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Abstract

We consider the problem of optimum joint information embedding and lossy com-
pression with respect to a fidelity criterion. The goal is to find the minimum achievable
compression (composite) rate Rc as a function of the embedding rate Re and the aver-
age distortion level ∆ allowed, such that the average probability of error in decoding of
the embedded message can be made arbitrarily small for sufficiently large block length.
We characterize the minimum achievable composite rate and demonstrate how this
minimum can be approached in principle.

1 Introduction

In the last few years, along with increasing awareness regarding the data protection, there

is observed an increased interest in watermarking codes in their various applications. Wa-

termarking is a form of hiding information in a host data set (covertext), usually an image,

audio signal or video, creating a distorted version of the host data (stegotext, composite

data). Successful retrieving of the watermark from the examined data indicates ownership,

while on the other hand, damaging of the watermark beyond retrieving or its fabrication

allows stealing the data or its forgery. There exists a variety of applications for data hiding

ranging from classical steganography [1], [2], data authentication, copyright protection and

copy control information [3], [4].

The requirements in watermarking scheme design are quite conflicting: In most applica-

tions, the watermark should be perceptually transparent, that is, invisible to the naked eye,
∗This work is part of A. Maor’s M.Sc. dissertation.
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or, when audio signals are concerned, inaudible to the innocent listener. Watermarks must

be robust to the distortion of watermarked data, caused by either conventional data process-

ing (e.g., lossy compression, up/down-scaling, filtering, halftoning) or malicious attacks of

the parties who wish to invalidate the watermark. As the reconstruction of the watermark

is usually performed on a distorted version of stegotext (forgery), various distortion criteria

measure the robustness of the embedding, while others ensure its initial transparency. Most

watermarking schemes try to achieve the highest possible information rate, i.e., the amount

of information that the embedded message should convey. In addition, it is usually assumed

that if there exist two or more parties knowing the complete watermarking scheme, even if

there exists a third party that is familiar with the watermarking technique but lacks some

piece of information (e.g., secret key), it is very difficult if not impossible to ‘crack’ the

watermarking scheme.

While most existing practical watermarking applications were designed and tested em-

pirically (see, e.g., [1]-[4], [5]), the information-theoretic research activity in the problem

area of watermarking is relatively new, evolving primarily around issues of system modeling,

performance criteria, watermarking code design, and theoretical performance bounds. As

covertext serves only as a ‘carrier’ of the watermark, it may be considered as a side infor-

mation, as was first proposed in [6]. Thus, from the information-theoretic point of view, the

watermarking problem is usually regarded as an instance of the problem of channel coding

with side information, as originally treated in [19], [20] and [21]. The case where the side

information is available to the encoder only is named public watermarking, and the case

where it is available to the decoder as well is named private watermarking. A more general

model of watermarking assumes that instead of full knowledge of covertext at the decoder,

some partial information, that is statistically dependent on the covertext, is available. There

exist various models for the watermarking schemes, where two main flows may be classified:

One can either be interested in complete reconstruction of the watermark or only a partial

reconstruction of the watermark, requiring the identification of its existence [7]. A variety

of works [9]-[11] treat the problem of watermarking reconstruction from forgery as a hiding

game between the information hider and the attacker.

Another aspect of the watermarking problem is that of joint information embedding and

lossy compression, where quantization as well as entropy coding of the stegotext is treated

as an integral part of the watermarking scheme. The general problem is given as follows:
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There is a set of messages to be embedded in the covertext, subject to some distortion con-

straint. The composite sequence resulting from this embedding is compressed losslessly and

the embedded message must be decoded reliably with or without access to the original host

data. Karakos and Papamarcou [13, 14] and Willems and Kalker [15] study the tradeoffs

between the distortion, the embedding rate and the composite rate for lossless compression.

In [13], the attack-free version of private watermarking (fingerprinting) problem is treated,

considering the case of a zero-mean Gaussian white noise process: the watermark, which is

assumed to maintain some power and entropy constraints, is hidden in the covertext image,

subject to a mean square distortion constraint, resulting in a Gaussian composite sequence,

which is then compressed losslessly. The achievable rate region is established in terms of

the relations between the composite rate, the embedding rate and the prescribed distortion

constraint. In [14], a system similar to [13], which embeds watermarks in Gaussian covertext

and distributes them in compressed form is studied. The performance of the system in the

presence of an additive Gaussian attack (on decompressed covertext) is considered, and the

achievable rate region is given. Willems and Kalker [15] study the attack-free case of the

public joint watermarking-compression problem, where the covertext, the watermark and

the composite sequence are drawn from finite alphabets. The model assumes that the com-

posite sequence is subjected to some lossless symbol-by-symbol compression, the watermark

is retrieved from reconstructed stegotext and, in addition, the covertext is estimated from

the stegotext. The achievable region of composite rates, embedding rates, and distortion

levels is characterized and a random coding algorithm is proposed for achieving any given

point in the achievable region.

In this paper, we treat the attack-free version of the public problem of joint information

embedding and entropy coding, where the covertext, the watermark and the stegotext

are drawn from finite alphabets. As in [13] and [15], the data hiding and compression are

cooperative and therefore are optimized jointly. The purpose of this paper is to characterize,

in a more general way, the best achievable tradeoffs between the embedding rate Re, the

allowable average distortion ∆, and the composite rate Rc. Unlike in [15], in this paper,

the lossless compression is performed per block rather than symbol-by-symbol. A single

letter expression of the minimum achievable composite rate R∗
c is obtained as a function of

Re and ∆. The attainment conditions are established on Re and ∆, beyond which there

exists no reliable watermarking scheme. While in [15] it was speculated that for blockwise
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lossless compression of the composite sequence, the composite rate would be lower bounded

by H(Y ), the entropy of the corresponding single-letter composite variable, here we show

that this is true only for embedding rates that are above some threshold, whereas for lower

embedding rates one can do better. In particular, the composite rate, in this lower region

of embedding rates, can be made as small as Re + R(∆) < H(Y ) (where R(∆) is the

rate distortion function of the covertext source) but cannot be reduced any further. The

direct part of the coding theorem is based on showing that as long as Re is not too large,

one can construct 2NRe disjoint rate-distortion codebooks for the covertext source, and

so, the watermark can be uniquely identified simply according to the codebook to which

the composite sequence belongs. It should be pointed out that by this construction, we

extend the Type Covering Lemma by Csiszár and Körner [16] to argue, that not only does

a good reproduction codebook exist, but moreover, exponentially many different codebooks

can be found. The continuous case is surprisingly different from the finite-alphabet case.

Specifically, as we argue in the sequel, the composite rate in this case is always given by

Re+R(∆) (and not only for low embedding rates) and that the embedding rate is unlimited.

As for the Gaussian-quadratic case, the results of the public and the private watermarking

problems, considering joint embedding and compression, coincide, since the result obtained

in [13] is similar to ours.

The paper is organized as follows: in Section 2, we give notation conventions used

through out the paper. Section 3 contains the system description and the problem definition.

The main result is presented in Section 4. Sections 5 and 6 contain the proofs of the converse

and the direct parts of the main coding theorem, respectively, while Sections 7 and 8 present

an alternative expression of the formula of the minimum achievable composite rate, along

with two examples of this formula for specific sources and distortion measures.

2 Notation Conventions and Preliminaries

Throughout the paper, random variables will be denoted by capital letters, specific values

they may take will be denoted by the corresponding lower case letters, and their alphabets,

as well as most of the other sets, will be denoted by calligraphic letters. Similarly, random

vectors, their realizations, and their alphabets will be denoted, respectively, by boldface

capital letters, the corresponding boldface lower case letters, and calligraphic letters, super-

scripted by the dimensions. For example, the random vector X = (X1, ..., XN ), (N -positive
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integer) may take a specific vector value x = (x1, ..., xN ) in XN , the Nth order Cartesian

power of X , which is the alphabet of each component of this vector. The cardinality of a

finite set X will be denoted by |X |.
Let Q(X ) denote the class of all discrete memoryless sources (DMSs) with a finite

alphabet X , and let Q denote a particular DMS in Q(X ), i.e.,

Q(X ) = {Q : ∀x ∈ X , Q(x) ≥ 0,
∑
x′∈X

Q(x′) = 1}. (1)

For a given positive integer N , let X = (X1, ..., XN ), Xi ∈ X , i = 1, ..., N , denote an

N -vector drawn from a memoryless source Q, namely,

Pr{Xi = xi, i = 1, ..., N} =
N∏

i=1

Q(xi)
�
= Q(x), (2)

∀(x1, ..., xN ), xi ∈ X , i = 1, 2, ..., N.

Let W(Y|X ) denote the class of all discrete conditional probability mass functions

(PMFs), henceforth referred to as channels from the finite alphabet X to a finite alphabet

Y, and let W denote a particular channel in W(Y|X ), i.e.,

W(Y|X ) = {W : W (y|x) ≥ 0,
∑
y′∈Y

W (y′|x) = 1, ∀(x, y) ∈ X × Y}. (3)

Let us also denote the class P(Y) of PMFs over a finite alphabet Y induced by PMFs {Q}
and channels W :

P(Y) = {P : P (y)
�
=

∑
x∈X

Q(x)W (y|x),
∑
y′∈Y

P (y′) = 1, ∀y ∈ Y}. (4)

Information-theoretic quantities are denoted using the conventional notations [16, 17,

18]: For a pair of discrete random variables (X, Y ) with a joint distribution P (x, y) =

Q(x)W (y|x), the entropy of X is denoted by H(X), the joint entropy - by H(X, Y ), the

conditional entropy of Y given X - by H(Y |X), and the mutual information by I(X; Y ),

where logarithms are defined to the base 2. When we wish to emphasize the dependence

of an information-theoretic quantity on the underlying distribution, we use the latter as

a subscript, for example, the entropy of X, induced by the source Q, will be denoted by

HQ(X). The relative entropy, or Kullback Leibler distance of the pair of sources Q1 and

Q2 is denoted by D(Q1||Q2). The binary entropy function of a source Q ∼ Bernoulli(α),

0 ≤ α ≤ 1, will be defined by

h(α)
�
= −α log α − (1 − α) log(1 − α). (5)
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A distortion measure (or distortion function) is a mapping from the set X ×Y into the set

of non-negative reals:

d : X × Y → R+. (6)

The distortion functions, considered in the paper, are bounded, i.e.,

dmax
�
= max

(x,y)∈X×Y
d(x, y) < ∞. (7)

The additive distortion d(x,y) between two vectors x ∈ XN and y ∈ YN is given by:

d(x,y) =
1
N

N∑
i=1

d(xi, yi). (8)

For a set B ∈ YN , the minimum distortion between the elements of B and a vector x ∈ XN

is denoted by:

d(x,B)
�
= min

y∈B
d(x,y). (9)

The rate-distortion function R(∆) of a memoryless source Q with respect to d(·, ·) is given

by:

R(∆) = min
W :

∑
x∈X ,y∈Y Q(x)W (y|x)d(x,y)≤∆

I(X; Y ). (10)

We next describe the notation related to the method of types, which is widely used

throughout this paper. For a given memoryless source Q and a vector x ∈ XN , the empirical

probability mass function (EPMF) is a vector Px = {Px(a), a ∈ X}, where Px(a) is the

relative frequency of the letter a ∈ X in the vector x. For a scalar δ > 0, the set T δ
Q of all

δ-typical sequences is the set of the sequences x ∈ XN such that

(1 − δ)Q(a) ≤ Px(a) ≤ (1 + δ)Q(a) (11)

for every a ∈ X . The size of T δ
Q is bounded by [17]:

2N [(1−δ)2H(X)−δ] ≤ |T δ
Q| ≤ 2N [(1+δ)2H(X)]. (12)

It is also well-known (by the weak law of large numbers) that:

Pr
{
X /∈ T δ

Q

} ≤ δ (13)

for all N sufficiently large.

For a given channel W and for each x ∈ T δ
Q, the set T δ

W (x) of all sequences y that are

jointly δ-typical with x, is the set of all y such that:
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(1 − δ)Px(a)W (b|a) ≤ Pxy(a, b) ≤ (1 + δ)Px(a)W (b|a), (14)

for all a ∈ X , b ∈ Y, where Pxy(a, b) denotes the fraction of occurrences of the pair (a, b) in

(x,y).

Similarly as in eq. (11) [17], for all x ∈ T δ
Q, the size of T δ

W (x) is bounded as follows:

2N [(1−δ)2H(Y |X)−δ] ≤ |T δ
W (x)| ≤ 2N [(1+δ)2H(Y |X)]. (15)

Also, note that for all x ∈ T δ
Q and y ∈ T δ

W (x), d(x,y) is upper bounded by:

d(x,y) ≤ (1 + δ)2
∑
x,y

Q(x)W (y|x)d(x, y) = (1 + δ)2Ed(X, Y ). (16)

Finally, observe that for x ∈ T δ
Q, T δ

W (x) ⊆ T δ′
P , where δ′ �

= 2δ + δ2, since

(1 − δ)2P (b) ≤ Py(b) ≤ (1 + δ)2P (b), (17)

where Py(b) denotes the relative frequency of a letter b ∈ Y in the vector y. The size of T δ′
P

is denoted similarly as in eq. (15) and

2N [(1−δ)2H(Y )−δ] ≤ |T δ′
P | ≤ 2N [(1+δ)2H(Y )]. (18)

3 System Description and Problem Definition

A general coding scheme for joint watemark embedding and compression is given in Fig. 1.

compressed
bitstream
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composite
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1
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Figure 1: Block diagram of the system.

Let us consider a DMS Q that produces a sequence X = (X1, ..., XN ) according to (2).

This sequence will be referred to as the covertext sequence. One of M possible messages v,

v ∈ {0, 1, ..., M − 1}, is embedded into the covertext x.
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It is assumed that the message v is uniformly distributed across {0, 1, ..., M − 1}, indepen-

dently of x, i.e.,

Pr{V = v} =
1
M

for all v ∈ {0, 1, ..., M − 1}. (19)

The encoder (embedder) maps each pair (x, v) into a composite sequence, henceforth

denoted as y = (y1, y2, ..., yN ), whose components take on values in a finite alphabet Y.

The encoder is defined by the embedding function φN (·, ·):

y = φN (x, v)
�
=

(
φ1(x, v), φ2(x, v), ..., φN (x, v)

)
(20)

where φn(·, ·), n = {1, ..., N} is the projection of φN (·, ·), corresponding to the n-th coordi-

nate. The decoder, that estimates the embedded message, is given by:

v̂ = ϕN (y), (21)

where

ϕN : YN → {0, 1, ..., M − 1}. (22)

In order to maintain reasonable quality of the composite sequence, the following constraint

is imposed on the system: The expected distortion between the composite sequence y and

the source sequence x, defined by

Ed(X,Y)
�
= Ed(X, φN (X, V )) =

∑
x

∑
v

1
M

Q(x)
1
N

N∑
n=1

d(xn, φn(x, v)) (23)

should not exceed a prescribed level ∆.

The composite sequence y is entropy-coded, i.e., the codeword length of y is defined as

l(y) =
⌈ − log

(
Pr{y})⌉, ∀y ∈ YN . The corresponding composite rate Rc, defined by

Rc
�
=

El
(
φN (X, V )

)
N

(24)

should be as small as possible. The embedding rate, Re, defined by

Re
�
=

1
N

log M, (25)

should be as large as possible.

The quality of estimation of V is judged according to the average probability of error,

Pe, defined by:

Pe
�
= Pr{V 	= ϕN (φN (X, V ))}. (26)
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The average probability of error should, of course, be made as small as possible.

The objectives of simultaneously minimizing Pe and Rc, while maximizing Re and main-

taining distortion ∆, might be conflicting. It is, therefore, desirable to characterize the best

achievable tradeoff between ∆, Rc and Re that still enables reliable estimation of V .

An achievable composite rate Rc for a pair (Re, ∆) is a composite rate such that for

every ε > 0, there exists a sufficient large N , an encoder φN and a decoder ϕN , that satisfy

Pe ≤ ε and Ed(X,Y) ≤ ∆ for Rc and Re defined as in (24) and (25).

4 Main Result

We now present the main result of this paper, which is a single-letter expression for the

minimum achievable composite rate.

Theorem 1. For a DMS Q, defined as in (2), and a given pair (Re, ∆), the minimum

achievable composite rate Rc is given by

R∗
c(Re, ∆)

�
= Re + f(Re, ∆), (27)

where

f(Re, ∆)
�
= min

S(Re,∆)
I(X; Y ), (28)

X being a random variable governed by Q, and

S(Re, ∆) = {W : Ed(X, Y ) ≤ ∆, Re ≤ H(Y |X)}. (29)

Discussion:

The outline of the proof of the direct part of Theorem 1 is as follows: Given a fixed

DMS Q and a channel W such that Ed(X, Y ) ≤ ∆, we show that it is possible to find up to

2NH(Y |X) disjoint codebooks of size 2NI(X;Y ), each maintaining the Type Covering Lemma

by Csiszár and Körner [16]. Now, as long as Re ≤ H(Y |X), it is possible to attribute a

different watermark to each codebook, and thus, the watermark can be correctly retrieved

according to the codebook to which the composite sequence belongs. The composite rate of

this coding scheme is, therefore, Re+I(X; Y ) ≤ H(Y ), and so, R∗
c is obtained by minimizing

I(X; Y ) over a set of all channels maintaining the constraints of eq. (29).

In [15], the tradeoffs existing in the joint information embedding and compression prob-

lem are evaluated, focusing on the case of symbol-by-symbol compression of the composite
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sequences. Willems and Kalker obtain that the minimum achievable composite rate equals

to ELH(Y ), the expected codeword-length of a binary Huffman code of the composite vari-

able, and conjecture that for blockwise lossless compression of the composite sequence the

composite rate is lower bounded by H(Y ). As is shown in Section 7, for fixed ∆, f(Re, ∆)

is a monotonically non-decreasing and convex function of Re, and therefore, an alternative

expression of (27) is given by

R∗
c(Re, ∆)

�
=


Re + R(∆), 0 ≤ Re ≤ R∗

e

minS(Re,∆) H(Y ), Re > R∗
e,

(30)

where

R∗
e

�
= max{Re : f(Re, ∆) = R(∆)}, (31)

proving that it is possible to achieve the composite rate as small as Re + R(∆) < H(Y ) for

values of Re below R∗
e.

An easy extension of this work can be done for the case of continuous alphabets. The

result of this extension turns out to be rather interesting: The minimum achievable compos-

ite rate is always given by the first expression of (30) and the embedding rate is unlimited.

The proof of the converse part is identical to the one in Section 5 (except for dropping the

constraint on Re). In the proof of the direct part, the following property of the continuous

sequences is used: For channels that achieve the rate distortion function, it is possible to

generate infinitely many distinct nearly optimal rate-distortion codebooks that differ from

each other only by arbitrarily small perturbations of one (representative) codebook, each

one representing a different watermark message. Therefore, without any additional require-

ments on the system (like robustness to the attacks) the maximum achievable embedding

rate is infinite. In [13], the embedding and the compression steps of the coding scheme are

separated, but yet, we obtain that in case of the Gaussian alphabets, the achievable rate

regions coincide for the public and the private joint watermarking-compression problems.

Though, in general, for the same value of the composite rate, the embedding rate of the

private watermarking is expected to be higher than this of the public watermarking. It is

also interesting to notice that the coding scheme proposed in the proof of the direct cod-

ing theorem of [13] is substantially different from ours, using the random coding technique

to create a single codebook of size 2NRc and then, evaluating the watermark by the joint

typicality property of the decompressed composite sequence with the source sequence and
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the watermark. This coding scheme is implementable by the random binning technique

[15], and while modified to be based on the joint typicality of the source and the composite

sequences, achieves the results identical to ours for the case of the public version of the joint

watermarking and compression problem. The idea of indexing of the disjoint codebooks by

different watermarks is exploited also in [8], where the class of embedding methods (QIM,

DC-QIM) is introduced, and the disjoint codebooks are created by different quantizers, each

containing a unique set of the reconstruction vectors. Various case studies of implementa-

tion of QIM and DC-QIM, and its functionality and efficiency are provided in the paper,

for both the public and the private versions of watermarking, in the presence of the attack,

along with the proof of the information-theoretic optimality of the proposed methods, and

estimations of the reachability of the embedding capacity. It is interesting to notice that

the proof of the optimality of QIM (hidden QIM), which, in terms of quantization, gives

the interpretation to the proof of the achievability of capacity by Gel’fand and Pinsker [20],

is based on the technique of random binning. If analyzed from our point of view, in the

attack-free case, QIM and DC-QIM obtain theoretical results which are identical to ours,

and therefore, for certain practical problems, schemes achieving minimum Rc for prescribed

(Re, ∆) may be implementable by practical realizations of QIM.

5 Proof of the Converse Part

The proof of the converse is very similar to that of [15], but with some refinements. Let

φN and ϕN be given, and assume that the distortion constraint ∆ is satisfied. Consider

a random variable I distributed uniformly over {1, 2, ..., N}, independently of all other

random variables in the system, and let us denote

(X, Y )
�
= (XI , YI). (32)

Now, the probability distribution of (X, Y ) is given by:

Pr{(X, Y ) = (x, y)} =
1
N

N∑
n=1

Pr{(Xn, Yn) = (x, y)}. (33)

Since, by hypothesis, the given system satisfies the expected distortion constraint,

∆ ≥ Ed(X,Y) (34)

=
∑
x,y

Pr{(X,Y) = (x,y)} 1
N

N∑
n=1

d(xn, yn)
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=
1
N

N∑
n=1

∑
x,y

Pr{(Xn, Yn) = (x, y)}d(x, y)

=
∑
x,y

Pr{(X, Y ) = (x, y)}d(x, y)

= Ed(X, Y ).

From the entropy coding of the composite sequence, we obtain:

NRc = El(Y) ≥ H(Y) = H(Y, V ) − H(V |Y). (35)

From Fano’s inequality, we obtain:

H(V |Y) ≤ h(Pe) + Pe log(M − 1) ≤ 1 + PeNRe. (36)

where h(·) is the binary entropy function. Thus,

NRc

(a)

≥ H(Y) (37)
(b)

≥ H(Y, V ) − 1 − PeNRe

= H(V ) + H(Y|V ) − 1 − PeNRe

≥ H(V ) + I(Y;X|V ) − 1 − PeNRe

(c)
= NRe + H(X|V ) − H(X|Y, V ) − 1 − PeNRe

(d)

≥ (1 − Pe)NRe − 1 + H(X) − H(X|Y)

(e)
= (1 − Pe)NRe − 1 +

N∑
n=1

H(Xn) −
N∑

n=1

H(Xn|Y, Xn−1
1 )

(f)

≥ (1 − Pe)NRe − 1 +
N∑

n=1

H(Xn) −
N∑

n=1

H(Xn|Yn)

(g)
= (1 − Pe)NRe − 1 + NH(X|I) − NH(X|Y, I)
(h)

≥ (1 − Pe)NRe − 1 + NH(X) − NH(X|Y )

= (1 − Pe)NRe − 1 + NI(X; Y ) (38)

= (1 − Pe)NRe − 1 + NH(Y ) − NH(Y |X)
(i)

≥ (1 − Pe)NRe − 1 + H(Y) − NH(Y |X) (39)

where:

(a) follows from the entropy coding,

(b) from (35) and (36)

(c) from the assumption V has a uniform distribution,
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(d) from the fact that X and V are independent and the fact that conditioning reduces entropy,

(e) from the chain rule of entropy and the assumption that the source is memoryless,

(f) from the fact that conditioning reduces entropy,

(g) from the definition of (X, Y ) through I,

(h) from the fact that (X, I) are independent, and the fact that conditioning reduces

entropy, and

(i) from the chain rule of entropy.

From (37) and (38), we obtain:

NRc ≥ (1 − Pe)NRe − 1 + NI(X; Y ) (40)

and from (37) and (39) we obtain:

H(Y) ≥ (1 − Pe)NRe − 1 + H(Y) − NH(Y |X). (41)

Subtracting H(Y) from both sides of (41) and dividing both equations (40) and (41) by N ,

we obtain:

Rc ≥ (1 − Pe)Re − 1
N

+ I(X; Y ) (42)

and

H(Y |X) ≥ (1 − Pe)Re − 1
N

. (43)

By hypothesis, the given system satisfies Pe ≤ ε, and hence, by taking the limit ε → 0 as

N → ∞ in (43) and (42), we obtain both:

Rc ≥ Re + I(X; Y ) (44)

and

Re ≤ H(Y |X). (45)

Obviously, the existence of a channel W that satisfies Ed(X, Y ) ≤ ∆, Re ≤ H(Y |X) and

Rc ≥ Re + I(X; Y ) is equivalent to

Rc ≥ R∗
c(Re, ∆) = Re + min

S(Re,∆)
I(X; Y ) = Re + f(Re, ∆). (46)

which completes the proof of the converse part.
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6 Proof of the Direct Part

Before getting into the technical details, we present the outline of the proof. First, we show

that for the given DMS Q and a channel W such that Ed(X, Y ) ≤ ∆, it is possible to

partition T δ′
P into approximately 2NH(Y |X) disjoint subsets, each of which with cardinality

of approximately 2NI(X;Y ), such that for every sequence x ∈ T δ
Q, each subset contains at

least one element that is jointly typical with x, i.e., belongs to T δ
W (x). The proof has two

stages: In Lemma 1 below, we prove that there exists a subset B with the above mentioned

properties within a large enough subset F ⊆ T δ′
P . Specifically, it is possible to find such B if

|F| ≥ 2−Nδ|T δ′
P | and |F ⋂

T δ
W (x)| ≥ 2−Nδ|T δ

W (x)| for every x ∈ T δ
Q. We also show that for

each x ∈ T δ
Q, |B⋂

T δ
W (x)| ≤ 25Nδ. Afterwards, we apply Lemma 1 recursively on T δ′

P : In

each recursion, we remove a subset of approximately 2NI(X;Y ) from T δ′
P , which serves as a

rate-distortion codebook corresponding to a certain watermark message, then another such

subset is removed from the remaining set of approximately |T δ′
P | − 2NI(X;Y ) sequences, and

so on. The removing procedure is proceeded as long as there are enough typical sequences

left to apply Lemma 1. Finally, we obtain approximately 2NH(Y |X) disjoint subsets of T δ′
P .

The fact that these codebooks are all disjoint enables reliable decoding of the watermark.

Now, for a channel W that achieves the minimum in (28), we present a coding scheme

that attributes each message v to a different subset, creating a different code-book for

each message. We prove that this scheme achieves Pe as small as desired, for a sufficiently

large N , that it maintains the distortion constraint for Re ≤ H(Y |X), and that it achieves

R∗
c(Re, ∆) as given in (27).

We begin with the following Lemma.

Lemma 1. Given Q ∈ Q(X ), W ∈ W(Y|X ) and scalars ∆ ≥ ∑
x,y Q(x)W (y|x)d(x, y) and

δ > 0, there exists sufficiently large N0 such that for all N ≥ N0, the following holds true:

If a set F ⊆ T δ′
P satisfies |F| ≥ 2−Nδ|T δ′

P | and |F ⋂
T δ

W (x)| ≥ 2−Nδ|T δ
W (x)| for all x ∈ T δ

Q,

then there exists a set B ⊂ F such that for all x ∈ T δ
Q:

22Nδ |T δ′
P |

|T δ
W (x)| ≤ |B| ≤ 23Nδ |T δ′

P |
|T δ

W (x)| , (47)

d(x,B) ≤ (1 + δ)2∆, ∀x ∈ T δ
Q, (48)

|B⋂
T δ

W (x)| ≤ 25Nδ, ∀x ∈ T δ
Q. (49)
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Lemma 1 is proved in Appendix A.1.

Proof of the Direct Part of Theorem 1

For a fixed DMS Q, a channel W and scalars ∆ ≥ Ed(X, Y ) and δ > 0, we apply Lemma 1

recursively on the set T δ′
P . In each recursion, it is examined whether the conditions of Lemma

1 are satisfied. If satisfied, there exists a subset B ∈ T δ′
P that meets (47)-(49). This subset

is found and removed from the set of the typical sequences and the recursion is repeated.

In each step, the recursion is operated on a smaller set of the typical sequences, until

the typical sequences are exhausted. The maximum number of the steps of the recursion

determines the maximum number of the distinct subsets of T δ′
P that satisfy the claims of the

Lemma. Let us notice that if within each subset exist identical elements, (which is possible

for I(X; Y ) > 1
2H(Y )), then less then |B| elements of T δ′

P are removed in that step. We

next restrict ourselves to the “worst” case in which all elements of each subset are distinct.

This is a worst case in the sense of minimizing the number of steps of the recursion. Yet,

we prove that even in the worst case, the proposed coding scheme achieves the minimum

composite rate for a fixed pair of the embedding rate and allowed distortion.

Let us define the variables for the k-th step of the recursion, k ∈ {1, 2, ..., K}, where

K will be defined later on. Let B(k) be a set that satisfies the claims of Lemma 1, for the

k-th step and m
�
= |B(k)| as defined in (47). Let F(k) denote the set of typical sequences

meeting the conditions of Lemma 1 in the k-th step:

Initialization (k = 1) : F(1) = T δ′
P , (50)

k − th step : F(k) = T δ′
P −

k−1⋃
i=1

B(i), (51)

|F(k)| = |T δ′
P | − (k − 1)m, (52)

where (52) holds since {B(i)} are all disjoint.

Let us also define the cardinality of B(k)
⋂

T δ
W (x) by N(x, k), and let F(k)

⋂
T δ

W (x) be

denoted by Fx(k). Then,

Initialization (k = 1) : Fx(1) = T δ
W (x), (53)

k − th step : Fx(k) = T δ
W (x) −

k−1⋃
i=1

(
B(i)

⋂
T δ

W (x)
)
, (54)

|Fx(k)| = |T δ
W (x)| −

k−1∑
i=1

N(x, i), (55)
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where by (49), N(x, i) ≤ 25Nδ for all i ∈ {1, 2, ..., k − 1} and x ∈ T δ
Q. Thus,

|Fx(k)| ≥ |T δ
W (x)| − (k − 1)25Nδ. (56)

Evidently, Lemma 1 is implementable as long as

|F(k)| ≥ 2−Nδ|T δ′
P | (57)

and

|Fx(k)| ≥ 2−Nδ|T δ
W (x)|. (58)

The constraints (57) and (58) dictate the maximum number of steps of the recursion and

therefore,

K = min

{
2−Nδ|T δ′

P |
m

,
2−Nδ|T δ

W (x)|
25Nδ

}
. (59)

From (47), we obtain

2−4Nδ|T δ
W (x)| ≤ 2−Nδ|T δ′

P |
m

≤ 2−3Nδ|T δ
W (x)|, (60)

and hence,

K = 2−6Nδ|T δ
W (x)|. (61)

We now summarize our coding scheme: For a fixed pair (Re, ∆), let us consider the

DMC W that achieves (28), hence Ed(X, Y ) ≤ ∆, Re ≤ H(Y |X) and I(X; Y ) = f(Re, ∆).

Let us divide T δ′
P into 2−6Nδ|T δ

W (x)| disjoint subsets, each of size m, 22Nδ |T δ′
P |

|T δ
W (x)| ≤ m ≤

23Nδ |T δ′
P |

|T δ
W (x)| , as described above. We propose a coding scheme that attributes to each mes-

sage, v ∈ {0, 1, ..., 2NRe−1}, a different subset, that is, a different codebook for this message.

The embedding scheme works as follows: Upon receiving a pair (x, v), where x ∈ T δ
Q, the

encoder chooses a composite sequence y from the codebook of v such that y ∈ T δ
W (x). The

mapping from T δ
Q × {0, 1, ..., 2NRe − 1} to T δ′

P is one-to-one with respect to the watermark,

since all codebooks are disjoint. If x /∈ T δ
Q, a pre-defined error sequence is transmitted. Upon

receiving a y, the decoder checks whether the sequence belongs to one of the codebooks,

or if it is an error-sequence. If the y is a codeword, the decoder retrieves the index v of

the codebook to which it belongs and this is the decoded message. Otherwise, an error is

announced.
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The decoding error occurs when x /∈ T δ
Q. By (13), the probability of such an event

vanishes as N → ∞. Since the distortion function is assumed bounded by dmax (see (7)),

then:

Ed(X,Y) ≤ (1 − Pe)(1 + δ)2∆ + Pedmax, (62)

where the right-hand side becomes arbitrarily close to ∆ for large N and small δ. Finally,

the composite rate Rc is given by:

Rc =
1
N

log(2NRem) (63)

≤ 1
N

log
[
2NRe23Nδ |T δ′

P |
|T δ

W (x)|
]

≤ 1
N

log
[
2NRe2N [(1+δ)2H(Y )−(1−δ)2H(Y |X)+4δ]

]
= Re + (1 + δ)2H(Y ) − (1 − δ)2H(Y |X) + 4δ

= Re + (1 + δ)2I(X; Y ) + 4δH(Y |X) + 4δ

= R∗
c(Re, ∆) + ε(δ), (64)

where the second inequality follows from (15) and (18) and where ε(δ) → 0 as δ → 0. This

completes the proof of the direct part, as δ > 0 is arbitrarily small.

7 An Alternative Expression of R∗
c(Re, ∆)

In this section, we prove that eqs. (27) and (30) are equivalent, as mentioned in the

Discussion that follows Theorem 1. For Re ≤ R∗
e, the proof is trivial, by definition of R∗

e.

Before we move on to the case Re > R∗
e, let us first establish some important properties of

R∗
c(Re, ∆).

Lemma 2. The function R∗
c(Re, ∆), as defined in (27), is monotonically non-decreasing

and convex in Re, for fixed ∆.

Lemma 2 is proved in Appendix A.2.

We now return to the proof of the equivalence between (27) and (30), proceeding with

the case Re > R∗
e. The function f(Re, ∆) takes a constant value (plateau), R(∆), for

any Re ≤ R∗
e, and by definition, increases for Re > R∗

e. Clearly, by convexity, f(Re, ∆)

cannot have an additional plateau for Re > R∗
e. Therefore, for Re > R∗

e, the channel W ∗

that achieves f(Re, ∆), satisfies Re = H∗(Y |X), where H∗(Y |X) is a conditional entropy

induced by Q and W ∗.
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Let us define by H∗(Y ) and I∗(X; Y ) the entropy of Y and the mutual information

between X and Y induced by Q and W ∗, respectively. Then,

R∗
c(Re, ∆)

�
= Re + min

S(Re,∆)
I(X; Y ) (65)

= H∗(Y |X) + I∗(X; Y )

= H∗(Y )

≥ min
S(Re,∆)

H(Y ).

On the other hand,

R∗
c(Re, ∆)

�
= min

S(Re,∆)
[Re + I(X; Y )] (66)

≤ min
S(Re,∆)

[H(Y |X) + I(X; Y )]

= min
S(Re,∆)

H(Y ),

and therefore

R∗
c(Re, ∆) = min

S(Re,∆)
H(Y ), (67)

which completes the proof.

8 Examples

In this section, we provide two examples of calculation of R∗
c(Re, ∆). The first exam-

ple demonstrates a binary source with a one-sided distortion measure. For a given pair

(Re, ∆), R∗
c(Re, ∆) is calculated following (27), and the achieving channels and the max-

imum achievable embedding rate are also found. The second example treats a case of a

binary symmetric source with the Hamming distortion measure. Also there exists a value

of the maximum achievable Re beyond which R∗
c(Re, ∆) = ∞. The obtained minimizing

channel is unique for a fixed ∆ for all achievable embedding rates.

8.1 A binary source with a one-sided distortion measure

Consider a binary source X ∼ Bernoulli(p), with a distortion measure,

d(X, Y )
�
=


1, X = 0, Y = 1,

0, X = Y,

∞, otherwise.

(68)
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Figure 2: Z-Channel.

The test channel in this case, is obviously a Z-channel as depicted in Fig. 2.

The channel output Y is binary, Y ∼ Bernoulli(q), with q = p(1 − α). Thus,

H(Y ) = h(p(1 − α)), (69)

and

H(Y |X) = ph(α), (70)

where h(·) is a binary entropy. The mutual information between X and Y , given by

I(X; Y ) = h(p(1 − α)) − ph(α), (71)

is monotonically decreasing with α, since

∂I(X; Y )
∂α

= p log(
αp

1 − p + αp
) < 0, (72)

for α > 0.

We wish to determine the minimum achievable composite rate R∗
c(Re, ∆), as denoted in

(27), for a given pair (Re, ∆). The average distortion measure is given by

Ed(X, Y ) = pα. (73)

The channel achieving R∗
c(Re, ∆) maintains minRe≤H(Y |X),Ed(X,Y )≤∆ I(X; Y ), and there-

fore, from (72), it is determined by the maximum α, satisfying the two following inequali-

ties:

pα ≤ ∆ and Re ≤ ph(α), (74)

or equivalently,

α ≤ ∆
p

and h−1

(
Re

p

)
≤ α ≤ 1 − h−1

(
Re

p

)
, (75)
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where h−1(·) represents the inverse entropy function with the support of [0, 1
2 ]. For the case

where ∆
p < h−1

(
Re
p

)
, the allowed range of α is empty. For h−1

(
Re
p

) ≤ ∆
p ≤ 1 − h−1

(
Re
p

)
,

the minimizing channel is with α = ∆
p , and for 1 − h−1

(
Re
p

)
< ∆

p , the distortion constraint

no longer affects the composite rate, and so, the optimum channel is with α = 1−h−1
(

Re
p

)
,

provided that Re ≤ p. Therefore, R∗
c(Re, ∆) is given by

R∗
c(Re, ∆) =



Re + h
(
p − ∆

) − ph
(

∆
p

)
, ph−1

(
Re
p

) ≤ ∆ ≤ p
(
1 − h−1

(
Re
p

))
,

0 ≤ Re ≤ p,

Re + h
(
ph−1

(
Re
p

)) − ph
(
1 − h−1

(
Re
p

))
, p

(
1 − h−1

(
Re
p

))
< ∆,

0 ≤ Re ≤ p,

∞, ∆ < ph−1
(

Re
p

)
, 0 ≤ Re ≤ p,

or Re > p.

(76)

8.2 The Binary Symmetric Source and Hamming Distortion measure

Consider the binary symmetric source and the Hamming distortion measure along with the

class of channels depicted in Fig. 3.

1

Y
1α

11 α−

21 α−

2α

1

01

2

X

1

2

0

1 q−

q

Figure 3: Binary Symmetric Source and Hamming distortion measure.

The channel output Y is binary, Y ∼ Bernoulli(q), with q = 1
2(1 − α1 + α2).

H(Y ) = h(q) = h
(1

2
(1 − α1 + α2)

)
, (77)

and

H(Y |X) =
1
2
(h(α1) + h(α2)). (78)

The mutual information between X and Y is given by

I(X; Y ) = h
(1

2
(1 − α1 + α2)

)
− 1

2
(h(α1) + h(α2)). (79)
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We wish to determine the minimum achievable composite rate R∗
c(Re, ∆) for a given pair

(Re, ∆). The distortion constraint Ed(X, Y ) ≤ ∆
(
∆ ≤ 1

2

)
, interpreted as

1
2
(α1 + α2) ≤ ∆, (80)

dictates the family of channels (α1, α2) maintaining the distortion constraint.

We first argue that the test channel that achieves f(Re, ∆) is symmetric, i.e., α1 =

α2 = α. Consider two channels p1(y|x) and p2(y|x) with (α1, α2) and (α2, α1), respec-

tively. Those channels, henceforth referred to as original channels, share the same average

distortion ((eq. 80)), and induce the same conditional entropy (eq. (78)) and mutual in-

formation (eq. (79)), denoted by H1,2(Y |X) and by I1,2(X; Y ), respectively. Now, consider

the mixture distribution p3(y|x) = 1
2p1(y|x) + 1

2p2(y|x), which is the symmetric channel

(α1+α2
2 , α1+α2

2 ), and let us denote by H3(Y |X) and by I3(X; Y ) the conditional entropy and

the mutual information induced by p3(y|x), respectively. Obviously, the average distortion

of the mixture channel remains as this of the original channels, H3(Y |X) ≥ H1,2(Y |X) and

I3(X; Y ) ≤ I1,2(X; Y ) due to the concavity of the conditional entropy and the convexity of

the mutual information as a functionals of the conditional distribution. Hence, the mixture

channel satisfies the same distortion and Re constraints (eq. (29)) as the original channels,

it may even satisfy larger Re constraint, and it may have smaller mutual information. Thus,

we obtain that given a pair (Re, ∆), R∗
c is always achievable by a symmetric channel. The

family of symmetric channels (α, α), induces (eq. (79))

I(X; Y ) = 1 − h(α), (81)

and therefore, in order to determine R∗
c , we look for α which minimizes (81) under the

constraints of eq. (29). For ∆ ≤ 1
2 and Re ≤ h(∆), the minimum in (81) is achieved with

α = ∆, and for ∆ > 1
2 and Re ≤ 1 it is achieved with α = 1

2 , giving:

R∗
c(Re, ∆)

�
=


Re + 1 − h

(
min

{
∆, 1

2

})
, 0 ≤ ∆, 0 ≤ Re ≤ h

(
min

{
∆, 1

2

})
∞, otherwise.

(82)

Appendix

A.1 Proof of Lemma 1

In this subsection we prove that within a large enough subset F ⊆ T δ′
P satisfying the

conditions of Lemma 1, there exists a subset B that meets (47)-(49). The first two claims of
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Lemma 1, (48) and (47), are proved in the spirit of the proof of the Type Covering Lemma

by Csisźar and Körner [16] while proof of (49) is based on large deviations theory. For every

sequence x ∈ T δ
Q, let us denote:

Fx
�
= F

⋂
T δ

W (x). (A.1)

For a set B ⊂ F , let m
�
= |B|. Let us also denote by U(B) the set of those x ∈ T δ

Q, for which

d(x,B) > (1 + δ)2∆ and by Bm the family of all subsets consisting of m, not necessarily

distinct, elements of F . By B1,2
m we denote the family of all subsets of size m that satisfy

(47) and (48), and by B3
m the family of all subsets of size m that satisfy (49). We apply

the method of random selection to Bm and show that there exists B ∈ Bm, such that m is

bounded as in (47), d(x,B) ≤ (1 + δ)2∆, and (49) holds, i.e., B ∈ B1,2
m

⋂B3
m.

Let Zm �
= Z1Z2...Zm, denote m independent copies of a random variable Z, uniformly

distributed over F . Let

1
{
Zm /∈ B1,2

m

} �
=

{
1 if Zm /∈ B1,2

m ,
0 otherwise .

(A.2)

and

1
{
Zm /∈ B3

m

} �
=

{
1 if Zm /∈ B3

m,
0 otherwise ,

(A.3)

and finally, define a new random variable:

Γ(Zm)
�
= 1

{
Zm /∈ B1,2

m

}
+ 1

{
Zm /∈ B3

m

}
. (A.4)

To prove the existences of B ∈ Bm, which satisfies (47), (48) and (49) at the same time, we

will show that EΓ(Zm) < 1.

EΓ(Zm) = E
{

1
{
Zm /∈ B1,2

m

}
+ 1

{
Zm /∈ B3

m

}}
(A.5)

= E
{

1
{
Zm /∈ B1,2

m

}}
+ E

{
1
{
Zm /∈ B3

m

}}
= Pr

{
Zm /∈ B1,2

m

}
+ Pr

{
Zm /∈ B3

m

}
.

Let us denote Pr
{
Zm /∈ B1,2

m

}
using the random set U(Zm), which is a set of all x ∈ T δ

Q

satisfying d(x, Zm) > (1+δ)2∆, namely, d(x, Zi) > (1+δ)2∆, for all i ∈ {1, 2, ..., m}. Using

the union bound we obtain:

Pr
{
Zm /∈ B1,2

m

}
= Pr

{ ⋃
x∈T δ

Q

x ∈ U(Zm)

}
≤

∑
x∈T δ

Q

Pr
{
x ∈ U(Zm)

}
. (A.6)

By (16), y ∈ T δ
W (x) for x ∈ T δ

Q implies d(x,y) ≤ (1 + δ)2∆.
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Therefore, for each i ∈ {1, 2, ...m},

Pr
{
d(x, Zi) > (1 + δ)2∆

} ≤ Pr
{
Zi /∈ Fx

}
= 1 − |Fx|

|F| ≤ 1 − 2−Nδ |T δ
W (x)|
|T δ′

P | , (A.7)

where the last inequality follows from the constraints on cardinality of F and Fx for each

x ∈ T δ
Q. By the independence of {Zi},

Pr{x ∈ U(Zm)} =
m∏

i=1

Pr{d(x, Zi) > (1 + δ)2∆} ≤
[
1 − 2−Nδ |T δ

W (x)|
|T δ′

P |

]m

. (A.8)

Applying the inequality (1 − a)b ≤ exp(−ab) to (A.8) gives:

Pr{x ∈ U(Zm)} ≤ exp

{
− m2−Nδ |T δ

W (x)|
|T δ′

P |

}
, (A.9)

which for

m ≥ 22Nδ |T δ′
P |

|T δ
W (x)| (A.10)

gives

Pr{x ∈ U(Zm)} ≤ exp{−2Nδ}. (A.11)

On substituting (A.11) into (A.6) we obtain

Pr
{
Zm /∈ B1,2

m

} ≤ |T δ
Q| exp

{ − 2Nδ
} ≤ |T δ

Q|2−2Nδ ≤ 2N log |X |−2Nδ
. (A.12)

In view of (A.5), to complete the proof of Lemma 1, it is now enough to show that

Pr
{
Zm /∈ B3

m

} → 0 as N → ∞. For a given sequence x ∈ T δ
Q, let us denote by N(x) the

number of elements of Zm in T δ
W (x) , i.e., the number of Zi ∈ Fx:

N(x) =
m∑

i=1

1{Zi ∈ Fx}, (A.13)

where

1
{
Zi ∈ Fx

} �
=

{
1 if Zi ∈ Fx,
0 otherwise .

(A.14)

Then, Pr
{
Zm /∈ B3

m

}
is the probability of the existence of at least one x ∈ T δ

Q with

N(x) > 25Nδ, i.e.,

Pr
{
Zm /∈ B3

m

}
= Pr{∃x ∈ T δ

Q : N(x) > 25Nδ}. (A.15)

By the union bound, we obtain

Pr
{
Zm /∈ B3

m

} ≤
∑
x∈T δ

Q

Pr{N(x) > 25Nδ}. (A.16)
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Therefore, we are interested in upper-bounding Pr{N(x) > 25Nδ}, simultaneously for all

x ∈ X . Obviously,
{

1
{
Zi ∈ Fx

}}
are Bernoulli i.i.d. random variables with

Pr
{

1
{
Zi ∈ Fx

}
= 1

}
= Pr{Zi ∈ Fx} =

E{N(x)}
m

. (A.17)

Note that Pr{N(x) > 25Nδ} = Pr{ 1
mN(x) > 25Nδ

m }, and so, for

m ≤ 23Nδ |T δ′
P |

|T δ
W (x)| , (A.18)

we obtain

25Nδ

m
≥ 22Nδ |T δ

W (x)|
|T δ′

P | (A.19)

≥ 2Nδ |Fx|
|F|

= 2Nδ Pr{Zi ∈ Fx} (A.20)

> Pr{Zi ∈ Fx}. (A.21)

This means that Pr{N(x) > 25Nδ} is the probability of a large deviations event associated

with the empirical mean of
{

1
{
Zi ∈ Fx

}
= 1

}
i
and hence can be upper-bounded as follows

[16]:

Pr{N(x) > 25Nδ} ≤ 2−mD
(

25Nδ

m
||Pr{Zi∈Fx}

)
, (A.22)

where D(α‖β) , for α, β ∈ [0, 1] is defined as α log
(

α
β

)
+ (1 − α) log

(
1−α
1−β

)
.

Now, D
(

2Nε

m ||Pr{Zi ∈ Fx}
)

is lower bounded as follows:

D
(25Nδ

m
||Pr{Zi ∈ Fx}

)
=

25Nδ

m
log

25Nδ

m

Pr{Zi ∈ Fx} (A.23)

+
(
1 − 25Nδ

m

)
log

1 − 25Nδ

m

1 − Pr{Zi ∈ Fx}
≥ Nδ

25Nδ

m
(A.24)

+
(
1 − 25Nδ

m

)
log

1 − 25Nδ

m

1 − Pr{Zi ∈ Fx} (A.25)

≥
(
Nδ − log(e)

)25Nδ

m
, (A.26)

where (A.24) follows from expressing the first term of (A.23) via (A.20), and (A.26) is

obtained by applying of the inequality log(x) ≥ (1− 1
x) log(e) to (A.25) and reducing some

positive terms of the obtained expression.
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Substituting (A.26) into (A.22), we obtain

Pr{N(x) > 25Nδ} ≤ 2−m
(
Nδ−log(e)

)
25Nδ

m (A.27)

= 2−25Nδ
(
Nδ−log(e)

)
, (A.28)

and hence, substitution of (A.28) and the upper-bound on the size of T δ
Q (12) into (A.16)

gives:

Pr
{
Zm /∈ B3

m

} ≤ |T δ
Q|2−25Nδ

(
Nδ2−log(e)

)
(A.29)

≤ 2N(1+δ)2H(X)−25Nδ
(
Nδ−log(e)

)
.

For N → ∞, Pr
{
Zm /∈ B3

m

} → 0, which completes the proof of Lemma 1.

A.2 Proof of Lemma 2

In this subsection we prove that the function R∗
c(Re, ∆), as defined in (27), is monotonically

non-decreasing and convex in Re, for fixed ∆.

The proof of monotonicity is simple: For increasing Re, f(Re, ∆), and therefore also

R∗
c(Re, ∆), are defined over decreasing minimization sets. We next establish the convexity

with respect to Re.

Let us consider the two points (Re1, R
∗
c(Re1, ∆)) and (Re2, R

∗
c(Re2, ∆)), which lie on

the R∗
c(Re, ∆) curve, where Re1 < Re2. Let the joint distributions that achieve these

pairs be P1(x, y) = Q(x)W1(y|x) and P2(x, y) = Q(x)W2(y|x). Let us also denote Reλ =

λRe1 + (1 − λ)Re2. To prove convexity in Re, we must show that

R∗
c(λRe1 + (1 − λ)Re2, ∆) ≤ λR∗

c(Re1, ∆) + (1 − λ)R∗
c(Re2, ∆). (A.30)

Equivalently, since both sides of (A.30) contain term Re, which cancels, we must show:

f(Reλ, ∆) ≤ λf(Re1, ∆) + (1 − λ)f(Re2, ∆) (A.31)

for every λ ∈ [0, 1].

Consider the distribution Wλ = λW1 + (1 − λ)W2. The mutual information is a convex

functional of the conditional distribution, and the conditional entropy is a concave functional

of the conditional distribution for a given distribution Q on X , therefore:

IPλ
(X; Y ) ≤ λf(Re1, ∆) + (1 − λ)f(Re2, ∆) (A.32)

HPλ
(Y |X) ≥ λHP1(Y |X) + (1 − λ)HP2(Y |X) (A.33)
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where IPλ
(X; Y ) and HPλ

(Y |X) are mutual information and conditional entropy of Y given

X, induced by Q and Wλ; HP1(Y |X) and HP2(Y |X) are conditional entropies of Y given

X, induced by Q and W1 and W2, respectively.

Since

f(Reλ, ∆) = min
S(Reλ,∆)

I(X; Y ), (A.34)

where

S(Reλ, ∆) = {W (Y |X) : Reλ ≤ H(Y |X), Ed(X, Y ) ≤ ∆}, (A.35)

then, by showing that

f(Reλ, ∆) ≤ Iλ(X; Y ), (A.36)

the proof of convexity will be completed.

The average distortion Ed(X, Y ) is an affine functional of the distribution, and therefore,

the distortion constraint is fulfilled by Wλ = λW1 + (1 − λ)W2.

From (A.33), using definitions of the sets of channels that achieve f(Re1, ∆) and f(Re2, ∆),

we obtain that Re1 ≤ HP1(Y |X) and Re2 ≤ HP2(Y |X) and therefore HPλ
≥ Reλ.

Hence, we obtain that Wλ ∈ S(Reλ, ∆), and therefore (A.36) holds.
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