectively be written as [1], [2], [28], [32]

Gsa (Soers ve) = 2:2)2 [(1 +wve)lo (%) + v Iy (%)] exp (*%) (21)
’ o0 o=t

Gusa (S, ve) = 1 -%Zew exp (%/U ert) (22)
B 0% 1 Seper

Gsp (S, ve) = \/1 T (% +1 n E”/) (23)

wherel,(-) and I;(-) denote the modified Bessel functions of zero and first oréspectively, andy is defined
by v, 2 Eoper e/ (1 4 &ger). It still remains to estimate tha priori SNR &, ,/, as defined in (18), based on the

statistical model.

B. Causal Recursive Estimation

In this subsection, we propose a causal conditional esm'mzfgtq for the a priori SNR given the noisy measure-
ments up to framé. The estimator combines two steps, a “propagation” stepaantupdate” step, to recursively
predict and update the estimate fox, as new data arrive.

Suppose we are given an estimé\tggw_l, which is conditioned on the noisy measurements up to frame,
and a new noisy spectral componéftis observed. Then, the estimate fox, can be updated by computing the

conditional variance ofX, givenY, and ;\XM,l:
S = E {42 Dxen, Yo} (24)

This is obtained by applying the gain functiéfsp (ém_l, 712) to Yy, and computing the squared absolute value

of the resuft

Ax, 0 = Gip (ée\zq, W) Y|
_ §e|€—1 1 n §e|ff—1 Vil (25)
T+&pe1 \ Ve 1+&ge

SRecall thatGsp minimizes the expected spectral power distortion, yieldmg gquare root of the conditional expected spectral poweat T
is, Gsp (&, 7e)Yel = [E { A |§e7YeH1/2-
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Dividing both sides of (25) by\p,, we have

: Erle—1 Erje—17e
= = 1+ = . 26
e 1+ &ee—1 ( I+ fu—1> (26)

We call (26) the “update” step.

Computation of the update step requires the estimate

. A Ax o
Eeje—1 = 7;‘3‘[ - (27)
Dy_y

for the a priori SNR givenyg‘l. Note that in (27),5\)(”(_1 is divided by\p,_, rather than by\p,, since given
the measurements up to frarfie- 1 the noise variance estimate at frafis given byAp, ,. Assume we are given
at frame? — 1 estimates for the spectral amplitude_; and the spectral variancex, ,, conditioned onyéfl.

Then, these estimates can be “propagated” in time to obtagstimate for\x,. Since\x, is correlated with both

Ax,_, and A,_;, we propose to use an elementary nonlinear predictor ofdha f
/A\X[‘L1 = max {(1 — a)j\xhlw,l + a/l?fl , /\min} (28)

wherea (0 < « < 1) is related to the degree of nonstationarity of the randootess{\x, | ¢ =0,1,...}, and
Amin IS @ lower bound on the variance &f,. In case of a pseudo-stationary processs set to a small value, since
5\X@|e—1 ~ 5\XH|,Z_1. In case of a nonstationary processis set to a larger value, since the variances at successive
frames are less correlated, and the relative importanciexgjlw,l to predictﬁxe‘g,l decreases. Dividing both
sides of (28) by\p,_,, we obtain the “propagation” step

: . Az

§ole—1 = max {(1 —a)&_1e—1 + 01)\6—_1 , §min} (29)

Dy

whereé,,in is a lower bound on tha priori SNR. The steps of the causal recursive spectral enhancexgenithm
are summarized in Table |. The algorithm is initialized anfie/ = —1 with A_;y=0and é,”,l = &nin- Then,
for £ = 0,1,..., the propagation and update steps are iterated to obtdmagss for the nonstationary priori
SNR. The gain functiory (ém, W) employed for the spectral enhancement step is determingbebparticular

choice of the distortion measure.

C. Relation to “Decision-Directed” Estimation

The proposed causal conditional estimafgz for the a priori SNR is closely related to the decision-directed
estimator of Ephraim and Malah [2]. The decision-directstineator is given by
DD A?—l
&e = v + (1 — p) max {v, — 1,0} (30)
Dy_1
wherey (0 < ¢ < 1) is a weighting factor that controls the trade-off betwelas moise reduction and the transient

distortion introduced into the signal [2], [20]. A largerlva of 14 results in a greater reduction of the musical noise
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TABLE |

SUMMARY OF THE CAUSAL RECURSIVE SPEECHENHANCEMENT ALGORITHM.

Initialization: A1 =0,€ 11 = Emin-
For all short-time frameg¢ = 0,1, ...
“Propagation” step:
R . A2
£Z|Z—1 = mmax { (1 - a)fz—1\£—1 + O‘)\Dl{—l ) gmin}
-1
“Update” step:
£ 51/,\14—1 él{|1{—1 Ve
= =4 14 25
Sele I+&ee—1 ( 1+§Z\Z—1>
Spectral enhancement:
X, =G (ém, "/15) Y,

phenomena, but at the expense of attenuated speech ondedsidible modifications of transient components. As
a compromise, a value.98 of i, was determined by simulations and informal listening t¢&}s

The update step (26) of the causal conditional estimatorbeawritten as

Eope = e po1 + (1 — ag) (e — 1) (31)
whereqy is defined by R
o
R (32)
(1 + 5@\471)

Substituting (29) into (31) and (32) with the parameieset to 1, and applying the lower bound constrainf@q@

rather tharé,,_,, we have

. A2
S = max {Ozg )\lf L+ (1 —ar)(ve—1), fmin} ) (33)
£—1
A4
o = 1-— =l (34)

(o +dz)

The expression (33) with, = 1 is actually a practical form of the decision-directed estion,

. A2
&F = max {M)\ “L Q- —-1), &mn} : (35)

Dy s
that includes a lower bound constraint to further reduceléirel of residual musical noise [20]. Accordingly, a
special case of the causal recursive estimator witke 1 degenerates to a “decision-directed” estimator with a
time-varyingweighting factora,.
It is interesting to note that the weighting facter, given by (34), is monotonically decreasing as a functiothef

instantaneous SNR@%A/ Ap,_,- A decision-directed estimator with a larger weightingtéads indeed preferable



14

SNR (dB)

Fig. 7. SNR’s in successive short-time framésposteriori SNR ~, (dotted line), decision-directed priori SNR{}D‘;D (dashed line), and

causal recursiva priori SNR estimatef;f*‘;E (solid line).

during speech absence (to reduce musical noise phenomrike) a smaller weighting factor is more advantageous
during speech presence (to reduce signal distortion) [P#&. above special case of the causal recursive estimator
conforms to such a desirable behavior. Moreover, the gefema of the causal recursive estimator provides an
additional degree of freedom for adjusting the valuevah (29) to the degree of spectral nonstationarity. This may
produce even further improvement in the performance.

The different behaviors of the causal recursive estimégt?r (Table I) and the decision-directed estimaf@rf
(35) are illustrated in the example of Fig. 7. The analyzgaai contains only white Gaussian noise during the first
and last20 frames, and in between it contains an additional sinusaidaiponent at the displayed frequency with
0 dB SNR. The signal is transformed to the STFT domain using tdemg windows with50% overlap between
successive frames. The priori SNR estimateséﬁf and é?l?’ are obtained by using th€'sa spectral gain
function (22), and the parametefs;, = —25 dB, a = 0.9, . = 0.98. It shows that when tha posteriori SNR
~¢ is sufficiently low, the proposed priori SNR estimate is smoother than the decision-directed etjmdich
helps reducing the level of musical noise. Whenincreases, the response of thgriori SNR g;}? is initially
slower than{?l?, but it then builds up faster to the posteriori SNR. Wheny, is sufficiently high,é}?‘}? follows
the a posteriori SNR with a delay of 1 frame, whereﬁgf follows the a posteriori SNR instantaneously. When
~¢ decreases, the responseéﬁ@E is immediate, while that of?‘? is delayed by 1 frame. As a consequence, we
expect that the causal recursive estimator, in comparidgtinthe decision-directed estimator, may produce a lower

level of musical noise while not increasing the audibleadisdn in the enhanced signal.

D. Noncausal Recursive Estimation

In this subsection, we propose a noncausal conditionaneatdtr é/f|14+L for the a priori SNR, given the noisy
measurements up to franfe+ L, whereL > 0 denotes the admissible time delay in frames. Similar to thesal
estimator, the noncausal estimator combines update arphgation steps to recursively estimatg, as new

data arrive. However, future spectral measurements aoeeafployed in the process to better predict the spectral
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variances of the clean speech.

Let Ny, 41 2 E{A2| Y51, VY denote the conditional spectral varianceXdf given VSt excluding the
noisy measurement at franfe Let Ay | 41 041 2E {A? | yfjff} denote the conditional spectral varianceof
given the subsequent noisy measuremerﬁf,f. Then, similar to (25), the estimate fay given X’XMJFL andY;
can be updated by

Q Q 526+L 1 ééZJrL
Sxers = B {43 | Mo Yep = — 2t (= 4 Ly (36)
L&, \ 148,

Whereég‘HL = S\’XMH/ Ap,_, is thea priori SNR estimate gived); ' and Y, }/". Dividing both sides of (36)
by A\p,, we have the “update” step
A & Eoesr e
Cgerr = — g (14— ) (37)
L+ &osr L+ &

To obtain an estimate fok’XH“L, we employ the estimated,_; and 5\5_1|Z+L_1 from the previous frame, and

derive an estimate fokx, from the measurementsfj[f. Suppose an estimaﬁag| [t+1,6+1] IS given, we propose

to propagate the estimates from frame 1 to frame/ by

Njje4p = max {01/12_1 +(1—a)|a N_qjeyr1 + (1 —a’)X [e+1,e+L]} ; §min} (38)

wherea (0 < a < 1) is related to the stationarity of the random procéss, |/ =0,1,...}, anda’ (0 <o’ <1)
is associated with the reliability of the estimétg [¢+1,6+1) IN comparison with that Of\g_l‘[_i_L_l. Dividing both

sides of (38) by\p,_,, we have the following “backward-forward propagation”ste

2

- A - -
§2|€+L = max {O‘ADE ! + (1 - 05) |:O/ §€—1\€+L—1 + (1 - a/)§€|[€+1,€+L]:| ) gmin} . (39)
-1

An estimate for thea priori SNR ¢, given the measuremermsfjf is obtained by

1 S ven — 3, if nonnegative,

0, otherwise,

€0l le+1,041) = (40)

wheres (3 > 1) is an over-subtraction factor to compensate for a suddenease in the noise level. This estimator
is an anticausal version of the maximum-likelihoagriori SNR estimator suggested in [2].

The steps of the noncausal recursive spectral enhancetgenittan are summarized in Table Il. The algorithm
is initialized at frame¢ = —1 with A_; = 0 and&_y;;_; = &uin. Then, for¢ = 0,1,.. ., the propagation and
update steps are iterated to obtain estimates foatpdori SNR and the speech spectral components.

Figure 8 demonstrates the behavior of the noncausal rgeuestimator in the same example of Fig. 7. The
noncausah priori SNR estimateéf‘%rg is obtained with the parametefs,i, = —25 dB, « = o/ = 0.9, § = 2,
and L = 3 frames delay. A comparison of Figs. 7 and 8 indicates thatdifferences between the causal and

noncausal recursive estimators are primarily noticeabkind onsets of signal components. Clearly, tdaeisal a
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TABLE I

SUMMARY OF THE NONCAUSAL RECURSIVE SPEECHENHANCEMENT ALGORITHM.

Initialization: ~ A_1 =0, € 121 = &min -
For all short-time frameg = 0,1, ...
"Backward estimation”:
. ) kv — B, if nonnegative,
Eolle+1,04L0] = .
0, otherwise.

“Backward-forward propagation”:
A2

. A R R
§ojoqr, = Max {a)\qu +(1-a) [O/ Eo—1je4r—1+ (1 —a)& [Z+1,£+L]] , émin}

£—1
“Update” step:

£ é}|1/+L 52|/+L Ve
Soje+L = a7 1+ —=
e+ 1+£Z\Z+L 1+5uz+L
Spectral enhancement:
X =G (é£|€+L7 ’Ye) Yy

SNR (dB)

Fig. 8. SNR's in successive short-time framésposteriori SNR ~, (dotted line), decision-directed priori SNR@D‘}3 (dashed line), and

noncausal recursiva priori SNR estimatém?+3 with 3 frames delay (solid line).

priori SNR estimator, as well as the decision-directed estimatomot respond too fast to an abrupt increasg jn
since it necessarily implies an increase in the level of palgiesidual noise. By contrast, thencausalestimator,
having a few subsequent spectral measurements at handpableaof discriminating between speech onsets and
irregularities in+y, corresponding to noise only. Therefore, in comparison With decision-directed estimator, the

noncausah priori SNR estimator is expected to produce even lower levels ofqausoise and signal distortion.

V. EXPERIMENTAL RESULTS

In this section, the performance of the causal and noncaasatsive estimators are evaluated, and compared

to that of the decision-directed estimator. The evaluatiaiudes two objective quality measures, and informal
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listening tests. The first quality measure is the segmenit® 8efined by [37]

J—1
1
SegSNR = 5 ; SNRy
J-1 N—-1 _»o
— lzlo.log — anox (”+£AN/2) _ [dB] (41)
J iz Yoo [@(n+EN/2) — @(n + (N/2)]

whereJ represents the number of frames in the sighak= 512 is the number of samples per frame (corresponding
to 32 ms frames), and the overlap between successive frani@¥4dsThe SNR at each fram&NRy, is limited to
perceptually meaningful range betweghdB and—10 dB. This prevents the segmental SNR measure from being
biased in either a positive or negative direction due to a $dence or unusually high SNR frames, that do not
contribute significantly to the overall speech quality [38P]. The second quality measure is log-spectral distance
(LSD), which is defined by

1

J-1 N/2 2
1 1 . 2
LSD 7 ;:0 N2 i1 ,;_O{ 0-logCX(k,¢) 0 ogCX(k:,E)} [dB] (42)

whereCX (k, ¢) 2 max{\X(k,E)\Q ,5} is the spectral power, clipped such that the log-spectrunaiyc range is
confined to abous0 dB (that is,§ = 10-50/10 . mk%x{mk,m?}).

The noise signals used in our evaluation are taken from thsel®2 database [40]. They include white Gaussian
noise, car interior noise, F16 cockpit noise, and babbleeidihe speech signal is constructed from six different
utterances, without intervening pauses. The utteran@dsfrom male speakers and half from female speakers, are
taken from the TIMIT database [34]. The speech signal is $aanpt 16 kHz and degraded by the various noise
types with segmental SNR’s in the range5, 10] dB.

The noisy signals are transformed into the STFT domain uslagiming analysis windows of12 samples
length, and256 samples framing ste(% overlap between successive frames). The causal recursiveagion
algorithm (Table 1) is applied to the noisy speech signaligh ywarameters,,;, = —20 dB anda = 0.9. The
noncausal recursive estimation algorithm (Table Il) isliegobto the noisy signals, with parametefs;, = —20
dB,a=a' =09, 8 =2, and L = 3 frames delay. Alternatively, tha priori SNR is estimated by the decision-
directed method (30), with parametefs;, = —20 dB andy = 0.98 (this value ofy was determined in [1], [2]
by simulations and informal listening tests).

The spectral gain function used in our evaluatiolrigsa (22). The PSD of the noise is estimated by recursively

averaging past spectral power values of the noise signal:
Ap, = 0.85Ap, , +0.15|Dg|?.

In practice, the periodogram of the noisB,|? is unknown, and\p, can be estimated by using thdinima
Controlled Recursive Averagingpproach [36]. However, to isolate the influence of @hgriori SNR estimator and

to show its importance, a practical noise PSD estimator isenployed to produce the results. In fact, including
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TABLE Il
SEGMENTAL SNR IMPROVEMENT FORVARIOUS NOISE TYPES AND LEVELS, OBTAINED USING THE DECISION-DIRECTED APPROACH

(DD), CAUSAL RECURSIVEESTIMATION (CRE),AND NONCAUSAL RECURSIVEESTIMATION WITH 3 FRAMES DELAY (NCRE).

Input SegSNR Stationary WGN Car interior noise F16 cockpit noise Babble noise
[dB] DD CRE NCRE| DD CRE NCRE| DD CRE NCRE| DD CRE NCRE
-5 737 737 7.89 771 7.76 822 6.20 6.23 6.86 6.10 6.17 6.71
585 588 653 6.62 6.68 7.18 475 480 552 476 4.85 551
439 447 518 546 554 6.13 341 349 426 350 361 4528
10 305 320 3% 433 445 505 224 236 314 234 246 315
TABLE IV

LOG-SPECTRAL DISTANCE FORVARIOUS NOISE TYPES AND LEVELS, OBTAINED USING THE DECISION-DIRECTED APPROACH(DD),

CAUSAL RECURSIVEESTIMATION (CRE),AND NONCAUSAL RECURSIVEESTIMATION WITH 3 FRAMES DELAY (NCRE).

Input SegSNR Stationary WGN Car interior noise F16 cockpit noise Babble noise
[dB] DD CRE NCRE| DD CRE NCRE| DD CRE NCRE| DD CRE NCRE
-5 277 279 265 446 446 437 336 338 319 294 295 277
216 217 197 361 360 353 240 241 2.20 2.08 2.08 1.91
159 1.58 1.35 284 283 278 1.64 1.63 1.43 142 141 1.26
10 1.06 1.03 082 216 215 211 1.06 1.04 088 095 094 082

a practical noise estimator in the speech enhancementthlysremphasizes the distinction between the proposed
and the decision-directed methods, since the noise estintaeracts with the speech estimator and causes the
inferior algorithm to be even worse.

Table Il presents the results of the segmental SNR impreverachieved by the causal and noncausal recursive
estimators and by the decision-directed method for vanmise types and levels. The noncausal recursive estimator
consistently yields a higher improvement in the segmeniR Sthan the decision-directed method and the causal
recursive estimator, under all tested environmental ¢mmdi. The results of the log-spectral distance are sunzeri
in Table 1V. It shows that the noncausal recursive estimahiains lower LSD than the decision-directed method
and the causal recursive estimator. A subjective study eédp spectrograms and informal listening tests confirm
that the advantages of the noncausal recursive estimagopaaticularly perceived during onsets of speech and
noise only frames. Onsets of speech are better preservél@, avfurther reduction of noise irregularities (musical
noise) is achieved. We note that the results of the segm&N& and the LSD obtained by using tleausal

recursive estimator are very similar to those obtained lizyguthe decision-directed method. Therefore, in case the
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delay between the enhanced speech and the noisy obserma8ds to be minimized, the decision-directed method
is perhaps preferable due to its computational simpliditpwever, in applications where a few frames delay is
tolerable, thenoncausalrecursive estimation approach is definitely more advamagehan the decision-directed

approach.

VI. CONCLUSION

We have introduced a statistical model for speech enhanteamela priori SNR estimation, which realizes the
significance of the statistical dependence between sugeesgeech spectral components. Moreover, it generates
consistent estimators for the speech spectral componedthea priori SNR, while keeping the resulting algorithms
simple. It extends existing speech enhancement algorjtimmish were developed under the assumption that speech
spectral components are statistically independent. b algplains the notable performance of the log-spectral
amplitude estimator when combined with the decision-d&@@stimation approach.

The main differences between the proposed statistical hawikthat of Ephraim and Malah are that the sequence
of speech spectral variances is referred to as a random gocather than a sequence of parameters, and that
successive spectral components are correlated throughtatistical dependence between the spectral variances
and spectral components. Estimators for the speech spectrgponents are derived based on the proposed model
for various distortion measures. We show that similar toveational spectral estimators, spectral enhancement is
obtained by applying a real-valued gain function to the spénoisy measurements. However, thgriori SNR
estimation relies on the statistical model, rather thandiesion-directed approach.

We proposed causal and noncausal recursive estimatordida priori SNR. The causal estimator is closely
related to the decision-directed estimator of Ephraim aradakl It degenerates, as a special case, to a “decision-
directed” estimator with dime-varyingweighting factor, which is monotonically decreasing as macfion of the
instantaneous SNR. A larger weighting factor is engagethg@wpeech absence, to reduce musical noise phenomena,
and a smaller weighting factor evolves during speech poestemreduce signal distortion. The general form of the
causal recursive estimator provides an additional degideeedom, which is adjustable to the degree of spectral
nonstationarity. The noncausal recursive estimator, witanpared with the causal estimator, is particularly useful
during speech onsets. The causal estimator, alike theioleagected estimator, cannot respond too fast to an abrup
increase in the instantaneous SNR, since it inevitablyem®es the level of musical residual noise. By contrast, the
noncausal estimator, having a few subsequent spectralunemasnts at hand, is capable of discriminating between
speech onsets and noise irregularities. In comparison théldecision-directed estimator, the noncausal estimator
produces lower levels of musical noise and signal distortio

The proposed model can be extended to take into accountatigtisal dependence between spectral components
in distinct frequency-bins. A simple strategy is to “proptsj the spectral variances from frame- 1 to frame/

by considering the spectral variances from all frequeneys,band weighting them in accordance with the time-
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frequency correlation in the speech signal. A further improent of the speech enhancement results can be achieved
by utilizing the uncertainty of speech presence in the naasurements [2]—[4], [41]. In this case, we need to
find also an estimator for the speech presence probabhiy,is consistent with the model assumptions andathe

priori SNR estimation. This subject is currently under invesitgat
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