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Abstract

In continuation to an earlier work, we further consider the problem of robust estimation of a random

vector (or signal), with an uncertain covariance matrix, that is observed through a known linear transfor-

mation and corrupted by additive noise with a known covariance matrix. While in the earlier work, we

developed and proposed a competitive minimax approach of minimizing the worst–case mean-squared er-

ror (MSE) difference regret criterion, here we study, in the same spirit, the minimum worst–case MSE ratio

regret criterion, namely, the worst–case ratio (rather than difference) between the MSE attainable using

a linear estimator, ignorant of the exact signal covariance, and the minimum MSE (MMSE) attainable

by optimum linear estimation with a known signal covariance. We present the optimal linear estimator,

under this criterion, in two ways: The first is as a solution to a certain semidefinite programming (SDP)

problem, and the second is as an expression which is of closed form up to a single parameter whose value

can be found by a simple line search procedure. We then show that the linear minimax ratio regret

estimator can also be interpreted as the MMSE estimator that minimizes the MSE for a certain choice

of signal covariance that depends on the uncertainty region. We demonstrate that in applications, the

proposed minimax MSE ratio regret approach may outperform the well–known minimax MSE approach,

the minimax MSE difference regret approach, and the “plug–in” approach, where in the latter, one uses

the MMSE estimator with an estimated covariance matrix replacing the true unknown covariance.
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1 Introduction

The classical solutions to the problem of optimum linear estimation and filtering, dating back to Wiener [1]

and Kolmogorov [2], are well-known to be sensitive to the exact knowledge of the second order statistics of

the signal and noise. However, in a wide range of practical applications, these statistics may, unfortunately,

be subjected to uncertainties. This fact has been the origin of the need for solid theories and methodologies

of designing robust estimators and filters whose performance remains relatively insensitive and reasonably

good across the region of uncertainty.

The most common approach to handle such uncertainties, has been the minimax approach, initiated by

Huber [4, 5]. According to this approach, an estimator is sought to minimize the worst–case mean-squared

error (MSE) over a given uncertainty class of spectral densities [6, 7, 8, 3, 9]. The idea of using minimax

criteria for devising robust schemes that circumvent uncertainties, has been applied in quite a few additional

problem areas in communications, signal processing, and statistics (see, e.g., [11, 3] and references therein).

In spite of the widespread use of the minimax approach, its performance sometimes turns out to be

disappointingly poor. The reason seems to be rooted in the very definition of the minimax criterion, which

is fundamentally pessimistic in nature: Optimizing performance for the worst case, might come at the

expense of deteriorated performance in all other cases, since in this worst case, the conditions may be so

poor, that they leave very little or no room for powerful solution strategies.

In light of this fact, to improve the performance of the ordinary minimax MSE approach, we have studied,

in an earlier work [28], a modified minimax criterion, which is competitive in character. This competitive

minimax criterion has been derived in [28] in the context of a simple linear model. Specifically, given an

observation vector, resulting from a known linear transformation of the desired vector (or signal) to be

estimated, and corrupted by an uncorrelated additive noise vector with a known covariance matrix, we

sought in [28] a linear estimator, which is robust to covariance uncertainties of the desired signal, using the

following approach: Rather than minimizing the worst–case (total) MSE, we derived the linear estimator

that minimizes the worst–case difference regret, namely, the worst–case difference between the MSE of a

linear estimator, ignorant of the exact signal covariance, and the MSE of the linear optimal estimator based

on the exact signal covariance. The rationale was that such an estimator performs uniformly as close as

possible to the linear optimal estimator across the uncertainty region, and since the minimax criterion is

applied to the difference of MSE’s, rather than the total MSE, it is not so pessimistic as the ordinary

minimax approach. The same idea was also applied in [19] for the case where the unknown desired vector

is deterministic rather than stochastic. As we have pointed out in [28], the competitive minimax approach
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is by no means new, as a general concept. It has been used extensively in a variety of other problem areas,

such as, universal source coding [20], hypothesis testing [21, 22], and prediction (see [23] for a survey and

references therein).

A possible drawback of the difference regret approach is that the value of the regret may not adequately

reflect the estimator performance, since even a large regret should be considered insignificant if the value

of the optimal MSE is relatively large. On the other hand, if the optimal MSE is small, then even a small

regret should be considered significant. Therefore, instead of considering the worst-case difference regret we

suggest developing a minimax ratio estimator that minimizes the worst-case ratio between the MSE of a

linear estimator that does not know the signal covariance, and the best possible MSE. Generally speaking,

the rationale is that, as before, such an estimator performs uniformly as close as possible to the linear

optimal estimator across the uncertainty region, but where now the MSE is measured in dB. This makes

sense as one might expect the relative loss in MSE performance to be scale–invariant.

In this paper, we study robust linear estimation for the same linear model under the criterion of minimax

ratio–regret, rather than the difference–regret. We present the optimal linear estimator, under this new

criterion, in two ways: The first representation is as a solution to a certain semidefinite programming

(SDP) problem. This is practically meaningful since SDP programs are efficiently executable using standard

software packages. The second representation is as an analytical expression, which is of closed form up to a

single parameter whose value can be found by a simple line search procedure. We also show that the linear

minimax ratio regret estimator, or for short, the minimax ratio estimator, can be interpreted as the MMSE

estimator corresponding to a certain choice of signal covariance that depends on the uncertainty region. We

demonstrate that in applications, the proposed minimax MSE ratio–regret approach may outperform the

ordinary MSE approach, the minimax MSE difference–regret approach, and the “plug–in” approach, where

in the latter, one uses the MMSE estimator with an estimated covariance matrix replacing the true unknown

covariance.

The outline of this paper is as follows. In Section 2, we formulate the problem. In Section 3, we present

the problem as an SDP. In Section 4, the alternative, closed–form solution is derived, and finally, in Section

5, performance is demonstrated through several examples.
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2 Problem Formulation

In the sequel, we denote vectors in C
m by boldface lowercase letters and matrices in C

n×m by boldface

uppercase letters. The matrix I denotes the identity matrix of the appropriate dimension, (·)∗ denotes the

Hermitian conjugate of the corresponding matrix, and (̂·) denotes an estimated vector. The cross-covariance

matrix between the random vectors x and y is denoted by Cxy, and the covariance matrix of x is denoted

by Cx.

Consider the problem of estimating the unknown parameters x in the linear model

y = Hx + w, (1)

where H is a known n×m matrix with rank m, x is a zero-mean, length-m random vector with covariance

matrix Cx and w is a zero-mean, length-n random vector with known positive definite covariance Cw,

uncorrelated with x. We assume that we only have partial information about the covariance Cx.

We seek to estimate x using a linear estimator so that x̂ = Gy for some m × n matrix G. We would

like to design an estimator x̂ of x to minimize the MSE, which is given by

E(‖x̂ − x‖2) = Tr(Cx) + Tr(Cx̂) − 2Tr(Cxx̂)

= Tr(Cx) + Tr(G(HCxH∗ + Cw)G∗) − 2Tr(CxH∗G∗)

= Tr (GCwG∗) + Tr (Cx(I − GH)∗(I − GH)) . (2)

If Cx is known, then the linear estimator minimizing (2) is the MMSE estimator [14]

x̂ = CxH∗(HCxH∗ + Cw)−1y. (3)

An alternative form for x̂, that is sometimes more convenient, can be obtained by applying the matrix

inversion lemma [24] to (HCxH∗ + Cw)−1 resulting in

(HCxH∗ + Cw)−1 = C−1
w − C−1

w HCx(H∗C−1
w HCx + I)−1H∗C−1

w . (4)

Substituting (4) into (3), the MMSE estimator x̂ can be expressed as

x̂ = Cx

(
I − H∗C−1

w HCx(H∗C−1
w HCx + I)−1

)
H∗C−1

w y
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= Cx(H∗C−1
w HCx + I)−1H∗C−1

w y. (5)

If Cx is unknown, then we cannot implement the MMSE estimator (3). In this case, we may choose

an estimator to optimize a worst-case performance measure, over all covariance matrices in the region of

uncertainty. To reflect the uncertainty in our knowledge of the true covariance matrix, we consider an

uncertainty model that resembles the “band model” widely used in the continuous-time case [7, 25, 26, 3],

and is the same as the model considered in [28]. Specifically, we assume that Cx and H∗C−1
w H have the

same eigenvector matrix1, and that each of the nonnegative eigenvalues δi ≥ 0, 1 ≤ i ≤ m of Cx satisfies

li ≤ δi ≤ ui, 1 ≤ i ≤ m, (6)

where li ≥ 0 and ui are known.

The assumption that Cx and H∗C−1
w H have the same eigenvector matrix is made for analytical tractabil-

ity. If x is a stationary random vector and H represents convolution of x with some filter, then both Cx and

H will be Toeplitz matrices and are therefore approximately diagonalized by a Fourier transform matrix, so

that in this general case Cx and H∗C−1
w H approximately have the same eigenvector matrix [27].

In our development, we explicitly assume that the joint eigenvector matrix of Cx and H∗C−1
w H is given.

In practice, if the eigenvalues of H∗C−1
w H have geometric multiplicity one, then we choose the eigenvector

matrix of Cx to be equal to the eigenvector matrix of H∗C−1
w H. In the case in which the eigenvector matrix

of H∗C−1
w H is not uniquely specified, e.g., in the case in which H∗C−1

w H is proportional to I, as in one of

the examples in Section 5, we may resolve this ambiguity by estimating the eigenvector matrix of Cx from

the data.

The model (6) is reasonable when the covariance is estimated from the data. Specifically, denoting by

ζi = (ui + li)/2, εi = (ui − li)/2 for 1 ≤ i ≤ m, the conditions (6) can equivalently be expressed as

δi = ζi + ei, e2
i ≤ ε2

i , 1 ≤ i ≤ m, (7)

so that each of the eigenvalues of Cx lies in an interval of length 2εi around some nominal value ζi which

we can think of as an estimate of the ith eigenvalue of Cx from the data vector y. The interval specified by

εi may be regarded as a confidence interval around our estimate ζi and can be chosen to be proportional to

the standard deviation of the estimate ζi.

1If the eigenvalues of H∗C−1
w H and Cx have geometric multiplicity 1, then H∗C−1

w H and Cx have the same eigenvector
matrix if and only if they commute [24].
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Given {ζi}, a straightforward approach to estimating x is to use an MMSE estimate corresponding to the

estimated covariance. However, as demonstrated in [28] and in Section 5, by taking an uncertainty interval

around ζi into account, and seeking a competitive minimax estimator in this interval, we can further improve

the estimation performance.

To develop a competitive estimator, we consider a minimax ratio criterion, in which the estimator is

obtained by minimizing the worst-case ratio between the MSE of a linear estimator that does not know

the signal covariance, and the best possible MSE. In Section 3, we show that the minimax ratio estimator

can be formulated as an SDP. In Section 4 we use the necessary and sufficient conditions for optimality of

an SDP to develop more insight into the minimax ratio estimator. Specifically, we show that the minimax

ratio estimator is an MMSE estimator matched to a covariance matrix which depends on a single parameter

that can be found using a simple line search algorithm, for example, using the bisection method. In the

examples in Section 5, we demonstrate that the minimax ratio estimator can improve the performance over

the minimax MSE estimator and the minimax regret estimator of [28] for low SNR values.

3 The Minimax Ratio Estimator

We seek the linear estimator x̂ that minimizes the worst-case ratio R(Cx,G), which is defined as the ratio

between the MSE using an estimator x̂ = Gy, and the smallest possible MSE attainable with an estimator

of the form x̂ = G(Cx)y when the covariance Cx is known, which we denote by MSEo.

If Cx is known, then the MMSE estimator is given by (3) and the resulting optimal MSE is

MSEo = Tr(Cx) − Tr(CxH∗(HCxH∗ + Cw)−1HCx). (8)

From (4) and (5), we have that CxH∗(HCxH∗ + Cw)−1 = Cx(H∗C−1
w HCx + I)−1H∗C−1

w , so that (8) can

be written in the equivalent form,

MSEo = Tr
(
Cx

(
I − (H∗C−1

w HCx + I)−1H∗C−1
w HCx

))
= Tr

(
Cx(H∗C−1

w HCx + I)−1
)
, (9)

which will be more convenient for our derivations.

Thus, we seek the matrix G that is the solution to the problem

min
G

max
li≤δi≤ui

R(Cx,G), (10)
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where

R(Cx,G) =
E(‖Gy − x‖2)

MSEo =
Tr(GCwG∗) + Tr (Cx(I − GH)∗(I − GH))

Tr
(
Cx(H∗C−1

w HCx + I)−1
) , (11)

which can alternatively be expressed as

min
γ,G

γ (12)

subject to

max
li≤δi≤ui

{
Tr(GCwG∗) + Tr (Cx(I − GH)∗(I − GH))

Tr
(
Cx(H∗C−1

w HCx + I)−1
) }

≤ γ. (13)

The constraint (13) is equivalent to

Tr(GCwG∗) + Tr (Cx(I − GH)∗(I − GH)) − γTr
(
Cx(H∗C−1

w HCx + I)−1
) ≤ 0, ∀ li ≤ δi ≤ ui, (14)

or,

max
li≤δi≤ui

{
Tr(GCwG∗) + Tr (Cx(I − GH)∗(I − GH)) − γTr

(
Cx(H∗C−1

w HCx + I)−1
)} ≤ 0. (15)

Thus, the problem of (10) is equivalent to (12) subject to (15).

We now show that the problem of (12) and (15) can be formulated as a convex semidefinite programming

(SDP) problem [15, 16, 17], which is the problem of minimizing a linear functional subject to linear matrix

inequalities (LMIs), i.e., matrix inequalities in which the matrices depend linearly on the unknowns. (Note

that even though the matrices are linear in the unknowns, the inequalities are nonlinear since a positive

semidefinite constraint on a matrix reduces to nonlinear constraints on the matrix elements.) The main

advantage of the SDP formulation is that it readily lends itself to efficient computational methods. Specifi-

cally, by exploiting the many well known algorithms for solving SDPs [16, 15], e.g., interior point methods2

[17, 18], which are guaranteed to converge to the global optimum, the optimal estimator can be computed

very efficiently in polynomial time. Using principles of duality theory in vector space optimization, the SDP

formulation can also be used to derive optimality conditions.

After a description of the general SDP problem in Section 3.1, in Section 3.2, we show that our minimax

problem can be formulated as an SDP. In Section 4, we use the SDP formulation to develop more insight

into the minimax ratio estimator.

2Interior point methods are iterative algorithms that terminate once a pre-specified accuracy has been reached. A worst case
analysis of interior point methods shows that the effort required to solve an SDP to a given accuracy grows no faster than a
polynomial of the problem size. In practice, the algorithms behave much better than predicted by the worst case analysis, and
in fact in many cases the number of iterations is almost constant in the size of the problem.
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3.1 Semidefinite Programming

A standard SDP is the problem of minimizing

P (x) = c∗x (16)

subject to

F(x) ≥ 0, (17)

where

F(x) = F0 +
m∑

i=1

xiFi. (18)

Here x ∈ Rm is the vector to be optimized, xi denotes the ith component of x, c is a given vector in Rm,

and Fi are given matrices in the space Bn of n × n Hermitian matrices3.

The constraint (17) is an LMI, in which the unknowns xi appear linearly. Indeed, any constraint of the

form A(x) ≥ 0 where the matrix A depends linearly on x can be put in the form of (17).

The problem of (16) and (17) is referred to as the primal problem. A vector x is said to be primal feasible

if F(x) ≥ 0, and is strictly primal feasible if F(x) > 0. If there exists a strictly feasible point, then the

primal problem is said to be strictly feasible. We denote the optimal value of P (x) by P̂ .

An SDP is a convex optimization problem and can be solved very efficiently. Furthermore, iterative

algorithms for solving SDPs are guaranteed to converge to the global minimum. The SDP formulation can

also be used to derive necessary and sufficient conditions for optimality by exploiting principles of duality

theory. The essential idea is to formulate a dual problem of the form maxZ D(Z) for some linear functional

D whose maximal value D̂ serves as a certificate for P̂ . That is, for all feasible values of Z ∈ Bn, i.e., values

of Z ∈ Bn that satisfy a certain set of constraints, and for all feasible values of x, D(Z) ≤ P (x), so that the

dual problem provides a lower bound on the optimal value of the original (primal) problem. If in addition

we can establish that P̂ = D̂, then this equality can be used to develop conditions of optimality on x.

The dual problem associated with the SDP of (16) and (17) is the problem of maximizing

D(Z) = −Tr(F0Z) (19)

3Although typically in the literature the matrices Fi are restricted to be real and symmetric, the SDP formulation can
be easily extended to include Hermitian matrices Fi; see e.g., [29]. In addition, many of the standard software packages for
efficiently solving SDPs, for example the Self-Dual-Minimization (SeDuMi) package [30, 31], allow for Hermitian matrices.

8



subject to

Tr(FiZ) = ci, 1 ≤ i ≤ m; (20)

Z ≥ 0, (21)

where Z ∈ Bn. A matrix Z ∈ Bn is said to be dual feasible if it satisfies (20) and (21) and is strictly dual

feasible if it satisfies (20) and Z > 0. If there exists a strictly feasible point, then the dual problem is said

to be strictly feasible.

For any feasible x and Z we have that

P (x) − D(Z) = c∗x + Tr(F0Z) =
m∑

i=1

xiTr(FiZ) + Tr(F0Z) = Tr(F(x)Z) ≥ 0, (22)

so that as required, D(Z) ≤ P (x). Furthermore, it can be shown that if either the primal or the dual

problem are strictly feasible, then P̂ = D̂ and x is an optimal primal point if and only if x is primal feasible,

and there exists a dual feasible Z ∈ Bn such that

ZF(x) = 0. (23)

Equation (23) together with (20), (21) and (17) constitute a set of necessary and sufficient conditions for x

to be an optimal solution to the problem of (16) and (17), when either the primal or the dual are strictly

feasible.

3.2 Semidefinite Programming Formulation of the Estimation Problem

In Theorem 1 below, we show that the problem of (12) and (15) can be formulated as an SDP.

Theorem 1. Let x denote the unknown parameters in the model y = Hx + w, where H is a known n × m

matrix with rank m, x is a zero-mean random vector uncorrelated with w with covariance Cx and w is a

zero-mean random vector with covariance Cw. Let H∗C−1
w H = VΛV∗ where V is a unitary matrix and Λ

is an m × m diagonal matrix with diagonal elements λi > 0 and let Cx = V∆V∗ where ∆ is an m × m

diagonal matrix with diagonal elements 0 ≤ li ≤ δi ≤ ui. Then the solution to the problem

min
x̂=Gy

max
li≤δi≤ui

{
E(‖x̂ − x‖2)

minx̂=G(x)y E(‖x̂ − x‖2)

}
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has the form

x̂ = VDΛ−1V∗H∗C−1
w y,

where D is an m × m diagonal matrix with diagonal elements di that are the solution to the semidefinite

programming problem

min
ti,di,α,γ

γ, (24)

subject to


αi

tiλ
2
i

2 + λi(γ−1)
2 λi(di − 1)

tiλ
2
i

2 + λi(γ−1)
2 tiλi(λiζi + 1) + λiζi(γ − 1) − αiε

2
i di(1 + λiζi) − λiζi

λi(di − 1) di(1 + λiζi) − λiζi 1

 ≥ 0, 1 ≤ i ≤ m;

∑m
i=1 ti ≤ 0, (25)

with ζi = (ui + li)/2 and εi = (ui − li)/2.

Proof. We prove Theorem 1 in three stages. First, we show that the optimal G has the form

G = VDΛ−1V∗H∗C−1
w , (26)

for some m × m matrix D. We then show that D must be a diagonal matrix. Finally, we develop an

expression for the diagonal elements of D. The first two parts of the proof are similar to the proof of

Theorem 3 in [28].

We begin by showing that the optimal G has the form given by (26). To this end, note that the ratio

R(Cx,G) of (11) depends on G only through GH and Tr(GCwG∗). Now, for any choice of G,

Tr(GCwG∗) = Tr(GC1/2
w PC1/2

w G∗) + Tr(GC1/2
w (I − P)C1/2

w G∗) ≥ Tr(GC1/2
w PC1/2

w G∗) (27)

where

P = C−1/2
w H(H∗C−1

w H)−1H∗C−1/2
w (28)

is the orthogonal projection onto the range space of C−1/2
w H. In addition, GH = GC1/2

w PC−1/2
w H since

PC−1/2
w H = C−1/2

w H. It follows then that any choice of G can be replaced by G̃ = GC1/2
w PC−1/2

w , with

Tr(G̃CwG̃∗) ≤ Tr(GCwG∗) and G̃H = GH, implying that G̃ is always at least as good as G in the sense

of reducing the ratio regret. Since G̃ = G̃C1/2
w PC−1/2

w , it follows then that when seeking the optimal matrix

10



G, it is sufficient to confine attention to matrices that satisfy

GC1/2
w = GC1/2

w P. (29)

Substituting (28) into (29), we have

G = GC1/2
w PC−1/2

w = GH(H∗C−1
w H)−1H∗C−1

w = B(H∗C−1
w H)−1H∗C−1

w , (30)

for some m × m matrix B. Denoting B = VDV∗ and using the fact that H∗C−1
w H = VΛV∗, (30) reduces

to (26).

We now show that D must be a diagonal matrix. Since Cx = V∆V∗, HC−1
w H = VΛV∗ and G is given

by (30), we have that

Tr(GCwG∗) + Tr (Cx(I − GH)∗(I − GH)) − γTr
(
Cx(H∗C−1

w HCx + I)−1
)

=

= Tr(D∗DΛ−1) + Tr (∆(I − D)∗(I − D)) − γTr
(
∆(Λ∆ + I)−1

)
. (31)

Therefore the problem of (12) and (15) reduces to finding D that minimizes γ subject to

G(D) = max
li≤δi≤ui

L(D, ∆) ≤ 0, (32)

where

L(D, ∆) = Tr(D∗DΛ−1) + Tr (∆(I − D)∗(I − D)) − γTr
(
∆(Λ∆ + I)−1

)
. (33)

Clearly, L(D) is strictly convex in D. Therefore, for any 0 < α < 1,

G(αD1 + (1 − α)D2) = max
li≤δi≤ui

L(αD1 + (1 − α)D2, ∆)

< max
li≤δi≤ui

{αL(D1, ∆) + (1 − α)L(D2, ∆)}

≤ α max
li≤δi≤ui

L(D1, ∆) + (1 − α) max
li≤δi≤ui

L(D2, ∆)

= αG(D1) + (1 − α)G(D2), (34)

so that G(D) is also strictly convex in D, and consequently our problem has a unique global minimum. Let
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J be any diagonal matrix with diagonal elements equal to ±1. Then

G(JDJ) = max
li≤δi≤ui

{
Tr(JD∗DJΛ−1) + Tr (∆(I − JDJ)∗(I − JDJ)) − γTr

(
∆(Λ∆ + I)−1

)}
= max

li≤δi≤ui

{
Tr(D∗DJΛ−1J) + Tr (J∆J(I − D)∗(I − D)) − γTr

(
∆(Λ∆ + I)−1

)}
= max

li≤δi≤ui

{
Tr(D∗DΛ−1) + Tr (∆(I − D)∗(I − D)) − γTr

(
∆(Λ∆ + I)−1

)}
= G(D), (35)

where we used the fact that J2 = I and for any diagonal matrix M, JMJ = M. Since G(D) has a unique

minimizer, we conclude that the matrix D that minimizes G(D) satisfies D = JDJ for any diagonal matrix

J with diagonal elements equal to ±1, which in turn implies that D must be a diagonal matrix.

Denote by di, λi and δi the diagonal elements of D, Λ and ∆, respectively. Then we can express G(D) as

G(D) = max
li≤δi≤ui

{
m∑

i=1

(
d2

i

λi
+ δi(1 − di)2 − γ

δi

λiδi + 1

)}

= max
li≤δi≤ui

{
m∑

i=1

(
(λi(di − 1)δi + di)2 + (1 − γ)λiδi

λi(λiδi + 1)

)}

=
m∑

i=1

max
li≤δi≤ui

{
(λi(di − 1)δi + di)2 + (1 − γ)λiδi

λi(λiδi + 1)

}
. (36)

Our problem can now be formulated as

min
γ,ti,di

γ (37)

subject to

maxli≤δi≤ui

{
(λi(di−1)δi+di)

2+(1−γ)λiδi

λi(λiδi+1)

}
≤ ti, 1 ≤ i ≤ m; (38)∑m

i=1 ti ≤ 0. (39)

Expressing (38) as

(λi(di − 1)δi + di)2 + (1 − γ)λiδi

λi(λiδi + 1)
≤ ti, ∀δi : li ≤ δi ≤ ui, 1 ≤ i ≤ m, (40)

we develop a solution to our problem by first considering each of the constraints (40), where for brevity, we

omit the index i.

Let δ = ζ + e where ζ = (u + l)/2. Then the condition l ≤ δ ≤ u is equivalent to the condition e2 ≤ ε2
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where ε = (u − l)/2, so that (40) can be written as

(λ(d − 1)(ζ + e) + d)2 + (1 − γ)λδ ≤ tλ(λ(ζ + e) + 1), ∀e : e2 ≤ ε2, (41)

which in turn is equivalent to the following implication:

P (e)
�
=ε2 − e2 ≥ 0 ⇒ Q(e) ≥ 0, (42)

where

Q(e) = tλ(λ(ζ + e) + 1) − (λ(d − 1)(ζ + e) + d)2 − (1 − γ)λδ

= −e2λ2(d − 1)2 + 2e

(
tλ2

2
+

λ(γ − 1)
2

+ λ(1 − d) (d(λζ + 1) − λζ)
)

+ tλ(λζ + 1) −

−(d(λζ + 1) − λζ)2 + λζ(γ − 1). (43)

We now rely on the following lemma [32, p. 23]:

Lemma 1. [S-procedure] Let P (z) = z∗Az+2u∗z+v and Q(z) = z∗Bz+2x∗z+y be two quadratic functions

of z, where A and B are symmetric and there exists a z0 satisfying P (z0) > 0. Then the implication

P (z) ≥ 0 ⇒ Q(z) ≥ 0

holds true if and only if there exists an α ≥ 0 such that

 B − αA x − αu

x∗ − αu∗ y − αv

 ≥ 0.

Combining (42) with Lemma 1, it follows immediately that the condition (40) is equivalent to the condition

 α − λ2(d − 1)2 tλ2

2 + λ(γ−1)
2 + λ(1 − d) (d(λζ + 1) − λζ)

tλ2

2 + λ(γ−1)
2 + λ(1 − d) (d(λζ + 1) − λζ) tλ(λζ + 1) − (d(λζ + 1) − λζ)2 + λζ(γ − 1) − αε2

 ≥ 0.

(44)

Note that if (44) is satisfied, then α − λ2(d − 1)2 ≥ 0, which implies that α ≥ 0.

We can express (44) as

A − bb∗ ≥ 0, (45)
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where

A =

 α tλ2

2 + λ(γ−1)
2

tλ2

2 + λ(γ−1)
2 tλ(λζ + 1) + λζ(γ − 1) − αε2

 , (46)

and

b =

 λ(d − 1)

d(1 + λζ) − λζ

 . (47)

To treat the constraint (45), we rely on the following lemma [24, p. 472]:

Lemma 2. Let

M =

 A B∗

B C


be a Hermitian matrix. Then with C > 0, M ≥ 0 if and only if ∆C ≥ 0, where ∆C is the Schur complement

of C in M and is given by

∆C = A − B∗C−1B.

From Lemma 2, it follows that (45) is equivalent to


α tλ2

2 + λ(γ−1)
2 λ(d − 1)

tλ2

2 + λ(γ−1)
2 tλ(λζ + 1) + λζ(γ − 1) − αε2 d(1 + λζ) − λζ

λ(d − 1) d(1 + λζ) − λζ 1

 ≥ 0, (48)

completing the proof of the theorem.

4 Alternative Derivation of the Minimax Ratio Estimator

In Theorem 1, we showed that the minimax ratio estimator can be formulated as an SDP. In this section, we

develop further insight into the minimax ratio estimator, using the SDP optimality conditions. Specifically,

we show that the minimax ratio estimator can be expressed in terms of a single parameter, which is a

solution to a nonlinear equation, and be found using a simple line search algorithm.

To this end, we first show that the minimax ratio estimator, which is the solution to the problem

(Γ) : min
γ,G

{
γ : max

li≤δi≤ui

{
Tr(GCwG∗) + Tr (Cx(I − GH)∗(I − GH)) − γTr

(
Cx(H∗C−1

w HCx + I)−1
)} ≤ 0

}
,

(49)
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can be determined by first solving the problem

(Φ) : min
t,G

{
t : max

li≤δi≤ui

{
Tr(GCwG∗) + Tr (Cx(I − GH)∗(I − GH)) − γTr

(
Cx(H∗C−1

w HCx + I)−1
)} ≤ t

}
,

(50)

where γ ≥ 1 is fixed. Specifically, let t̂(γ) denote the optimal value of t in the problem Φ of (50), and let

γ̂ be the minimal value of γ ≥ 1 such that t̂(γ) = 0 (as we show below in Proposition 2, such a γ always

exists). Then, denoting by Ĝ the optimal G in the problem Φ with γ = γ̂, we now show that Ĝ and γ̂ are

the optimal solutions to the problem Γ of (49): Since Ĝ and γ̂ are feasible for Φ with t = 0, they are also

feasible for Γ. Now suppose, conversely, that there exists a feasible G and γ < γ̂ for Γ. It then follows that

t̂(γ) ≤ 0. But since t̂(γ) is decreasing in γ and γ < γ̂, we have that t̂(γ) ≥ t̂(γ̂) = 0, from which we conclude

that t̂(γ) = 0, which is a contradiction since γ̂ is the minimal value for which t̂(γ) = 0.

In Proposition 2 below, we show that t̂(γ) is continuous, and strictly decreasing in γ if li �= 0 for at least

one value of i, because in this case Tr
(
Cx(H∗C−1

w HCx + I)−1
)

> 0 for all li ≤ δi ≤ ui. Since t̂(1) ≥ 0 and

t̂(γ) → −∞ for γ → ∞ (again, because Tr
(
Cx(H∗C−1

w HCx + I)−1
)

> 0), we conclude that in this case,

there is a unique γ such that t̂(γ) = 0. We also show that if li = 0, 1 ≤ i ≤ m, then t̂(γ) > 0 for 1 ≤ γ < γ′,

t̂(γ) = 0 for γ ≥ γ′, and t̂(γ) is strictly decreasing for 1 ≤ γ ≤ γ′, where γ′ is the smallest value of γ such

that t̂(γ) = 0. Therefore, we can find γ̂ by a simple line search, as we discuss further in the paragraph

following Proposition 2.

Thus, we now consider the problem Φ. Following the proof of Theorem 1, we have immediately that the

optimal G has the form

G = VDΛ−1V∗H∗C−1
w , (51)

where D is a diagonal matrix with diagonal elements di that are the solution to

min
t,di

t (52)

subject to

max
li≤δi≤ui

{
m∑

i=1

(
d2

i

λi
+ δi(1 − di)2 − γ

δi

λiδi + 1

)}
≤ t. (53)

Noting that

max
li≤δi≤ui

{
m∑

i=1

(
d2

i

λi
+ δi(1 − di)2 − γ

δi

λiδi + 1

)}
=

15



= max
li≤δi≤ui

{
m∑

i=1

(
(λi(di − 1)δi + di)2 + (1 − γ)λiδi

λi(λiδi + 1)

)}

=
m∑

i=1

max
li≤δi≤ui

{
(λi(di − 1)δi + di)2 + (1 − γ)λiδi

λi(λiδi + 1)

}
, (54)

our problem can be formulated as

min
ti,di

m∑
i=1

ti (55)

subject to

max
li≤δi≤ui

{
(λi(di − 1)δi + di)2 + (1 − γ)λiδi

λi(λiδi + 1)

}
≤ ti, 1 ≤ i ≤ m. (56)

The constraints (56) are equal to the constraints (38), which, in turn, where shown in the proof of Theorem 1

to be equivalent to the LMIs


αi

tiλ
2
i

2 + λi(γ−1)
2 λi(di − 1)

tiλ
2
i

2 + λi(γ−1)
2 tiλi(λiζi + 1) + λiζi(γ − 1) − αiε

2
i di(1 + λiζi) − λiζi

λi(di − 1) di(1 + λiζi) − λiζi 1

 ≥ 0, 1 ≤ i ≤ m. (57)

Thus to solve Φ, we need to develop a solution to the problem

min
t,d,α

t (58)

subject to 
α tλ2

2 + λ(γ−1)
2 λ(d − 1)

tλ2

2 + λ(γ−1)
2 tλ(λζ + 1) + λζ(γ − 1) − αε2 d(1 + λζ) − λζ

λ(d − 1) d(1 + λζ) − λζ 1

 ≥ 0, (59)

which, using Lemma 2, can be equivalently expressed as

A − bb∗ ≥ 0, (60)

with

A =

 α tλ2

2 + λ(γ−1)
2

tλ2

2 + λ(γ−1)
2 tλ(1 + λζ) + λζ(γ − 1) − αε2

 , (61)

and

b =

 λ(d − 1)

d(1 + λζ) − λζ

 . (62)
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The problem of (58) and (59) for the special case in which γ = 1 was considered in [28], in which it was

shown that the solution is given by the smallest value of t such that there exists a triplet (t, d, α) satisfying

A = bb∗. For γ ≥ 1, the smallest value of t and the corresponding values of d and α such that there exists

a triplet (t, d, α) satisfying A = bb∗, are given by (63) below. As we show in Proposition 1, this solution is

also optimal for the problem (58) and (59), as long as γ is smaller than a threshold.

Proposition 1. The solution of

min
t,d,α

t

subject to 
α tλ2

2 + λ(γ−1)
2 λ(d − 1)

tλ2

2 + λ(γ−1)
2 tλ(λζ + 1) + λζ(γ − 1) − αε2 d(1 + λζ) − λζ

λ(d − 1) d(1 + λζ) − λζ 1

 ≥ 0

is given by

d̂ = 1 −
√

γ√
(1+λζ)2−λ2ε2

;

α̂ = γλ2

(1+λζ)2−λ2ε2
;

t̂ = 1
λ − 2

√
γ

λ
√

(1+λζ)2−λ2ε2
+

γ(λ2(ε2−ζ2)+1)
λ((1+λζ)2−λ2ε2)

, (63)

for 1 ≤ γ ≤ γ0, where

γ0 =
1 + λ(ζ + ε)
1 + λ(ζ − ε)

, (64)

and by

d̂ = λ(ζ−ε)
1+λ(ζ−ε) ;

α̂ = λ(γ−1)
2ε(1+λ(ζ−ε)) ;

t̂ = (γ−1)(ε−ζ)
1+λ(ζ−ε) , (65)

for γ ≥ γ0.

Proof. We begin by showing that the values given by (63) are optimal for 1 ≤ γ ≤ γ0. To this end it is

sufficient to show that F(d̂, α̂, t̂) ≥ 0, where F(d, α, t) is the matrix in (59), that there exists a matrix Z ≥ 0

such that

F(d̂, α̂, t̂)Z = 0;
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Tr (FdZ) = 0;

Tr (FαZ) = 0;

Tr (FtZ) = 1, (66)

where

Fd =


0 0 λ

0 0 1 + λζ

λ 1 + λζ 0

 ;

Fα =


1 0 0

0 −ε2 0

0 0 0

 ;

Ft =


0 λ2

2 0

λ2

2 λ(1 + λζ) 0

0 0 0

 ,

(67)

and that the dual problem is strictly feasible, i.e., there exists a matrix B satisfying

B > 0;

Tr (FdB) = 0;

Tr (FαB) = 0;

Tr (FtB) = 1. (68)

Let

B =


bε2 1

λ2 (1 − bλ(λζ + 1)) 0

1
λ2 (1 − bλ(λζ + 1)) b 0

0 0 1

 , (69)

where

b =
1

λ(λζ + 1) + λ2(ε − a)
, (70)

and a is chosen such that ε2 > (ε − a)2. We can immediately verify that B satisfies (68). Next, we verify
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that F(d̂, α̂, t̂) ≥ 0. Substituting (63) into the matrix in (59), we have that

F(d̂, α̂, t̂) =


γλ2 λ

(
γ(1 + λζ) − β

√
γ
) −λ

√
γβ

λ
(
γ(1 + λζ) − β

√
γ
)

(β −√
γ(1 + λζ))2 β2 − β

√
γ(1 + λζ)

−λ
√

γβ β2 − β
√

γ(1 + λζ) β2

 . (71)

From Lemma 2, it follows that F(d̂, α̂, t̂) ≥ 0 if and only if W ≥ 0, where

W =

 γλ2 λ
(
γ(1 + λζ) − β

√
γ
)

λ
(
γ(1 + λζ) − β

√
γ
)

(β −√
γ(1 + λζ))2

−
−

 λ2γ −λ
√

γ(β −√
γ(1 + λζ))

−λ
√

γ(β −√
γ(1 + λζ)) (β −√

γ(1 + λζ))2

 = 0. (72)

It remains to find a Z ≥ 0 satisfying (66). Solving (66) for Z with t, d, α given by (63) results in

Z =
1

λβ2√γ


ε2κ 1

λ

(
β2√γ − (1 + λζ)κ

)
1
λ(1 + λζ)(κ − βγ)

1
λ

(
β2√γ − (1 + λζ)κ

)
κ βγ − κ

1
λ(1 + λζ)(κ − βγ) βγ − κ κ − βγ

 , (73)

where, for brevity, we defined

β
�
=
√

(1 + λζ)2 − λ2ε2, (74)

and

κ
�
=2

√
γ(1 + λζ) − β. (75)

Since Z satisfies (66), the values given by (63) are optimal if, in addition, Z ≥ 0, which implies that

κ ≥ βγ, (76)

or, equivalently,

βγ − 2
√

γ(1 + λζ) + β ≤ 0. (77)

It is straightforward to show that (77) is satisfied for

(1 + λ(ζ − ε))2

β2
≤ γ ≤ (1 + λ(ζ + ε))2

β2
. (78)
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Since
(1 + λ(ζ − ε))2

β2
=

(1 + λ(ζ − ε))2

(1 + λ(ζ + ε)) (1 + λ(ζ − ε))
=

1 + λ(ζ − ε)
1 + λ(ζ + ε)

≤ 1, (79)

(76) is satisfied for 1 ≤ γ ≤ γ0, where γ0 is given by (64).

We now show that for 1 ≤ γ ≤ γ0, Z ≥ 0. First suppose that κ = βγ, or equivalently, γ = γ0. In this

case, Z ≥ 0 if and only if

 ε2κ 1
λ

(
β2√γ − (1 + λζ)κ

)
1
λ

(
β2√γ − (1 + λζ)κ

)
κ

 ≥ 0, (80)

or,

λ2ε2κ2 − (β2√γ − (1 + λζ)κ
)2 ≥ 0. (81)

Using the fact that κ = βγ, (81) can be expressed as

−β − βγ + 2
√

γ(1 + λζ) ≥ 0, (82)

which is equivalent to (77), and is therefore satisfied for γ = γ0.

Next, suppose that κ > βγ. From Lemma 2, we then have that Z ≥ 0 if and only if

 ε2κ 1
λ

(
β2√γ − (1 + λζ)κ

)
1
λ

(
β2√γ − (1 + λζ)κ

)
κ

+ (βγ − κ)

 1
λ2 (1 + λζ)2 − 1

λ(1 + λζ)

− 1
λ(1 + λζ) 1

 =

=

 ε2κ + 1
λ2 (βγ − κ)(1 + λζ)2 1

λ

(
β2√γ − βγ(1 + λζ)

)
1
λ

(
β2√γ − βγ(1 + λζ)

)
γβ


≥ 0, (83)

which is equivalent to the conditions

ε2κ + 1
λ2 (βγ − κ)(1 + λζ)2 ≥ 0; (84)

γβ
(
ε2κ + 1

λ2 (βγ − κ)(1 + λζ)2
)− 1

λ2

(
β2√γ − βγ(1 + λζ)

)2 ≥ 0. (85)

Now,

ε2κ +
1
λ2

(βγ − κ)(1 + λζ)2 =
κ

λ2

(
λ2ε2 − (1 + λζ)2

)
+

βγ

λ2
(1 + λζ)2

=
β

λ2
(γ(1 + λζ)2 − βκ)
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=
β

λ2
(
√

γ(1 + λζ) − β)2

≥ 0, (86)

so that (84) is satisfied. Finally,

γβ

(
ε2κ +

1
λ2

(βγ − κ)(1 + λζ)2
)
− 1

λ2

(
β2√γ − βγ(1 + λζ)

)2 =

=
γβ2

λ2
(
√

γ(1 + λζ) − β)2 − 1
λ2

(
β2√γ − βγ(1 + λζ)

)2
= 0, (87)

so that (85) is also satisfied, and Z ≥ 0.

We now show that for γ ≥ γ0, the values given by (65) are optimal. For these values, we have that

F(d̂, α̂, t̂) =
1

1 + λ(ζ − ε)


λ(γ−1)

2ε
λ(γ−1)

2 −λ

λ(γ−1)
2

λε(γ−1)
2 −λε

−λ −λε 1 + λ(ζ − ε)

 . (88)

From Lemma 2 it then follows that F(d̂, α̂, t̂) ≥ 0 if and only if

 λ(γ−1)
2ε

λ(γ−1)
2

λ(γ−1)
2

λε(γ−1)
2

− λ2

1 + λ(ζ − ε)

 1 ε

ε ε2

 =
λ(γ − 1)(1 + λ(ζ − ε)) − 2ελ2

2ε(1 + λ(ζ − ε))

 1 ε

ε ε2

 ≥ 0. (89)

Clearly, (89) is satisfied if

λ(γ − 1)(1 + λ(ζ − ε)) − 2ελ2 ≥ 0, (90)

or,

γ ≥ 1 + λ(ζ + ε)
1 + λ(ζ − ε)

= γ0. (91)

We now show that there exists a Z ≥ 0 satisfying (66). Solving (66) for Z with t, d, α given by (65)

results in

Z =
1

λ2(ζ − ε) + λ


ε2 −ε 0

−ε 1 0

0 0 0

 , (92)

and Z ≥ 0. Thus, the values given by (65) are optimal for γ ≥ γ0, completing the proof of the proposition.
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From Proposition 1 it follows that the solution to the problem Φ of (50) is given by

G = VD̂Λ−1V∗H∗C−1
w , (93)

where D̂ is the diagonal matrix with diagonal elements

d̂i =


1 −

√
γ√

(1+λiζi)2−λ2
i ε2i

, 1 ≤ γ ≤ γ0
i ;

λi(ζi−εi)
1+λi(ζi−εi)

, γ ≥ γ0
i ,

(94)

with

γ0
i =

1 + λi(ζi + εi)
1 + λi(ζi − εi)

, (95)

and t̂(γ) =
∑m

i=1 ti(γ), where

ti(γ) =


1
λi

− 2
√

γ

λi

√
(1+λiζi)2−λ2

i ε2i
+

γ(λ2
i (ε2i−ζ2

i )+1)
λi((1+λiζi)2−λ2

i ε2i )
, 1 ≤ γ ≤ γ0

i ;

(γ−1)(εi−ζi)
1+λi(ζi−εi)

, γ ≥ γ0
i .

(96)

To relate the solutions of problems Φ and Γ of (50) and (49) respectively, we now establish the required

properties of t̂(γ), outlined at the beginning of the section.

Proposition 2. Let t̂(γ) =
∑m

i=1 ti(γ), where ti(γ) is given by (96). Then

1. t̂(γ) is continuous;

2. If εi < ζi for some i, then t̂(γ) is strictly decreasing in γ ≥ 1, and there is a unique γ such that

t̂(γ) = 0;

3. If εi = ζi, 1 ≤ i ≤ m, then t̂(γ) > 0 and is strictly decreasing in 1 ≤ γ ≤ maxi γ
0
i , and t̂(γ) = 0 for

γ ≥ maxi γ
0
i , where γ0

i is given by (95).

Proof. For γ < γ0
i , ti(γ) is quadratic in γ, and for γ > γ0

i , ti(γ) is linear in γ. Therefore, in both of these

intervals, ti(γ) is continuous. We can also immediately verify that ti(γ) is continuous at γ = γ0
i .

We now consider the monotonicity properties of ti(γ). Suppose first that λ2
i (ζ

2
i − ε2

i ) = 1. In this case,

ti(γ) is linear in γ for γ ≤ γ0
i , and is strictly decreasing. Next suppose that λ2

i (ζ
2
i − ε2

i ) �= 1. In this case,

for γ ≤ γ0
i , ti(γ) is a quadratic function in

√
γ, which we denote by Q(γ), with an extremum point at

√
γ =

√
(1 + λiζi)2 − λ2

i ε
2
i

1 − λ2
i (ζ

2
i − ε2

i )
�
=γt

i . (97)
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If λ2
i (ζ

2
i − ε2

i ) < 1, then Q(γ) has a minimum at γt
i . Consequently, Q(γ) is decreasing for any γ ≤ (γt

i )
2.

Since, as we now show, (γt
i )

2 ≥ γ0
i , ti(γ) is decreasing for γ ≤ γ0

i . To prove that (γt
i )

2 ≥ γ0
i , we must have

that
(1 + λiζi)2 − λ2

i ε
2
i(

1 − λ2
i (ζ

2
i − ε2

i )
)2 ≥ 1 + λi(ζi + εi)

1 + λi(ζi − εi)
, (98)

or, equivalently,

1 + λ(ζi − εi) ≥ 1 − λ2
i (ζ

2
i − ε2

i ), (99)

which is clearly satisfied. If, on the other hand, λ2
i (ζ

2
i − ε2

i ) > 1, then Q(γ) has a maximum at γt
i < 0, and

ti(γ) is strictly decreasing for 1 ≤ γ ≤ γ0
i .

For γ ≥ γ0
i , ti(γ) is strictly decreasing as long as εi < ζi. If εi = ζi, then ti(γ) = 0 for all γ ≥ γi

0.

We conclude that t̂(γ) is strictly decreasing in γ if for some i, εi < ζi. Since t̂(1) > 0 (unless εi = 0, 1 ≤
i ≤ m in which case there is no uncertainty) and t̂(γ) ≤ 0 for γ → −∞, it follows that in this case there is

a unique value γ such that t̂(γ) = 0.

If εi = ζi, 1 ≤ i ≤ m, then t̂(γ) is strictly decreasing for γ ≤ maxi γ
0
i , and t̂(γ) = 0 for γ ≥ maxi γ

0
i ,

which implies that t̂(γ) > 0 for γ < maxi γ
0
i .

From Proposition 2 it follows that the solution to the original problem Γ is also given by (93) and (94),

with γ chosen as the minimal value such that t̂(γ) =
∑m

i=1 ti(γ) = 0. Since t̂(γ) is continuous and strictly

decreasing in γ such that t̂(γ) �= 0, we can find the minimal value of γ satisfying t̂(γ) = 0 by a simple

line search. Specifically, we may start by choosing γ = 1. For each choice of γ we compute
∑m

i=1 ti(γ). If∑m
i=1 ti(γ) > 0, then we increase γ, and if

∑m
i=1 ti(γ) < 0 we decrease γ, continuing until

∑m
i=1 ti(γ) = 0. If

εi < ζi for some i, then this is the optimal value of γ. If εi = ζi for all i, then we continue decreasing the

value of γ, looking for the smallest value such that
∑m

i=1 ti(γ) = 0. Due to the continuity and monotonicity

properties of t̂(γ), the algorithm is guaranteed to converge.

We summarize our results in the following theorem.

Theorem 2. Let x denote the unknown parameters in the model y = Hx + w, where H is a known n × m

matrix with rank m, x is a zero-mean random vector with covariance Cx uncorrelated with w and w is a

zero-mean random vector with covariance Cw. Let H∗C−1
w H = VΛV∗ where V is a unitary matrix and Λ

is an m × m diagonal matrix with diagonal elements λi > 0 and let Cx = V∆V∗ where ∆ is an m × m

diagonal matrix with diagonal elements 0 ≤ li ≤ δi ≤ ui. Then the solution to the problem

min
x̂=Gy

max
li≤δi≤ui

{
E(‖x̂ − x‖2)

minx̂=G(x)y E(‖x̂ − x‖2)

}
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is given by

x̂ = VDΛ−1V∗H∗C−1
w y,

where D is an m × m diagonal matrix with diagonal elements

d̂i =


1 −

√
γ√

(1+λiζi)2−λ2
i ε2i

, 1 ≤ γ ≤ γ0
i ;

λi(ζi−εi)
1+λi(ζi−εi)

, γ ≥ γ0
i ,

(100)

with

γ0
i =

1 + λi(ζi + εi)
1 + λi(ζi − εi)

, (101)

and γ is the smallest value such that t̂(γ) =
∑m

i=1 ti(γ) = 0, where

ti(γ) =


1
λi

− 2
√

γ

λi

√
(1+λiζi)2−λ2

i ε2i
+

γ(λ2
i (ε2i−ζ2

i )+1)
λi((1+λiζi)2−λ2

i ε2i )
, 1 ≤ γ ≤ γ0

i ;

(γ−1)(εi−ζi)
1+λi(ζi−εi)

, γ ≥ γ0
i .

(102)

Note, that the minimax regret estimator has the same form as the minimax ratio estimator, where di is

given by (100) with γ = 1.

As we now show, we can interpret the estimator of Theorem 2 as an MMSE estimator matched to a

covariance matrix

Cx = VXV∗, (103)

where X is a diagonal matrix with diagonal elements

xi =


1
λi

(√
(1+λiζi)2−λ2

i ε2i√
γ − 1

)
, γ ≤ γ0

i ;

ζi − εi, γ ≥ γ0
i .

(104)

It follows from (104), that if γ ≥ γ0
i , then xi is equal to the lower bound on the uncertainty region of the

ith eigenvalue of Cx.

From (5), the MMSE estimate of x with covariance Cx given by (103) and H∗C−1
w H = VΛV∗ is

x̂ = Cx(H∗C−1
w HCx + I)−1H∗C−1

w y = VX (ΛX + I)−1 V∗H∗C−1
w y. (105)

Thus, the estimator x̂ of (105) is equivalent to the minimax ratio estimator given by Theorem 2, if
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X (ΛX + I)−1 = DΛ−1. Now,

xi

λixi + 1
=


1
λi

(
1 −

√
γ√

(1+λiζi)2−λ2
i ε2i

)
, 1 ≤ γ ≤ γ0

i ;

ζi−εi

1+λi(ζi−εi)
, γ ≥ γ0

i ,

(106)

so that indeed X (ΛX + I)−1 = DΛ−1.

Since the minimax ratio estimator minimizes the MSE for Cx = VXV∗, we may view the covariance

Cx = VXV∗ as the “least-favorable” covariance in the ratio sense.

In [28] it was shown that the minimax regret estimator is an MMSE estimator matched to a covariance

matrix with eigenvalues

ci =
1
λi

1 − 1√
(1 + λiζi)2 − λ2

i ε
2
i

 . (107)

Since the optimal value of γ is greater than 1 (unless there is no uncertainty), xi < ci, 1 ≤ i ≤ m, so that

the minimax ratio estimator is matched to a covariance matrix with eigenvalues that are strictly smaller

than the eigenvalues of the covariance matrix matched to the minimax regret estimator.

5 Example of the Minimax Ratio Estimator

We now consider examples illustrating the minimax ratio estimator. The examples we consider are the same

as those considered in [28], for evaluating the minimax regret estimator.

Consider the estimation problem in which

y = x + w, (108)

where x is a length-n segment of a zero-mean stationary first order AR process with components xi so that

E(xixj) = ρ|j−i| (109)

for some parameter ρ, and w is a zero-mean random vector uncorrelated with x with known covariance

Cw = σ2I. We assume that we know the model (108) and that x is a segment of a stationary process,

however, its covariance Cx is unknown.

To estimate x, we may first estimate Cx from the observations y. A natural estimate of Cx is given by

Ĉx = [Ĉy − Cw]+ = [Ĉy − σ2I]+, (110)
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where

Ĉy(i, j) =
1
n

n−|j−i|∑
k=1

ykyk+|j−i| (111)

is an estimate of the covariance of y and [A]+ denotes the matrix in which the negative eigenvalues of A

are replaced by 0. Thus, if A has an eigendecomposition A = UΣU−1 where Σ is a diagonal matrix with

diagonal elements σi, then [A]+ = U[Σ]+U−1 where [Σ]+ is a diagonal matrix with ith diagonal element

equal to max(0, σi). The estimate (110) can be regarded as the analogue for finite-length processes of the

spectrum estimate based on the spectral subtraction method for infinite-length processes [33, 34].

Given Ĉx, we may estimate x using an MMSE estimate matched to Ĉx, which we refer to as a plug

in estimator. However, as can be seen below in Figs. 1 and 2, we can further improve the estimation

performance by using the minimax ratio estimator.

To compute the minimax ratio estimator, we choose V to be equal to the eigenvector matrix of the

estimated covariance matrix Ĉx, and ζi = σi where σi are the eigenvalues of Ĉx. We would then like to

choose εi to reflect the uncertainty in our estimate ζi. Since computing the standard deviation of ζi is

difficult, we choose εi to be proportional to the standard deviation of an estimator σ̃2
x of the variance σ2

x of

x where

σ̃2
x =

1
n

n∑
i=1

y2
i − σ2

w. (112)

We further assume that x and w are uncorrelated Gaussian random vectors. In this case, the variance of

σ̃2
x is given by [28]

E
{(

σ̃2
x − σ2

x

)2} =
2
n

(
(σ2

x + σ2)2 +
n∑

i=2

C2
x(1, i)

)
. (113)

Since σ2
x and Cx(1, i) are unknown, we substitute their estimates Ĉx(1, i), 1 ≤ i ≤ m. Finally, to ensure

that εi ≤ ζi, we choose

εi = min

ζi, A

√√√√ 2
n

(
(Ĉ2

x(1, 1) + σ2)2 +
n∑

i=2

Ĉ2
x(1, i)

) , (114)

where A is a proportionality factor.

In Fig. 1, we plot the MSE of the minimax ratio estimator averaged over 1000 noise realizations as a

function of the SNR defined by −10 log σ2 for ρ = 0.8, n = 10 and A = 4. The performance of the “plug

in” MMSE estimator matched to the estimated covariance matrix Ĉx, the minimax MSE estimator and the

minimax regret estimator of [28] are plotted for comparison. We also plot the MSE resulting from a Wiener

filter matched to the known covariance, which is the optimal MSE attainable when Cx is known. As can be
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seen from the figure, the minimax ratio estimator can significantly increase the estimation performance at

low to intermediate SNR values, and in this range, the performance of the minimax ratio estimator is close

to the optimal performance.
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Figure 1: MSE in estimating x as a function of SNR using the minimax ratio estimator, the minimax
regret estimator, the minimax MSE estimator and the plug in MMSE estimator matched to the estimated
covariance matrix. The performance of the optimal Wiener estimator is plotted for comparison.

We next consider the case in which the vector x is filtered with an LTI filter with length-4 impulse

response given by

h[0] = 1, h[1] = 0.4, h[2] = 0.2, h[3] = 0.1. (115)

In Fig. 2, we plot the MSE of the minimax ratio, minimax regret, plug in and minimax MSE estimators

averaged over 1000 noise realizations as a function of the SNR, for ρ = 0.8, n = 10 and A = 4. For

comparison, we also plot the bound on the performance given by the MSE of the Wiener estimator. As can

be seen, the trends in performance are similar to the previous example.
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Figure 2: MSE in estimating x from a noisy filtered version as a function of SNR using the minimax ratio
estimator, the minimax regret estimator, the minimax MSE estimator and the plug in MMSE estimator
matched to the estimated covariance matrix. The performance of the optimal Wiener estimator is plotted
for comparison.
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