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ABSTRACT 
 
Presented here is a generalization of the relative Newton method, recently proposed for quasi-
maximum likelihood blind source separation. Special structure of the Hessian matrix allows 
performing block-coordinate Newton descent, which significantly reduces the algorithm 
computational complexity and boosts its performance. Simulations based on artificial and real 
data showed that the separation quality using the proposed algorithm is superior compared to 
other accepted blind source separation methods.  
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1. INTRODUCTION 
 
The term blind source separation (BSS) refers to a wide class of problems in acoustics, medical 
signal and image processing, hyperspectral imaging, etc., where one needs to extract the 
underlying 1D or 2D sources from a set of linear mixtures without any knowledge of the mixing 
matrix. As a particular case, consider the problem of equal number of sources and mixtures, in 
which a N-channel sensor signal ( )tx  arises from N unknown scalar source signals ( )is t , 

linearly mixed by an unknown N×N invertible matrix A: 

( ) ( )At t=x s . (1) 

We wish to estimate the mixing matrix A (or, alternatively, the unmixing matrix 1W A−= ) 
and the source signal ( )ts . In the discrete-time case ( 1,...,t T= ) we can use matrix notation  
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X AS= , (2) 

where X and S are N×T matrices, containing the signals ( )ix t  and ( )is t  in the corresponding 

rows. A 2D case can be thought of in terms of (2) if the 2D mixture signals (images) are parsed 
into vectors. 

Under the assumption that the sources are stationary and white (i.e. ( )is t  are i.i.d. for every 

t), one can write down the normalized minus-log-likelihood of the observed data X:  

( ) ( )( )
,

1
W;X log det W Wi

i t

L h t
T

= − + ∑ x , (3) 

where Wi  is the i-th row of W, ( ) ( )logh f⋅ = − ⋅ , and ( )f ⋅  is the probability density function 

(pdf) of the sources. Even when ( )h ⋅  is not exactly equal to ( )log f− ⋅ , minimization of (3) leads 

to a consistent estimation, known as quasi-maximum likelihood [25]. Quasi-ML is convenient 
when the source pdf is unknown, or not well-suited for optimization.  

The relative Newton approach was recently proposed in [26], as an improvement of the 
Newton method used in [25] for quasi-maximum likelihood blind source separation. It was noted 
that the block-diagonal structure of the Hessian allows its fast approximate inversion, leading to 
the modified relative Newton step. In current work, we extend this approach by introducing a 
block-coordinate relative Newton method, which possesses faster convergence in approximately 
constant number of iterations. 

A particularly important case is when the sources are sparse or sparsely representable. In this 
case, the absolute value function, or its smooth approximation is a good choice for ( )h ⋅  [12], 

[20], [22], [27], [28], [29] (see Appendix A for explicit form of h). However, the resulting 
objective function appears especially difficult for optimization. The widely accepted natural 
gradient method shows poor convergence when the approximation of the absolute value becomes 
too sharp. The relative Newton method allows to overcome this obstacle and shows better 
convergence [26]. 

This paper consists of five sections. The second section is dedicated to the idea of relative 
optimization and the fast approximate inversion of the Hessian, which are the core of the 
modified Newton algorithm proposed in [26]. In section 3, we describe the idea of block-
coordinate optimization and show how the modified relative Newton algorithm can be improved 
using this technique. From complexity analysis of one iteration, we draw conclusions when the 
block-coordinate approach is advantageous. In section 4, we compare our block-coordinate 
method to the original modified relative Newton algorithm on simulated and real data. The focus 
of the simulation is on sparse and sparsely-representable data, which is especially hard, as 
mentioned before. Other state-of-the-art blind source separation methods are used as a reference 
point. Section 5 concludes the work.  

 
2. RELATIVE NEWTON ALGORITHM 
 
The following relative optimization (RO) algorithm for minimization of the quasi-ML function 
(2) was used in [26]: 
 

1. Start with an initial estimate ( )1W  of the separation matrix; 
2. FOR  k=1,2,…,until convergence: 
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3. Compute current source estimate ( ) ( )U = W Xk k ; 

4. Starting with V = I , compute ( )1V k+  producing a Newton step of ( )( )V;U kL . 

5. Update the estimated separation matrix ( )1W =k+  ( ) ( )1V Wk k+ .  
6. END. 

 
We should note that if instead of the Newton optimization, stage 4 is carried out using a standard 
gradient descent method, the relative (natural) gradient method [3], [11], [13] is obtained.  
 
2.1. Gradient and Hessian  
 
Using the Newton method on stage 4 of the RO algorithm requires the knowledge of the Hessian 
of ( )W;XL . Since ( )W;XL  is a function of a matrix argument, its gradient is also a matrix 

( ) ( ) ( )T T1
WG W W,X W WX XTL h− ′= ∇ = − + , (4) 

where ( )WXh′  implies element-wise application of h′ . 

The Hessian 2 L∇  can be written as a fourth-order tensor H , which is inconvenient in 
practice. Alternatively, one can convert the matrix W into a 2N -long column vector 

( )vec W=w  by row-stacking, yielding the gradient  

( ) ( ) ( )( )W,X vec W,XL L= ∇ = ∇wg w w . (5) 

The Hessian is represented as a 2 2N N×  matrix, via the differential of the gradient: 

( )H vec Gd d d= =g w . (6) 

Omitting derivation details (see [26]), the k-th column of the Hessian of the first term in (3), 
logdet W− , can be expressed as  

( )T
H vec A Ak j

i= , (7) 

where 1A W−=  and Ai  and A j  are its i-th row and j-th column, respectively, and 

( )1k i N j= − + . The Hessian of the second term, ( )( )
,

1
Wi

i t

h x t
T ∑ , is a block-diagonal matrix 

with the following N×N blocks: 

( )( ) ( ) ( )T1
B W   ;  1,...,m

m
t

h t t t m N
T

′′= =∑ x x x  (8) 

 
2.2. Basic relative Newton step 
 
The Newton direction y is given by the solution of the linear equation 

( )H ;XL= −∇y w , (9) 

where H denotes the Hessian matrix of ( );XL w , defined in (7) – (8). New iterate w is given by 

α+ = +w w y , where the step size α  is determined either by exact line search 
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( )= argmin ;XL
α

α α+w y , (10) 

or by backtracking line search: 
 

1. Start with 1α = ; 

2. WHILE ( ) ( ) ( )T;X ;X ;XL L Lα βα+ > + ∇w y w w y : 
3. Update α γα← ; 

4. END. 
 
where the common selection is 0.3β γ= = . 
 
In the RO algorithm, the optimization on stage 4 is carried out using a single Newton iteration 
with exact or backtracking line search. Given V = I , the first term of the Hessian 

( )( )2 vec I ;XL∇  becomes 

( )T TH veck i j= e e  (11) 

( ie  is the standard basis vector, containing 1 at the i-th coordinate). The second term is block-
diagonal [26]. The Newton step derived from this case will be referred to as the basic relative 
Newton step. 
 

2.3. Modified (fast) relative Newton step 
 
In [26], it was shown that the second term (8) of the Hessian can be approximated diagonally (see 
derivation details in Appendix B). The Newton step derived from this case will be referred to as 
the modified or fast Newton step.  

Using this approximation, solution of the Newton system requires the solution of ( )1
2 1N N −  

systems of 2×2 linear equations  

D Y Y G    ;   1,..., ,   1,..., 1

D Y Y G
ij ij ji ij

ji ji ij ji

i N j i+ = = = −

+ =
 (13) 

in order to find the off-diagonal elements, and 1×1 systems 

D Y Y Gii ii ii ii+ =  (14) 

in order to find the diagonal elements (D is a N×N  matrix containing the raw-packed diagonal of 
the second term Hessian).  

Computing the Hessian diagonal according to (12) requires 2N T  operations; solution cost of 
the set of the 2×2 equations (13) is about 215N  operations. This implies that the modified 
Newton step has the asymptotic complexity of a gradient descent step. 
  
3. BLOCK-COORDINATE RELATIVE NEWTON ALGORITHM 
 
Block-coordinate optimization is based on decomposition of the vector variable into components 
(blocks of coordinates) and producing optimization steps in the respective block subspaces in a 
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sequential manner. Such algorithms usually have two loops: a step over block (inner iteration), 
and a pass over all blocks (outer iteration). 

The main motivation for the use of block-coordinate methods can be that when most 
variables are fixed, we often obtain subproblems in the remaining variables, which can be solved 
efficiently. In many cases, block-coordinate approaches require significantly less outer iterations 
compared to conventional methods [16]. 

In our problem, the Hessian is approximately separable with respect to the pairs of symmetric 
elements of W, i.e. the Newton system splits into a set of 2×2 systems. This brings us to the idea 
of applying the Newton step block-coordinately on these pairs. As we will see from the 
complexity analysis, the relative cost of the nonlinearity computation becomes dominate in this 
case, therefore, we can do one step further and use blocks of larger size, pair-wise symmetric.  

The matrix W can be considered as consisting of  M N K=  blocks of size K K× : 

1,1 1,

,1 ,

W ... W
W ... ...

W ... W

M

M M M

 
 =  
  

 (15) 

The block-coordinate modified relative Newton step (as opposed to the full modified relative 
Newton step described in section 2.4) is performed by applying the relative Newton algorithm to 
the subspace of two blocks Wij  and W ji  at a time, while fixing the rest of the matrix elements. In 

order to update all the entries of W, ( ) 21 2N N K−  inner iterations are required.  

We obtain the following block-coordinate relative Newton algorithm: 
 

1. Start with an initial estimate ( )1W ; 
2. FOR k = 1,2,…,until convergence: 

3. FOR i = 1,2,…,M, 
4. FOR j = i, …,M, 

5. Efficiently update current source estimate ( ) ( )U = W Xk k , as shown later on; 
6. Starting with V = I , compute ( )1V k+  producing one block-coordinate Newton step 

with the blocks Wij  and W ji  using (13) – (14).  

7. Update ( )1W =k+  ( ) ( )1V Wk k+ .  
8. END. 

9. END. 
10. END. 
 

Since only few elements of W  are updated at each inner iteration, evaluation of the cost function, 
its gradient and Hessian can be significantly simplified. In the term ( )W tx , only 2K elements are 

updated and consequently, the non-linearity h is applied to a 2K×T stripe to update the sum 
( )( )

,

Wi
i t

h t∑ x . 

Since at each inner step the identity matrix I is substituted as an initial value of W, the 
updated matrix will be of the form 
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K K

K K

K K

K K

I W
I

W
W I

I

ij

ji

×

×

×

×

 
 
 =
 
 
  

. (16) 

It can be easily shown that the computation of the determinant of W in (16) can be reduced to   

K K

K K

I Wˆ ˆdetW detW   ;   W
W I

ij

ji

×

×

 
= =  

 
, (17) 

and carried out in 2K3 operations. 
Similarly, the computation of the gradient requires applying h′  to the updated 2K×T stripe of 

WX  and multiplying the result by the corresponding 2K×T stripe of TX . In addition, the 
gradient requires inversion of W, which can be done using the matrix Ŵ . When i j≠ , the 

inverse matrix 1A W−=  consists of a unit diagonal, two blocks on the diagonal  ( Aii , A jj ) and 

two off-diagonal blocks ( Aij , A ji ). These blocks can be obtained by the inversion of Ŵ : 

1 A Aˆ ˆA W
A A

ii ij

ji jj

−  
= =  

 
. (18) 

Computation of (18) also requires 2K3 operations. To compute the Hessian, one should update 2K 
elements in ( ) ( )Tt tx x  for each t = 1,…,T and apply h′′  to the updated 2K×T stripe of WX . 

 
3.1. Iteration complexity 
 
For convenience, we denote as 1α , 2α  and 3α  the number of operations required for the 
computation of the non-linearity h and its derivatives h′  and h′′ , respectively (see Appendix A). 
A reasonable estimate of these constants for h in (22)-(23) is 1 2 36,  2,  2α α α= = = . We will also 
use 1 2 3α α α α= + + . 

A single block-coordinate relative Newton inner iteration involves computation of the cost 
function, its gradient and Hessian, whose respective complexities are ( )2 3

12 K T K KTα+ + , 

( )2 3
22 K T K KTα+ +  and ( )( )2

32 1K T KTα+ + . In order to compute the Newton direction, 2K  

systems of equations of size 2×2 have to be solved, yielding in total solution of ( )1
2 1N N −  

systems per outer iteration, independent of K. Other operations have negligible complexity. 
Therefore, a single block-coordinate outer Newton iteration will require about 

( )( )2 3 1N T Kα+ +  operations. Substituting K = N, the algorithm degenerates to the relative 

Newton method, with the complexity of about 23N T . Therefore, the block-coordinate approach 
with K×K blocks is advantageous, if the full relative Newton method requires more iterations by 
the factor 

1
1

3K
α

β
+

> + , (19) 
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Since line search is likely to require more iterations in a high-dimensional problem, 
additional reduction of the computation complexity may be obtained when K is sufficiently small 
compared to N. 
 
3.2. Update of the smoothing parameter 
 
Optimization of the likelihood function becomes difficult with the decrease of the smoothing 
parameter λ. To overcome this problem, it was proposed in [26] to perform sequential 
optimization, gradually decreasing the value of  λ.  

Let us denote  

( ) ( )( )
,

1
W;X; log det W Wi

i t

L h t
T λλ = − + ∑ x , (20) 

where hλ  is a parametric nonlinearity in (22). The sequential optimization algorithm has the 
following form: 
 

1. Start with ( )1λ  and an initial estimate ( )1W ; 
2. FOR k = 1,2,…,until convergence: 

3. FOR i = 1,2,…,M, 
4. FOR j = i, …,M, 

5. Efficiently update current source estimate ( ) ( )U = W Xk k , as shown later on; 
6. Starting with V = I , compute ( )1V k+  producing one block-coordinate Newton step 

with the blocks Wij  and W ji . 

7. Update ( )1W =k+  ( ) ( )1V Wk k+ .  
8. END. 

9. END. 
10. Update the smoothing parameter ( ) ( )1    ;   1k kλ µλ µ+ = < . 

11. END. 
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Figure 1 – Waveform of audio source 25, part from Brahms Violin Sonata No. 3 (A) and its 
sparse representation using the STFT (B). Natural image source 30 (C) and its sparse 
representation using the discrete directional derivatives (B).  
 
4. COMPUTATIONAL RESULTS 
 
The main focus of the simulation is on sparse and sparsely-representable sources. For numerical 
experiments, three data sets were used: artificial sparse signals (set I), audio signals (set II) and 
natural images (set III). These data sets are described in subsections 4.1 – 4.3. Data sets II and III 
were not originally sparse, and thus not the corresponding mixtures. However, if the sources are 
sparsely representable, i.e. there exists a linear transformation T, such that ( )T is t  are sparse, due 

to linearity of (1), one can apply T on the mixtures ( )ix t  rather than on the sources to obtain 

sparse data [27], [28], [29]. Then, separation algorithm is applied on ( )T ix t .  

Sparse representation of acoustic signals was obtained by the short time Fourier transform 
(STFT) as in [5] and [28]. In natural images, empirical observations show that the edges are 
sparse [6], hence one of the simplest sparse representation, the discrete derivative, was adopted 
here (see Figure 1). In all the experiments, the sources were artificially mixed using an invertible 
random matrix with uniform i.i.d. elements. 

The separation quality (in terms of the interference-to-signal ratio (ISR) in dB units) of the 
relative Newton method was compared with this of stochastic natural gradient (Infomax) [13], 
[3], [11], [21], Fast ICA [17], [18] and JADE [9], [10]. In addition, the dependence of the 
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computational complexity (the total number of multiplications performed) on the block size was 
compared in the block-coordinate relative Newton algorithm. In all cases, the relative Newton 
optimization was stopped after the gradient norm reached 10-10. 

We observed in numerous simulations that without sparse representation, Infomax, JADE and 
Fast ICA algorithms produced worse results (this corresponds to the recent observations, e.g. in 
[27], that sparse representation allows improve the performance of blind source separation 
algorithms). Hence, in order to make the comparison fair, we applied all the algorithms on 
“sparsified” data rather than on the original one. 
 
4.1. Sparse sources 
 
First, the block coordinate relative Newton method was tested on sparse sources with the 
Bernoulli-Gaussian distribution, 

( ) ( ) ( )
2

22

1
1 exp

22

s
f s p s pδ

σπσ

 −
= + −  

 
 

(21) 

generated using the MATLAB function sprandn (with p = 0.5 and σ = 1) and mixed using a 
random matrix. The block-coordinate algorithm (with block size K = 1, 3, 5 and 10) was 
compared to the full relative Newton algorithm (K = N) on problems of different size (N  from 3 
to 50 in integer multiplies of K; T = 103). The total number of the cost function, its gradient and 
Hessian evaluations was recorded and was used for complexity computation. On problems of 
different size, the experiments were repeated 10 times with different random mixing matrices. 
Figures 2 and 3 show the mean and the standard deviation values on these runs. 

Remarkably, the number of outer iterations is approximately constant with the number of 
sources N in the block-coordinate method, as opposed to the full relative Newton method (see 
Figure 2). Particularly, for K = 1 the number of outer iterations is about 10. Furthermore, the 
contribution of the non-linearity computation to the overall complexity is decreasing with the 
block size K. Hence, it explains why in Figure 3 the complexity normalized by the factor N2T is 
almost the same for blocks of size K = 1, 3, 5 and 10. However, CPU architecture considerations 
may make larger blocks preferable.  

The block-coordinate algorithm outperformed the relative Newton algorithm by about 3.5 
times for N = 55. Figure 4 shows the average function and gradient evaluations on each line 
search step. It can be seen that this number increases with the block size.  

As a reference point, N = 30 sparse sources of length T = 104, mixed by a random matrix, 
were separated using the relative Newton method (with λ = 10-7), Infomax, Fast ICA and JADE 
algorithms. Table I shows that the ISRs of the separated sources are superior using our algorithm.   

 
4.2. Audio sources 
 
As natural audio sources, we took N = 30 instrumental and vocal music recordings (5 sec. at 
11025 Hz sampling rate; the first 50000 samples were used). The mixtures were sparsely 
represented using the STFT (MATLAB function specgram), whose real and imaginary parts 
were concatenated and parsed into vectors, and then separated using the mentioned algorithms. In 
the relative Newton method, the smoothing parameter λ = 0.01 was used. Table II compares the 
separation quality obtained using the relative Newton, Infomax, Fast ICA and JADE algorithms. 
In this experiment, our algorithm appears to be the best1. 
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Using part of the data set II (20 first sources), we performed a test of the block-coordinate 
relative Newton method with different block size. Figure 5 depicts the gradient norm (A) and the 
ISR of the separated sources (B) in the block-coordinate relative Newton method, as function of 
the computational complexity. The curves are average on 10 runs with random mixing matrices.  
Different curves correspond to blocks of size K = 2, 5, 10, 20, where the last one is the full 
relative Newton method [26]. Shaded areas denote the corresponding standard deviations. One 
can see that the block-coordinate approach yields faster convergence than full Newton.  

 
4.3. Natural images 
 
In the last experiment, N = 30 natural 200×200 images were taken (see Figure 6). The mixtures 
were sparsely represented using X- and Y-discrete derivatives concatenated and parsed into a 
vector (T = 80000), and then separated using the mentioned algorithms. In the relative Newton 
method, the smoothing parameter λ = 0.01 was used. 

Table II compares the separation quality obtained using the relative Newton, Infomax, Fast 
ICA and JADE algorithms; in this experiment as well, our algorithm appears to be the best2. We 
also performed a test of the block-coordinate relative Newton method with different block size. 
Figure 7 depicts the gradient norm (A) and the ISR of the separated sources (B) in the block-
coordinate relative Newton method, as function of the computational complexity. The curves are 
average on 10 runs with random mixing matrices.  Different curves correspond to blocks of size 
K = 5, 15, 30, where K = 30 is the full relative Newton method [26]. Shaded areas denote the 
corresponding standard deviations. One can see that the block-coordinate approach yields faster 
convergence than full Newton. 
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Figure 2 – Average number of outer iterations vs. the number of sources N for different block 
sizes K. 
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Figure 3 – Normalized complexity vs. the number of sources N for different block sizes K. 
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Figure 4 – Average number of function and gradient evaluations in line search vs. the number of 
sources N for different block sizes K. 
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Figure 5 – Separation of 20 audio sources from data set II using the block-coordinate relative 
Newton method, for blocks of different size K (K=20 corresponds to full relative Newton) 
Gradient norm (A) and ISR (B) vs. the number of multiplications (average on 10 runs with 
random mixing matrices. Shaded areas denote standard deviation). 
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Figure 6 – the sources (A) and examples of the first 6 mixtures (B). 
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Figure 7 – Separation of 30 natural image sources from data set III using the block-coordinate 
relative Newton method, for blocks of different size K (K=30 corresponds to full relative Newton) 
Gradient norm (A) and ISR (B) vs. the number of multiplications (average on 10 runs with 
random mixing matrices. Shaded areas denote standard deviation). 
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Table I – separation quality of sparse signals (data set I) 
 
ISR [dB] NEWTON INFOMAX FASTICA JADE 
Best −172.9769 dB −34.3449 dB −23.8166 dB −26.7835 dB 
Worst −167.9964 dB −29.6393 dB −18.6372 dB −21.8914 dB 
Mean −170.3825 dB −31.8812 dB −21.3462 dB −24.2529 dB 
 

Table II – separation quality of audio signals (data set II) 
 

ISR [dB] NEWTON INFOMAX FASTICA JADE 
Best −46.6823 dB −37.3401 dB −25.1501 dB −25.7798 dB 
Worst −25.7237 dB −23.3460 dB −2.1066 dB −9.0165 dB 
Mean −35.7882 dB −29.8169 dB −17.2189 dB −18.8159 dB 
 

Table III – separation quality of images (data set III) 
 
ISR [dB] NEWTON INFOMAX FASTICA JADE 
Best −57.3494 dB −38.5244 dB −30.5364 dB −32.3508 dB 
Worst −31.7391 dB −25.6605 dB −19.7479 dB −22.1477 dB 
Mean −40.0111 dB −33.1128 dB −24.7007 dB −27.8450 dB 
 
 
5. CONCLUSIONS 
 

We presented a block-coordinate version of the relative Newton algorithm for quasi-ML 
blind source separation. The most intriguing property, demonstrated by computational 
experiments, is the almost constant number of iterations (independent of the number of sources) 
of the block-coordinate relative Newton algorithm. Though formal mathematical explanation of 
this phenomenon is an open question at this point, it is of very high importance for practical 
applications. 

In large problems, we observed a nearly three-fold reduction of the computational burden of 
the modified Newton method by using the block-coordinate approach. The use of an accurate 
approximation of the absolute value nonlinearity in the quasi-ML function leads to accurate 
separation of sources, which have sparse representation (e.g. by means of STFT, wavelets, 
discrete derivative, etc.). We must stress that the method is general and is applicable to other 
distributions of sources (not necessarily sparse). 
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APPENDIX A – SMOOTH APPROXIMATION OF THE ABSOLUTE VALUE 
 
We use a parametric family of functions 

( ) ( )0 0

1
;    ;

1
t

h t t h t h
t

λ λ
λ

 = + =  +  
, (22) 

which smoothly approximates t  up to an additive constant, where 0λ >  is a smoothing 

parameter. The corresponding derivatives of h are given by 

( ) ( ) ( )
( )

( )
( )0 02 3

2
   ;   

1 1

sign t
h t sign t h t

t t
′ ′′= − =

+ +
. (23) 

This type of nonlinearity has a relatively low computational complexity. 
 
APPENDIX B – MODIFIED RELATIVE NEWTON STEP 
 
Following [26], we use a diagonal approximation of the second term (8) of the Hessian. Under the 
assumption of independent and zero mean sources, we have the following zero expectation: 

( )( ) ( ) ( ){ }E 0   ;   ,m i jh s t s t s t m i j′′ = ≠ , (24) 

where ( )S = U k . Hence, the off-diagonal elements Bm
ij  in (8) vanish as the sample size T grows, 

which yields a further simplification of the second term of the Hessian:  

( )( ) ( )1
B  ; 1,.., ; 1,...m

ii m i
t

h t t i N m N
T

′′= = =∑ u u , (25) 

( ( )m tu  are current estimates of the sources).  

The diagonal Hessian approximation greatly simplifies the Newton direction computation. 
Let us pack the diagonal of the 2 2N N×  Hessian matrix in (25) into a N N×  matrix D, row by 
row. The differential of the gradient obtains the form [26]: 

TG W W D Wd d d d= = + eH , (26) 
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where e  denotes the Hadamard product (element-wise matrix multiplication). For an arbitrary 
matrix Y,  

TY Y D Y= + eH , (27) 

Solution of the Newton system  
TY D Y G+ =e , (28) 

requires the solution of ( )1
2 1N N −  systems of 2×2 linear equations  

D Y Y G    ;   1,..., ,   1,..., 1

D Y Y G
ij ij ji ij

ji ji ij ji

i N j i+ = = = −

+ =
 (29) 

in order to find the off-diagonal elements, and 1×1 systems 

D Y Y Gii ii ii ii+ =  (30) 

in order to find the diagonal elements. In order to guarantee global convergence, the Newton 
system is modified by forcing positive eigenvalues [15], [26]. 
 
 
FOOTNOTES 
 
1 Complete results are available at http://visl.technion.ac.il/bron/works/bss/newton/audio.html. 
 
2 Complete results are available at http://visl.technion.ac.il/bron/works/bss/newton/images.html. 
 
 
 




