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Relaxed Statistical Model for Speech

Enhancement andA Priori SNR Estimation
Israel Cohen

Abstract

The widely-used speech enhancement method of Ephraim and Malah is based on a Gaussian statistical model, presuming

spectral components are statistically independent. A major drawback is that the model assumptions conflict with the

“decision-directed”a priori SNR estimation, which heavily relies on the time-correlation of speech spectra. In this paper,

we propose a statistical model for speech enhancement that i) takes intoaccount the time-correlation between successive

speech spectral components; ii) admits consistent estimators for thea priori SNR and the speech spectral components;

iii) retains the simplicity associated with the Ephraim-Malah statistical model; iv) provides insight into the decision-

directed approach; and v) enables the extension of existing algorithms to noncausal estimation. In the proposed model,

the sequence of speech spectral variances is a random process, which is correlated with the sequence of speech spectral

components. Causal and noncausal estimators for thea priori SNR are derived in agreement with the model assumptions

and the estimation of the speech spectral components. We show that a special case of the causal estimator degenerates

to a “decision-directed” estimator with atime-varyingweighting factor. Experimental results demonstrate the improved

performance of the proposed algorithms.

I. I NTRODUCTION

One of the most popular methods for enhancing speech, degraded by uncorrelated additive noise, is the spectral

enhancement algorithm of Ephraim and Malah [1], [2]. This algorithm and its derivatives (e.g., [3]–[5]) have

been applied to single-channel and multi-channel speech enhancement in speech recognition systems [6], [7],

speech coders [8]–[10], digital hearing-aids [11], [12], voice activity detectors [13]–[15], and hands-free mobile

communication systems [16]–[18].

Two decades ago, Ephraim and Malah proposed a statistical model for speech enhancement [2], [19]. Accord-

ingly, the individual short-term spectral components of the speech and noise signals are modeled as statistically

independent Gaussian random variables. The assumption that spectral components are statistically independent is

clearly unfulfilled. However, it facilitates a mathematically tractable derivation of useful estimators for various

distortion measures. In [2], Ephraim and Malah derived a short-term spectral amplitude (STSA) estimator, which
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minimizes the mean-square error of the spectral magnitude.In [1], based on the same Gaussian statistical model,

they derived a log-spectral amplitude (LSA) estimator, which minimizes the mean-square error of the log-spectra.

They found that the LSA estimator is superior to the STSA estimator, since it results in a much lower residual

noise level without further affecting the speech itself.

Capṕe [20] showed that the dominant factor in the Ephraim-Malah algorithm is the decision-directed estimation

approach for thea priori SNR. Thea priori SNR estimate is obtained as a weighted sum of two terms. One

representing thea priori SNR resulting from the processing of the previous frame. Theother term is a maximum

likelihood estimate for thea priori SNR, based entirely on the current frame. A weighting factor, which represents

the importance (weight) of each term, controls the trade-off between the noise reduction and the transient distortion

brought into the signal [2], [20]. In practice, the weight ofthe first term is substantially larger than that of the latter.

This indicates that thea priori SNR’s in successive short-term frames are highly correlated.

Martin [12] and Breithaupt and Martin [21] considered a different statistical model, where the clean speech

spectral components are gamma distributed, and the noise spectral components are either Gaussian or Laplace

distributed. They assumed that distinct spectral components are statistically independent, and derived an estimator

for the complex speech spectral coefficients, which minimizes the mean-square error (Wiener filter), and a spectral

amplitude estimator, which minimizes the mean-square error of the spectral power. However, to estimate thea

priori SNR they still used the decision-directed approach of Ephraim and Malah.

A major drawback of the above statistical models is that the model assumptions conflict with the decision-directed

approach. On the one hand, spectral components are assumed statistically independent when deriving analytical

expressions for the speech estimators. On the other hand, the a priori SNR, which is the dominant parameter of

the speech estimators [20], [22], is obtained by the decision-directed approach, which heavily relies on the strong

time-correlation between successive speech spectral components. Quite remarkably, despite this inconsistency, the

performance of the LSA algorithm, versus its computationalsimplicity, is outstanding.

Enhancement schemes based on hidden Morkov models (HMM’s) try to circumvent the assumption of specific

distributions for the speech and noise processes [23]–[26]. The probability distributions of the two processes are

first estimated from long training sequences of clean speechand noise samples, and then used jointly with a given

distortion measure to derive an estimator for the speech signal. Normally, vectors generated from a given sequence

of states are assumed statistically independent. However,the HMM can be extended to take into account the time-

frequency correlation of speech signals by using non-diagonal covariance matrices for each subsource, and assuming

that a sequence of vectors generated from a given sequence ofstates is a nonzero order autoregressive process [24],

[27]. First order HMM’s, for example, with a mixture of Gaussian distributions in each state and minimum mean-

square error estimation results in a weighted sum of conditional mean estimators, one for each mixture component

in each state, where the weights are the posterior probabilities of the states and mixture components given the noisy

signal [28]. Unfortunately, the HMM-based speech enhancement relies on the type of training data [29]. It works
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best with the trained type of noise, but often worse with other type of noise. Furthermore, improved performance

generally entails more complex models and higher computational requirements.

In this paper, we propose a statistical model for speech enhancement that i) takes into account the time-

correlation between successive speech spectral components; ii) admits consistent estimators for thea priori SNR

and the speech spectral components; iii) retains the simplicity associated with the Ephraim-Malah statistical model;

iv) provides insight into the decision-directed approach;and v) enables the extension of existing algorithms to

noncausal estimation. In the proposed model, the sequence of speech spectral variances is a random process, which

is correlated with the sequence of speech spectral components. Causal and noncausal estimators for thea priori

SNR are derived in agreement with the model assumptions and the estimation of the speech spectral components.

The causal estimator for thea priori SNR combines two steps, a “propagation” step and an “update”step, to

recursively predict and update the estimate for the speech spectral variance as new data arrive. The causala priori

SNR estimator is closely related to the decision-directed estimator of Ephraim and Malah. A special case of the

causal estimator degenerates to a “decision-directed” estimator with atime-varyingweighting factor. The weighting

factor is monotonically decreasing as a function of the instantaneous SNR, resulting effectively in a larger weighting

factor during speech absence, and a smaller weighting factor during speech presence. This reduces both the musical

noise and the signal distortion.

The noncausala priori SNR estimator employs future spectral measurements to better predict the spectral

variances of the clean speech. A comparison of the causal andnoncausal estimators indicates that the differences

are primarily noticeable during speech onsets. Thecausal a prioriSNR estimator, as well as the decision-directed

estimator, cannot respond too fast to an abrupt increase in the instantaneous SNR, since it necessarily implies an

increase in the level of musical residual noise. By contrast, thenoncausalestimator, having a few subsequent spectral

measurements at hand, is capable of discriminating betweenspeech onsets and noise irregularities. Experimental

results show that the noncausal estimator yields a higher improvement in the segmental SNR and lower log-spectral

distortion, than the decision-directed method and the causal estimator. The advantages of the noncausal estimator

are particularly perceived during onsets of speech and noise only frames. Onsets of speech are better preserved,

while a further reduction of musical noise is achieved.

The paper is organized as follows. In Section II, we formulate the speech enhancement problem. In Section III,

a statistical model is proposed that relaxes the independence assumption of spectral components. In Section IV, we

derive estimators for the clean speech spectral componentsand thea priori SNR. We present causal and noncausal

recursive speech enhancement algorithms, and address their relation to the decision-directed estimation approach.

Finally, in Section V, we evaluate the proposed algorithms,and present experimental results, which demonstrate

their performance.
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II. PROBLEM FORMULATION

Let x(n) andd(n) denote speech and uncorrelated additive noise signals, respectively, wheren is a discrete-time

index. The observed signaly(n), given byy(n) = x(n) + d(n), is transformed into the time-frequency domain by

applying the short-time Fourier transform (STFT). Specifically,

Y`(k) =
N−1
∑

n=0

y(n + `M)h(n) e−j 2π

N
n k (1)

wherek is the frequency-bin index (k = 0, 1, . . . , N − 1), ` is the time frame index (` = 0, 1, . . .), h(n) is an

analysis window of sizeN (e.g.,Hamming window), andM is the framing step (number of samples separating two

successive frames). Given an estimateX̂`(k) for the STFT of the clean speech, an estimate for the clean speech

signal is obtained by applying the inverse STFT,

x̂(n) =
∑

`

N−1
∑

k=0

X̂`(k)h̃(n − `M) ej 2π

N
k(n−`M) (2)

whereh̃(n) is a synthesis window that is biorthogonal to the analysis window h(n) [30], and the inverse STFT is

efficiently implemented by using the weighted overlap-add method [31].

Let Y`′

0 (k) denote a set of spectral measurements{Y0(k), . . . , Y`′(k)}, and letd
[

X`(k), X̂`(k)
]

be a given

distortion measure betweenX`(k) and X̂`(k). Our objective is to find an estimator̂X`(k), which minimizes the

conditional expected value of the distortion measure, given the set of spectral noisy measurements

X̂`(k) = arg min
X̂

E
{

d
[

X`(k), X̂
]

| Y`′

0 (k)
}

. (3)

We consider a causal estimation ofX`(k) (in which casè ′ ≤ `), as well as a noncausal estimation (in which case

`′ > `)1, while the spectral components arenot assumed statistically independent. Therefore, in contrast to existing

spectral enhancement techniques (e.g., [1], [2], [4], [12], [32]), the estimation problem is not formulated as that of

estimatingX`(k) from Y`(k) alone.

Let A`(k) andϕ`(k) denote respectively the magnitude and phase ofX`(k). Then, distortion measures that are

of particular interest for speech enhancement applications are:

1) The squared-error distortion [33]:

dSE

[

X`(k), X̂`(k)
]

4
=
∣

∣

∣
X`(k) − X̂`(k)

∣

∣

∣

2

. (4)

2) The spectral amplitude distortion [2]:

dSA

[

X`(k), X̂`(k)
]

4
=
[

A`(k) − Â`(k)
]2

. (5)

3) The log-spectral amplitude distortion [1]:

dLSA

[

X`(k), X̂`(k)
]

4
=
[

log A`(k) − log Â`(k)
]2

. (6)

1Note that causality is defined with respect to the spectral components, rather that with respect to the samples in the time domain.
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4) The spectral power distortion [21], [28], [32]:

dSP

[

X`(k), X̂`(k)
]

4
=
[

A2
`(k) − Â2

`(k)
]2

. (7)

The last three distortion measures are insensitive to the estimation error ofϕ̂`(k). Therefore, it is constructive to

combine them with the following constrained optimization problem [2]:

min
ϕ̂`(k)

E

{

∣

∣

∣
ejϕ`(k) − ejϕ̂`(k)

∣

∣

∣

2
}

subject to
∣

∣

∣
ejϕ̂`(k)

∣

∣

∣
= 1 . (8)

This yields an estimator for the complex exponential of the phase, constrained to not affecting the spectral magnitude

estimate. Alternatively, an estimate for the spectral phase ϕ̂`(k) is obtained by minimizing the expected value of

the following distortion measure:

dϕ [ϕ`(k), ϕ̂`(k)]
4
= 1 − cos [ϕ`(k) − ϕ̂`(k)] . (9)

This measure is invariant under modulo2π transformation of the estimation errorϕ`(k) − ϕ̂`(k), and for small

estimation errors it closely resembles the squared-error distortion measure, since1− cos β ≈ β2/2 for β � 1 [2].

III. SPEECHSPECTRAL MODEL

In this section, we propose a statistical model that takes into account the time-correlation between successive

spectral components of the speech signal. In particular, the Gaussian statistical model of Ephraim and Malah [2] is

relaxed by assuming that{X0(k),X1(k), . . .} are statistically dependent.

To see graphically the relation between successive spectral components of a speech signal, in comparison

with a noise signal, we present scatter plots for successivespectral magnitudes and phases, and investigate the

autocorrelation sequences (ACS’s) of STFT coefficients along time-trajectories (the frequency-bin indexk is held

fixed). We consider a speech signal that is constructed from six different utterances, without intervening pauses.

The utterances, half from male speakers and half from femalespeakers, are taken from the TIMIT database [34].

The speech signal is sampled at16 kHz, and transformed into the STFT domain using Hamming analysis windows

of 512 samples length, and256 samples framing step (50% overlap between successive frames).

Figure 1 shows scatter plots for successive spectral magnitudes and phases of the speech signal, at center frequency

500 Hz (k = 17). Similar plots are obtained for other frequency-bins, whatever speech signals are taken. Figure 2

shows scatter plots for successive spectral magnitudes andphases of awhite Gaussian noise(WGN) signal. These

figures imply that successive spectral magnitudes of speechsignals are highly correlated, whereas successive spectral

phases are much less correlated. In contrast, successive spectral magnitudes of a WGN signal are weakly correlated.

Figure 3 shows the ACS’s of the speech spectral components along time-trajectories, for various frequency-bins

and framing steps. The95 percent confidence limits (e.g., [35]) are depicted as horizontal dotted lines. In order

to prevent an upward bias of the autocorrelation estimates due to irrelevant (non-speech) spectral components, the
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Fig. 1. Scatter plots for successive spectral components of aspeechsignal, at center frequency500 Hz (k = 17). (a) Scatter plot for successive

spectral magnitudes; (b) Scatter plot for successive spectral phases.

ACS’s are computed from spectral components whose magnitudes are within30 dB of the maximal magnitude.

Specifically, the autocorrelation coefficients of the spectral magnitudes are estimated by

ρ(m)
4
=

E {A`(k)A`+m(k)}
E {A2

`(k)} ≈
∑

`∈L A`(k)A`+m(k)
∑

`∈L A2
`(k)

(10)

wherem is the lag in frames, andL represents the set of relevant spectral components

L =

{

`

∣

∣

∣

∣

A`(k) ≥ 10−30/20 max
`

{A`(k)}
}

.

The corresponding autocorrelation coefficients of the spectral phases are obtained by

ρ(m)
4
=

E {ϕ`(k)ϕ`+m(k)}
E {ϕ2

`(k)} ≈
∑

`∈L ϕ`(k)ϕ`+m(k)
∑

`∈L ϕ2
`(k)

. (11)

Figure 4 shows the variation of the correlation between successive spectral magnitudes on frequency and on overlap

between successive frames. Figures 3 and 4 demonstrate thatfor speech signals, successive spectral magnitudes

are highly correlated, while the correlation is generally larger at lower frequencies, and it increases as the overlap

between successive frames increases.

Figure 5 shows the ACS’s of WGN spectral magnitude along time-trajectories, for various framing steps. Figure 6

demonstrates, for a realization of WGN, the variation of the correlation between successive spectral magnitudes

on the overlap between frames. A comparison of Figs. 6 and 4 reveals that for a sufficiently large framing step

(M ≥ N/2, i.e., overlap between frames≤ 50%), successive spectral components of thenoisesignal, but clearly

not of thespeechsignal, can be assumed uncorrelated. For smaller framing steps, the correlation between successive

spectral noise components has also to be taken into consideration. Furthermore, since the length of the analysis

window cannot be too large (its typical length is 20–40 ms [2]), for a given framè adjacent Fourier expansion
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Fig. 2. Scatter plots for successive spectral components of awhite Gaussian noisesignal (k = 17). (a) Scatter plot for successive spectral

magnitudes; (b) Scatter plot for successive spectral phases.
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Fig. 3. Autocorrelation sequences (ACS’s) of clean speech STFT coefficients along time-trajectories, for various frequency-bins and framing

steps. The dotted lines represents95 percent confidence limits. (a) ACS of the spectral magnitude atfrequency-bink = 17 (center frequency

500 Hz), framing stepM = N/2 (50% overlap between frames); (b) ACS of the spectral phase,k = 17, M = N/2; (c) ACS of the spectral

magnitude,k = 65 (center frequency2 kHz), M = N/2; (d) ACS of the spectral magnitude,k = 17, M = N/4 (75% overlap between

frames).
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Fig. 4. Variation of the correlation between successive spectral magnitudes of the speech signal. (a) Variation ofρ(1) on frequency for

M = N/2 (50% overlap between frames); (b) Variation ofρ(1) on overlap between frames fork = 33 (center frequency1 kHz; solid line)

andk = 65 (center frequency2 kHz; dashed line).
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Fig. 5. Autocorrelation sequences of white Gaussian noise spectral magnitude (along time-trajectories) for various framing steps. The dotted

lines represents95 percent confidence limits. (a)M = N/2 (50% overlap between frames); (b)M = N/4 (75% overlap between frames).

coefficients of the noise signal,D`(k) andD`(k + 1), as well as adjacent coefficients of the speech signal,X`(k)

and X`(k + 1), are also correlated to a certain degree. Nevertheless, ourprimary goal is to propose a valid and

consistent statistical model for both the spectral enhancement and thea priori SNR estimation, while keeping

the resulting algorithms simple. Therefore, we continue with the statistical independence assumption for distinct

frequency-bins (X`(k) andX`′(k
′) are assumed statistically independent ifk 6= k′), as manifested in the estimation

problem (3).

In conclusion of the above discussion, we propose the following statistical model for the speech and noise spectral

components:

1) The noise spectral componentsD`(k) are statistically independent zero-mean complex Gaussianrandom

variables. The real and imaginary parts ofD`(k) are independent and identically distributed (IID).

2) The speech spectral phasesϕ`(k) are IID uniform random variables on[−π, π].

3) For a fixed frequency-bin indexk, the sequence of speech spectral magnitudes{A`(k) | ` = 0, 1, . . .} is a
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Fig. 6. Variation of the correlation between successive spectral magnitudes on the overlap between frames for a realization of white Gaussian

noise.

random process. Fork 6= k′, the two random processes{A`(k) | ` = 0, 1, . . .} and{A`(k
′) | ` = 0, 1, . . .} are

statistically independent.

4) For fixedk and`, a speech spectral componentX`(k) is a zero-mean complex Gaussian random variable. Its

real and imaginary parts are IID.

5) The sequence of speech spectral variances{λX`
(k) | ` = 0, 1, . . .}, whereλX`

(k)
4
= E

{

A2
`(k)

}

, is a ran-

dom process. For fixedk and `, λX`
(k) is correlated with the sequence of speech spectral magnitudes

{A`′(k) | `′ = 0, 1, . . .}. However, givenλX`
(k), A`(k) is statistically independent ofA`′(k) for `′ 6= `.

Note that the fundamental difference between the proposed statistical model and that of Ephraim and Malah

originates from the last assumption. Here, the variance sequence ofX`(k) is a random process, rather than a

sequence of parameters. Furthermore, successive spectralcomponents are correlated, as the random processes

{X`(k) | ` = 0, 1, . . .} and{λX`
(k) | ` = 0, 1, . . .} are not independent.

IV. SIGNAL ESTIMATION

In this section, we derive estimators forX`(k), as formulated in (3), based on the proposed statistical model and

the various distortion measures specified in Section II. We show that similar to conventional spectral estimators,

X̂`(k) is obtained by applying a real-valued gain function to the corresponding spectral measurementY`(k). The

spectral gain depends on two parameters: thea priori and a posteriori SNR’s. However, rather than evaluating

the a priori SNR by the decision-directed approach, thea priori SNR estimation relies on the statistical model.

For notational simplicity, the frequency-bin indexk is henceforth omitted, since according to the statistical model,

an estimateX̂`(k) can be found independently for eachk. Furthermore, we assume knowledge of the noise PSD,

which in practice can be estimated by using theMinima Controlled Recursive Averagingapproach [36].
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A. Spectral Enhancement

Let p
(

X` | Y`′

0 , λX`

)

denote the conditional pdf of a speech spectral componentX` given its varianceλX`
and

the noisy measurementsY`′

0 . Let p
(

λX`
| Y`′

0

)

denote the conditional pdf of the clean speech spectral variance at

frame ` givenY`′

0 . Then, the spectral estimator̂X`(k) is obtained from

min
X̂`

E
{

d
(

X`, X̂`

)

| Y`′

0

}

= min
X̂`

∫∫

d
(

X`, X̂`

)

p
(

X` | Y`′

0 , λX`

)

p
(

λX`
| Y`′

0

)

dX` dλX`
. (12)

Applying Bayes’ rule to the conditional pdf ofX`, we have

p
(

X` | Y`′

0 , λX`

)

=
p
(

Y` |X`, Y`−1
0 , Y`′

`+1, λX`

)

p
(

X` | Y`−1
0 , Y`′

`+1, λX`

)

∫

p
(

Y` |X`, Y`−1
0 , Y`′

`+1, λX`

)

p
(

X` | Y`−1
0 , Y`′

`+1, λX`

)

dX`

. (13)

The proposed statistical model (particularly the first and last model assumptions) implies

p
(

Y` |X`, Y`−1
0 , Y`′

`+1, λX`

)

= p (Y` |X`) , (14)

p
(

X` | Y`−1
0 , Y`′

`+1, λX`

)

= p (X` |λX`
) . (15)

Approximating the conditional pdf ofλX`
given the noisy observationsY`′

0 by a Dirac delta function at position

λX`|`′
4
= E

{

A2
`(k) | Y`′

0

}

, and substituting (14) and (15) into (13), the spectral estimator X̂`(k) is obtained from

min
X̂`

∫∫

d
(

X`, X̂`

)

p (X` |Y`, λX`
) δ
(

λX`
− λX`|`′

)

dX` dλX`

= min
X̂`

∫

d
(

X`, X̂`

)

p
(

X` |Y`, λX`|`′
)

dX` . (16)

That is, given the set of noisy measurementsY`′

0 , we first derive an estimate for the clean speech spectral variance

λX`|`′ at frame`. Subsequently, the estimation problem for the speech spectral componentX` reduces to that of

estimatingX` from Y` alone, assuming knowledge of the variance ofX`. The latter problem, when thea priori

SNR is defined appropriately, is essentially the classical spectral enhancement problem as formulated by Ephraim

and Malah [1], [2]. As a result, an estimate forX` is obtained by applying a spectral gain function to each noisy

spectral component of the speech signal:

X̂` = G
(

ξ`|`′ , γ`

)

Y` (17)

where thea priori anda posterioriSNR’s are defined respectively by2

ξ`|`′
4
=

λX`|`′

λD`

(18)

γ`
4
=

|Y`|2
λD`

(19)

2Note that in [2], thea priori SNR is defined byξ` = λX`
/ λD`

, where the varianceλX`
is a parameter of the prior pdf ofX`.
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and whereλD`

4
= E

{

|D`|2
}

denotes the noise spectral variance. The specific expression for the spectral gain

function G
(

ξ`|`′ , γ`

)

depends on the particular choice of a distortion measured
(

X`, X̂`

)

. For squared-error

distortion, the gain function is given by [33]

GSE

(

ξ`|`′
)

=
ξ`|`′

1 + ξ`|`′
. (20)

In case of combining the spectral amplitude, the log-spectral amplitude, or the spectral power distortion measures

with the constrained optimization problem (8), the gain functions can respectively be written as [1], [2], [28], [32]

GSA

(

ξ`|`′ , γ`

)

=

√
π υ`

2γ`

[

(1 + υ`)I0

(υ`

2

)

+ υ` I1

(υ`

2

)]

exp
(

−υ`

2

)

(21)

GLSA

(

ξ`|`′ , γ`

)

=
ξ`|`′

1 + ξ`|`′
exp

(

1

2

∫ ∞

υ`

e−t

t
dt

)

(22)

GSP

(

ξ`|`′ , γ`

)

=

√

ξ`|`′

1 + ξ`|`′

(

1

γ`
+

ξ`|`′

1 + ξ`|`′

)

(23)

whereI0(·) and I1(·) denote the modified Bessel functions of zero and first order, respectively, andυ` is defined

by υ`
4
= ξ`|`′ γ`/(1 + ξ`|`′). It still remains to estimate thea priori SNR ξ`|`′ , as defined in (18), based on the

statistical model.

B. Causal Recursive Estimation

In this subsection, we propose a causal conditional estimator ξ̂`|` for the a priori SNR given the noisy measure-

ments up to framè. The estimator combines two steps, a “propagation” step andan “update” step, to recursively

predict and update the estimate forλX`
as new data arrive.

Suppose we are given an estimateλ̂X`|`−1, which is conditioned on the noisy measurements up to frame` − 1,

and a new noisy spectral componentY` is observed. Then, the estimate forλX`
can be updated by computing the

conditional variance ofX` given Y` and λ̂X`|`−1:

λ̂X`|` = E
{

A2
` | λ̂X`|`−1 , Y`

}

. (24)

This is obtained by applying the gain functionGSP

(

ξ̂`|`−1, γ`

)

to Y`, and computing the squared absolute value

of the result3

λ̂X`|` = G2
SP

(

ξ̂`|`−1, γ`

)

|Y`|2

=
ξ̂`|`−1

1 + ξ̂`|`−1

(

1

γ`
+

ξ̂`|`−1

1 + ξ̂`|`−1

)

|Y`|2 . (25)

3Recall thatGSP minimizes the expected spectral power distortion, yielding the square root of the conditional expected spectral power. That

is, GSP(ξ`, γ`)|Y`| =
[

E
{

A2
` | ξ` , Y`

}]1/2.
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Dividing both sides of (25) byλD`
, we have

ξ̂`|` =
ξ̂`|`−1

1 + ξ̂`|`−1

(

1 +
ξ̂`|`−1 γ`

1 + ξ̂`|`−1

)

. (26)

We call (26) the “update” step.

Computation of the update step requires the estimate

ξ̂`|`−1
4
=

λ̂X`|`−1

λD`−1

(27)

for the a priori SNR givenY`−1
0 . Note that in (27),̂λX`|`−1 is divided byλD`−1

rather than byλD`
, since given

the measurements up to frame`−1 the noise variance estimate at frame` is given byλD`−1
. Assume we are given

at frame` − 1 estimates for the spectral amplitudeA`−1 and the spectral varianceλX`−1
, conditioned onY`−1

0 .

Then, these estimates can be “propagated” in time to obtain an estimate forλX`
. SinceλX`

is correlated with both

λX`−1
andA`−1, we propose to use an elementary nonlinear predictor of the form

λ̂X`|`−1 = max
{

(1 − α)λ̂X`−1|`−1 + αÂ2
`−1 , λmin

}

(28)

whereα (0 ≤ α ≤ 1) is related to the degree of nonstationarity of the random process{λX`
| ` = 0, 1, . . .}, and

λmin is a lower bound on the variance ofX`. In case of a pseudo-stationary process,α is set to a small value, since

λ̂X`|`−1 ≈ λ̂X`−1|`−1. In case of a nonstationary process,α is set to a larger value, since the variances at successive

frames are less correlated, and the relative importance ofλ̂X`−1|`−1 to predict λ̂X`|`−1 decreases. Dividing both

sides of (28) byλD`−1
, we obtain the “propagation” step

ξ̂`|`−1 = max

{

(1 − α)ξ̂`−1|`−1 + α
Â2

`−1

λD`−1

, ξmin

}

(29)

whereξmin is a lower bound on thea priori SNR. The steps of the causal recursive spectral enhancementalgorithm

are summarized in Table I. The algorithm is initialized at frame` = −1 with Â−1 = 0 and ξ̂−1|−1 = ξmin. Then,

for ` = 0, 1, . . ., the propagation and update steps are iterated to obtain estimates for the nonstationarya priori

SNR. The gain functionG
(

ξ̂`|`, γ`

)

employed for the spectral enhancement step is determined bythe particular

choice of the distortion measure.

C. Relation to “Decision-Directed” Estimation

The proposed causal conditional estimatorξ̂`|` for the a priori SNR is closely related to the decision-directed

estimator of Ephraim and Malah [2]. The decision-directed estimator is given by

ξ̂DD
`|` = µ

Â2
`−1

λD`−1

+ (1 − µ)max {γ` − 1, 0} (30)

whereµ (0 ≤ µ ≤ 1) is a weighting factor that controls the trade-off between the noise reduction and the transient

distortion introduced into the signal [2], [20]. A larger value of µ results in a greater reduction of the musical noise
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TABLE I

SUMMARY OF THE CAUSAL RECURSIVESPEECHENHANCEMENT ALGORITHM.

Initialization: Â−1 = 0 , ξ̂−1|−1 = ξmin .

For all short-time frames̀ = 0, 1, . . .

“Propagation” step:

ξ̂`|`−1 = max

{

(1 − α)ξ̂`−1|`−1 + α
Â2

`−1

λD`−1

, ξmin

}

“Update” step:

ξ̂`|` =
ξ̂`|`−1

1+ξ̂`|`−1

(

1 +
ξ̂`|`−1 γ`

1+ξ̂`|`−1

)

Spectral enhancement:

X̂` = G
(

ξ̂`|`, γ`

)

Y`

phenomena, but at the expense of attenuated speech onsets and audible modifications of transient components. As

a compromise, a value0.98 of µ was determined by simulations and informal listening tests[2].

The update step (26) of the causal conditional estimator canbe written as

ξ̂`|` = α` ξ̂`|`−1 + (1 − α`)(γ` − 1) (31)

whereα` is defined by

α`
4
= 1 −

ξ̂2
`|`−1

(

1 + ξ̂`|`−1

)2 . (32)

Substituting (29) into (31) and (32) with the parameterα set to 1, and applying the lower bound constraint toξ̂`|`

rather thanξ̂`|`−1, we have

ξ̂`|` = max

{

α`

Â2
`−1

λD`−1

+ (1 − α`)(γ` − 1) , ξmin

}

, (33)

α` = 1 −
Â4

`−1
(

λD`−1
+ Â2

`−1

)2 . (34)

The expression (33) withα` ≡ µ is actually a practical form of the decision-directed estimator,

ξ̂DD
`|` = max

{

µ
Â2

`−1

λD`−1

+ (1 − µ)(γ` − 1) , ξmin

}

, (35)

that includes a lower bound constraint to further reduce thelevel of residual musical noise [20]. Accordingly, a

special case of the causal recursive estimator withα ≡ 1 degenerates to a “decision-directed” estimator with a

time-varyingweighting factorα`.

It is interesting to note that the weighting factorα`, given by (34), is monotonically decreasing as a function ofthe

instantaneous SNR,̂A2
`−1/ λD`−1

. A decision-directed estimator with a larger weighting factor is indeed preferable



14

0 10 20 30 40 50 60

−10

0

10

20

S
N

R
   

(d
B

)

`

Fig. 7. SNR’s in successive short-time frames:A posteriori SNR γ` (dotted line), decision-directeda priori SNR ξ̂DD
`|`

(dashed line), and

causal recursivea priori SNR estimatêξRE
`|`

(solid line).

during speech absence (to reduce musical noise phenomena),while a smaller weighting factor is more advantageous

during speech presence (to reduce signal distortion) [20].The above special case of the causal recursive estimator

conforms to such a desirable behavior. Moreover, the general form of the causal recursive estimator provides an

additional degree of freedom for adjusting the value ofα in (29) to the degree of spectral nonstationarity. This may

produce even further improvement in the performance.

The different behaviors of the causal recursive estimatorξ̂RE
`|` (Table I) and the decision-directed estimatorξ̂DD

`|`

(35) are illustrated in the example of Fig. 7. The analyzed signal contains only white Gaussian noise during the first

and last20 frames, and in between it contains an additional sinusoidalcomponent at the displayed frequency with

0 dB SNR. The signal is transformed to the STFT domain using Hamming windows with50% overlap between

successive frames. Thea priori SNR estimates,̂ξRE
`|` and ξ̂DD

`|` , are obtained by using theGLSA spectral gain

function (22), and the parametersξmin = −25 dB, α = 0.9, µ = 0.98. It shows that when thea posteriori SNR

γ` is sufficiently low, the proposeda priori SNR estimate is smoother than the decision-directed estimate, which

helps reducing the level of musical noise. Whenγ` increases, the response of thea priori SNR ξ̂RE
`|` is initially

slower thanξ̂DD
`|` , but it then builds up faster to thea posteriori SNR. Whenγ` is sufficiently high,ξ̂DD

`|` follows

the a posteriori SNR with a delay of 1 frame, whereaŝξRE
`|` follows the a posteriori SNR instantaneously. When

γ` decreases, the response ofξ̂RE
`|` is immediate, while that of̂ξDD

`|` is delayed by 1 frame. As a consequence, we

expect that the causal recursive estimator, in comparison with the decision-directed estimator, may produce a lower

level of musical noise while not increasing the audible distortion in the enhanced signal.

D. Noncausal Recursive Estimation

In this subsection, we propose a noncausal conditional estimator ξ̂`|`+L for the a priori SNR, given the noisy

measurements up to frame` + L, whereL > 0 denotes the admissible time delay in frames. Similar to the causal

estimator, the noncausal estimator combines update and propagation steps to recursively estimateλX`
as new

data arrive. However, future spectral measurements are also employed in the process to better predict the spectral
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variances of the clean speech.

Let λ′
X`|`+L

4
= E

{

A2
` | Y`−1

0 ,Y`+L
`+1

}

denote the conditional spectral variance ofX` givenY`+L
0 excluding the

noisy measurement at frame`. Let λ` | [`+1,`+L]
4
= E

{

A2
` | Y`+L

`+1

}

denote the conditional spectral variance ofX`

given the subsequent noisy measurementsY`+L
`+1 . Then, similar to (25), the estimate forλ` given λ̂′

X`|`+L andY`

can be updated by

λ̂X`|`+L = E
{

A2
` | λ̂′

X`|`+L , Y`

}

=
ξ̂′`|`+L

1 + ξ̂′`|`+L

(

1

γ`
+

ξ̂′`|`+L

1 + ξ̂′`|`+L

)

|Y`|2 (36)

where ξ̂′`|`+L

4
= λ̂′

X`|`+L/ λD`−1
is the a priori SNR estimate givenY`−1

0 andY`+L
`+1 . Dividing both sides of (36)

by λD`
, we have the “update” step

ξ̂`|`+L =
ξ̂′`|`+L

1 + ξ̂′`|`+L

(

1 +
ξ̂′`|`+L γ`

1 + ξ̂′`|`+L

)

. (37)

To obtain an estimate forλ′
X`|`+L, we employ the estimateŝA`−1 and λ̂`−1|`+L−1 from the previous frame, and

derive an estimate forλX`
from the measurementsY`+L

`+1 . Suppose an estimatêλ` | [`+1,`+L] is given, we propose

to propagate the estimates from frame` − 1 to frame` by

λ̂′
`|`+L = max

{

αÂ2
`−1 + (1 − α)

[

α′ λ̂`−1|`+L−1 + (1 − α′)λ̂` | [`+1,`+L]

]

, ξmin

}

(38)

whereα (0 ≤ α ≤ 1) is related to the stationarity of the random process{λX`
| ` = 0, 1, . . .}, andα′ (0 ≤ α′ ≤ 1)

is associated with the reliability of the estimateλ̂` | [`+1,`+L] in comparison with that of̂λ`−1|`+L−1. Dividing both

sides of (38) byλD`−1
, we have the following “backward-forward propagation” step:

ξ̂′`|`+L = max

{

α
Â2

`−1

λD`−1

+ (1 − α)
[

α′ ξ̂`−1|`+L−1 + (1 − α′)ξ̂` | [`+1,`+L]

]

, ξmin

}

. (39)

An estimate for thea priori SNR ξ` given the measurementsY`+L
`+1 is obtained by

ξ̂` | [`+1,`+L] =







1
L

∑L
n=1 γ`+n − β , if nonnegative,

0 , otherwise,
(40)

whereβ (β ≥ 1) is an over-subtraction factor to compensate for a sudden increase in the noise level. This estimator

is an anticausal version of the maximum-likelihooda priori SNR estimator suggested in [2].

The steps of the noncausal recursive spectral enhancement algorithm are summarized in Table II. The algorithm

is initialized at framè = −1 with Â−1 = 0 and ξ̂−1|L−1 = ξmin. Then, for ` = 0, 1, . . ., the propagation and

update steps are iterated to obtain estimates for thea priori SNR and the speech spectral components.

Figure 8 demonstrates the behavior of the noncausal recursive estimator in the same example of Fig. 7. The

noncausala priori SNR estimatêξRE
`|`+3 is obtained with the parametersξmin = −25 dB, α = α′ = 0.9, β = 2,

and L = 3 frames delay. A comparison of Figs. 7 and 8 indicates that thedifferences between the causal and

noncausal recursive estimators are primarily noticeable during onsets of signal components. Clearly, thecausal a
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TABLE II

SUMMARY OF THE NONCAUSAL RECURSIVESPEECHENHANCEMENT ALGORITHM.

Initialization: Â−1 = 0 , ξ̂−1|L−1 = ξmin .

For all short-time frames̀ = 0, 1, . . .

”Backward estimation”:

ξ̂` | [`+1,`+L] =







1
L

∑L
n=1 γ`+n − β , if nonnegative,

0 , otherwise.

“Backward-forward propagation”:

ξ̂′
`|`+L

= max

{

α
Â2

`−1

λD`−1

+ (1 − α)
[

α′ ξ̂`−1|`+L−1 + (1 − α′)ξ̂` | [`+1,`+L]

]

, ξmin

}

“Update” step:

ξ̂`|`+L =
ξ̂′

`|`+L

1+ξ̂′
`|`+L

(

1 +
ξ̂′

`|`+L
γ`

1+ξ̂′
`|`+L

)

Spectral enhancement:

X̂` = G
(

ξ̂`|`+L, γ`

)

Y`
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Fig. 8. SNR’s in successive short-time frames:A posteriori SNR γ` (dotted line), decision-directeda priori SNR ξ̂DD
`|`

(dashed line), and

noncausal recursivea priori SNR estimatêξRE
`|`+3

with 3 frames delay (solid line).

priori SNR estimator, as well as the decision-directed estimator,cannot respond too fast to an abrupt increase inγ`,

since it necessarily implies an increase in the level of musical residual noise. By contrast, thenoncausalestimator,

having a few subsequent spectral measurements at hand, is capable of discriminating between speech onsets and

irregularities inγ` corresponding to noise only. Therefore, in comparison withthe decision-directed estimator, the

noncausala priori SNR estimator is expected to produce even lower levels of musical noise and signal distortion.

V. EXPERIMENTAL RESULTS

In this section, the performance of the causal and noncausalrecursive estimators are evaluated, and compared

to that of the decision-directed estimator. The evaluationincludes two objective quality measures, and informal
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listening tests. The first quality measure is the segmental SNR defined by [37]

SegSNR =
1

J

J−1
∑

`=0

SNR`

=
1

J

J−1
∑

`=0

10 · log

∑N−1
n=0 x2(n + `N/2)

∑N−1
n=0 [x(n + `N/2) − x̂(n + `N/2)]

2
[dB] (41)

whereJ represents the number of frames in the signal,N = 512 is the number of samples per frame (corresponding

to 32 ms frames), and the overlap between successive frames is50%. The SNR at each frame,SNR`, is limited to

perceptually meaningful range between35 dB and−10 dB. This prevents the segmental SNR measure from being

biased in either a positive or negative direction due to a fewsilence or unusually high SNR frames, that do not

contribute significantly to the overall speech quality [38], [39]. The second quality measure is log-spectral distance

(LSD), which is defined by

LSD =
1

J

J−1
∑

`=0







1

N/2 + 1

N/2
∑

k=0

[

10 · log CX(k, `) − 10 · log CX̂(k, `)
]2







1
2

[dB] (42)

whereCX(k, `)
4
= max

{

|X(k, `)|2 , δ
}

is the spectral power, clipped such that the log-spectrum dynamic range is

confined to about50 dB (that is,δ = 10−50/10 · max
k,`

{

|X(k, `)|2
}

).

The noise signals used in our evaluation are taken from the Noisex92 database [40]. They include white Gaussian

noise, car interior noise, F16 cockpit noise, and babble noise. The speech signal is constructed from six different

utterances, without intervening pauses. The utterances, half from male speakers and half from female speakers, are

taken from the TIMIT database [34]. The speech signal is sampled at 16 kHz and degraded by the various noise

types with segmental SNR’s in the range[−5, 10] dB.

The noisy signals are transformed into the STFT domain usingHamming analysis windows of512 samples

length, and256 samples framing step (50% overlap between successive frames). The causal recursive estimation

algorithm (Table I) is applied to the noisy speech signals, with parametersξmin = −20 dB and α = 0.9. The

noncausal recursive estimation algorithm (Table II) is applied to the noisy signals, with parametersξmin = −20

dB, α = α′ = 0.9, β = 2, andL = 3 frames delay. Alternatively, thea priori SNR is estimated by the decision-

directed method (30), with parametersξmin = −20 dB andµ = 0.98 (this value ofµ was determined in [1], [2]

by simulations and informal listening tests).

The spectral gain function used in our evaluation isGLSA (22). The PSD of the noise is estimated by recursively

averaging past spectral power values of the noise signal:

λ̂D`
= 0.85 λ̂D`−1

+ 0.15 |D`|2 .

In practice, the periodogram of the noise|D`|2 is unknown, andλD`
can be estimated by using theMinima

Controlled Recursive Averagingapproach [36]. However, to isolate the influence of thea priori SNR estimator and

to show its importance, a practical noise PSD estimator is not employed to produce the results. In fact, including
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TABLE III

SEGMENTAL SNR IMPROVEMENT FORVARIOUS NOISE TYPES AND LEVELS, OBTAINED USING THE DECISION-DIRECTED APPROACH

(DD), CAUSAL RECURSIVEESTIMATION (CRE),AND NONCAUSAL RECURSIVEESTIMATION WITH 3 FRAMES DELAY (NCRE).

Input SegSNR Stationary WGN Car interior noise F16 cockpit noise Babble noise

[dB] DD CRE NCRE DD CRE NCRE DD CRE NCRE DD CRE NCRE

-5 7.37 7.37 7.89 7.71 7.76 8.22 6.20 6.23 6.86 6.10 6.17 6.71

0 5.85 5.88 6.53 6.62 6.68 7.18 4.75 4.80 5.52 4.76 4.85 5.51

5 4.39 4.47 5.18 5.46 5.54 6.13 3.41 3.49 4.26 3.50 3.61 4.28

10 3.05 3.20 3.94 4.33 4.45 5.05 2.24 2.36 3.14 2.34 2.46 3.15

TABLE IV

LOG-SPECTRAL DISTANCE FORVARIOUS NOISE TYPES AND LEVELS, OBTAINED USING THE DECISION-DIRECTED APPROACH(DD),

CAUSAL RECURSIVEESTIMATION (CRE),AND NONCAUSAL RECURSIVEESTIMATION WITH 3 FRAMES DELAY (NCRE).

Input SegSNR Stationary WGN Car interior noise F16 cockpit noise Babble noise

[dB] DD CRE NCRE DD CRE NCRE DD CRE NCRE DD CRE NCRE

-5 2.77 2.79 2.65 4.46 4.46 4.37 3.36 3.38 3.19 2.94 2.95 2.77

0 2.16 2.17 1.97 3.61 3.60 3.53 2.40 2.41 2.20 2.08 2.08 1.91

5 1.59 1.58 1.35 2.84 2.83 2.78 1.64 1.63 1.43 1.42 1.41 1.26

10 1.06 1.03 0.82 2.16 2.15 2.11 1.06 1.04 0.88 0.95 0.94 0.82

a practical noise estimator in the speech enhancement algorithms emphasizes the distinction between the proposed

and the decision-directed methods, since the noise estimator interacts with the speech estimator and causes the

inferior algorithm to be even worse.

Table III presents the results of the segmental SNR improvement achieved by the causal and noncausal recursive

estimators and by the decision-directed method for variousnoise types and levels. The noncausal recursive estimator

consistently yields a higher improvement in the segmental SNR, than the decision-directed method and the causal

recursive estimator, under all tested environmental conditions. The results of the log-spectral distance are summarized

in Table IV. It shows that the noncausal recursive estimatorobtains lower LSD than the decision-directed method

and the causal recursive estimator. A subjective study of speech spectrograms and informal listening tests confirm

that the advantages of the noncausal recursive estimator are particularly perceived during onsets of speech and

noise only frames. Onsets of speech are better preserved, while a further reduction of noise irregularities (musical

noise) is achieved. We note that the results of the segmentalSNR and the LSD obtained by using thecausal

recursive estimator are very similar to those obtained by using the decision-directed method. Therefore, in case the
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delay between the enhanced speech and the noisy observationneeds to be minimized, the decision-directed method

is perhaps preferable due to its computational simplicity.However, in applications where a few frames delay is

tolerable, thenoncausalrecursive estimation approach is definitely more advantageous than the decision-directed

approach.

VI. CONCLUSION

We have introduced a statistical model for speech enhancement anda priori SNR estimation, which realizes the

significance of the statistical dependence between successive speech spectral components. Moreover, it generates

consistent estimators for the speech spectral components and thea priori SNR, while keeping the resulting algorithms

simple. It extends existing speech enhancement algorithms, which were developed under the assumption that speech

spectral components are statistically independent. It also explains the notable performance of the log-spectral

amplitude estimator when combined with the decision-directed estimation approach.

The main differences between the proposed statistical model and that of Ephraim and Malah are that the sequence

of speech spectral variances is referred to as a random process, rather than a sequence of parameters, and that

successive spectral components are correlated through thestatistical dependence between the spectral variances

and spectral components. Estimators for the speech spectral components are derived based on the proposed model

for various distortion measures. We show that similar to conventional spectral estimators, spectral enhancement is

obtained by applying a real-valued gain function to the spectral noisy measurements. However, thea priori SNR

estimation relies on the statistical model, rather than thedecision-directed approach.

We proposed causal and noncausal recursive estimators for the a priori SNR. The causal estimator is closely

related to the decision-directed estimator of Ephraim and Malah. It degenerates, as a special case, to a “decision-

directed” estimator with atime-varyingweighting factor, which is monotonically decreasing as a function of the

instantaneous SNR. A larger weighting factor is engaged during speech absence, to reduce musical noise phenomena,

and a smaller weighting factor evolves during speech presence to reduce signal distortion. The general form of the

causal recursive estimator provides an additional degree of freedom, which is adjustable to the degree of spectral

nonstationarity. The noncausal recursive estimator, whencompared with the causal estimator, is particularly useful

during speech onsets. The causal estimator, alike the decision-directed estimator, cannot respond too fast to an abrupt

increase in the instantaneous SNR, since it inevitably increases the level of musical residual noise. By contrast, the

noncausal estimator, having a few subsequent spectral measurements at hand, is capable of discriminating between

speech onsets and noise irregularities. In comparison withthe decision-directed estimator, the noncausal estimator

produces lower levels of musical noise and signal distortion.

The proposed model can be extended to take into account the statistical dependence between spectral components

in distinct frequency-bins. A simple strategy is to “propagate” the spectral variances from frame` − 1 to frame`

by considering the spectral variances from all frequency bins, and weighting them in accordance with the time-
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frequency correlation in the speech signal. A further improvement of the speech enhancement results can be achieved

by utilizing the uncertainty of speech presence in the noisymeasurements [2]–[4], [41]. In this case, we need to

find also an estimator for the speech presence probability, that is consistent with the model assumptions and thea

priori SNR estimation. This subject is currently under investigation.
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