
Blind Deconvolution with Relative Newton Method

Alexander Bronstein Michael Bronstein

Michael Zibulevsky

Department of Electrical Engineering,

Technion–Israel Institute of Technology,

Haifa 32000, Israel.

October 7, 2001

Abstract

Blind deconvolution is an important task for numerous applications in acoustics, signal

processing, communications, control, etc. In this work, we study a relative optimiza-

tion framework for quasi-maximum likelihood single-channel blind deconvolution and

relative Newton method as its particular instance. A smooth approximation of the abso-

lute value is considered for deconvolution of super-Gaussian sources. Special Hessian

structure allows fast approximate Hessian construction and inversion with complexity

comparable to that of gradient methods, and sequential optimization with gradual re-

duction of the smoothing parameter makes the proposed algorithm very accurate. We

also propose the use of rational IIR restoration kernels, which constitute a richer fam-

ily of filters than the traditionally used FIR kernels. Simulation results demonstrate the

efficiency of the proposed methods.

Notation

The following notation is adopted in this work: time signals are denoted by lowercase italic

and indexed starting from n = 0 unless stated otherwise. Z-transform domain representa-

tions of signals are denoted by uppercase italic and are exchangeable with the corresponding

time-domain representations. Vectors and matrices are denoted by lowercase and uppercase

italic, respectively, and indexed starting from n = 0 unless stated otherwise. The following

notation is used:

1

gitta
CCIT Report #444October 2003

x, xn, x(n) Time domain signals for n = 0, 1,
X(z) Z-transform domain domain represenation of xn.

yn = (p ∗ x)n Application of an LTI kernel p to signal x.

yn = P (z) [xn]
Y (z) = P (z)X(z)

I, IN Identity matrix of size N × N .

AT Transpose of a matrix A.

A∗ Complex conjugate of a matrix A.

AH = (A∗)T
Hermitian transpose of a matrix A.

diag {a1, ..., aN} Diagonal matrix with elements ai along the main diagonal.

f ′(t), df(t)
dt

First-order derivative of f(t) with respect to t.

f ′′(t), d2f(t)
dt2

Second-order derivative of f(t) with respect to t.

∂xf, ∂f

∂x
Partial derivative of f with respect to x.

∂2
xyf, ∂2f

∂x∂y
Second-order partial derivative of f with respect to x and y.

∇xf(x0), ∇f, g Gradient of f with respect to x at x = x0.

∇2
xxf(x0), ∇2f, Hxx, H Hessian of f with respect to x at x = x0.

A{x}, Ax Application of an operator A to signal x.

J xn = xN−n Mirror operator of sequence {xn}N−1
n=0 .

δ(t) Dirac Delta function.

δn Kroenecker delta sequence.

IE {x} Expectation value of a random variable x.

The following abbreviations are used in this paper:

CDF Cumulative Distribution Function

DFT Discrete Fourier Transform

FIR Finite Impulse Response

FFT Fast Fourier Transform

i.i.d. independent identically distributed

IIR Infinite Impulse Response

ISI Inter-Symbol Interference

ML Maximum Likelihood

OLA Overlap-and-Add

PDF Probability Density Function

SIR Signal to Interference Rate

SNR Signal to Noise Rate

2

W(z) H(z)

s s
~

x
u

unknown convolution system deconvolution system

Figure 1: Schematic representation of the deconvolution problem.

1 Introduction

Blind deconvolution problem appears in various applications related to acoustics, optics,

geophysics, communications, control, etc. In comunications, the term blind channel equal-

ization is more common, as the main interest lies in retrieving the data s transmitted over a

dispersive communication channel [1, 2, 3, 4, 5]. In control, blind deconvolution is usually

known as blind identification, since the main interest lies in obtaining a model of the system

[6, 7, 8], whereas in acoustics, optics and geophysics the term blind deconvolution is more

adeguate, since the goal is to ”undo” the influence of a system by finding its stable inverse.

The general setup of the single-channel blind deconvolution problem is presented in Fig-

ure 1. The observed sensor signal x is created from the source signal s passing through a

causal convolutive system described by the impulse response w,

xn =
∞

∑

k=0

wk sn−k + un, (1)

where u is the additive sensor noise. The setup is termed blind if only x is accessible,

whereas no knowledge on w, s and u is available. The problem of blind deconvolution

aims to find such a deconvolution (or restoration) kernel h, that produces a possibly delayed

waveform-preserving estimate of s:

s̃n =
∞

∑

k=0

hk xn−k ≈ c · sn−∆, (2)

where c is a scaling factor and ∆ is an integer shift. Equivalently, the global system response

should be approximately a Kroenecker delta, up to scale factor:

gn = (w ∗ h)n ≈ c · δn−∆. (3)

A commonly used assumption is that s is non-Gaussian.

1.1 Prior work

The majority of blind deconvolution methods described in literature focus on estimating

the impulse response of the convolution system W (z) from the observed signal x using a

3

causal finite length (FIR) model and then determining the source signals from this estimate

[9, 10, 7, 11, 12]. Many of these methods use batch mode calculations and usually suffer

from high computational complexity.

In their fundamental work, Amari et al. [13] introduced a time-domain blind decon-

volution algorithm based on the natural gradient learning algorithm, which was originally

proposed in context of blind source separation [14] and became very attractive due to the so-

called equivariant property [15, 16]. Thanks to this property, convergence of natural gradient

algorithm depends only on the current global system response. The natural gradient algo-

rithm estimates directly the inverse kernel H(z) = W−1(z) and allows real-time processing.

In [17], a generalization of the algorithm for multichannel case was presented. Efficient

frequency-domain implementations were derived in [18, 19, 20, 21].

One of the most serious disadvantages of gradient methods is their relatively slow con-

vergence [22, 23]. In this work, we present a blind deconvolution algorithm based on the

relative Newton method, originally proposed in the context of sparse blind source separation

in [24, 25]. We utilize special Hessian structure to derive a fast version of the algorithm with

complexity comparable to that of gradient methods. We will first consider a batch mode ver-

sion, which will be then extended for online processing. The online version of the algorithm

is capable to handle time-varying convolutive systems.

We extend the classical works that limit their attention to causal FIR deconvolution ker-

nels by considering the use of rational causal deconvolution kernels of the form

H(z) =
B(z)

A(z)
=

b0 + b1 z−1 + ... + bN−1 z−(N−1)

a0 + a1 z−1 + ... + aM−1 z−(M−1)
, (4)

where, N − 1 and M − 1 are the respective orders of the numerator and denominator. The

use of the all-pole part A(z) together with the FIR part B(z) yields a richer family of filters

and generally allows to express the restoration kernel with less coefficients.

2 Quasi-maximum-likelihood blind deconvolution

Under the assumption that the restoration kernel H(z) is stable [26] and the source signal

is real and i.i.d., the normalized minus-log-likelihood function of the observed signal x is

[13, 17, 27]

f(a, b; x) = − 1

2π

∫ π

−π

log
∣

∣H(eiθ)
∣

∣ dθ +
1

T

T−1
∑

n=0

φ (yn) , (5)

where yn = H(z) [xn] is a source estimate φ(·) = − log p (·), where p(·) is the probability

density function of the source sn. In this paper, we consider a stable restoration kernel

4

H(eiθ) = B(eiθ)
A(eiθ)

, where

A(eiθ) =
M−1
∑

n=0

an e−inθ

B(eiθ) =
N−1
∑

n=0

bn e−inθ (6)

are the discrete-time Fourier transforms of the denominator and numerator polynomials, re-

spectively. Cost function (5) can be also obtained using negative joint entropy [13, 17] and

information maximization [28] considerations.

2.1 Choice of φ(·)
Consistent estimator can be obtained by minimizing f(a, b; x) even when φ(·) is not exactly

equal to − log p (·). Such quasi-ML estimation has been shown to be practical in instan-

taneous blind source separation when the source PDF is unknown or not well-suited for

optimization. For example, when the source is super-Gaussian (e.g. it is sparse or sparsely

representable), a smooth approximation of the absolute value function is a good choice for

φ(·) [29, 30, 31]. In this work, we focus our attention on super-Gaussian sources and use

smooth approximation of the absolute value. To approximate the absolute value, we use a

family of convex smooth functions

φλ(t) = |t| − λ log

(

1 +
|t|
λ

)

(7)

with λ a positive smoothing parameter [25]; φλ(t) → |t| as λ → 0+ (see Figure 2). The

derivatives of φλ(t) are

φ′
λ(t) = signt ·

(

1 − 1

1 + |t|
λ

)

(8)

φ′′
λ(t) =

(

1 +
|t|
λ

)−2

, (9)

and it can be shown that φ′
λ(t) → signt and φ′′

λ(t) → 1
2λ

δ(t) as λ → 0+. For convenience,

we will henceforth omit λ from our notation and will refer to φλ(·) as to φ(·).
In case of sub-Gaussian sources φk(t) = |t|k for k > 1 is a good choice for φ(·). For

example, when sources are uniformly distributed, increase of k refines the approximation

and in the limit k → ∞, φk(t) approaches minus log PDF (see Figure 3).

5

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

λ=0.1

λ=0.01

φλ(t)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

λ=0.01
λ=0.1

φ′
λ(t)

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

λ=0.01λ=0.1

φ′′
λ(t)

Figure 2: The smooth approximation of the absolute value and its first- and second-order

derivatives for different values of λ. Dashed lines show the limit λ → 0+.

6

-1 -0.5 0 0.5 1

0.25

0.5

0.75

1

1.25

1.5

1.75

2

k=4

k=10

φk(t)

-1 -0.5 0 0.5 1

-15

-10

-5

0

5

10

15

20

k=4

k=10

φ′
k(t)

-1 -0.5 0 0.5 1

20

40

60

80

100

120

140

k=10

k=4

φ′′
k(t)

Figure 3: The non-linearity suitable for sub-Gaussian distributions and its first- and second-

order derivatives for different values of k. Dashed lines show the limit k → ∞.

7

2.2 Approximation of the log-likelihood function using the FFT

In practice, the first term of f(a, b; x) containing the integral is difficult to evaluate; however,

it can be approximated to any desired accuracy by

1

2π

∫ π

−π

log

∣

∣

∣

∣

B(eiθ)

A(eiθ)

∣

∣

∣

∣

dθ ≈ 1

NF

NF−1
∑

k=0

log

∣

∣

∣

∣

Bk

Ak

∣

∣

∣

∣

=
1

2NF

NF−1
∑

k=0

log |Bk|2 − log |Ak|2, (10)

where

Ak = A
(

e
i 2πk

NF

)

Bk = B
(

e
i 2πk

NF

)

(11)

are the DFT-NF coefficients of the sequences a = {an}M−1
n=0 and b = {bn}N−1

n=0 , respectively,

zero-padded to NF . The approximation error vanishes as NF grows to infinity. It is conve-

nient to choose NF to be an integer power of 2, since in this case Ak and Bk can be computed

efficiently using the FFT. For convenience, we will henceforth refer to the approximate target

function as to f(a, b; x). Furthermore, we will define

f1 =

NF−1
∑

k=0

log |Bk|2 − log |Ak|2 (12)

f2 =
T−1
∑

n=0

φ(yn). (13)

Using this notation, the objective function becomes

f = − 1

2NF

f1 +
1

T
f2. (14)

Optimization algorithm described in Section 3 requires knowledge of the gradient and

the Hessian of f , which are given in the following propositions (for proofs see Ap-

pendix A.1 –A.3):

Proposition 1 The gradient and the Hessian of f1(a, b; x) with respect to a, b are given by

∇ f1 =

[

−ΦH
A A′∗ −

(

ΦH
A A′∗

)∗

ΦH
B B′∗ +

(

ΦH
B B′∗

)∗

]

and

∇2f1 =

[

Haa

Hbb

]

,

8

where

Haa = −
(

ΦH
A diag {A′′}H

)∗

ΦA − ΦH
A (diag {A′′}ΦA)

∗

Hbb =
(

ΦH
B diag {B′′}H

)∗

ΦB + ΦH
B (diag {B′′}ΦB)

∗
,

ΦH
A and ΦH

B are DFT matrices of sizes NF × M and NF × N , re-

spectively; A′ =
[

A−1
0 ... A−1

NF−1

]T
, B′ =

[

B−1
0 ... B−1

NF−1

]T
,

A′′ = −
[

A−2
0 ... A−2

NF−1

]T
and B′′ = −

[

B−2
0 ... B−2

NF−1

]T
.

Proposition 2 Let y be the source estimate given by yn = B(z)A−1(z) [xn]. Its first- and

second-order derivatives with respect to an and bn are given by

∂ai
yn = ∂a0yn−i = −A−1(z) [yn−i]

∂bi
yn = ∂b0yn−i = A−1(z) [xn−i]

∂2
aiaj

yn = ∂2
a0

yn−i−j = 2A−2(z) [yn−i−j]

∂2
aibj

yn = ∂2
a0b0

yn−i−j = −A−2(z) [xn−i−j]

∂2
bibj

yn = 0.

Proposition 3 The gradient and the Hessian of f2(a, b; x) with respect to a, b are given by

∇ f2 =

J (∂a0yn ∗ J φ′)0
...

J (∂a0yn ∗ J φ′)M−1

J (∂b0yn ∗ J φ′)0
...

J (∂b0yn ∗ J φ′)N−1

and

∇2f2 =

[

H1
aa + H2

aa H1
ab + H2

ab

(H1
ab + H2

ab)
T

Hbb

]

,

where

(

H1
aa

)

ij
= J

(

∂a0yn ∗ Jαj
)

i
(

H2
aa

)

ij
= J

(

∂2
a0

yn ∗ J φ′
)

i+j

9

for i, j = 0, ..., M − 1;

(

H1
ab

)

ij
= J

(

∂b0yn ∗ Jαj
)

i
(

H2
ab

)

ij
= J

(

∂2
b0

yn ∗ J φ′
)

i+j

for i = 0, ..., M − 1; j = 0, ..., N − 1;

(Hbb)ij = J
(

∂b0yn ∗ J βj
)

i

for i, j = 0, ..., N − 1; φ′ =
[

φ′(y0) φ′(y1) ... φ′(yT−1)
]T

, αj
n = φ′′(yn) ∂a0yn−j ,

βj
n = φ′′(yn) ∂b0yn−j and J denotes the mirror operator.

2.3 Computational complexity

Application of the deconvolution filter can be split into application of an FIR filter B(z) of

order N − 1 followed by application of an all-pole IIR filter A(z) of order M − 1. It is

reasonable to assume that the length of the input signal is significantly larger than the order

of the deconvolution kernel, which particularly implies N ≪ T . In such a case, convolution

with B(z) can be efficiently implemented using the overlap-and-add (OLA) method [26],

whose complexity is approximately 4T log2 N , neglecting edge effects. Application of the

all-pole filter A(z) to the input signal requires about MT operations.

Computation of the gradient and Hessian of f2 involves convolution of two sequences

of length T and cropping the resulting sequence to L (which is either M or N). For L <

6 log T , it is preferable the direct implementation of the convolution, which takes about LT

operations. For larger L’s, it is more efficient to perform the convolution using the FFT,

which takes about 6T log T operations. We will denote by

C(L, T) = min {L, 6 log2 T} · T (15)

the complexity of the cropped convolution.

Evaluation of f1 demands computation of NF DFT coefficients Ak, Bk and application

of log | · |2, whose complexity will be denoted by kL, to each of them. This results in

2NF log2 NF + 2kLNF operations. Evaluation of f2 requires computation of yn, which in-

volves application of A(z) and B(z), followed by application of φ(·) to T elements of yn.

This results in 4T log2 N +MT + kT operations, where k stands for the complexity of φ(·).
Evaluation of ∇f1 involves computation of the coefficients A′

k, B
′
k and application of 4

FFTs of length NF , which results in 2NF + 4NF log2 NF operations, where complexity of

complex division is considered equal to that of complex multiplication. Evaluation of ∇f2

requires

1. Computation of the sequence φ′
n by applying φ′(·) to the sequence yn, which was

computed previously.

10

2. Computation of the partial derivatives ∂a0yn and ∂b0yn, which require application of

A−1(z) to yn and xn, respectively.

3. Two cropped convolutions of the two partial derivative sequences with the sequence

φ′
n.

Step 1 requires k′T operations, where k′ stands for the complexity of φ′; Step 2 takes 2MT

operations; and Step 3 takes C(M, T) + C(N, T) operations, resulting in total in 2MT +
C(M,T) + C(N, T) + k′T operations.

Evaluation of ∇2f1 requires computation of the coefficients A′′
k, B

′′
k and application of

8NF FFTs of length NF . This results in 2NF +8N2
F log2 NF operations. Evaluation of ∇2f2

requires

1. Computation of the sequence φ′′
n,

2. Computation of the sequences αj
n, βj

n.

3. M + N cropped convolutions of the partial derivative sequences ∂a0yn and ∂b0yn (pre-

viously computed) with φ′′
n.

4. Computation of the second-order partial derivative sequences ∂2
a0

yn and ∂2
a0b0

yn, which

require application of A−1(z) to ∂a0yn and ∂b0yn, respectively.

5. Two cropped convolutions for computation of ξn and ηn.

Step 1 requires k′′T operations, where k′′ stands for the complexity of φ′′; Step 2 takes

(M + N)T operations; Step 3 takes M · C(M,T) + N · C(N, T) operations; Step 4 takes

2MT operations; and Step 5 takes C(2M−1, T)+C(M +N−1, T) operations, resulting in

total in (k′′+3M +N)T +M ·C(M, T)+N ·C(N, T)+C(2M −1, T)+C(M +N −1, T)
operations.

The overall complexity is summarized below:

f : 2NF log2 NF + 2kLNF + 4T log2 N + MT + kT

∇f : 2NF + 4NF log2 NF + 2MT + C(M, T) + C(N, T) + k′T

∇2f : 2NF + 8N2
F log2 NF + (k′′ + 3M + N)T +

+M · C(M,T) + N · C(N, T) + C(2M − 1, T) + C(M + N − 1, T)

In our implementation, the constants kL, k, k′ and k′′ were experimentally evaluated as

kL = 3.30 ± 0.25%, k = 8.80 ± 1.10%, k′ = 1.57 ± 1.65% and k′′ = 2.10 ± 0.77%.

Generally, N ∼ M and NF ∼ 10N . When T ≫ M, N , one has the following complex-

ity:

f : (4 log2 N + M + k) T

∇f : (3M + N + k′) T

∇2f : (M2 + N2 + 6M + 2N + k′′ − 2) T

11

In this case, Hessian construction is more computationally difficult than Hessian inversion,

which is O (M3 + N3). It can also be seen that the deconvolution filter numerator B(z)
of length N contributes less to the overall computational complexity than the denominator

A(z), whose length is M .

When T ∼ M ∼ N and NF = 10N , one has the following complexity:

f : N2 + 24N log2 N + (20kL + k + 20 log2 10)N

∇f : 2N2 + (20 + k′ + 40 log2 10)N + 42N log2 N

∇2f : 804N2 log2 N + 4N2 + 800 log2 10 · N2 + (20 + k′′)N

2.4 Normalization of the restoration kernel

Let a∗, b∗ be a minimizer of f(a, b; x). Then, for every constant k 6= 0, the coefficients

k · a∗, k · b∗ are also minimizers of f(a, b; x). For numerical stability, it is desirable to fix

the arbitrary scaling of the nominator and the denominator polynomials to some constant

value. This can be done by forcing, for example a0 = 1. The gradient and the Hessian of the

objective function have to be modified by removing the first element from the gradient, and

the first row and column from the Hessian. Restoration kernel normalization does not affect

the computational complexity except a negligible factor.

We will henceforth assume that the restoration kernel is normalized only whenever the

normalization implies significant changes, which are not straightforward. In rest of cases, no

normalization will be assumed for simplicty.

3 Relative Newton algorithm

In [25], a fast relative optimization algorithm for blind source separation based on the New-

ton method was introduced. Here we introduce a relative optimization framework for blind

deconvolution. We will first describe the general relative optimization algorithm and the

block relative optimization method for online processing. Next, the relative Newton algo-

rithm, using a Newton step in the relative optimization framework will be introduced. A fast

version of the relative Newton step will be studied in Section 5.

3.1 Relative optimization algorithm

The main idea of relative optimization is to iteratively produce source signal estimate and use

it as the observed signal at the next iteration. For convenience, let us represent the restoration

filter in the Z-transform domain, denoting by H(z), A(z) and B(z) the Z-transforms of h,

a and b, respectively. The relative optimization algorithm has the following form:

12

Relative optimization algorithm

1. Start with an initial estimate B(0)(z), A(0)(z) of the restoration filter numerator and

denominator, respectively; and the observed signal x
(0)
n = xn.

2. For k = 1, 2, ..., until convergence

3. Compute current source signal estimate: x
(k)
n = B(k−1)(z)

A(k−1)(z)

[

x
(k−1)
n

]

.

4. Starting with A(z) = B(z) = 1 (identity filter), compute the vectors of numer-

ator and denominator coefficients B(k)(z), A(k)(z) producing one or few steps of a

conventional optimization method, which sufficiently decrease the objective function

f(A(z), B(z); x
(k)
n).

5. Update the estimated restoration filter: H(k)(z) = B(k)(z)

A(k)(z)
H(k−1)(z)

6. End For

This method allows to construct large restoration kernels of the form

H(z) =
B(0)(z)B(1)(z) · ... · B(K)(z)

A(0)(z)A(1)(z) · ... · A(K)(z)
(16)

with high-order numerator and denominator using a set of relatively low-order factors
{

B(k)(z)

A(k)(z)

}K

k=0
. Another remarkable property of the relative optimization algorithm is its

equivariance, stated in the following proposition:

Proposition 4 The relative optimization algorithm is equivariant, i.e. its convergence at

iteration k depends only on G(k−1)(z) = W (z)H(k−1)(z).

Proof of this proposition is straightforward, since Step 4 and the update in Step 5 do not

depend explicitly on W (z), but on the currents global system response [17].

3.2 Block relative optimization

Main disadvantage of the relative optimization approach is that it treats the observed signal x

as a whole, not allowing thus on-line processing. In some cases the input signal might be very

long, which makes the algorithm impractical. A possibility to overcome these difficulties is

to partition the input into blocks and estimate the restoration kernel for the current block

using the data of the previous block and the previous restoration kernel estimate. Let us

assume for simplicity that the input signal is partitioned into equally sized blocks, denoted

by x[k] = {xn}(k+1)L−1
n=kL for k = 0, 1, 2, ..., where L is the block length. The block relative

optimization algorithm has the following structure:

13

Block relative optimization algorithm

1. Initialize H(0)(z) = 1, x[0] = {xn}L−1
n=0 .

2. For k = 0, 1, 2, ...

3. Starting with A(z) = B(z) = 1, compute the vectors of numerator and denominator

coefficients producing one or few steps of a conventional optimization method, which

sufficiently decrease the objective function f(A(z), B(z); x[k]).

4. Update the estimated restoration filter: H(k+1)(z) = B(z)
A(z)

H(k)(z).

5. Update the next block: x[k+1] = H(k+1)(z) [xn] for n = kL, ..., (k + 1)L − 1.

6. End For

The signal s̃ =
[

x[0], x[1], ..., x[n], ...
]

produced by the algorithm with delay of L samples with

respect to the input is the adaptive estimate of the source signal s. Block relative optimization

algorithm can also treat cases when the input signal x is produced as a result of s passing

through a time-varying convolution system. In this case, the estimated restoration kernel will

not converge to a constant filter, but will also vary with time.

The blocks should be long enough to provide sufficient statistics for faithful source signal

estimation, yet they should be as short as possible to avoid long delays, undesired for online

processing. Block length also dictates how fast the restoration kernel can vary with time;

shorter blocks allow faster variability. A reasonable order for the block length is about 10
times the effective length of the restoration kernel impulse response; particularly, L = 10N
if the restoration kernel is a FIR filter.

3.3 Limited memory version

Both the batch mode and the block version of the relative optimization algorithm assume

infinite memory and produce a restoration kernel of order growing at each iteration. In real

applications it might be necessary to limit the numerator and denominator order to some

finite number K ≤ L. This can be done by replacing the update

A(k+1)(z) = A(z)A(k)(z)

B(k+1)(z) = B(z)B(k)(z) (17)

with a cropped version

a(k+1)
n =

(

a(k) ∗ a
)

n

b(k+1)
n =

(

b(k) ∗ b
)

n
(18)

for n = 0, ..., K − 1.

14

3.4 Newton method

Newton method is an efficient tool for unconstrained optimization, which often provides very

fast (quadratic) rate of convergence. We will first consider the standard Newton method;

later we will see how its use in the relative optimization framework allows to overcome the

difficulty emerging from the computationally expensive Newton iterations.

In the standard Newton approach, the direction d at each iteration is given by solution of

the linear system

Hd = −g, (19)

where H = ∇2f(v; x) is the Hessian of f , g = ∇f(v; x) is the gradient and v = [a, b]T is

the vector of optimization variables. Since the objective function is non-convex, in order to

guarantee descent direction, positive definiteness of the Hessian is forced by using modified

Cholesky factorization, which finds such a diagonal matrix R, that the matrix H + R is

positive definite, and provides a solution to the modified system

(H + R)d = −g. (20)

Having the direction d, the new iterate v+ is given by

v+ = v + αv, (21)

where α is the step size determined by either exact line search

α = argminf(v + αd; x), (22)

or by backtracking line search:

Backtracking line search

α := 1
While f(v + αd; x) > f(v; x) + βα∇f(v; x)T d

α := γα

End While

where β and γ are constants. The use of line search guarantees monotonic decrease of the

objective function at every iteration. In our implementation, we used the backtracking line

search with β = γ = 0.3. It should be noted that when the gradient norm becomes very

small (say, below 10−5), computational inaccuracies make the line search inefficient. For

this reason, we used the Newton direction as is (i.e. chose α = 1) when the gradient norm

fell below 10−5.

When the Newton method is used to minimize f , where the IIR part of the restoration

kernel is non-trivial (i.e. M > 1), special precautions must be taken to guarantee stability

of A(z), otherwise f2 is liable to take huge, numerically untractable values. In Section 4 it

will be described how to modify the backtracking line search in order not to ”fall out” of the

stability region.

15

3.4.1 Frozen Hessian

For medium-scale problems, the frozen Hessian method was found efficient [32, 33]. It con-

sists of ”freezing” the Hessian in the Newton method for some K iterations, i.e. once com-

puted, the Hessian is used in the next K − 1 iterations. The Hessian is therefore constructed

and Cholesky factorization is performed every K-th iteration and the obtained factors are

used to solve the Newton system in the next K − 1 iterations, using the gradient computed

at each iteration.

3.4.2 Block-coordinate update

Yet another method to avoid large computational complexity associated with the Newton

system solution in medium-scale problems is to use block-coordinate update. The method

consists of iteratively updating each time a different block of the optimization variables vec-

tor [34, 35]. The update is performed using the Newton step on the variables of the current

block and assuming the rest of the variables fixed. The size of the Newton system is therefore

equal to the block size. This allows to overcome the difficulties associated with solution of

large Newton system.

Below is presented a particular case when equally-sized consequtive blocks are used. K

denotes the block size and for simplicity we assume that the optimization variables vector v

is composed of L such blocks. We also denote by wl the l-th block of v, wl = {vi}(l+1)K−1
i=lK .

Block-coordinate Newton algorithm

1. Initialize the algorithm with some initial guess v(0).

2. For k = 1, 2, ..., until convergence

3. For l = 0, 2, ..., L − 1

4. Update the l-th block of v(k−1), w
(k−1)
l by performing a Newton step on a

K-dimensional vector of optimization variables wl, starting with w
(k−1)
l and fixing

the rest of the variables.

5. End For

6. End For

In [35], block-coordinate Newton step was used in the relative optimization framework

for quasi-maximum likelihood blind source separation, and it was demonstrated that the

block-coordinate method usually yields faster convergence. The issue will be discussed in

Section 5.4.

16

3.5 Relative Newton method

Newton method can be used as is to find the restoration kernel that minimizes f . Another

possibility is to use Newton method in Step 4 of the relative optimization algorithm (or on

Step 3 of the block relative optimization algorithm). The latter possibility is advantageous,

since it allows to construct a high-order restoration kernel using relatively low-order fac-

tors. This, in turn, implies solution of smaller optimization problems. Further advantage was

found in using a single Newton step for unconditional optimization in the relative optimiza-

tion algorithm [25] or in the block relative optimization algorithm. These algorithms will be

termed henceforth as relative Newton and block relative Newton method, respectively.

However, for large T , Hessian construction becomes computationally difficult and for

large M,N complexity of Hessian inversion required to compute the Newton direction may

make the use of Newton method infeasible. In Section 5, we will show a fast version of

the relative Newton step, which exploits the Hessian structure in the neighbourhood of the

solution and the initialization A(z) = B(z) = 1. This significantly reduces computational

complexity of both Hessian construction and inversion, and allows to perform the Newton

step with complexity of the order of gradient descent methods.

4 Forcing stability of the restoration kernel

In Section 3 we have seen the relative optimization framework, in which filter coefficients

a and b optimal in the sense of f(a, b; x) were found over IRN × IRM . However, in reality

we are interested only in stable restoration filters, i.e. such filters, whose impulse response

satisfies

lim
n→∞

hn = 0. (23)

The sufficient and necessary condition for restoration filter stability is that all the roots of the

polynomial A(z) are inside the unit circle [26]. We will henceforth term such a polynomial

as stable.

In the relative optimization framework, the restoration filter found at the end of the algo-

rithm is given by (16), where A(k)(z), B(k)(z) are polynomials of order M − 1 and N − 1,

respectively. Since the kernels
B(k)(z)

A(k)(z)
found at first iterations are nearly random, a necessary

condition that the zeros and the poles of
B(k)(z)

A(k)(z)
can be cancelled by the poles and the zeros,

respectively, of
B(k+1)(z)B(k+2)(z)·...

A(k+1)(z)A(k+2)(z)·...
. This implies that the kernel

B(k)(z)

A(k)(z)
has to be invertible for

every k, i.e. both A(k)(z) and B(k)(z) has no roots outside the unit circle (Figure 4). When

M = N , the subspace of filters of the form
B(z)
A(z)

with stable non-zero A(z) and B(z) forms

a group with the multiplication operator. We will first introduce a barrier function, which

defines the stability region of an arbitrary polynomial P (z). Later, we will show how to

force stability of the restoration kernel using the stability barrier.

17

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

c d

a b

Figure 4: Z-plane representation of the restoration kernel zeros (circles) and poles (crosses):

a. both A(z) and B(z) are stable; b. A(z) is stable, B(z) is unstable; c. A(z) is unstable,

B(z) is stable; d. both A(z) and B(z) are unstable;

18

4.1 Stability barrier

Given a polynomial P (z) = p0 + p1z
−1 + ... + pKz−K of order K, let us compute the

impulse response qn of the all-pole IIR kernel P−1(z) on some finite, yet sufficiently long

time interval t = 0, ..., NS − 1

qn = Z−1
{

P−1(z)
}

. (24)

Obviously, when P (z) has roots outside the unit circle, |qn| grows with n. Let us define a

convex barrier function

fS(P (z); NS) =
1

NS

NS−1
∑

n=0

|qn|. (25)

When NS is sufficiently large, fS grows very fast if P (z) has roots outside the unit circle,

being typically

fS ∼ |r|NS − 1

NS(|r| − 1)
, (26)

where |r| is the largest root of P (z). When NS → ∞, fS approaches the ideal barrier

function

fS(P (z);∞) =

{

0 : P (z) is stable

∞ : P (z) is unstable.
(27)

Figure 5 depicts the behavior of fS for a simple first-order kernel.

In practice, fS given by (25) is difficult for optimization, since it contains absolute val-

ues. However, we can use the smooth approximation φλS
(·) to substitute the absolute value,

namely,

fS(P (z)) ≈ 1

NS

NS−1
∑

n=0

φλS
(qn). (28)

Since the approximate absolute value is used to reflect merely the order of magnitude of |qn|,
the smoothing parameter λS in φλS

(·) does not need to be very small (in our implementation

λS = 1 was used), which makes the optimization less difficult. To simplify the notation, we

will denote by fS the non-normalized version of fS , i.e.

fS(P (z)) =

NS−1
∑

n=0

φλS
(qn), (29)

and refer to the stability barrier function as to 1
NS

fS . We will also omit λS wherever possible.

19

-0.1 -0.05 0 0.05 0.1

-2

0

2

4

6

8

NS=10

NS=100

NS=1000

Figure 5: log10 fS of a first-order kernel P (z) = 1 + (1 + ǫ)z−1 plotted as a function of ǫ for

different values of NS .

It must be noted that unless x ≡ 0, b ≡ 0, the second term f2 in the objective function

acts as a stability barrier for the denominator of the restoration kernel. If A(z) is unstable, yn

grows exponentially with n and the sum of absolute values
∑T−1

n=0 |yn| becomes very large.

Therefore, the barrier has to be used to impose stability of B(z) only, yielding the following

modified objective function

f(a, b; x) = − 1

2NF

f1(a, b; x) +
1

T
f2(a, b; x) +

νS

NS

fS(b), (30)

where νS ≤ 1 is a parameter that can be used in practice to reduce the influence of fS without

the need to increase NS too much.

Figure 6 (left) depicts the value of f for W (z) = 1 + 0.5z−1 applied to a 1000-sample

long source signal and all-pole restoration kernel of the form H(z) = 1
1+a1z−1 . It can be seen

that when a1 approaches stability margins (a1 = ±1), the objective function grows very fast,

becoming about 1039 for a1 = 1.1. The minimum of f is obtained for a1 ≈ 0.5 as expected.

Figure 6 (middle) depicts the value of f without stability barrier for W (z) = 1
1+0.5z−1 and

FIR restoration kernel of the form H(z) = 1 + b1z
−1. In contrast to the previous case, here

the function takes finite values on and beyond stability region of H(z). When stability barrier

is added to the objective function (Figure 6, right), f grows very fast as b1 approaches ±1,

yet having negligible influence on the values of f inside the stability region and location of

the minimum.

The gradient and the Hessian of fS(b) with respect to a are equal to zero, whereas the

gradient and the Hessian with respect to b are given in the following proposition (for proof

see Appendix A.4):

20

−1 −0.5 0 0.5 1
10

−2

10
−1

10
0

10
1

a
1

−1 −0.5 0 0.5 1
10

−2

10
−1

10
0

b
1

−1 −0.5 0 0.5 1
10

−2

10
−1

10
0

b
1

Figure 6: Left: f(a = [1, a1], b = 1; x) as function of a1 for source filtered with the FIR

kernel W (z) = 1 + 0.5z−1. Middle: f(a = 1, b = [1, b1]; x) without stability barrier for

W (z) = (1 + 0.5z−1)
−1

. Right: the same for f with stability barrier.

Proposition 5 The gradient and the Hessian of fS(b) with respect to b are given by

∇ fS =

J (h∂Q ∗ J φ′
S)0

...

J (h∂Q ∗ J φ′
S)

N−1

and

(

∇2fS

)

ij
= J

(

h∂Q ∗ J γj
)

i
+ J (h∂2Q ∗ J φ′

S)
i+j

for i, j = 0, ..., N − 1; φ′
S =

[

φ′
λS

(q0) φ′
λS

(q1) ... φ′
λS

(qNS−1)
]T

,

γj
n = φ′′

λS
(qn) h∂Q(n − j) and J denotes the mirror operator.

4.2 Stability-conditioned line search

When stability of A(z) and B(z) is imposed, the line search used at each Newton step has

to be modified in such a way that no search will be performed outside the stability region of

A(z) and B(z):

Stability-conditioned backtracking line search

α := 1
While f(v + αd; x) > f(v; x) + βα∇f(v; x)T d or v + αd is unstable

α := γα

End While

The easiest way to determine polynomial stability is to evaluate fS at each iteration. Hence,

the condition ”v+αd is unstable” reads fS(a) > R∞ or fS(b) > R∞ or f(v+αd; x) > R∞,

21

where

a = {v + αd}k=M−1
k=0

b = {v + αd}k=M+N−1
k=M (31)

are current restoration filter coefficients and R∞ is a very large real number, which is infinity

for any practical use. The condition f(v+αd; x) > R∞ is added to avoid numerical problems

caused by very large values of the objective function, which occur outside the stability region.

4.3 Computational complexity

Evaluation of fS(B(z); NS) involves at first application of an all-pole IIR filter of order N

to a vector of length NS with one at n = 0 and zero otherwise. This produces the sequence

qn and requires about NSN operations. Next, φ(·) has to be applied to qn, requiring in total

kNS operations. Therefore, evaluation of fS requires (NS + k)N operations.

Evaluation of ∇fS requires:

1. Application of φ′(·) to the previously computed sequence qn, which produces the se-

quence φ′
n.

2. Application of B−1(z) to the sequence δn, to produce the kernel h∂Q.

3. Cropped convolution of the kernel h∂Q with the sequence φ′
n.

Step 1 requires k′NS operations; Step 2 takes about NSN operations; and Step 3 takes

C(N,NS) operations, yielding in total about (k′+N)NS +C(N, NS) operations for gradient

evaluation.

Evaluation of ∇2fS requires:

1. Computation of the sequence φ′′
n,

2. Computation of the sequences γj
n.

3. N cropped convolutions of the kernel h∂Q (previously computed) with φ′′
n.

4. Computation of the kernel h∂2Q, which require application of B−1(z) to h∂Q.

5. Cropped convolution for computation of ζn.

Step 1 requires k′′NS operations; Step 2 takes NSN operations; Step 3 takes N · C(N,NS)
operations; Step 4 takes NSN operations; and Step 5 takes C(2N − 1, NS) operations, re-

sulting in total in (k′′ + N)NS + N · C(N,NS) + C(2N − 1, NS) operations for Hessian

evaluation.

Normally, NS is desired to be at least one order of magnitude larger than N to faithfully

reflect the impulse response of B−1(z). Therefore, we assume that NS ≫ N and obtain the

following computational complexities:

22

fS : NSN

∇fS : 2NSN + k′NS

∇2fS : NSN2 + 3NSN + (k′′ − 1)NS

It can be concluded that the computational complexity of fS , its gradient and Hessian is

linear with NS; fS and ∇fS are also linear with N , whereas ∇2fS is quadratic with N .

4.4 Sequential increase of NS

We have previously seen that the barrier fS approaches the ideal stability barrier as NS grows.

Therefore, to minimize the influence of the barrier inside the stability region, it is desirable

to use NS as large as possible. On the other hand, computational complexity considerations

suggest using the smallest NS possible.

It is possible to start with a relatively small NS , converging to some solution using,

for example, the relative optimization algorithm to perform the unconstrained optimization.

Then, NS should be increased and the unconstrained optimization repeated, starting from

the found solution. Usually, the latter requires less iterations to converge, which results in

lower computational complexity compared to using large NS from the beginning. In practice,

to avoid computational complexity associated with large values of NS , its highest value is

limited by some Nmax and the influence of the barrier function is reduced by decreasing νS .

Modified relative optimization algorithm with sequential increase of NS has the following

form:

Relative optimization algoritm with sequentially increasing NS

1. Start with N
(1)
S , νS = 1, some initial guess of the restoration filter H(0)(z) = B(0)(z)

A(0)(z)

and x
(0)
n = xn.

2. For k = 1, 2, ..., K

3. Compute current source signal estimate: x
(k)
n = B(k−1)(z)

A(k−1)(z)

[

x
(k−1)
n

]

.

4. Starting with A(z) = B(z) = 1, find

A(k)(z), B(k)(z) = argminf(A(z), B(z); x
(k)
n , N

(k)
S , ν

(k)
S).

5. Update the estimated restoration filter: H(k)(z) = B(k)(z)

A(k)(z)
H(k−1)(z).

6. Update N
(k+1)
S = µSN

(k)
S .

7. Optional: update ν
(k+1)
S = µνν

(k)
S .

8. End For

23

The parameter µS > 1 determines the growth rate of the stability barrier parameter NS

and it is generally set to µS ∼ 10. The parameter µν determines the decrease rate of νS and

is usually set to µν ∼ 0.1. The block relative optimization algorithm described in Section 3.2

can be modified in a similar way to allow sequential increase of NS .

5 Fast relative Newton step

Practical use of the relative Newton step described in Section 3 is limited to small values

of M,N and T , due to the complexity of Hessian construction (O ((N2 + M2)T) when

T ≫ M, N and O (N2 log N) when T ∼ M ∼ N), and solution of the Newton system

(O (M3 + N3)). This complexity can be significantly reduced if special Hessian structure is

exploited. When the relative optimization framework is used, at each iteration the Hessian

is evaluated at an = bn = δn and in a sufficiently small neighbourhood of the minimum,

x
(k)
n becomes approximately sn (supposing the deconvolution kernel is of a sufficient order

to reproduce with sufficient accuracy the original signal from the observed one).

Proposition 6 The Hessian of f(a, b; x) with respect to a, b at a = b = δn and x ≈ s has an

approximate tri-diagonal structure, with non-zero elements at the main diagonal and ±M -th

secondary diagonals.

The proof is given in Appendix A.5 . Approximate tri-diagonal Hessian structure is depicted

in Figure 7 (left). When the restoration kernel is normalized by forcing a0 = 1, the first row

and column are removed from the Hessian, still preserving the approximately tri-diagonal

structure (Figure 7, middle).

5.1 Fast approximate solution of the Newton system

Exploiting the special Hessian structure, it is now possible to derive an efficient scheme for

Newton system solution. Results presented in this section assume normalized restoration

kernel (see Section 2.4); slightly different results are obtained in a similar way for a non-

normalized kernel.

Let us denote by g and H the gradient and the Hessian of f , respectively, whose respec-

tive sizes are (M + N − 1) × 1 and (M + N − 1) × (M + N − 1). Using the tri-diagonal

Hessian approximation, the Newton direction d arising from solution of the Newton system

(19) can be found approximately by solving min {M, N} − 1 systems of linear equations of

size 2 × 2 with respect to dk and dk+M

Hk, k dk + Hk, k+M dk+M = −gk

Hk+M, k dk + Hk+M, k+M dk+M = −gk+M (32)

24

for k = 1, ..., min {M, N} − 1, and in case M 6= N , an additional set of |M − N | single

equations

Hk, k dk = −gk (33)

for

k =

{

M, 2M, ..., M + N − 1 : M < N

N, ..., M : M > N,

from where gk can be found directly.

In order to guarantee decent direction and avoid saddle points, we force positive definite-

ness of the Hessian by inverting the sign of negative eigenvalues in system (32). In order to

do so, we find analytically the eigenvalues λ1
k,λ2

k and the diagonalizing matrices Vk of each

of the 2 × 2 symmetric matrices

Dk =

[

Hk, k Hk, k+M

Hk+M, k Hk+M, k+M

]

, (34)

namely,

λ
1, 2
k =

1

2

(

Hk, k ±
√

4H2
k, k+M + (Hk, k − Hk+M, k+M)2 + Hk+M, k+M

)

(35)

and

Vk =

Hk, k −
√

4H2
k, k+M + (Hk, k − Hk+M, k+M)2 − Hk+M, k+M 2Hk, k+M

Hk, k +
√

4H2
k, k+M + (Hk, k − Hk+M, k+M)2 − Hk+M, k+M 2Hk, k+M

T

(36)

for Hk, k+M 6= 0 and Vk = I otherwise. We invert the sign of negative λ
1, 2
k and force small

eigenvalues to be above some positive threshold, say, ǫ = 10−8 · max {|λ1
k|, |λ2

k|}:

λ̃i
k = max

{

|λi
k|, ǫ

}

: i = 1, 2. (37)

Then, a modified system

D̃k

[

dk

dk+M

]

=

[

gk

gk+M

]

, (38)

where

D̃k = Vk

[

λ̃1
k

λ̃2
k

]

V −1
k , (39)

is solved analytically with respect to dk and dk+M for each k.

25

5.2 Delayed delta initialization

Sometimes, initialization bn = δn−R, where 0 < R < N , is preferable to bn = δn [13]. In

this case, the term Hab of the Hessian assumes the form depicted in Figure 7 (right), i.e.

its non-zero main diagonal is shifted by R and a shifted anti-diagonal appears. In addition,

the Hessian of f1 with respect to b assumes a form of an anti-diagonal matrix with shifted

anti-diagonal. However, the contribution of this term is generally negligible compared to the

term coming from f2. Neglecting the anti-diagonal term ∇2
a f1, fast approximate solution of

the Newton system involves regularized solution of a set of 3 × 3 systems of the form:

dk

dk+M−R

dk+M+R

 =

Hk, k Hk, k+M−R Hk, k+M+R

Hk+M−R, k Hk+M−R, k+M−R 0
Hk+M+R, k 0 Hk+M+R, k+M+R

−gk

−gk+M−R

−gk+M+R

 (40)

for k = 1, ..., R. This can be carried out similarly to solution of 2 × 2 systems described

in Section 5.1, however, derivation of analytical expressions becomes more complicated and

is note presented in this work. Another possibility is to consider techniques for solution of

sparse symmetric systems. For example, one can use sparse modified Cholesky factoriza-

tion for direct solution, or alternatively, conjugate gradient-type methods, possibly precondi-

tioned by incomplete Cholessky factor, for iterative solution. In both cases, Cholesky factor

is often not as sparse as the original matrix, but it becomes sparser, when appropriate matrix

permutation is applied before factorization [25].

Yet another possibility is to limit attention to the particular case when M = 1 (FIR

restoration kernel), where the Hessian in a neighbourhood of the solution is approximately

diagonal if the anti-diagonal term ∇2f1 is neglected, or has an additional shifted anti-

diagonal otherwise. In both cases approximate Newton direction can be found by either

solving a set of independent linear equations, or a set of 2 × 2 systems.

5.3 Computational complexity

The approximate Hessian of f1 and the Hessian of fS at an = bn = δn is very simple and does

not depend on the data. Therefore, computational effort is required for their construction is

O(1). The approximate Hessian of f2 of a normalized restoration kernel is a tri-diagonal

matrix with a total of M + N + 2 min {M, N} − 3 non-zero elements, of which, due to

symmetry, only M + N + min {M,N} − 2 different elements have to be computed. This

requires evaluation of the main diagonals of Haa, Hab and Hbb, which consists of:

1. Computing the sequence φ′′
n.

26

Figure 7: Structure of the Hessian of the non-normalized kernel (left) and the normalized

kernel (middle) at the solution point for an = bn = δn. Right: non-normalized kernel with

delayed initialization bn = δn−3. The parameters are M = N = 7, T = 103, NS = 256
and λ = 1. White represents near-zero elements, whereas black stands for strong non-zero

elements of the Hessian, either positive or negative.

2. Computing the sequences ∂2
a0

yn and ∂2
a0b0

yn by applying A−1(z) to ∂a0yn, ∂b0yn al-

ready computed on the gradient computation stage.

3. Squaring the sequences ∂a0yn and ∂b0yn, and computing the product ∂a0yn ∂b0yn.

4. Computing the products φ′′
n ∂a0yn−i for n = 0, ...T−1; i = 1, ...,M−1 and φ′′

n ∂b0yn−i

for n = 0, ...T − 1; i = 0, ..., N − 1.

5. Computing the products φ′
n ∂2

a0
yn−2i for n = 0, ...T − 1; i = 1, ...,M − 1 and

φ′
n ∂a0b0yn−2i for n = 0, ...T − 1; i = 1, ..., min {M, N} − 1.

Step 1 requires k′′T operations; Step 2 takes 2MT operations; Step 3 takes

3T operations; Step 4 takes T (M + N − 1) operations; and Step 5 requires

T (M + min {M, N} − 2) operations. Totally, construction of the approximate Hessian re-

quires about (2M + min {M,N} + N + k′′) T operations.

When T ∼ M ∼ N , the complexity of constructing the approximate Hessian becomes

4N2 + k′′N and has the same order of magnitude as the complexity of gradient computa-

tion. See Table 1 for comparison of the computational complexity of the gradient, the exact

Hessian and the approximate Hessian.

Exact solution of the Newton system using modified Cholesky decomposition requires
1
6
(M + N − 1)3 operations for factorization and (M + N − 1)2 operations for back/forward

substitution, yielding in total about 1
6
(M + N − 1)3 + (M + N − 1)2 operations. Approxi-

mate solution of the Newton system requires solution of min {M, N} − 1 modified systems

(38) plus |M − N | operations for obtaining the remaining elements of the vector d from

the set of single equations (33). This requires about kN · (min {M, N} − 1) + |M − N |
operations, where kN stands for the complexity of a single 2 × 2 system solution. Efficient

implementation allows to achieve kN ≈ 40.

27

Term T ≫ M,N T ∼ M ∼ N,NF = 10N

g (3M + N + k′) T 2N2 + (20 + k′ + 40 log2 10)N
+42N log2 N

H (M2 + N2 + 6M + 2N + k′′ − 2) T 804N2 log2 N + (20 + k′′)N+
+(4 + 800 log2 10)N2

H̃ (2M + min {M, N} + N + k′′) T 4N2 + k′′N

Table 1: Comparison of computational complexity of the gradient, the exact Hessian and the

approximate Hessian for very large T and for T comparable with M,N .

5.4 Fast block-coordinate relative Newton step

In [35], it was shown that performing the fast relative Newton step in a block-coordinate

manner is advantageous for quasi-maximum likelihood blind source separation. The same

technique can be used in the proposed framework for quasi-ML blind deconvolution. Let us

consider as an example the case when M = 1 and at each internal iteration a block of K

coordinates is updated1. Let us also assume that T ≫ N .

The use of line search requires evaluation of f(an = 1, bn = δn + ∆bn; x), where ∆b is

the update of b in the current block. Coefficients Bk in f1 are updated according to

∆Bk =
∑

n∈block

∆bn e
−i 2πn

NF . (41)

The logarithms of |Bk|2 have to be computed for all k’s, resulting in total in KNF + kLNF

operatins for updating f1. yn is updated according to

∆yn =
∑

k∈block

∆bk xn−k, (42)

which results in about 4T log2 K + kT operations for updating f2.

The most computationally difficult part of each internal iteration is the computation of

K elements of the gradient vector and a K ×K block from the approximate Hessian matrix,

which for T ≫ N requires about (2K+k′+k′′)T operations. Internal iterations are repeated
N
K

times at each external iteration, thus resulting in about (2K + k′ + k′′)TN
K

operations per

external iteration. This is compared to the complexity of a ”normal” fast relative Newton

iteration, which requires about (2N + k′ + k′′)T operations. Thus, block-coordinate update

is advantageous if it makes the algorithm converge

γ =
2NK + (k′ + k′′)N

2NK + (k′ + k′′)K
= 1 +

(k′ + k′′)(N − K)

2NK + (k′ + k′′)K
(43)

1For M > 1, it is not straightforward how to perform the fast update of the filtered signal yn when only some

coefficients of an are updated. Additional research is required to determine feasibility of the block-coordinate

step in this case.

28

times faster than fast relative Newton method with full update. For K ≪ N and values of

k′, k′′ from Section 2.3, γ becomes

γ = 1 +
k′ + k′′

2
≈ 4.67. (44)

6 Sequential reduction of the smoothing parameter

When the source signal is sparse, the quality of the restored signal greatly improves with

reduction of the smoothing parameter λ in the absolute value approximation. However,

minimization of the quasi-ML function becomes more difficult and involves, in particular,

very large values of the gradient and the Hessian. We address this problem by considering

two methods of sequential refinement of the absolute value approximation: the first one

based on sequential reduction of the smoothing parameter λ, and the second one involving

the smoothing method of multipliers described in [36]. We limit our discussion to the case

of super-Gaussian signals. Similar algorithms can be derived for sub-Gaussian signals.

6.1 Sequential optimization algorithm

Sequential reduction of the smoothing parameter consists of iterating the unconstrained min-

imization of the quasi-ML function, each time decreasing λ and initializing the minimization

algorithm at the solution found in the previous iteration [25]. In combination with the rel-

ative optimization method described in Section 3.1, this results in the following sequential

optimization algorithm:

Sequential optimization algoritm

1. Start with λ(1), some initial guess of H(0)(z) = B(0)(z)

A(0)(z)
, and x

(0)
n = xn.

2. For k = 1, 2, ..., K

3. Compute current source signal estimate: x
(k)
n = B(k−1)(z)

A(k−1)(z)

[

x
(k−1)
n

]

.

4. Starting with A(z) = B(z) = 1, find

A(k)(z), B(k)(z) = argminf(A(z), B(z); x
(k)
n , λ(k)).

5. Update the estimated restoration filter: H(k)(z) = B(k)(z)

A(k)(z)
H(k−1)(z).

6. Update the smoothing parameter λ(k+1) = µλλ
(k).

7. End For

29

The parameter µλ < 1 determines the decay rate of the smoothing parameter and it is gen-

erally set to µλ ∼ 10−1 ÷ 10−2. The block relative optimization algorithm can be modified

similarly to allow sequential reduction of the smoothing parameter.

6.2 Smoothing method of multipliers

A substantial disadvantage of the sequential optimization algorithm is the fact that the

smoothing parameter becomes extremely small in the neighbourhood of the solution, a fact

that influences the accuracty of the obtained solution. An efficient alternative, known as

smoothing method of multipliers was introduced in [36]. The proposed algorithm does not

require extreme values of the smoothing parameter due to the use of multipliers and allows

to converge to a very accurate solution.

Smoothing method of multipliers suggests to modify the absolute value approximation

φλ(t) by forcing its derivative at t = 0 to be φ′
λ(0) = µ. The linear function µt is tangent

to the graph of φλ, µ(t) at the origin (see Figure 8). The parameter µ is used as an analog

of Lagrange multiplier. The method was found especially efficient with the family of ”soft”

quadratic-logarithmic approximations of the absolute value, given by

φλ, µ(t) =

−t − p1 log t
τ1

+ q1 : t < τ1 ≤ 0
t2

2λ
+ µt : τ1 ≤ t ≤ τ2

t − p2 log t
τ2

+ q2 : t < τ1 ≤ 0,

(45)

where

τ1 = −1
2
(1 + µ) λ τ2 = 1

2
(1 − µ) λ

p1 = λ−1τ 2
1 p2 = λ−1τ 2

2

q1 = 1
2λ

τ 2
1 + (µ + 1)τ1 q2 = 1

2λ
τ 2
2 + (µ − 1)τ2.

These functions have bounded third-order derivatives and hence are well-matched to the

Newton method [36].

Using φλ, µ(·) for the absolute value approximation, the objective function becomes

f = − 1

2NF

f1 +
νS

NS

fS +
1

T

T−1
∑

n=0

φλ, un
(yn) (46)

and it is analogous to an augmented Lagrangian, where {un : −1 ≤ un ≤ 1}T−1
n=0 are La-

grange multipliers. Smoothing method of multipliers suggests the following iterative algo-

rithm:

Smoothing method of multipliers

1. Start with λ(1), u
(1)
n = 0, H(0)(z) = B(0)(z)

A(0)(z)
and x

(0)
n = xn.

30

-1 -0.5 0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 8: φλ, µ(t) - solid line; |t| - dashed line; µt - dotted line.

2. For k = 1, 2, ..., K

3. Compute current source signal estimate: x
(k)
n = B(k−1)(z)

A(k−1)(z)

[

x
(k−1)
n

]

.

4. Starting with A(z) = B(z) = 1, find

A(k)(z), B(k)(z) = argminf(A(z), B(z); x
(k)
n , λ(k), u

(k)
n).

5. Update the estimated restoration filter: H(k)(z) = B(k)(z)

A(k)(z)
H(k−1)(z).

6. Update the multipliers u
(k+1)
n = φ′

λ(k), u
(k)
n

(yn), where yn = B(k)(z)

A(k)(z)

[

x
(k)
n

]

.

7. Optional: update the smoothing parameter λ(k+1) = µλλ
(k).

8. End For

In practice, in order to stabilize the method, the relative change of the multipliers should be

restricted:

γ1 <
u

(k+1)
n + 1

u
(k)
n + 1

< γ2

γ1 <
1 − u

(k+1)
n

1 − u
(k)
n

< γ2

∣

∣u(k+1)
n

∣

∣ < 1 − δ, (47)

where typically γ1 = γ−1
2 ∼ 2 and δ ∼ 10−6. Furthermore, λ(k) is restricted to be no smaller

than some λmin ∼ 10−3 [36].

31

7 Numerical results

In this section, we present several simulation results to examine performance of the algo-

rithms described in this work. Source signals in all experiments were generated as i.i.d.

processes with Gauss-Bernoully, generalized Laplacian or discrete uniform (PAM) distribu-

tions (see Appendix Appendix B). Unless stated otherwise, zero sensor noise was assumed.

Convolutive systems were modeled either as FIR or rational IIR filters with different orders

depending on the experiment. Coefficients were chosen randomly under the constraint of

filter stability. In all tests, unless stated otherwise, NF = 256 and NS = 1024 were used,

and gradient norm below 10−10 served as the stopping criterion for optimization algorithms.

All algorithms were implemented in MATLAB and executed on an ASUS portable computer

with Intel Pentium IV Mobile processor and 640MB RAM. All execution time measurements

should be interpreted merely as upper bounds on execution time. Signal to interference ratio

(SIR) was used as a quality measure. An exact definition of this measure is given in the

following section.

7.1 Restoration quality measure

Estimated source signal s̃ can be described as source signal s (up to a delay ∆ and multi-

plicative factor c), contaminated by q, which describes the deconvolution error [37]

s̃n = (g ∗ s)n = c · sn−∆ + qn. (48)

A common restoration quality measure known as intersymbol interference (ISI) or signal to

interference ratio (SIR) is defined as the ratio of variances of c · s and q

SIR =
c2 · IE {s2

n}
IE {q2

n}
. (49)

In simulations where the global system response is known, SIR can be expressed in terms of

g as

SIR =
g2
∆

∑

n6=∆ g2
n

=
‖g‖2

∞

‖g‖2
2 − ‖g‖2

∞

. (50)

In reality, gn is evaluated on a finite interval n = 0, .., TS − 1. In our experiments TS = 103

was used.

7.2 Test I: Rational restoration kernel

Most works on blind deconvolution focus their attention on FIR restoration kernels. In this

work, we introduced a rational restoration kernel, containing besides the FIR part (numer-

ator B(z)) also an all-pole IIR part (denominator A(z)). Importance of the all-pole part is

32

0 5 10
0

0.5

1

0 50 100 150 200
−1

0

1

0 10 20 30 40 50
−0.5

0

0.5

1

0 0.5 1
−100

−50

0

50

0 0.5 1
−40

−20

0

20

40

0 0.5 1
−0.01

0

0.01

w
n
 h

n
 g

n

Figure 9: Impulse responses (top row) and transfer functions (bottom row) of W (z) (left)

and H(z) (middle) and G(z) (right) for SIR = 192.77 dB obtained in the experiment. The

impulse response of H(z) is truncated.

demonstrated in the following experiment. Input signal was generated by filtering an i.i.d.

Gauss-Bernoully process (see Appendix B.1) with sparsity ρ = 0.2 and length T = 1000
samples by a short minimum phase FIR filter W (z) of order 9 (Figure 9, left). Since the

impulse response of W−1(z) decays relatively slowly (Figure 9, middle), restoration using

an FIR kernel would require about 100 coefficients to achieve reasonable quality. On the

other hand, an all-pole kernel of order 9 is sufficient to ideally restore the source signal.

Sequential optimization algorithm was used with λ decreasing from 1 to 10−10 with a rate

of µλ = 0.1, and νS decreasing from 1 with a rate of µν = 2. Unconstrained minimization

was carried out using Newton method. Three configurations were tested: pure FIR with unit

denominator and numerator of order n − 1 (M = 1, N = n), all-pole IIR (M = n,N = 1)

and a rational kernel with numerator and denominator of equal order (M = N = n+1
2

), where

n stands for number of variables in the problem. Different values of n were tested.

Figure 10 depicts the restoration SIR as function of the number optimization variables

n for different assignments of the degrees of freedom to restoration kernel numerator and

denominator. SIR higher than 10 dB was obtained for all-pole IIR kernel starting from M ≥
8, for the rational kernel starting from N = M ≥ 4, and for the FIR kernel starting only from

N ≥ 40. It can be concluded that rational restoration kernels are generally advantageous than

the FIR ones.

7.3 Test II: Convergence of the Newton method

The following test demonstrates convergence of the Newton method used for unconstrained

minimization of f . Input signal was generated by filtering an i.i.d. Gauss-Bernoully process

(see Appendix B.1) with sparsity ρ = 0.2 and length T = 1000 samples by a FIR filter of

33

5 10 15 20 25 30 35 40

0

20

40

60

80

100

120

140

160

180

200

Degrees of freedom (n)

S
IR

 [
d
B

]

All−pole (N=1, M=n+1)
FIR (N=n, M=1)
Rational (M=N=(n+1)/2)

Figure 10: Restoration SIR as function of degrees of freedom (optimization variables in the

problem) for different restoration kernel configurations. Solid: pure FIR (M = 1, N = n);

dashed: all-pole IIR (M = n,N = 1); dash-dotted: rational kernel (M = N = n+1
2

).

order 19 (Figure 11, left). Restoration was performed by a FIR filter of size M = 1, N = 50
and the smoothing parameter was set to λ = 0.001. No stability barrier was used. Conver-

gence of steepest descent method with backtracking line search and Newton method were

compared. Figure 12 reveals that Newton method has quadratic convergence at the end,

which allows to achieve very small norm of gradient and SIR about 35 dB, whereas the

steepest descent method achieves gradient norm no lower than 10−9 and SIR slightly higher

than 15 dB. Figure 11 presents the restoration kernel response (middle) and the global system

response (right) obtained using the Newton algorithm.

7.4 Test III: Sequential optimization

The following test demonstrates how the sequential optimization algorithm presented in

Section 6 achieves very high restoration quality by gradual reduction the smoothing param-

34

0 5 10 15 20
−1

0

1

0 10 20 30 40 50
−1

0

1

0 50 100
−1

0

1

0 0.5 1
−20

0

20

0 0.5 1
−20

0

20

0 0.5 1
−20

0

20

w
n
 h

n
 g

n

Figure 11: Impulse responses (top row) and transfer functions (bottom row) of W (z) (left),

H(z) (middle) and G(z) (right).

eter. Input signal was generated by filtering an i.i.d. Gauss-Bernoully process (see Ap-

pendix B.1) with sparsity ρ = 0.2 and length T = 1000 samples by an all-pole IIR filter of

order 9. FIR restoration kernel of order 9 was used. Sequential optimization algorithm was

used with λ decreasing from 1 to 3.28 × 10−11 with a rate of µλ = 0.2, and νS decreasing

from 1 with a rate of µν = 2. Unconstrained minimization was carried out using Newton

method. Problematic convergence was observed starting from λ = 10−7. Figure 13 presents

the SIR as function of λ. Restoration quality achieved for very small values of the smoothing

parameter (SIR about 180 dB) can be considered ideal for any practical use.

7.5 Test IV: Sensitivity to noise

In order to study sensitivity of the algorithm to noise, Test III where practically ideal restora-

tion was achieved, was repeated under presence of sensor noise with different SNRs (see

Figure 14). Figure 15 presents the achieved restoration SIR as function of input SNR. Rea-

sonable restoration quality is achieved for SNR higher than 15-20 dB.

7.6 Test V: Relative optimization

The following test demonstrates the relative optimization algorithm described in Section 3.1.

Input signal was generated by filtering an i.i.d. Gauss-Bernoully process (see Appendix B.1

) with sparsity ρ = 0.2 and length T = 1000 samples by an FIR filter of order 10. Restora-

tion was performed by an FIR filter of size M = 1, N = 50 and a rational kernel of size

M = N = 5 with smoothing parameter set to λ = 10−3. Newton method, relative Newton

method, fast relative Newton method and its limited memory version (K = T) were com-

pared. Figure 18 depicts the convergence of the four methods for the FIR restoration kernel

35

20 40 60 80 100 120 140

10
−10

10
−5

Time (sec)

G
ra

d
ie

n
t
n
o
rm

20 40 60 80 100 120 140
−5

0

5

10

15

20

25

30

Time (sec)

S
IR

 [
d
B

]

100 200 300 400 500 600 700

10
−10

10
−5

Iteration

G
ra

d
ie

n
t
n
o
rm

100 200 300 400 500 600 700
−5

0

5

10

15

20

25

30

Iteration

S
IR

 [
d
B

]

Figure 12: Convergence of the steepest descent method (solid) and the Newton method

(dashed). Top row: norm of gradient; bottom row: signal to interference rate as function of

time (left) and iteration number (right).

in sense of SIR and gradient norm as function of time and iteration number. In Figure 17,

convergence for the IIR kernel is shown.

Fast relative Newton method and its limited memory version demonstrated virtually iden-

tical convergence both in sense of SIR and gradient norm. Newton and relative Newton

methods converged in less iterations that the fast relative Newton method and its memory

limited version and demonstrated quadratic convergence. However, the use of special Hes-

sian structure significantly reduced the computational complexity of each iteration of the fast

relative Newton method and its memory limited version and allowed these two methods to

converge faster in the sense of execution time.

Rational restoration kernel achieved slightly lower SIR of 31.70 dB compared to 35.50

dB achieved by the FIR kernel, and demonstrated worse convergence in the number of it-

erations. However, the use of the rational kernel involved only 9 optimization variables,

compared to the 32 variables required for the FIR kernel.

36

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

20

40

60

80

100

120

140

160

180

Smoothing parameter

S
IR

 [
d

B
]

Figure 13: SIR obtained by sequential optimization algorithm presented as function of the

smoothing parameter λ.

7.7 Test VI: Block relative optimization

The following test demonstrates the block relative optimization algorithm for online process-

ing described in Section 3.2. Two super-Gaussian source signals with Gauss-Bernoully dis-

tribution with sparsity ρ = 0.2 and generalized Laplacian distribution with α = 0.5, and one

sub-Gaussian 2-level PAM process (see Appendix Appendix B), all of length T = 2.5 × 105

were generated. Convolution system was modeled by an FIR filter of order 99.

FIR restoration kernel of order 31 (M = 1, N = 32) was used. Block relative optimiza-

tion algorithm was applied with block size L = 512. Limited memory fast relative Newton

step was used with kernel size limited to K = 512 samples. In case of super-Gaussian sig-

nals, λ was gradually reduced from 10−3 till 10−6 with a rate of µλ = 0.1. In case of the

sub-Gaussian process, k was reduced from 2 to 20. No stability barrier was used.

Figures 18–20 (dashed) show the restoration SIR as function of input signal sample num-

ber. The algorithm converged to an SIR of about 30–35 dB for the Gauss-Bernoully signal,

37

0 50 100 150 200 250 300 350 400 450

Figure 14: Part of the observed signal x in the noiseless case (dash-dotted) and at presence

of noise, SNR = 15 dB (solid).

20 30 40 50 60 70
0

10

20

30

40

50

60

70

Input SNR [dB]

S
IR

 [
d
B

]

Figure 15: SIR obtained by sequential optimization algorithm as function of input SNR.

about 25–30 dB for the generalized Laplacian signal, and about 30 dB for the PAM signal.

SIR of 33.77 dB, 33.11 dB and 30.92 dB for the Gauss-Bernoully, generalized Laplacian

and PAM signals, respectively, was reached by the batch mode version of the algorithm ap-

plied to the first 4096 samples of the input. In Figure 21, output constellations of the limited

memory fast block relative Newton algorithm for the PAM input signal at different blocks

are depicted to visualize restoration quality.

For comparison, the natural gradient deconvolution algorithm proposed by Amari et al.

[17, 13] and its block-wise frequency-domain version proposed by Joho et al. [19, 20],

with block size of 512 samples and 32 FIR coefficients and step µ = 0.02, achieved SIR of

10–20 dB for all source types (Figures 18–20). Moreover, the natural gradient and Joho’s

algorithms have slower convergence in terms of restoration SIR. MATLAB implementation

of the memory limited block relative Newton algorithm demanded in average 1.59 × 10−4

38

0 5 10

10
−15

10
−10

10
−5

Time (sec)

G
ra

d
ie

n
t
n
o
rm

0 5 10
0

5

10

15

20

25

30

35

40

Time (sec)

S
IR

 [
d
B

]

10 20 30 40

10
−15

10
−10

10
−5

Iteration

G
ra

d
ie

n
t
n
o
rm

10 20 30 40
0

5

10

15

20

25

30

35

40

Iteration

S
IR

 [
d
B

]

Figure 16: Convergence of the Newton method (dotted), the relative Newton method (dash-

dotted), the fast relative Newton method (solid) and its limited memory version (dashed) for

M = 1, N = 32.

39

0 2 4 6 8 10
0

5

10

15

20

25

30

35

Time (sec)

S
IR

 [
d
B

]

5 10 15 20 25
0

5

10

15

20

25

30

35

Iteration

S
IR

 [
d
B

]

Figure 17: Convergence of the Newton method (dotted), the relative Newton method (dash-

dotted), the memory limited fast relative Newton method (dashed) for M = N = 5. Fast

relative Newton method demonstrated convergence identical to that of the memory limited

version.

sec per input sample, thus allowing to process in real time signals with sampling frequency

up to 6.27 KHz. For comparison, Joho’s algorithm required about 1.86 × 10−5 sec per input

sample, which is equivalent to sampling frequency of 53.8 KHz. It can be concluded that

although having computational complexity of the same order as gradient-based methods, fast

relative Newton method is almost 10 times slower compared to an efficient implementation

of the natural gradient deconvolution algorithm. Still, it is fast enough and suitable for real-

time processing and gives significantly better restoration quality (improvement by 10 dB to

20 dB) and faster convergence.

8 Conclusions

We have presented a relative optimization framework for quasi-maximum likelihood single

channel blind deconvolution and studied relative Newton method as its particular instance.

Tri-diagonal structure of the Hessian in a neighbourhood of the solution allowed to derive

a fast version of the relative Newton algorithm, with iteration complexity comparable to

that of gradient methods. The batch mode relative Newton method was extended to the

online case by considering block-wise relative optimization. The latter algorithm is capable

of handling time-varying convolution systems. Additionally, in this work we introduced

rational deconvolution kernels, which constitute a richer and more flexible family of filters

than the traditionally used FIR kernels, and often allow to reduce the optimization problem

size.

The use of sequential optimization and smoothing method of multipliers for gradual re-

finement of the absolute value approximation was proposed. Combined with the relative

40

0 0.5 1 1.5 2 2.5

x 10
5

−10

−5

0

5

10

15

20

25

30

35

Sample

S
IR

 [
d

B
]

Joho
Amari
Fast rel. Newton

Figure 18: SIR of the limited memory fast block relative Newton method (dashed), and the

natural gradient algorithm (solid) and Joho’s algorithm (dotted) as function of input signal

sample number for the Gauss-Bernoully input signal.

41

0 0.5 1 1.5 2 2.5

x 10
5

−10

−5

0

5

10

15

20

25

30

Sample

S
IR

 [
d

B
]

Joho
Amari
Fast rel. Newton

Figure 19: SIR of the limited memory fast block relative Newton method (dashed), and the

natural gradient algorithm (solid) and Joho’s algorithm (dotted) as function of input signal

sample number for the generalized Laplacian signal.

42

0 0.5 1 1.5 2 2.5

x 10
5

−10

−5

0

5

10

15

20

25

30

35

Sample

S
IR

 [
d

B
]

Joho
Amari
Fast rel. Newton

Figure 20: SIR of the limited memory fast block relative Newton method (dashed), and the

natural gradient algorithm (solid) and Joho’s algorithm (dotted) as function of input signal

sample number for the PAM signal.

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

Block = 48 SIR = 26.5 dB

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

Block = 0 SIR = −5.7 dB

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

Block = 292 SIR = 30.1 dB

Figure 21: Output constellations yn vs. yn−1 of the limited memory fast block relative New-

ton algorithm for the 2-level PAM signals. Crosses indicate ideal restoration.

43

Newton method, gradual refinement of the absolute value approximation resulted in an ex-

tremely accurate blind deconvolution algorithm with very fast convergence. Although our

discussion was mainly focused on super-Gaussian source signals, for which the absolute

value is a good approximation of − log p(·), by a suitable choice of φ(·) and minor modifi-

cations, sub-Gaussian signals can be also handled.

Simulation results demonstrate the efficiency of the proposed methods in low to medium-

noise conditions. Possible applications are in acoustics and communications, especially

where high accuracy is required. We are currently working on extending the relative New-

ton blind deconvolution algorithm to multichannel and two-dimensional cases. The latter

seems to be of high importance, since many processes in optics and image processing can

be described by a relatively short FIR model, which makes the use of rational deconvolution

kernels especially attractive.

Acknowledgement

This research has been supported by the Ollendorff Minerva Center, by the Fund for Pro-

motion of Research at the Technion, by the Israeli Ministry of Science, by the HASSIP Re-

search Network Program HPRN-CT-2002-00285, sponsored by the European Commission.

Alexander Bronstein expresses his gratitude to Susy Pitzanti for creating a warm atmosphere

and an outstanding working environment in the beautiful island of Sardinia, Italy, where part

of this work was written.

Appendix A Proofs and derivations

A.1 Proof of Proposition 1 – Gradient and Hessian of f1

Gradient of f1

Let us use the matrix notation to express the DFT coefficients Ak and Bk for k = 0, ..., NF−1
as elements of the vectors

A = ΦA a

B = ΦB b, (51)

where ΦA and ΦB are NF ×M and NF ×N DFT matrices, respectively. ΦA and ΦB can be

regarded as truncated versions of the NF × NF DFT matrix defined by

(Φ)mn =
1√
NF

exp

{

−2πi mn

NF

}

(52)

and can be implemented efficiently by applying the FFT to the zero-padded versions of a

and b.

44

Let us also expand f1 into

f1 =

NF−1
∑

k=0

log BkB
∗
k − log AkA

∗
k

=

NF−1
∑

k=0

log Bk + (log Bk)
∗ − log Ak − (log Ak)

∗
, (53)

and let us denote by (ΦB)T

k the k-th row vector of ΦB. Then, Bk can be expressed as Bk =

(ΦB)T

k b, and the gradient of the term log Bk for k = 0, ..., NF − 1 is given by

∇b (log Bk) =
1

Bk

∇b Bk =
1

Bk

(ΦB)k . (54)

Summation on k yields

∇b

(

NF−1
∑

k=0

log Bk

)

=

NF−1
∑

k=0

1

Bk

(ΦB)k

=

| |
(ΦB)0 ... (ΦB)NF−1

| |

 ·

1
B0
...
1

BNF −1

= ΦT
BB′ =

(

ΦH
B B′∗

)∗
, (55)

where B′ =
[

B−1
0 ... B−1

NF−1

]T
, and ΦH

B can be implemented efficiently using the in-

verse FFT. Similarly, gradients of the other three terms of f1 in (53) can be obtained, yielding

∇ab f1 =

[

∇a f1

∇b f1

]

, (56)

where

∇a f1 = −ΦH
A A′∗ −

(

ΦH
A A′∗

)∗

∇b f1 = ΦH
B B′∗ +

(

ΦH
B B′∗

)∗
, (57)

and A′ =
[

A−1
0 ... A−1

NF−1

]T
.

Hessian of f1

Let us first evaluate the Hessian of the first term

q =

NF−1
∑

k=0

(log Bk)
∗

(58)

45

in (53). Previously we have seen that the gradient of q with respect to b was given by

g = ∇b q = ΦT
BB′. (59)

The differential of g is given by

dg = ΦT
B

dB′
0

...

dB′
NF−1

= ΦT

B

∇bB
′T
0 db
...

∇bB
′T
NF−1db

= ΦT

B

∇bB
′T
0

...

∇bB
′T
NF−1

db. (60)

Substituting

∇bB
′
k = ∇b

(

1

Bk

)

= − 1

B2
k

(ΦB)k , (61)

one has

dg = −ΦT
B

1
B2

0
(ΦB)T

0

...
1

B2
NF −1

(ΦB)T

NF−1

db = −ΦT
B

1
B2

0

. . .
1

B2
NF −1

ΦB db

= ΦT
B diag {B′′}ΦB db =

(

ΦH
B diag {B′′}H

)∗

ΦB db, (62)

where B′′ = −
[

B−2
0 ... B−2

NF−1

]T
. The Hessian of q is a linear mapping Hq defined via

the differential of the gradient g as

dg = Hq db;

therefore,

Hq =
(

ΦH
B diag {B′′}H

)∗

ΦB. (63)

Similarly, Hessians of the other three terms of f1 can be obtained. Finally, we obtain

∇2
ab f1 =

[

Haa

Hbb

]

, (64)

where

Haa = −
(

ΦH
A diag {A′′}H

)∗

ΦA − ΦH
A (diag {A′′}ΦA)

∗

Hbb =
(

ΦH
B diag {B′′}H

)∗

ΦB + ΦH
B (diag {B′′}ΦB)

∗
(65)

and A′′ = −
[

A−2
0 ... A−2

NF−1

]T
. The terms Haa and Hbb can be computed efficiently

using the forward and the inverse FFT.

46

A.2 Proof of Proposition 2 – Derivatives of yn

Let us use first express yn in the Z-transform domain:

A(z) Y (z) = B(z) X(z), (66)

where

A(z) =
∑

k

ak z−k

B(z) =
∑

k

bk z−k (67)

Differentiating (66) with respect to ai yields

z−i Y (z) + A(z) ∂ai
Y (z) = 0,

from where

∂ai
Y (z) = − z−i

A(z)
Y (z) = −z−iB(z)

A2(z)
X(z). (68)

Differentiating again with respect to aj yields

z−i ∂aj
Y (z) + z−j ∂ai

Y (z) + A(z) ∂2
aiaj

Y (z) = 0.

Substituting (68) yields

−2
z−(i+j)B(z)

A2(z)
X(z) + A(z) ∂2

aiaj
Y (z) = 0,

from where

∂2
aiaj

Y (z) = 2
z−(i+j)B(z)

A3(z)
X(z). (69)

Differentiating (66) with respect to bi yields

A(z) ∂bi
Y (z) = z−i X(z),

from where

∂bi
Y (z) =

z−i

A(z)
X(z). (70)

Differentiating again with respect to bj yields

∂2
bibj

Y (z) = 0, (71)

47

whereas differentiating with respect to aj yields

z−j ∂bi
Y (z) + A(z) ∂2

biaj
Y (z) = 0.

Substituting (70) yields

∂2
biaj

Y (z) = − z−j

A(z)

∂Y (z)

∂bi

= −z−(i+j)

A2(z)
X(z). (72)

Expressing the first- and the second-order derivatives of Y (z) with respect to the coefficients

of the restoration filter numerator and denominator ai, bj in the time domain, one has

yn = B(z)A−1(z) [xn]

∂ai
yn = −A−1(z) [yn−i]

∂bi
yn = A−1(z) [xn−i]

∂2
aiaj

yn = 2A−2(z) [yn−i−j]

∂2
aibj

yn = −A−2(z) [xn−i−j]

∂2
bibj

yn = 0. (73)

Due to the shift-invariance property of the derivative operator, derivatives of yn with respect

to different coefficients ai and bi can be expressed as a time-shifted version of derivatives

of yn with respect to a0 and b0:

∂ai
yn = ∂a0yn−i

∂bi
yn = ∂b0yn−i

∂2
aiaj

yn = ∂2
a0

yn−i−j

∂2
aibj

yn = ∂2
a0b0

yn−i−j. (74)

A.3 Proof of Proposition 3 – Gradient and Hessian of f2

Gradient of f2

Let us use the abbreviation φn, φ′
n and φ′′

n to denote φ(yn), φ′(yn) and φ′′(yn), respectively.

The gradient of f2 with respect to a and b is given by

∇ab f2 =

[

∇a f2

∇b f2

]

, (75)

48

where

∇a f2 =
T−1
∑

n=0

φ′
n · ∇a yn =

∂a0y0 ∂a0y1 ... ∂a0yM−1 ... ∂a0yT−1

0 ∂a0y0 ... ∂a0yM−2 ... ∂a0yT−2
...

...
...

...

0 0 ... ∂a0y0 ... ∂a0yT−M−1

·

φ′
0

φ′
1
...

φ′
T−1

(76)

and

∇b f2 =
T−1
∑

n=0

φ′
n · ∇b yn =

∂b0y0 ∂b0y1 ... ∂b0yN−1 ... ∂b0yT−1

0 ∂b0y0 ... ∂b0yN−2 ... ∂b0yT−2
...

...
...

...

0 0 ... ∂b0y0 ... ∂b0yT−N−1

·

φ′
0

φ′
1
...

φ′
T−1

. (77)

The two Toeplitz matrices containing partial derivatives of yn with respect to a0 and b0

can be regarded as anti-causal FIR filters reversed in time applied to the sequence φ′
n =

[

φ′
0 φ′

1 ... φ′
T−1

]T
, or alternatively, as causal FIR filters reversed in time applied to

the reversed sequence J φ′
n = φ′

T−1−n, where J is the mirror operator. Let us denote the

impulse responses of the filters corresponding to equations (76), (77) as

h∂A(n) = ∂a0yn = −A−1(z) [yn]

h∂B(n) = ∂b0yn = A−1(z) [xn] , (78)

respectively. The gradients of f2 with respect to a and b can be calculated efficiently as the

cropped responses of h∂A(n) and h∂B(n) to J φn,

(∇a f2)n = J (h∂A ∗ J φ′)n : n = 0, ..., M − 1

(∇b f2)n = J (h∂B ∗ J φ′)n : n = 0, ..., N − 1. (79)

Hessian of f2

The Hessian of f2 with respect to a and b is given by

∇2
ab f2 =

[

Haa Hab

HT
ab Hbb

]

, (80)

49

where Haa, Hbb and Hab are, respectively, an M × M , N × N and M × N matrix, whose

elements are given by

(Haa)ij =
(

H1
aa

)

ij
+

(

H2
aa

)

ij

=
T−1
∑

n=0

φ′′
n ∂ai

yn ∂aj
yn +

T−1
∑

n=0

φ′
n ∂2

aiaj
yn

=
T−1
∑

n=0

φ′′
n ∂a0yn−i ∂a0yn−j +

T−1
∑

n=0

φ′
n ∂2

a0
yn−i−j, (81)

(Hbb)ij =
T−1
∑

n=0

φ′′
n ∂b0yn−i ∂b0yn−j +

T−1
∑

n=0

φ′
n ∂2

b0
yn−i−j

=
T−1
∑

n=0

φ′′
n ∂b0yn−i ∂b0yn−j (82)

and

(Hab)ij =
(

H1
ab

)

ij
+

(

H2
ab

)

ij

=
T−1
∑

n=0

φ′′
n ∂a0yn−i ∂b0yn−j +

T−1
∑

n=0

φ′
n ∂2

a0b0
yn−i−j. (83)

The first term in (81) is an M × M matrix given by

H1
aa =

∂a0y0 ∂a0y1 ... ∂a0yM−1 ... ∂a0yT−1

0 ∂a0y0 ... ∂a0yM−2 ... ∂a0yT−2
...

...
...

...

0 0 ... ∂a0y0 ... ∂a0yT−M−1

·

α0
0 ... αM−1

0

...
...

α0
T−1 ... αM−1

T−1

, (84)

where αj
n = φ′′

n ∂a0yn−j . H1
aa and can be evaluated efficiently by using h∂A, namely

(

H1
aa

)

ij
= J

(

h∂A ∗ Jαj
)

i
: i, j = 0, ..., M − 1. (85)

The matrix Hbb in (82) consists of a single term, which has a structure similar to H1
aa and can

be computed using h∂B, namely

(Hbb)ij = J
(

h∂B ∗ J βj
)

i
: i, j = 0, ..., N − 1, (86)

where βj
n = φ′′

n ∂b0yn−j . Applying the kernel h∂B to the reversed sequence αn instead of the

reversed sequence βn, one can compute the first mixed derivatives term H1
ab:

(

H1
ab

)

ij
= J

(

h∂B ∗ Jαj
)

i
: i = 0, ..., M − 1; j = 0, ..., N − 1. (87)

50

The second term H2
aa in (81) can be expressed as a matrix with equal elements along

anti-diagonals

H2
aa =

ξ0 ξ1 ... ξM−1

ξ1 ξ2 ... ξM

...
...

...

ξM−1 ξM ... ξ2M−2

, (88)

where

ξm =
T−1
∑

n=0

φ′
n ∂2

a0
yn−m, (89)

which can be efficiently evaluated defining the causal FIR kernel

h∂2A(n) = ∂2
a0

yn = 2A−2(z) [yn] , (90)

and applying it to the reversed sequence φ′
n:

ξm = J (h∂2A ∗ J φ′)m : m = 0, ..., 2M − 2. (91)

The second term H2
ab in (83) despite being generally non-square, has a similar anti-diagonal

structure

H2
ab =

η0 η1 ... ηN−1

η1 η2 ... ηN

...
...

...

ηM−1 ηM ... ηM+N−2

, (92)

where

ηm =
T−1
∑

n=0

φ′
n ∂2

a0b0
yn−m, (93)

which similarly to ξm, can be efficiently evaluated defining the causal FIR kernel

h∂2AB(n) = ∂2
a0b0

yn = −A−2(z) [xn] (94)

and applying it to the reversed sequence φ′
n, namely:

ηm = J (h∂2AB ∗ J φ′)m : m = 0, ..., M + N − 2. (95)

51

A.4 Proof of Proposition 5 – Gradient and Hessian of fS

Gradient of fS

Similarly to ∂ai
yn from Proposition 2, ∂bi

qn is given by

∂bi
qn = −B−1(z) [qn−i] = −B−2(z) [δn−i] = h∂Q(n − i). (96)

Hence,

∇b fS =

NS−1
∑

n=0

φ′
n · ∇b qn =

∂b0q0 ∂b0q1 ... ∂b0qN−1 ... ∂b0qNS−1

0 ∂b0q0 ... ∂b0yN−2 ... ∂b0yNS−2
...

...
...

...

0 0 ... ∂b0q0 ... ∂b0qNS−N−1

·

φ′
0

φ′
1
...

φ′
NS−1

, (97)

where φ′
n = φ′

λS
(qn). Similarly to the gradient of f2, the above matrix product can be

computed using an FIR kernel, namely,

(∇b fS)n = J (h∂Q ∗ J φ′)
n

: n = 0, ..., N − 1. (98)

Since fS(b) is independent on a, ∇afS = 0.

Hessian of fS

Again, similarly to ∂2
aiaj

yn from Proposition 2, ∂2
bibj

qn is given by

∂2
bibj

qn = 2B−2(z) [qn−i−j] = 2B−3(z) [δn−i−j] = h∂2Q(n − i − j). (99)

The only non-zero block in the Hessian of fS is Hbb, which consists of two terms

(Hbb)ij =
(

H1
bb

)

ij
+

(

H2
bb

)

ij

=

NS−1
∑

n=0

φ′′
n ∂b0qn−i ∂b0qn−j +

NS−1
∑

n=0

φ′
n ∂2

b0
qn−i−j, (100)

where φ′′
n = φ′′

λS
(qn).

Computation of Hbb in (100) is analogous to computation of Haa in (81). The first term

H1
bb is an N × N matrix given by

H1
bb =

∂b0q0 ∂b0q1 ... ∂b0qN−1 ... ∂b0qNS−1

0 ∂b0q0 ... ∂b0qN−2 ... ∂b0qNS−2
...

...
...

...

0 0 ... ∂b0q0 ... ∂b0qNS−N−1

·

γ0
0 ... γN−1

0

...
...

γ0
NS−1 ... γN−1

NS−1

, (101)

52

where γj
n = φ′′

n ∂b0qn−j . H1
bb and can be evaluated efficiently by using h∂Q, namely

(

H1
bb

)

ij
= J

(

h∂Q ∗ J γj
)

i
: i, j = 0, ..., N − 1. (102)

The second term H2
bb in (100) can be expressed as a matrix with equal elements along

anti-diagonals

H2
bb =

ζ0 ζ1 ... ζN−1

ζ1 ζ2 ... ζN

...
...

...

ζN−1 ζN ... ζ2N−2

, (103)

where

ζm =

NS−1
∑

n=0

φ′
n ∂2

b0
qn−m, (104)

which can be efficiently evaluated applying the causal FIR kernel h∂2Q to the reversed se-

quence φ′
n:

ζm = J (h∂2Q ∗ J φ′)
m

: m = 0, ..., 2N − 2. (105)

A.5 Proof of Proposition 6 – Approximate Hessian

Approximate Hessian of f1

In Section 2.2 we have shown that f1 was a discrete approximation of the integral

f1 ≈ NF

π

∫ π

−π

[

log
∣

∣B(eiθ)
∣

∣ − log
∣

∣A(eiθ)
∣

∣

]

dθ. (106)

Here we will use the continuous version of f1 to approximate the structure of ∇2f for a =
b = δn. Let us define

q =

∫ π

−π

log B(eiθ) dθ =

∫ π

−π

log
(

b0 + b1 e−iθ + ... + bN−1 e−i(N−1)θ
)

dθ (107)

and find ∂2
bmbn

q:

∂2
bmbn

q =

∫ π

−π

∂2
bmbn

log B(eiθ) dθ

= −
∫ π

−π

∂bm
B(eiθ) ∂bn

B(eiθ)

B2(eiθ)
dθ +

∫ π

−π

∂bmbn
B(eiθ)

B(eiθ)
dθ. (108)

53

Substituting ∂bn
B(eiθ) = e−inθ and ∂2

bnbm
B(eiθ) = 0, one has

∂2
bmbn

q = −
∫ π

−π

e−i(m+n)θ

B2(eiθ)
dθ. (109)

Substituting b0 = 1, b1 = b2 = ... = bN−1 = 0 into (109) we obtain

∂2
bmbn

q
∣

∣

b0=1, b1=b2=...=bN−1=0
= −

∫ π

−π

e−i(m+n)θ dθ. (110)

Using this result, one can find the approximate second-order derivatives of f1 with respect to

bn for bn = δn:

∂2
bmbn

f1 ≈ NF

π

∫ π

−π

∂2
bmbn

[

log
∣

∣B(eiθ)
∣

∣ − log
∣

∣A(eiθ)
∣

∣

]

dθ

=
NF

2π

∫ π

−π

∂2
bmbn

log
∣

∣B(eiθ)
∣

∣

2
dθ

=
NF

2π

∫ π

−π

∂2
bmbn

log B(eiθ) dθ +
NF

2π

[
∫ π

−π

∂2
bmbn

log B(eiθ) dθ

]∗

= −NF

2π

∫ π

−π

[

e−i(m+n)θ + ei(m+n)θ
]

dθ

= −2NF

sin(m + n)π

(m + n)π
= −2NF δm+n. (111)

Similarly, one has for an = δn,

∂2
aman

f1 ≈ 2NF δm+n. (112)

The Hessian of f1 at the point an = bn = δn can be therefore approximated by

∇2f1 ≈ 2NF

[

EM

−EN

]

, (113)

where Ek denotes a k × k matrix with the first diagonal element equal to one and the rest of

elements equal to zero.

Approximate Hessian of f2

In Section A.3 we have seen that the Hessian of f2 is composed of three blocks, namely, Haa,

Hab and Hbb, whose sizes are M × M , M × N and N × N , respectively. For an = bn = δn

and x ≈ s, one has y ≈ s. Therefore, the first- and the second-order derivatives of yn from

54

Proposition 2 can be approximated by

∂a0yn ≈ −sn

∂b0yn ≈ sn

∂2
a0

yn ≈ 2sn

∂2
a0b0

yn ≈ −sn, (114)

yielding

(Haa)ij ≈
T−1
∑

n=0

φ′′(sn) sn−i sn−j + 2
T−1
∑

n=0

φ′(sn) sn−i−j

(Hbb)ij ≈
T−1
∑

n=0

φ′′(sn) sn−i sn−j

(Hab)ij ≈ −
T−1
∑

n=0

φ′′(sn) sn−i sn−j −
T−1
∑

n=0

φ′(sn) sn−i−j. (115)

As the sample size T grows, the sums approach the corresponding expectation values

(Haa)ij ≈ T · IE {φ′′(sn) sn−i sn−j + 2φ′(sn) sn−i−j}
(Hbb)ij ≈ T · IE {φ′′(sn) sn−i sn−j}
(Hab)ij ≈ −T · IE {φ′′(sn) sn−i sn−j + φ′(sn) sn−i−j} . (116)

Since sn are zero-mean i.i.d., the expectation value IE {φ′′(sn) sn−i sn−j} is equal to zero for

i 6= j. Similarly, IE {φ′(sn) sn−i−j} = 0 for i 6= −j and since i and j are non-negative, this

expectation value is non-zero only for i = j = 0. Therefore, the blocks (Haa) and (Hbb) are

approximately diagonal, and the block (Hab), although being usually non-square, has also

approximately zero entries outside the main diagonal.

Particularly, for small values of λ, when φ′(·) and φ′′(·) approach sign(·) and 1
2λ

δ(·),
respectively, the following form is obtained:

(Haa)ij ≈

2c1 : i = j = 0,
c2 : i = j 6= 0,
0 : otherwise.

(Hab)ij ≈

−c1 : i = j = 0,
−c2 : i = j 6= 0,
0 : otherwise.

(Hbb)ij ≈
{

c2 : i = j 6= 0,
0 : otherwise.

where c1 = T · IE |sn| and c2 = T
2λ

· σ2
s ps(0) are constants.

55

Approximate Hessian of fS

In Section A.4 we have seen that the Hessian of fS had only one non-zero block of size

N × N , corresponding to derivatives with respect to b. This block was given by

(Hbb)ij =

NS−1
∑

n=0

φ′′
n ∂b0qn−i ∂b0qn−j +

NS−1
∑

n=0

φ′
n ∂2

b0
qn−i−j, (117)

where qn is obtained by applying B−1(z) to the sequence δn. When bn = δn, one has

qn = ∂b0qn = ∂2
b0

qn = δn and consequently

(Hbb)ij = φ′′
λS

(δn) δn−i δn−j + φ′
λS

(δn) δn−i−j

=

φ′′
λS

(1) + φ′
λS

(1) : i = j = 0
φ′′

λS
(0) + φ′

λS
(0) : i = j 6= 0

φ′
λS

(0) : i 6= j

(118)

Substituting

φ′
λS

(0) = 0 φ′
λS

(1) =
λ−1

S

1+λ−1
S

φ′′
λS

(0) = 1 φ′′
λS

(1) =
(

1 + λ−1
S

)−2
,

one has

(Hbb)ij =

λ−1
S

1+λ−1
S

+
(

1 + λ−1
S

)−2
: i = j = 0

1 : i = j 6= 0
0 : i 6= j.

(119)

Particularly, for λS = 1,

(Hbb)ij =

1.25 : i = j = 0
1 : i = j 6= 0
0 : i 6= j.

(120)

The Hessian of fS for b = δn is therefore given by the following diagonal matrix:

∇2fS =

0
. . .

0
IN + c3 EN

, (121)

where c3 is a constant (equal to 0.25 in the particular case of λS = 1).

Combining the above result with the approximations of ∇2f1 and ∇2f2, we conclude that

the Hessian of f(a, b; x) for a = b = δn and x ≈ s can be approximated by a tri-diagonal

matrix with non-zero elements on the main diagonal and the diagonals ±M .

56

Appendix B Probability density functions

B.1 Gauss-Bernoully distribution

A random variable s is said to obey the Gauss-Bernoully distribution with sparsity ρ and

variance σ2 if its probability function is given by

p(s) = (1 − ρ)δ(s) +
ρ

√

2πρσ2
exp

{

− s2

2ρσ2

}

, (122)

where ρ ∈ [0, 1] and σ2 > 0. It will be henceforth assumed σ2 = 1. Probability density func-

tion (PDFs) and cumulative distribution function (CDFs) of the Gauss-Bernoully distribution

are depicted in Figure 22.

B.2 Generalized Laplacian distribution

A random variable s is said to obey the generalized Laplacian distribution with parameters

α, λ if its probability function is given by

p(s) =
1

2Γ(1 + α−1)λα−1 exp

{

−|s|α
λ

}

, (123)

where Γ(z) is the Euler Gamma function defined by

Γ(z) =

∫ ∞

0

tz−1 exp {−t} dt, (124)

and α > 0 and λ > 0. Distribution (125) can be interpreted as a generalization of the

Laplace distribution obtained for α = 1, and of the normal distribution obtained for α = 2.

For α < 2, the distribution is super-Gaussian. It will be henceforth assumed λ = 1 and

α = 0.5. PDFs and CDFs of the generalized Laplace distribution are depicted in Figure 23.

B.3 Discrete uniform distribution

A random variable s is said to obey the discrete uniform distribution on interval [−1, 1] with

N levels if its probability function is given by

p(s) =
1

N

N−1
∑

n=0

δ

(

2n

N − 1
− 1 − s

)

. (125)

In this work, i.i.d. signals having discrete uniform distribution will be termed as pulse am-

plitude modulated or PAM signals. PDFs and CDFs of the discrete uniform distribution are

depicted in Figure 24.

57

-2 -1 0 1 2

0.2

0.4

0.6

0.8

-2 -1 0 1 2

0

0.2

0.4

0.6

0.8

1

Figure 22: PDF (top) and CDF (bottom) of the Gauss-Bernoully distribution for σ2 = 1 and

ρ = 0.2 (solid), 0.5 (dotted), and 0.8 (dashed). Vertical arrows denote delta functions.

58

-10 -5 0 5 10

0

0.1

0.2

0.3

0.4

0.5

-40 -20 0 20 40

0

0.2

0.4

0.6

0.8

1

Figure 23: PDF (top) and CDF (bottom) of the generalized Laplace distribution for λ = 1
and α = 1 (solid), 0.5 (dotted), and 0.4 (dashed).

59

-1.5 -1 -0.5 0 0.5 1 1.5

0.05

0.1

0.15

0.2

0.25

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

Figure 24: PDF (top) and CDF (bottom) of the discrete uniform distribution for N = 5.

Vertical arrows denote delta functions.

60

References

[1] Y. Sato. A method of self-recovering equalization for multilevel amplitude-modulation

systems. IEEE Trans. Computers, pages 679–682, 1975.

[2] A. Benveniste, M. Goursat, and G. Ruget. Robust identification of a nonminimum

phase system: Blind adjustment of a linear equalizer in data communications. IEEE

Trans. Automat. Contr., 25(3):385–399, 1980.

[3] D. N. Godard. Self-recovering equalization and carrier tracking in two-dimensional

data communication systems. IEEE Trans. Commun., 28(11):1867–1875, 1980.

[4] J. R. Treichler and B. G. Agee. A new approach to the multi-path correction of constant

modulus signals. IEEE Trans. Acoust. Speech Sig. Proc., 31(2):331–344, 1983.

[5] S. Bellini. Bussgang techniques for blind equalization. In Proc. IEEE Global Telecom-

munication Conf. Rec., pages 1634–1640, 1986.

[6] L. Tong, G. Xu, and T. Kailath. A new approach to blind identification and equalization

of multipath channel. In Proc. 25th Asilomar Conf. Signal, Syst., Comput., 1991.

[7] G. Xu, H. Liu, L. Tong, and T. Kailath. Least squares approach to blind channel iden-

tification. IEEE Trans. Sig. Proc., 43(12):2982–2993, 1995.

[8] E. Moulines, P. Duhamel, J.-F. Cardoso, and S. Mayrargue. Subspace methods for the

blind identification of multichannel fir filters. IEEE Trans. Sig. Proc., 43:516–525,

1995.

[9] L. Tong, G. Xu, and T. Kailath. Blind identification and equalization based on secon-

dorder statistics: A time domain approach. IEEE Trans. Inform. Theory, 40(2):340–

349, 1994.

[10] M.I. Gurelli and C.L. Nikias. EVAM: An eigenvectorbased algorithm for multichan-

nel bind deconvolution of input colored signals. IEEE Trans. Signal Processing,

43(1):134–149, 1995.

[11] Y. Hua. Fast maximum likelihood for blind identification of multiple FIR channels.

IEEE Trans. Sig. Proc., 44(3):661–672, 1996.

[12] A. Gorokhov, P. Loubaton, and E. Moulines. Second order blind equalization in mul-

tiple input multiple output FIR systems: A weighted least squares approach. In Proc.

ICASSP, volume 5, pages 2415–2418, 1996.

[13] S.-I. Amari, A. Cichocki, and H. H. Yang. Novel online adaptive learning algorithms

for blind deconvolution using the natural gradient approach. In Proc. SYSID, pages

1057–1062, July 1997.

61

[14] S.-I. Amari, S. C. Douglas, A. Cichocki, and H. H. Yang. A new learning algorithm for

blind signal separation. Advances in Neural Information Processing Systems, 8:757–

763, 1996.

[15] J.-F. Cardoso and B. Laheld. Equivariant adaptive source separation. IEEE Trans. Sig.

Proc., 44(12):3017–3030, 1996.

[16] S.C. Douglas. On equivariant adaptation in blind deconvolution. In Proc. Asilomar

Conf. Signals, Syst., Comput., November 2002.

[17] S.-I. Amari, S. C. Douglas, A. Cichocki, and H. H. Yang. Multichannel blind decon-

volution and equalization using the natural gradient. In Proc. SPAWC, pages 101–104,

April 1997.

[18] R. H. Lambert. Multichannel blind deconvolution: FIR Matrix algebra and separation

of multipath mixtures. PhD thesis, University of Southern California, 1996.

[19] M. Joho, H. Mathis, and G. S. Moschytz. An FFT-based algorithm for multichannel

blind deconvolution. In Proc. ISCAS, volume 3, pages 203–206, May 1999.

[20] M. Joho, H. Mathis, and G. S. Moschytz. On frequency-domain implementations

of filtered-gradient blind deconvolution algorithms. In Proc. Asilomar Conf. Signals,

Syst., Comput., November 2002.

[21] M. Joho and P. Schniter. Frequency domain realization of a multichannel blind de-

convolution algorithm based on the natural gradient. In Proc. 4th International Sym-

posium on Independent Component Analysis and Blind Signal Separation (ICA2003),

April 2003.

[22] J.K. Tugnait. Blind equalization and channel estimation for multipleinput multipleout-

put communications systems. In Proc. ICASSP, volume 5, pages 2443–2462, 1996.

[23] S. C. Douglas, A. Cichocki, and S.-I. Amari. Quasi-Newton filtered-error and filtered-

regressor algorithms for adaptive equalization and deconvolution. In Proc. 1st IEEE

Workshop on Sig. Proc. App. Wireless Comm., 1997.

[24] D. Pham and P. Garrat. Blind separation of a mixture of independent sources through a

quasi-maximum likelihood approach. IEEE Trans. Sig. Proc., 45:1712–1725, 1997.

[25] M. Zibulevsky. Sparse source separation with relative Newton method. 2002.

[26] B. Porat. A Course in Digital Signal Processing. John Wiley & Sons, Inc., 1997.

[27] E. Moulines, J.-F. Cardoso, and E. Gassiat. Maximum likelihood for blind separation

and deconvolution of noisy signals using mixture models. 1997.

62

[28] A.J. Bell and T.J. Sejnowski. An information maximization approach to blind separa-

tion and blind deconvolution. Neural Computation, 7(6):1129–1159, 1995.

[29] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.

SIAM J. Sci. Comput., 20(1):33–61, 1998.

[30] M. Zibulevsky, B. A. Pearlmutter, P. Bofill, and P. Kisilev. Independent Components

Analysis: Principles and Practice, chapter Blind source separation by sparse decom-

position. Cambridge University Press, 2001.

[31] M. Zibulevsky, P. Kisilev, Y. Y. Zeevi, and B. A. Pearlmutter. Advances in Neural Infor-

mation Processing Systems, volume 12, chapter Blind source separation via multinode

sparse representation. MIT Press, 2002.

[32] D. P. Bertsekas. Nonlinear Programming (2nd edition). Athena Scientific, 1999.

[33] L. Mosheyev and M. Zibulevsky. Penalty/barrier multiplier algorithm for semide nite

programming. Optim. Methods Software, 13(4):235–261, 2000.

[34] L. Grippo and M. Sciandrone. Globally convergent block-coordinate techniques for un-

constrained optimization. Optimization Methods and Software, 10(4):587–637, 1999.

[35] A. M. Bronstein, M.M. Bronstein, and M. Zibulevsky. Block-coordinate relative New-

ton method for blind source separation. 2003.

[36] M. Zibulevsky. Smoothing method of multipliers for sum-max problems. 2002.

[37] S. Fiori, A. Uncini, and F. Piazza. Blind deconvolution by modified Bussgang algo-

rithm. In Proc. ICAS, 1999.

63

