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Abstract— This paper presents a novel architecture of 

internally two priority buffered Multistage Interconnection 

Network (MIN). First, we compare by simulation the new 

architecture against a single priority MIN and demonstrate  up 

to N times higher high-priority throughput in a hot spot 

situation, when N is the number of inputs. In addition, under 

uniform traffic assumption we show an increase in the low 

priority throughput, without any change in the high priority 

throughput. Moreover, while in the single priority system the 

high priority delay and its standard deviation are  increased 

when low priority traffic is present, it is kept constant in the dual 

priority system. Finally, we introduce a new approach of long 

Markovian memory performance model to better capture the 

packets dependency in a single priority MIN under uniform 

traffic and extend this model for a dual priority MIN. Model 

results are shown to be very accurate. 

INTRODUCTION 

In recent years, there has been much interest devoted to 
incorporating multimedia applications in packet switching 
networks. Different types of traffic need different QoS 
standards, but share the same network resources, such as 
buffers and bandwidth. For real-time applications, it is 
important that mean delay and delay-jitter are bounded, while 
for non real-time applications, such as data transfer, the loss 
ratio often is the restrictive quantity. 

A priority service scheme can be defined in terms of a 
policy determining: (a) which of the arriving packets are 
admitted to the buffer(s); and/or (b) which of the admitted 
packets is served next. The former priority service schemes 
are typically referred to as space priority (or discarding) 
schemes and attempt to minimize the packet loss of loss-
sensitive traffic, such as data. An overview and classification 
of some space priority strategies can be found in [1, 2]. The 
latter priority service schemes are typically referred to as time 
priority (or priority scheduling) schemes and attempt to 
guarantee acceptable delay boundaries to delay-sensitive 
traffic, such as voice and video. Several types of time priority 
schemes, such as Weighted-Round-Robin and Weighted-Fair-
Queueing, have been proposed and analyzed, each with their 
own specific algorithmic and computational complexity, see 
for example [1] and [3] and the references therein.  

There are already several commercial switches which 
accommodate traffic priority schemes, see for example [4, 5]. 
These switches consist of an internally single priority switch 
fabric and employ two priority queues for each input port. 
Packets are queued based on their priority level and packets 
with higher priority number are allowed to pass first. Chen 
and Guerin [6] studied an N×N internally one priority non-
blocking packet switch with input queues. They assumed that 
high priority packets preempt low priority ones at the input 
and move ahead of all low priority packets waiting for service 
at their input queue. They also assumed that high priority 
packets always prevail over low priority packets contending 
for the same output. Given these assumptions and the fact that 
the switch is non-blocking, they suggested that the presence of 
low priority packets is transparent to high priority ones, for 
which the switch behaves as a single priority switch, and 
studied the performance of low priority packets. They 
determined the total maximum throughput and established that 
it can exceed that of an equivalent single priority switch. Ng 
and Dewar [7] introduced a simple modification to a load 
sharing replicated banyan networks to guarantee priority 
traffic transmission. They considered two switch planes, such 
that one switch plane is designated as the high priority traffic 
switch plane, and the other is designated as the low priority 
traffic switch plane. Their simulation results show that when 
the high priority traffic constitutes less than 30% of the total 
traffic, one can guarantee extremely low packet loss for the 
high priority traffic. In addition, when the high priority to low 
priority traffic ratio increases, the distinction between high 
and low priority traffic performance decreases. In general, 
they observed that the high priority traffic delay and packet 
loss were significantly lower than those of the low priority 
traffic.  

The internal switch structure used in all the above studies is 
a single priority fabric with controlled inputs. In contrast to 
these previous works, our paper considers for the first time an 
internal two priority switch fabric architecture and focuses on 
the effect of a two priority input buffered Multistage 
Interconnection Network (MIN) on the performance of high 
and low priority traffic. We also suggest a new Markovian 
model for analyzing the performance of the two priority traffic 
types, assuming uniform traffic, and present numerical results. 

A MIN consists of a number of stages of small switching 
elements (SE), which are interconnected by a permutation 
function. An (N×N) delta-a network [8] consists of n stages of 
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N/a (a×a) crossbar switches, where N=an. A packet movement 
through the network can be controlled locally at each SE by a 
single base-a digit of the packet’s destination address. 
Therefore, no central controller is needed for global routing. 
Delta networks are subclass of banyan networks which 
encompass all the useful unique path MINs. An example of an 
(8×8) delta-2 network is given in Fig. 1. The delta network 
belongs to the blocking type networks. This means that 
packets may contend for the same output link in an SE, which 
results in a performance loss. One approach to improve the 
performance of the network can be achieved through the use 
of buffers in each SE. By using buffers, packets, which will be 
lost otherwise, can be stored in buffers when a conflict occurs. 
The location of buffers in an SE is crucial in the 
implementation and performance of the network. Dedicated 
buffers can be used at the inputs or outputs of an SE. 
Alternatively, a shared buffer can also be used in each SE.  

II. 

A. 

SINGLE VS. DUAL PRIORITY MIN 

In this section we introduce our novel architecture of 
internally two priority MIN and compare its performance to a 
single priority MIN. Our work concentrates on an (N×N) 
delta-2 network, i.e., n stages of N/2 (2×2) crossbar switches, 
where N=2n, as illustrated in Fig. 1. First, we present the basic 
single priority SE model and review the MIN architecture 
assumptions. Second, the basic dual priority SE model is 
presented followed by the revised assumptions needed to 
support two priority MIN. These two models are also used in 
later sections for the performance analysis model. Third, we 
outline the simulation environment for both single and dual 
priority MINs. Finally, two priority traffic simulation results 
are shown and compared. 

Single Priority MIN 

Fig. 2 shows the basic model of a 2×2 single buffered single 
priority switching element, which mainly consists of two input 
and two output ports, a single buffer for each incoming link 
and a non blocking switching matrix to connect the input 
buffers to the output ports. We assume that a maximum of one 
packet can be sent from each output port during one clock 
cycle and therefore a maximum of one packet can be received 
at each SE input link. 

 

 
Fig. 1. An 8×8 delta-2 network.  

Switches constructed from input buffered SEs, which 
assume uniform traffic,  have been widely studied, see for 
example: [9-17]. Jenq [9] developed a low complexity two 
state Markovian model for single input buffered MINs with 
2×2 SEs operating under uniform traffic. His model considers 
only one SE input port per stage to model the complete stage. 
Szymanski [10], Yoon [11] and Turner [12] extended Jenq’s 
model to arbitrary SE sizes and buffer sizes. Theimer [14] 
expanded Jenq’s model by introducing a blocked state for the 
2×2 single buffered MIN to better consider the dependence 
between packets of two successive clock cycles. Mun [15] 
combined this dependency with arbitrary buffer length. Hsiao 
[13] also considered the blocked state for the single buffered 
MIN. It can be found that all analytical results reported in the 
literature are optimistic in the sense that they overestimate the 
throughput. The well known reason is that some independence 
assumptions used for simplifying analysis are not accurate 
enough. The three state Markovian model [14] for single 
buffered MIN is a good attempt to capture more effects of the 
correlation among cells. All previous works have considered a 
single class of packets and so far no study on two priority 
MIN has been reported. 

Fig. 2  Basic model of a 2×2 single buffered single priority switching element. 

As in [9-12] and [15], we consider the network under a 
synchronous traffic model with global flow control 
mechanism, i.e., the following is assumed: 

1. The network clock cycle consists of two phases. In the 
first phase, flow control information passes through the 
network from the last stage to the first stage. In the 
second phase, packets flow from one stage to the next in 
accordance with the flow control information.  

2. A switch input is able to accept a packet if it has an empty 
buffer or if the packet in its buffer will leave during the 
second phase of the current clock cycle. 

3. There is no blocking at the output links of the network. 

4. The arrival process of each input of the network is a 
simple Bernoulli process, i.e., the probability that a packet 
arrives within a clock cycle is constant and the arrivals 
are independent of each other. 

5. The routing logic at each SE is fair, i.e., conflicts are 
randomly resolved. 

The contribution of this paper is threefold. First, we present 
a novel architecture of internally two priority buffered MIN 
and compare by simulation the new architecture against a 
single priority MIN. Second, we present a novel approach that 
better captures the cells dependency under uniform traffic, in a 
one priority single buffered MIN with 2×2 SEs. Instead of 
using the common approach of modeling the SE buffer with 
short Markovian memory (the last clock cycle), we propose to 
extend the Markovian memory to the last two consecutive 
clock cycles. Third, we analyze both the high and the low 
priority traffic in a two priority MIN by using the extended 
Markovian memory approach. 

6. Packets are of fixed size. 

If a uniform traffic model is considered, then the following 
assumption is added: 

7. Each input link is offered the same traffic load, and the 
destination addresses of the packets are distributed 
uniformly over all output links of the network. 

B. Dual Priority MIN 

In the previous section, we assumed that all packets are 
treated identically, i.e., there is no traffic classification. In this 



section we extend the model for two traffic classifications: 
high priority traffic and low priority traffic.  

The basic model of a 2×2 single buffered dual priority 
switching element in shown in Fig. 3. The main difference 
from the single priority SE is that each input buffer is 
composed of two single queues: one for high priority packets 
and one for low priority packets. The assumption of sending 
maximum one packet from each SE output port during one 
clock cycle is still valid and therefore each SE input link can 
still receive a maximum of one packet during each clock 
cycle. On the other hand, we do allow an input buffer to send 
up to two packets, one high priority and one low priority, 
during a clock cycle, if each packet is sent to a different output 
port and the other buffer of the same SE does not send any 
packet during this particular clock cycle. 

 

Fig. 3  Basic model of a 2×2 single buffered dual priority switching element. 

Following are the revised assumptions for the dual priority 
model.  

1. The network clock cycle consists of two phases. In the 
first phase, flow control information passes through the 
network from the last stage to the first stage. In the 
second phase, packets flow from one stage to the next in 
accordance with the flow control information.  

2. A switch input is able to accept a high priority packet if it 
has an empty high priority queue or if the high priority 
packet in its high priority queue will leave during the 
second phase of the current clock cycle. 

3. A switch input is able to accept a low priority packet if it 
has an empty low priority queue or if the low priority 
packet in its low priority queue will leave during the 
second phase of the current clock cycle. 

4. There is no blocking at the output links of the network. 

5. The arrival process of each input of the network is a 
simple Bernoulli process, i.e., the probability that a packet 
arrives within a clock cycle is constant and the arrivals 
are independent of each other. Moreover, there is a fixed 
probability for each packet to be either high or low 
priority. 

6. The routing logic within each priority at each SE is fair, 
i.e., same priority conflicts are randomly resolved. 

7. High priority packets have a fixed priority over the low 
priority packets. 

8. Packets are of fixed size. 

If a uniform traffic model is considered, then the following 
assumption is added: 

9. Each input link is offered the same traffic load and the 
same high to low priority ratio. In addition, the 
destination addresses of the packets are distributed 
uniformly over all output links of the network. 

Since the high priority packets have strict priority over the 
low priority packets, and since we still allow a maximum of 
one packet into each SE input link and out of each SE output 
link, the performance (both throughput and delay) of the high 
priority traffic in the dual priority MIN is identical to the 

performance of the single priority traffic in the single priority 
MIN. Moreover, the low priority traffic is getting served only 
in those clock cycles in which no high priority traffic is able to 
move to the desired destination. Therefore, the overall 
throughput of the dual priority MIN under specific total input 
load (low priority + high priority) should be at least as high as 
the single priority MIN throughput under the same total input 
load and can be even higher.   

C. System Description 

As in most contemporary commercial switches, see for 
example [4, 5], we add two input buffers (FIFOs) in front of 
each MIN input: one is designated for the low priority packets 
and the other for the high priority packets. Each low priority 
packet that arrives to a system input is enqueued to the low 
priority input FIFO, and each high priority packet that arrives 
is enqueued to the high priority input FIFO.  

An N×N single priority system comprises of N high priority 
input FIFOs and N low priority input FIFOs which are 
connected to an N×N single priority MIN’s inputs, as 
illustrated in Fig. 4. A high priority packet leaves the high 
priority input FIFO and enters the MIN input if the 
corresponding SE input is able to accept a packet. On the other 
hand, a low priority packet can enter the MIN, only if the high 
priority input FIFO is empty and the corresponding SE input 
is able to accept a packet. This strict priority admission of high 
priority packets over low priority packets, which is similarly 
implemented in both [4] and [5], suggests that the throughput 
of the high priority traffic is not affected by the presence of 
low priority traffic. In other words, the high priority 
throughput in the dual priority system under dual priority 
traffic with high priority input load Gh and low priority input 
load Gl, is equal to the throughput in the single priority system 
under single priority traffic with input load G = Gh, 
independent of Gl. However, the total delay of the high 
priority traffic in the single priority system is affected by the 
presence of low priority traffic, since it increases the 
congestion probability inside the MIN, and hence increases 
the delay and its standard deviation.  

 

Fig. 4 An 8×8 system: delta-2 network with input FIFOs. 

The dual priority system is obtained by replacing the single 
priority MIN in the single priority system with a dual priority 
MIN. In this system, a high priority packet leaves the high 
priority input FIFO and enters the MIN input if the 
corresponding SE input is able to accept a high priority 
packet. On the other hand, a low priority packet can enter the 
MIN, only if there is no high priority packet that can enter and 
the corresponding SE input is able to accept a low priority 
packet. As in the single priority system, the throughput of the 



high priority traffic is not affected by the presence of low 
priority traffic and is equal to the throughput of a single 
priority traffic in the single priority system under input load 
that equals to the high priority input load, i.e., G = Gh. 
However, unlike the single priority system, the delay of the 
high priority traffic in the dual priority system is not affected 
by the low priority traffic, and hence equals to the delay of a 
single priority traffic in the single priority system under input 
load G = Gh. 

D. Simulations Results 

In order to isolate the input FIFOs size from the system 
performance, we used infinite input FIFOs in front of each 
MIN input, so there was actually no packet loss. Nevertheless, 
it is obvious that a system with low throughput and finite input 
FIFOs will suffer from higher packet loss than a system that 
can reach higher throughput with the same input FIFOs size. 
Therefore, we concentrated on both the delay and the 
throughput measurements in our simulations. 

To emphasize the “immunity” of the high priority traffic 
over the low priority traffic in the dual priority system vs. the 
single priority system, we considered an extreme case in 
which: (a) all inputs send traffic to output link 0, which 
describes an extreme hot spot situation; (b) all inputs send the 
same input load; (c) all inputs, except input 0, send low 
priority traffic, while input 0 sends high priority traffic. While 
this scenario does not represent a realistic long term steady 
state, it demonstrates a transient load situation that should be 
taken into account in the design of contemporary systems. The 
high priority throughput in both systems is depicted in Fig. 5 
for 6 stages networks, with 64 inputs and outputs. 
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Fig. 5 High priority throughput in both single and dual priority systems with 6 

stages under hot spot traffic. SPSh represents the high priority throughput in 

the single priority system, while DPSh represents the high priority throughput 

in the dual priority system 

In general, all packets are destined to output 0, which yields 
throughput of 1 for all inputs together. In the single priority 
system all packets are treated equally and therefore each input, 
including input 0 which sends high priority traffic, is able to 
send throughput of 1/64=0.015. However, in the dual priority 
system high priority traffic has strict priority over low priority 
traffic and therefore the high priority throughput equals the 
high priority input load, while the low priority throughput 
equals 1-high priority throughput. 

The results in the rest of this section consider a uniform 
traffic model, as describes in sections ІІ.A and ІІ.B. 

The throughput of both systems under full input load is 
illustrated in Fig. 6. As implied earlier, we can see that the 

maximum throughput of the dual priority system is higher 
than that of the single priority system when more than one 
priority traffic enters the system (up to 47% increase in the 
1024×1024 system). The source of this extra throughput in the 
dual priority system is the advance of low priority packets 
when high priority packets cannot move forward, i.e., this is 
exactly the low priority throughput difference between the two 
systems, which is sketched in Fig. 7. We can see that the low 
priority throughput decreases as long as the low priority input 
load decreases and high priority throughput increases. The 
decrease in the low priority throughput stops when high 
priority throughput arrives to its maximum and is restored 
when low priority input load further decreases below its 
throughput value.  
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Fig. 6 Maximum total throughput of both single and dual priority systems 

under dual priority traffic (G = Gh + Gl = 1) as a function of the high priority 

input load (Gh) for various MIN sizes. SP[k] represents a single priority 

system with k stages MIN. Similarly, DP[k] represents a dual priority system 

with k stages MIN.  
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Fig. 7 Low priority throughput of both single and dual priority systems under 

dual priority traffic (G = Gh + Gl = 1) as a function of the low priority input 

load (Gl) for various MIN sizes. SPSl[k] represents the low priority 

throughput in a single priority system with k stages MIN. Similarly, DPSl[k] 

represents low priority throughput in a dual priority system with k stages 

MIN.  



Fig. 8 shows the low priority throughput in the single 
priority system under dual priority input load as a function of 
the high priority input load. We can see that as long as the 
total input load is below the maximum throughput (~0.39, as 
can be seen in Fig. 6), all the low priority input traffic goes 
out. However, when total input load goes above the maximum 
throughput, the low priority throughput is affected, and not all 
the input low priority load is able to get into (and out of) the 
MIN. Note that since high priority input load is relatively low 
in contemporary networks, we considered the range of 0-0.25 
for the high priority input load. Since the maximum 
throughput of the dual priority system is higher than that of 
the single priority system under dual priority traffic, the low 
priority throughput in this system starts to be affected when 
the  high priority input load is higher, as can be seen in Fig. 9. 
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Fig. 10 High Priority throughput in a 64×64 single priority system under dual 

priority traffic. Gh represents the high priority input load.  

As opposed to the high priority throughput, the high priority 
total delay and its standard deviation are affected by the low 
priority input load in the single priority system. Fig. 11 depicts 
the average high priority total delay in 64×64 single and dual 
priority systems under dual priority traffic. We can see that in 
the single priority system the average delay increases with the 
increase of the low priority input load, but the increase stops 
when the total input load reaches the maximum throughput of 
that system. At this point, the low priority load inside the MIN 
stops increasing and therefore the high priority delay stays 
constant. As high priority input load increases, the probability 
that a high priority packet arrives to an empty input FIFO 
decreases and therefore, the total delay increases. The high 
priority delay in the dual priority system is not affected by the 
low priority input load and remains constant. 

Fig. 8 Low Priority throughput in a 64×64 single priority system under dual 

priority traffic. Gl represents the low priority input load.  
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Fig. 11 Average high priority total delay in 64×64 single priority (SP) and 

dual priority (DP) systems under dual priority traffic. Gh represents the high 

priority input load.  
Fig. 9  Low Priority throughput in a 64×64 dual priority system under dual 

priority traffic. Gl represents the low priority input load.  The maximum and standard deviation of the high priority 
delay are having a similar graph shape, and are illustrated in 
Fig. 12 and 13, respectively. As discussed in the previous sub-section, the high priority 

traffic throughput is identical in both the single and the dual 
priority systems under the same dual priority input load. Fig. 
10 shows the throughput of the high priority traffic in a 64×64 
single priority system. The graph of the high priority traffic in 
a 64×64 dual priority system is identical. 
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Fig. 12 Max High Priority Total Delay in a 64×64 single priority system under 

dual priority traffic. Gh represents the high priority input load.  
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Fig. 13 Standard deviation of the high priority delay in 64×64 single priority 

(SP) and dual priority (DP) systems under dual priority traffic. Gh represents 

the high priority input load.  

III. 

A. 

B. 

1)

PERFORMANCE MODEL 

As stated before, the performance model is focused on 
uniform traffic. Previous work for modeling and analyzing 
MINs under uniform traffic [9-16] used short Markovian 
memory (the last clock cycle). We propose to extend the 
Markovian memory to the last two consecutive clock cycles to 
better capture the packets dependency. First, we briefly review 
previous models for analyzing MINs. Second, we introduce 
our novel approach to the single priority model, present the 
analysis and some numeric results. Finally, we introduce the 
dual priority model, its analysis and numeric results. 

Previous Models for Analyzing MINs 

To better understand the novelty and significance of the 
approach presented in this paper, we first review three of the 
more classical models used for analyzing MINs under uniform 
traffic, [9] and [14, 15]. 

Jenq [9] was the first to suggest two models for analyzing of 
single buffered banyan network composed of 2×2 SEs. In both 
models he assumed that packets arriving at each network input 
link are destined uniformly for all network output links. He 
also assumed a uniform load for each network input link. In 
the first model he further assumed that the two buffers in the 
same SE are statistically independent and therefore the state of 
a stage can be reduced to that of a single buffer, i.e., two states 
(“empty” and “not empty”) Markovian model. To verify this 
assumption he introduced the second model, in which the state 

of a stage is characterized by that of an SE. This model 
assumes that the two SE buffers are dependent and therefore 
the Markovian model comprises four states. Since both 
models showed very close results, it was concluded that the 
assumption of independence between the two SE buffers is 
reasonable. Jenq’s models have rather low accuracy when 
input load is high, mainly due to the independence assumption 
between requests in consecutive clock cycles and between 
states of buffers in adjacent stages.  

In a subsequent work, Theimer, Rathgeb and Huber [14] 
modeled a single buffered banyan networks with 2×2 SEs. 
They assumed that the two SE buffers are dependent and 
added a blocked state for the single buffer. Therefore, their 
model, which tries to model the SE, includes nine states: three 
states (“empty”, “new” and “blocked”) for each SE buffer. 
This nine state model captures major part of the correlations of 
a packet movement between two consecutive clock cycles as 
well as the states of the buffers in two adjacent network 
stages. This model demonstrates a significant improvement in 
accuracy over Jenq’s model. However, since they derived their 
model by exhaustively tracing the possible states of input 
buffers in each SE, the generalization of their model to the 
case of a×a SEs is very difficult. 

Later, Mun and Youn [15], developed a model for a multi-
buffered MINs with 2×2 SEs. They assumed that the two 
multi-buffers in the same SE are statistically independent. 
They first developed a single buffered model with 2×2 SEs, 
which includes three states: “empty”, “new” and “blocked”. 
They later expanded this model to support multi-buffered 2×2 
SEs. The results of the single buffered model are closer to 
those of Theimer’s model with much less complexity. 

There are additional models, such as [13] and [16], that are 
based on three states model, but the assumptions in [13] do not 
seem to be realistic and the results of [16] for low loads are 
very inaccurate. 

Single Priority Model 

In this section we introduce our novel approach, present the 
analysis and some numeric results.  

 Model and Notations 
The basic model of the single priority SE and its 

assumptions are presented in section II.A “Single Priority 
MIN”. The analytic model is based on this model and its 
assumptions, including the uniform traffic assumption. 

Assumption 7 in section II.A implies that loads are balanced 
in the whole switching network and therefore the state of an 
SE at stage k is statistically indistinguishable from that of 
another SE of the same stage. Following Jenq’s first model 
[9], we further assume that the two buffers in the same SE are 
statistically independent and therefore the state of a stage can 
be reduced to that of a single buffer. 

Initial work modeled the single buffer as a two states 
Markov chain with the following states: “0”, buffer empty and 
“1”, buffer not empty (see [9-12]). In order to capture the 
correlations between consecutive clock cycles as well as 
between the states of the buffers in the adjacent stages, later 
work split the “buffer not empty” state into two states: “new”, 
buffer contains a new packet and “blocked”, buffer contains a 
blocked packet (see [13-16]). In this section we introduce a 
novel model for the single buffer behavior, which considers 



also the previous state of that buffer. This one clock history 
consideration increases the dependency capturing by refining 
the “empty” and “new” states of the three state models. Note 
that when a network is congested, the SEs arrival rate is 
relatively low. Therefore, in addition to the blocked buffers, 
there is non-negligible number of unblocked buffers which 
their time dependency and correlation with the next stage 
should also be captured. Following are the five possible states 
that we have in our model: 

 

• “00”: buffer was empty at the beginning of the previous 
clock cycle and is empty at the beginning of the 
current clock cycle as well, i.e., no new packet has 
been received during the previous clock cycle. Fig. 14 The state transition diagram of a single priority SE(k) buffer. 

• “01”: buffer was empty at the beginning of the previous 
clock cycle and contains a new packet at the 
beginning of the current clock cycle, i.e., a new 
packet has been received during the previous clock 
cycle. 

The state transition probabilities are shown in Fig. 2.9 and 
the notations, which will be used in the sequel, are 
summarized below. 

q(k, t): Probability that a packet is ready to come to a buffer of 
SE(k) at td. 

• “10”: buffer had a packet at the beginning of the previous 
clock cycle but has no packet at the beginning of 
the current one, i.e., a packet has been sent from 
this buffer during the previous clock cycle, but no 
new packet has been received. 

r01(k, t): Probability that a packet in a buffer of SE(k) is able to 
move forward at td, given that the buffer is in state 
“01”.  

r11n(k, t): Probability that a packet in a buffer of SE(k) is able 
to move forward at td, given that the buffer is in state 
“11n”.  

• “11n”: buffer had a packet at the beginning of the 
previous clock cycle and has a new one at the 
beginning of the current clock cycle, i.e., a packet 
has been sent from this buffer during the previous 
clock cycle, and a new packet has been received. 

r11b(k, t): Probability that a packet in a buffer of SE(k) is able 
to move forward at td, given that the buffer is in state 
“11b”.  

• “11b”: buffer had a packet at the beginning of the 
previous clock cycle and has a blocked one at the 
beginning of the current clock cycle, i.e., no packet 
has been sent from this buffer during the previous 
clock cycle. 

2) Analysis 
The state probabilities at clock cycle t+1 are easily derived 

from Fig. 14: 

P00(k, t+1) = [1-q(k, t)]·P00(k, t) + [1-q(k, t)]·P10(k, t)                                 (1) 

P01(k, t+1) =  q(k, t)·P00(k, t) + q(k, t)·P10(k, t)                                             (2) 
The probability of each SE buffer in a certain stage to be in 

each of the above five states are presented below. Following 
Mun’s [15] notations, SE(k) denotes an SE at stage k. Also, tb 
represents the time instance when a clock cycle begins, while 
td represents the duration of a clock cycle.  

P10(k, t+1) =  [1-q(k, t)]·r01(k, t)·P01(k, t) + [1-q(k, t)]·r11n(k, t)·P11n(k, t)  

                                                                + [1-q(k, t)]·r11b(k, t)·P11b(k, t)      (3) 

P11n(k, t+1) =  q(k, t)·r01(k, t)·P01(k, t) + q(k, t)·r11n(k, t)·P11n(k, t)  

                                                           + q(k, t)·r11b(k, t)·P11b(k, t)                 (4) 

P00(k, t): Probability that a buffer of SE(k) is empty at (t-1)b 
and at tb. 

P11b(k, t+1) = [1-r01(k, t)]·P01(k, t) + [1-r11n(k, t)]·P11n(k, t)  

                                                      + [1-r11b(k, t)]·P11b(k, t)                          (5) 

P01(k, t): Probability that a buffer of SE(k) is empty at (t-1)b 
and has a new packet at tb. 

If the transition probabilities are known, the state 
probabilities of the buffers can be computed iteratively. 
Therefore, the calculation of the transition probabilities will be 
briefly discussed below, while the explicit mathematical 
expressions are derived in Appendix A. 

P10(k, t): Probability that a buffer of SE(k) has a packet at (t-
1)b and is empty at tb. 

P11n(k, t): Probability that a buffer of SE(k) has a packet at (t-
1)b and has a new one at tb. The probability that a packet is able to move forward 

depends on the probability of a collision with a packet from 
the other buffer of the same SE and on the probability that its 
destination in the next stage is ready to accept the packet. 
Considering the probability that a packet can be accepted by 
its destination buffer at stage k+1, there are three cases to 
distinguish. 

P11b(k, t): Probability that a buffer of SE(k) has a packet at (t-
1)b and has a blocked one at tb. 

• If none of the buffers of an SE at stage k sent a packet 
during the previous clock cycle to a destination buffer at 
stage k+1, the possible states of that destination buffer at 
the beginning of the current clock cycle are: “00”, “10” 
and “11b”. 
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• If one of the buffers of an SE at stage k sent a packet 
during the previous clock cycle to a destination buffer at 
stage k+1, the possible states of that destination buffer at 
the beginning of the current clock cycle are: “01” and 
“11n”. 

• If one of the buffers of an SE at stage k has been blocked 
during the previous clock cycle, the destination buffer at 
stage k+1 always contains a packet at the beginning of the 
current clock cycle. The destination buffer is in state 
“11b” if it did not receive a packet from the other buffer 
of the SE at stage k during the previous clock cycle; 
otherwise it must be either in state “01” or in state “11n”. 

The throughput of stage k, S(k, t), is the probability that a 
packet is transmitted from an output port of SE(k) at td. In 
other words, it is the probability that a buffer of SE(k+1) 
receives a packet at td and it can be calculated from the state 
probabilities of stage k and from the transition probabilities as 
follows: 

Fig. 15.Normalized throughput of a single buffered single priority delta-2 

network with 6 stages.   

The influence of network size on the performance is 
depicted in Fig. 16, which shows the normalized throughput of 
a single buffered single priority delta-2 network for various 
network sizes. It can be seen that the model accuracy 
decreases as network size increases. This is due to the fact that 
every additional stage introduces further collisions and the 
inaccuracy of one stage accumulates to the previous stage. Our 
model seems to be very accurate: the maximum deviation is 
only 10.9% for a fully loaded 1024×1024 network.  

S(k, t) =P01(k, t)· r01(k, t) + P11n(k, t)·r11n(k, t)+ P11b(k, t)·r11b(k, t)               (6) 

The normalized throughput, S(t), is the per output port 
throughput at td, i.e., S(t) = S(n, t), where n = log2N is the 
number of switching stages. 

Due to the backpressure mechanism, no packets are lost in 
the internal links. Consequently, the probability that a packet 
is entering a buffer at stage k is equal to the probability that a 
packet is transmitted on an output link of an SE at stage k-1. 
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q(k, t) = S(k-1, t) / [P00(k, t) + P01(k, t)· r01(k, t) + P10(k, t)  

                               + P11n(k, t)·r11n(k, t) + P11b(k, t)·r11b(k, t)]      

                                                                                            (2 ≤ k ≤ n)         (7) 

Since there is no preceding stage to the first stage, q(1, t) is 
the offered traffic load to the network inputs, i.e.,  

q(1, t) = G                                                                                                    (8) 

where G is the probability that a packet arrives within a 
clock cycle to each input of the network. 

3) Numerical Results 
Fig. 15 shows the normalized throughput of a single 

buffered single priority delta-2 network with 6 stages as a 
function of the input load for the three classical models and 
for our model. All models are very accurate at low loads and 
accuracy reduces as input load increases. When input load 
approaches the network maximum throughput, the accuracy of 
Jenq’s model is insufficient. One of the reasons is the fact that 
many packets are blocked mainly at the network first stages at 
high traffic rates. Therefore, adding a “blocked” state in 
Mun’s model improved the accuracy. The consideration of the 
dependencies between the two buffers of an SE in Theimer’s 
model leads to further improvement. Taking into account the 
history of an additional clock cycle in our model, introduces 
almost the same improvement with much less complication.  

Fig. 16.Normalized throughput of a single buffered single priority delta-2 

network for various network sizes. S[k] is the analyzed throughput for a 

network with k stages. SimS[k] is the simulated throughput for a network with 

k stages. 

C. 

1)

Dual Priority Model 

 In this section we introduce the dual priority model, its 
analysis and some numeric results. 

 Model and Notations  
The basic model of the dual priority SE and its assumptions 

are presented in section II.B “Dual Priority MIN”. The 
analytic model is based on this model and its assumptions, 
including the uniform traffic assumption. 

As discussed previously, the performance (both throughput 
and delay) of the high priority traffic in the dual priority MIN 
is identical to the performance of the single priority traffic in 
the single priority MIN. Moreover, the low priority traffic is 



Pl11lb(k, t): Probability that a low priority queue of an SE(k) 
buffer has a packet at (t-1)b and has a blocked one, 
which is blocked by a low priority packet, at tb. 

getting served only in those clock cycles in which no high 
priority traffic is able to move to the desired destination. 
Therefore, our model includes two separate Markov chains. 
The first one is a stand alone chain, which represents the high 
priority traffic queue and is identical to the single priority 
model, presented in the previous section. However, since the 
service of the low priority traffic depends on the high priority 
service, the transitions of the second chain, which represents 
the low priority traffic queue, depends on the transitions of the 
first chain. Note that since the dual priority SE allows an input 
buffer to send up to two packets, one high priority and one 
low priority, during a clock cycle, under the constrains 
specified in section II.B, the low priority queue and the high 
priority queue modeled do not necessarily relate to the same 
buffer, but they do relate to the same SE.  

The low priority model is an extended version of the single 
priority model and includes six states. The states “00”, “01”, 
“10” and “11n” are identical to the states of the single priority 
model, while state “11b” is split into two states as follows. 

Fig. 17 The state transition diagram of a low priority queue in an SE(k) buffer. 

The state transition diagram for the low priority traffic 
queue is shown in Fig. 17 and the notations, which will be 
used in the sequel, are summarized below.  •  “11hb”: queue had a low priority packet at the beginning 

of the previous clock cycle and this packet has 
been blocked by a high priority packet and stayed 
at least till the beginning of the current clock 
cycle. 

ql(k, t): Probability that a low priority packet is ready to come 
to a low priority queue of an SE(k) buffer at td. 

rlt01(k, t): Probability that a packet in the low priority queue of 
an SE(k) buffer is able to move forward at td, given 
that the buffer is in state “01”.  • “11lb”: queue had a low priority packet at the beginning 

of the previous clock cycle and this packet has 
been blocked by a low priority packet and stayed 
at least till the beginning of the current clock 
cycle. 

rlt11n(k, t): Probability that a packet in the low priority queue 
of an SE(k) buffer is able to move forward at td, 
given that the buffer is in state “11n”.  

rlt11hb(k, t): Probability that a packet in the low priority queue 
of an SE(k) buffer is able to move forward at td, 
given that the buffer is in state “11hb”.  

The motivation for the blocked state split is the two 
different possible sources of low priority blocking and their 
major affect on the inferred destination buffer state and its 
acceptance probability. A low priority packet, which is 
blocked by a high priority packet, implies a lower probability 
of occupancy in the low priority destination queue. On the 
other hand, a low priority packet, which is blocked by a low 
priority packet, implies a higher probability of occupancy in 
the low priority destination queue.  

rlt11lb(k, t): Probability that a packet in the low priority queue 
of an SE(k) buffer is able to move forward at td, 
given that the buffer is in state “11lb”.  

rlb01(k, t): Probability that a packet in the low priority queue 
of an SE(k) buffer is not able to move forward at td 
due to a low priority traffic, given that the buffer is 
in state “01”.  Since the high priority model is identical to the single 

priority model, we can avoid rewriting all the previous section 
with an “h” notation simply by saying that each variable with 
no “l” notation represents the high priority traffic, and each 
low priority parameter is represented by the “l” notation.  

rlb11n(k, t): Probability that a packet in the low priority queue 
of an SE(k) buffer is not able to move forward at td 
due to a low priority traffic, given that the buffer is 
in state “11n”.  

The probability of each low priority SE buffer queue in a 
certain stage to be in each of the six states are presented 
below. 

rlb11hb(k, t): Probability that a packet in the low priority queue 
of an SE(k) buffer at stage k is not able to move 
forward at td due to a low priority traffic, given that 
the buffer is in state “11hb”.  Pl00(k, t): Probability that a low priority queue of an SE(k) 

buffer is empty at (t-1)b and at tb. rlb11lb(k, t): Probability that a packet in the low priority queue 
of an SE(k) buffer is not able to move forward at td 
due to a low priority traffic, given that the buffer is 
in state “11lb”.  

Pl01(k, t): Probability that a low priority queue of an SE(k) 
buffer is empty at (t-1)b and has a new packet at tb. 

Pl10(k, t): Probability that a low priority queue of an SE(k) 
buffer has a packet at (t-1)b and is empty at tb. 2) Analysis 

The state probabilities of the high priority traffic at clock 
cycle t+1 are easily derived from Fig. 14, and are identical to 
those calculated in equations (1) – (5). The state probabilities 
of the low priority traffic at clock cycle t+1 are easily derived 
from Fig. 17 (recall that S(k, t) is the high priority 
throughput): 

Pl11n(k, t): Probability that a low priority queue of an SE(k) 
buffer has a packet at (t-1)b and has a new one at tb. 

Pl11hb(k, t): Probability that a low priority queue of an SE(k) 
buffer has a packet at (t-1)b and has a blocked one, 
which is blocked by a high priority packet, at tb. 

Pl00(k, t+1) = [1-ql(k, t)]·Pl00(k, t) + [1-ql(k, t)]·Pl10(k, t)                            (9) 



Pl01(k, t+1) =  ql(k, t)·Pl00(k, t) + ql(k, t)·Pl10(k, t)                                      (10) 

Pl10(k, t+1) =  [1-ql(k, t)]·rlt01(k, t)·Pl01(k, t) 

                   + [1-ql(k, t)]·rlt11n(k, t)·Pl11n(k, t)  

                   + [1-ql(k, t)]·rlt11lb(k, t)·Pl11lb(k, t)  

                   + [1-ql(k, t)]·rlt11hb(k, t)·Pl11hb(k, t)                                          (11) 

Pl11n(k, t+1) = ql(k, t)·rlt01(k, t)·Pl01(k, t)  

                    + ql(k, t)·rlt11n(k, t)·Pl11n(k, t) 

                    + ql(k, t)·rlt11lb(k, t)·Pl11lb(k, t)  

                    + ql(k, t)·rlt11hb(k, t)·Pl11hb(k, t)                                               (12) 

Pl11lb(k, t+1) = rlb01(k, t)·Pl01(k, t) + rlb11n(k, t)·Pl11n(k, t)  

                     + rlb11lb(k, t)·Pl11lb(k, t) + rlb11hb(k, t)·Pl11hb(k, t)                   (13) 

Pl11hb(k, t+1) = S(k, t)·Pl01(k, t) + S(k, t)·Pl11n(k, t)  

                     + S(k, t)·Pl11lb(k, t) + S(k, t)·Pl11hb(k, t)                                 (14) 

As in the single priority model, the queues’ state 
probabilities can be computed iteratively, if the transition 
probabilities are known. The calculations of the low priority 
queue transition probabilities will be briefly discussed below, 
while the explicit mathematical expressions are derived in 
Appendix B. 

The probability that a low priority packet is able to move 
forward depends on the probability of a high priority traffic 
transmission to the same destination, the probability of a 
collision with a packet from the other buffer of the same SE 
and on the probability that its destination in the next stage is 
ready to accept the packet. In other words, the low priority 
traffic can be blocked by a high priority traffic transmission, 
in addition to the single priority blocking probability.  

The low priority throughput of stage k, Sl(k, t), is the 
probability that a low priority packet is transmitted from an 
output port of SE(k) at td. In other words, it is the probability 
that a low priority queue of SE(k+1) buffer receives a packet 
at td and it can be calculated from the state probabilities of 
stage k and from the transition probabilities, as follows. 

Sl(k, t) = Pl01(k, t)· rlt01(k, t) + Pl11n(k, t)·rlt11n(k, t)  

            + Pl11lb(k, t)·rlt11lb(k, t) + Pl11hb(k, t)·rlt11hb(k, t)                             (15) 

The low priority normalized throughput, Sl(t), which is the 
per output port throughput at td and ql(k, t) are calculated in a 
similar manner to the single priority model. 

Sl(t) = Sl(n, t)                                                                                            (16) 

ql(k, t) = Sl(k-1, t) \ [Pl00(k, t) + Pl01(k, t)· rlt01(k, t)  

                               + Pl10(k, t) + Pl11n(k, t)·rlt11n(k, t) 

                               + Pl11lb(k, t)·rlt11lb(k, t) + Pl11hb(k, t)·rlt11hb(k, t)]     

                                                                                            (2 ≤ k ≤ n)       (17) 

The offered load Gt, which is declared to be the probability 
that a packet arrives within a clock cycle to each input of the 
network, is actually the sum of the low priority offered load, 
Gl, and the high priority offered load, G. 

Gt = Gl + G                                                                                                 (18) 

Since there is no preceding stage to the first stage, ql(1, t) is 
specified manually as the offered load of the low priority 
traffic to the network inputs. 

ql(1, t) = Gl                                                                                                 (19) 

3) Numerical Results 
Fig. 18 shows the normalized low priority throughput of a 

single buffered dual priority Delta-2 network for various 

network sizes as a function of the high priority input load. The 
offered load is 1, therefore the low priority input load equals 
to 1- high priority input load.  The high priority normalized 
throughput is identical to the one shown in Fig. 16. There 
seems to be no specific direction to the model: sometimes 
optimistic and sometimes pessimistic. Nevertheless, the 
maximum deviation of our model is only 16.9% for fully 
loaded delta-2 network with 10 stages, i.e., a 1024×1024 
delta-2 network. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0
0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

High Priority Input Load (G)

L
o

w
 P

ri
o

ri
ty

 N
o

rm
a
li
z
e
d

 T
h

ro
u

g
h

p
u

t 

(S
l)

Sl[1]

Sl[2]

Sl[4]

Sl[6]

Sl[10]

SimSl[1]

SimSl[2]

SimSl[4]

SimSl[6]

SimSl[10]

 

Fig. 18 Low priority normalized throughput of a single buffered dual priority 

Delta-2 network for various network sizes as a function of the high priority 

input load, G. Sl[k] is the analyzed low priority throughput for a network with 

k stages. SimSl[k] is the simulated low priority throughput for a network with 

k stages. Low priority input load equals to 1-high priority input load. 

IV. DISCUSSION  

This paper presents a novel internally two priority buffered 
MIN architecture. It compares its performance with a single 
priority MIN. Simulation results show increase in high priority 
throughput of up to N times under hot spot traffic. For uniform 
traffic, we show an increase in low priority throughput, 
without any change in the high priority throughput. Moreover, 
while high priority delay and its standard deviation are 
increased when low priority traffic present in the single 
priority system, it is kept constant in the dual priority system. 
Finally, we introduce a new approach of long Markovian 
memory performance model to better capture the packets 
dependency in a single priority MIN under uniform traffic and 
extend this model for a dual priority MIN. Model results 
seems to be very accurate. Non-homogenous traffic study via 
simulation and analysis is yet to be studied. 
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APPENDIX A: EXPLICIT CALCULATION OF THE SINGLE PRIORITY 

BUFFER TRANSITION PROBABILITIES 

The transition probabilities of the single priority model are 
derived in this appendix and the explicit mathematical 
expressions are presented.  

The probability that a packet is able to move forward 
depends on the state of the other buffer of the same SE, which 
affects the collision probability, and on the probability that its 



destination in the next stage is ready to accept the packet. If 
two packets are contending for the same output of an SE, one 
of the packets is randomly selected for transmission and the 
other packet has to wait for the next clock cycle. 

Considering the probability that a packet can be accepted by 
its destination buffer at stage k+1, there are three cases to 
distinguish. 

• No packet has been sent to this destination buffer during 
the previous clock cycle. 

Pa
0(k, t): Probability that a buffer of SE(k) is able to receive 

a packet at td, given that it received no packet at (t-
1)d. 

Pa
0(k, t) = [P00(k, t) + P10(k, t) + P11b(k, t)·r11b(k, t)] /  

                  [ P00(k, t) + P10(k, t) + P11b(k, t)]                                               (20) 

• A packet has been sent to this destination buffer during 
the previous clock cycle. 

rn(k, t): Probability that a packet in a buffer of SE(k) is able 
to move forward at td, given that the packet is 
“new”, i.e., the buffer is either in state “01” or in 
state “11n”.  

rn(k, t) = [P01(k, t)·r01(k, t) + P11n(k, t)·r11n(k, t)] /  

               [ P01(k, t) + P11n(k, t)]                                                                  (21) 

• The destination buffer is blocked: r11b(k, t) 

Following are the explicit mathematical expressions for the 
transition probabilities for 1 ≤ k < n. 

r01(k, t) =   P00(k, t)·Pa
0(k+1, t)  

               + P01(k, t)·0.75·Pa
0(k+1, t)  

               + P10(k, t)·[0.5·Pa
0(k+1, t) + 0.5·rn(k+1, t)]  

               + P11n(k, t)·[0.5·0.75·Pa
0(k+1, t) + 0.5·0.75·rn(k+1, t)] 

               + P11b(k, t)·[0.5·Pa
0(k+1, t) + 0.5·0.5·r11b(k+1, t)]                        (22) 

r11n(k, t) =   0.5·{    P00(k, t)·Pa
0(k+1, t) 

                            + P01(k, t)·0.75·Pa
0(k+1, t) 

                            + 0.5·P10(k, t)· rn(k+1, t) 

                            + 0.5·P11n(k, t)·0.75rn(k+1, t) 

                            + P11b(k, t)·[0.5·Pa
0(k+1, t) + 0.5·0.5·r11b(k+1, t)]  } / 

                         { P00(k, t) + P01(k, t) + 0.5·P10(k, t)  

                           + 0.5·P11n(k, t) + P11b(k, t)} 

                + 0.5·{    P00(k, t)·rn(k+1, t) 

                            + P01(k, t)·0.75·rn(k+1, t) 

                            + 0.5·P10(k, t)· rn(k+1, t) 

                            + 0.5·P11n(k, t)·0.75rn(k+1, t) 

                            + P11b(k, t)·[0.5·0.5·rn(k+1, t) + 0.5·rn(k+1, t)]  } / 

                         { P00(k, t) + P01(k, t) + 0.5·P10(k, t)  

                           + 0.5·P11n(k, t) + P11b(k, t)}                                             (23) 

r11b(k, t) =   P00(k, t)·r11b(k+1, t)  

                + P01(k, t)·0.75·r11b(k+1, t)  

                + P10(k, t)·[0.5·r11b(k+1, t) + 0.5·rn(k+1, t)]  

                + P11n(k, t)·[0.5·0.75·r11b(k+1, t) + 0.5·0.75·rn(k+1, t)] 

                + P11b(k, t)·0.75·r11b(k+1, t)                                                        (24) 

If a buffer of SE(k) is in state “11n”, it means that a packet 
has been sent from it at (t-1)d and a new packet has been 
received at tb. For convenience, let’s refer to this buffer as the 

relevant buffer, the new packet as the relevant packet and the 
relevant packet’s destination as the relevant destination or the 
relevant destination buffer. Similarly, the other buffer in the 
same SE, will be referred as the neighbor buffer, the neighbor 
buffer packet as the neighbor packet and its destination as the 
neighbor destination. To calculate the transition probability of 
the relevant packet, r11n(k, t), we need to consider two cases 
regarding the destination of these two packets: both packets 
are heading for the same SE output link, or each packet is 
heading for a different SE output link. Since the model 
assumes uniform distribution of destination addresses, each of 
the above two cases occurs with probability 0.5. Given one of 
the above two cases, we next need to consider the state of the 
neighbor buffer, the collision probability and the relevant 
destination buffer acceptance probability, which considers its 
inferred state. Let’s, for example, assume that the two packets’ 
destinations are different. This means that no packet has been 
sent by the relevant buffer to the relevant destination at (t-1)d. 
The neighbor buffer can be in one of the following five states: 

1. “00”, with probability P00(k, t). In this case, since the 
neighbor buffer is empty at tb, there is no collision at td. 
Moreover, the neighbor buffer has also been empty at (t-
1)b, so no packet has been sent from it at (t-1)d. Therefore, 
we can infer that no packet has been sent to the relevant 
destination at (t-1)d by either buffer, and the acceptance 
probability of the relevant destination buffer at stage k+1, 
is Pa

0(k+1, t). 

2. “01”, with probability P01(k, t). This case differs from the 
“00” case by the fact that the neighbor buffer has a packet 
at tb. Therefore, a collision with the relevant packet can 
happen with probability 0.5, and since the contention 
resolution is random, the probability that each packet is 
not blocked by the other packet is 0.75.   

3. “10”, with probability P10(k, t). The neighbor buffer sent a 
packet at (t-1)d. Recall that the relevant buffer sent a 
packet at (t-1)d as well, and this packet was not sent to the 
relevant destination. Since only one packet can be sent to 
each SE output link during a clock cycle, the packet that 
the neighbor buffer sent at (t-1)d necessarily headed to the 
relevant destination. This imply that the relevant 
destination buffer has a new packet at tb, and the 
acceptance probability is rn(k+1, t). Moreover, the 
neighbor buffer can only be in one of the two sub-states 
of the “10” state, which are specified by the destination of 
the packet it sent at (t-1)d. The probability to be in each 
sub-state is 0.5. There is no collision probability in this 
case. 

4. “11n”, with probability P11n(k, t). Same as “10” case, with 
the addition of collision probability. 

5. “11b”, with probability P11b(k, t). Here we need to 
consider the neighbor destination. If it is different than the 
relevant destination (with probability 0.5) then no packet 
has been sent to the relevant destination at (t-1)d by either 
buffer, and the acceptance probability is Pa

0(k+1, t). No 
collision probability in this case. On the other hand, if the 
neighbor destination is equal to the relevant destination 
(with probability 0.5) then the destination buffer is 
blocked and the acceptance probability is r11b(k+1, t). The 
collision probability in this case is 0.5. 

Now, since the neighbor buffer’s probability cases does not 
sum to 1 (due to some impossible sub-states) we need to 



divide the whole term we have got till now by this sum. The 
other case, in which the two packets of the relevant buffer are 
heading to the same destination, is similarly calculated. The 
rest of the transition probabilities are also calculated in a 
similar manner. 

Since there is no blocking at the output links of the network, 
the probability that a packet in a last stage SE is able to move 
forward depends only on the state of the other buffer of the 
same SE, which affects the collision probability. The explicit 
mathematical expressions for transition probabilities of the 
last stage SE are as follows. 

r01(n, t) =   [P00(k, t) + P01(k, t)·0.75 + P10(k, t) + P11n(k, t)·0.75] /  

                  [P00(k, t) + P01(k, t) + P10(k, t) + P11n(k, t)]                              (25) 

r11n(n, t) =   [P00(k, t) + P01(k, t)·0.75 + 0.5·P10(k, t)  

                                  + 0.5·P11n(k, t)·0.75+ 0.5·P11b(k, t)·0.75] /  

                   [P00(k, t) + P01(k, t) + 0.5·P10(k, t)  

                    + 0.5·P11n(k, t) + 0.5·P11b(k, t)]                                               (26) 

r11b(n, t) =   [P10(k, t) + P11n(k, t)·0.75] / [P10(k, t) + P11n(k, t)]                   (27) 

APPENDIX B: EXPLICIT CALCULATION OF THE LOW PRIORITY 

QUEUE TRANSITION PROBABILITIES IN THE DUAL PRIORITY 

MODEL 

The low priority traffic transition probabilities of the dual 
priority model are derived in this appendix and the explicit 
mathematical expressions are presented.  

The low priority traffic can be blocked by a high priority 
traffic transmission, in addition to the singe priority blocking 
probability. Therefore, we have added the definition of rlt, the 
probability that a low priority packet will move forward, and 
rlb, the probability that a low priority packet will be blocked 
by a low priority traffic. In order to keep the similarity to the 
single priority model and to easily calculate the rlt and rlb 
probabilities, we use the following parameters. 

rl01(k, t): Probability that a packet in the low priority queue of 
an SE(k) buffer is able to move forward at td, given 
that it is not blocked by a high priority traffic and 
that the buffer is in state “01”.  

rl11n(k, t): Probability that a packet in the low priority queue 
of an SE(k) buffer is able to move forward at td, 
given that it is not blocked by a high priority traffic 
and that the buffer is in state “11n”.  

rl11hb(k, t): Probability that a packet in the low priority queue 
of an SE(k) buffer is able to move forward at td, 
given that it is not blocked by a high priority traffic 
and that the buffer is in state “11hb”.  

rl11lb(k, t): Probability that a packet in the low priority queue 
of an SE(k) buffer is able to move forward at td, 
given that it is not blocked by a high priority traffic 
and that the buffer is in state “11lb”.  

The mathematical expressions of rlt and rlb are described 
below. 

rlt01(k, t) = [1 – S(k, t)]·rl01(k, t+1)                                                            (28) 

rlt11n(k, t) = [1 – S(k, t)]·rl11n(k, t+1)                                                           (29) 

rlt11lb(k, t) = [1 – S(k, t)]·rl11lb(k, t+1)                                                         (30) 

rlt11hb(k, t) = [1 – S(k, t)]·rl11hb(k, t+1)                                                       (31) 

rlb01(k, t) = [1 – S(k, t)]·[1 - rl01(k, t+1)]                                                     (32) 

rlb11n(k, t) = [1 – S(k, t)]·[1 - rl11n(k, t+1)]                                                 (33) 

rlb11lb(k, t) = [1 – S(k, t)]·[1 - rl11lb(k, t+1)]                                                (34) 

rlb11hb(k, t) = [1 – S(k, t)]·[1 - rl11hb(k, t+1)]                                               (35) 

Considering the probability that a low priority packet can be 
accepted by its destination buffer at stage k+1, there are three 
cases to distinguish. 

• No low priority packet has been sent to this destination 
buffer during the previous clock cycle: 

Pla
0(k, t): Probability that the low priority queue in an SE(k) 

buffer is able to receive a packet at td, given that it 
received no packet at (t-1)d. 

Pla
0(k, t) = [Pl00(k, t) + Pl10(k, t)  

                   + Pl11lb(k, t)·rlt11lb(k, t) + Pl11hb(k, t)·rlt11hb(k, t)] /  

                  [ Pl00(k, t) + Pl10(k, t) + Pl11lb(k, t) + Pl11hb(k, t)]                      (36) 

• A low priority packet has been sent to this destination 
buffer during the previous clock cycle: 

rln(k, t): Probability that a packet in the low priority queue of 
an SE(k) buffer is able to move forward at td, given 
that the packet is “new”, i.e., the queue is either in 
state “01” or in state “11n”.  

rln(k, t) = [Pl01(k, t)·rlt01(k, t) + Pl11n(k, t)·rlt11n(k, t)] /  

                [ Pl01(k, t) + Pl11n(k, t)]                                                               (37) 

• The low priority destination queue is blocked:  

rlb(k, t): Probability that a packet in the low priority queue of 
an SE(k) buffer is able to move forward at td, given 
that the packet is “blocked”, i.e., the queue is either 
in state “11lb” or in state “11hb”.  

rlb(k, t) = [Pl11lb(k, t)·rlt11lb(k, t) + Pl11hb(k, t)·rlt11hb(k, t)] / 

                [ Pl11lb(k, t) + Pl11hb(k, t)]                                                           (38) 

The following explicit mathematical expressions for the low 
priority traffic transition probabilities for 1 ≤ k < n are 
calculated similarly to the single priority transition 
probabilities.  

rl01(k, t) =   Pl00(k, t)·Pla
0(k+1, t)  

                + Pl01(k, t)·0.75·Pla
0(k+1, t)  

                + Pl10(k, t)·[0.5·Pla
0(k+1, t) + 0.5·rln(k+1, t)]  

                + Pl11n(k, t)·[0.5·0.75·Pla
0(k+1, t) + 0.5·0.75·rln(k+1, t)] 

                + Pl11lb(k, t)·[0.5·Pla
0(k+1, t) + 0.5·0.5·rlb(k+1, t)]  

                + Pl11hb(k, t)·[0.5·Pla
0(k+1, t) + 0.5·0.5·Pla

0(k+1, t)]                  (39) 

rl11n(k, t) =   0.5·{    Pl00(k, t)·Pla
0(k+1, t) 

                             + Pl01(k, t)·0.75·Pla
0(k+1, t) 

                             + 0.5·Pl10(k, t)· rln(k+1, t) 

                             + 0.5·Pl11n(k, t)·0.75rln(k+1, t) 

                             + Pl11lb(k, t)·[0.5·Pla
0(k+1, t) + 0.5·0.5·rlb(k+1, t)] 

                             + Pl11hb(k, t)·[0.5·Pla
0(k+1, t) + 0.5·0.5· Pla

0(k+1, t)]  } / 

                          { Pl00(k, t) + Pl01(k, t) + 0.5·Pl10(k, t)  

                            + 0.5·Pl11n(k, t) + Pl11lb(k, t) + Pl11hb(k, t)} 

                 + 0.5·{    Pl00(k, t)·rln(k+1, t) 

                             + Pl01(k, t)·0.75·rln(k+1, t) 

                             + 0.5·Pl10(k, t)· rln(k+1, t) 

                             + 0.5·Pl11n(k, t)·0.75rln(k+1, t) 

                             + Pl11lb(k, t)·[0.5·0.5·rln(k+1, t) + 0.5·rln(k+1, t)] 

                             + Pl11hb(k, t)·[0.5·0.5·rln(k+1, t) + 0.5·rln(k+1, t)]  } / 



                          { Pl00(k, t) + Pl01(k, t) + 0.5·Pl10(k, t)  

                            + 0.5·Pl11n(k, t) + Pl11lb(k, t) + Pl11hb(k, t)}                    (40) 

rl11lb(k, t) =   Pl00(k, t)·rlb(k+1, t)  

                  + Pl01(k, t)·0.75·rlb(k+1, t)  

                  + Pl10(k, t)·[0.5·rlb(k+1, t) + 0.5·rln(k+1, t)]  

                  + Pl11n(k, t)·[0.5·0.75·rlb(k+1, t) + 0.5·0.75·rln(k+1, t)] 

                  + Pl11lb(k, t)·0.75·rlb(k+1, t) 

                  +  Pl11hb(k, t)·[0.5·rlb(k+1, t) + 0.5·0.5·rlb(k+1, t)]                   (41) 

rl11hb(k, t) =   Pl00(k, t)·Pla
0(k+1, t)  

                   + Pl01(k, t)·0.75·Pla
0(k+1, t)  

                   + Pl10(k, t)·[0.5·Pla
0(k+1, t) + 0.5·rln(k+1, t)]  

                   + Pl11n(k, t)·[0.5·0.75·Pla
0(k+1, t) + 0.5·0.75·rln(k+1, t)] 

                   + Pl11lb(k, t)·[0.5·Pla
0(k+1, t) + 0.5·0.5·rlb(k+1, t)] 

                   + Pl11hb(k, t)·0.75·Pla
0(k+1, t)                                                  (42) 

Since there is no blocking at the output links of the network, 
the probability that a low priority packet in a last stage SE is 
able to move forward depends only on the high priority traffic 
and on the state of the other low priority queue of the same 
SE, which affects the collision probability. The explicit 
mathematical expressions for the low priority traffic transition 
probabilities of the last stage SE are as follows. 

 

rl01(n, t) =   [Pl00(k, t) + Pl01(k, t)·0.75 + Pl10(k, t)  

                    + Pl11n(k, t)·0.75 + Pl11hb(k, t)·0.75] /  

                   [P00(k, t) + P01(k, t) + P10(k, t) + P11n(k, t) + P11hb(k, t)]          (43) 

rl11n(n, t) =   [Pl00(k, t) + Pl01(k, t)·0.75 + 0.5·Pl10(k, t) 

                     + 0.5·Pl11n(k, t)·0.75 + 0.5·Pl11lb(k, t)·0.75  

                     + Pl11hb(k, t)·0.75] /  

                    [Pl00(k, t) + Pl01(k, t) + 0.5·Pl10(k, t)  

                    + 0.5·Pl11n(k, t) + 0.5·Pl11lb(k, t) + Pl11hb(k, t)]                        (44) 

rl11lb(n, t) =   [Pl10(k, t) + Pl11n(k, t)·0.75] / [Pl10(k, t) + Pl11n(k, t)]            (45) 

rl11hb(n, t) =  [Pl00(k, t) + Pl01(k, t)·0.75 + Pl10(k, t)  

                      + Pl11n(k, t)·0.75 + Pl11hb(k, t)·0.75] /  

                     [Pl00(k, t) + Pl01(k, t) + Pl10(k, t)  

                     + Pl11n(k, t) + Pl11hb(k, t)]                                                     (46) 
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