CCIT Report #453 November 2003

On Hierarchical Joint Source-Channel Coding

Yossef Steinberg and Neri Merhav

Department of Electrical Engineering
Technion - Israel Institute of Technology
Technion City, Haifa 32000, ISRAEL
[ysteinbe,merhav]@ee.technion.ac.il

November 20, 2003

Abstract

We extend the setting of two—stage lossy source coding with successive refinement structures into a
joint source—channel coding setting. In particular, we consider a problem where two descriptions of a
memoryless source are to be transmitted across two independent memoryless channels and where the
output of the channel corresponding to the first (coarse) description is also available to the decoder
of the second (refinement) decoder. Side information, correlated to the source, may also be available
to the decoders. Our first result is a separation theorem asserting that in the limit of long blocks,
no optimality is lost by first applying lossy successive-refinement source coding, regardless of the
channels, and then applying good channel codes to each one of the resulting bitstreams, regardess of
the source and the side information. It is also shown that (even noiseless) feedback from the output of
the first channel to the input of the second encoder cannot improve performance, but may sometimes
facilitate the implementation of optimum codes significantly: In certain situations, even single—letter
codes (of unit block length) may achieve optimum performance. Necessary and sufficient conditions
are furnished for the optimality of single-letter codes with and without feedback.

Index terms — Hierarchical coding, joint source—channel coding, side information, successive

refinement, systematic coding, Wyner-Ziv problem.

1 Introduction

The problem of lossy source coding in two or more stages of successive refinement has received

quite considerable attention throughout the last few decades (see, e.g., [2], [5], [6], [8], [9], [10], [11],
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[13], [15], [16], [17] and references therein). The successive refinement problem is a special case
of a more general problem, called the multiple description problem, and it is about characterizing
the region of pairs of rates and corresponding pairs of distortion levels, which are achievable by
hierarchical codes that work simultaneously at two points in the rate—distortion plane, where the
higher rate description of the source consists of the lower rate description plus an additional,
refinement description. The concepts and most of the principal results extend to any finite number

of stages of codes.

An interesting question that has not received attention thus far, to the best of our knowledge,
evolves around the natural combination of successive refinement source coding and channel coding;:
Suppose that after transmitting a certain description of the source across a given channel, using
a certain joint source-channel code (or, in particular, by separate source and channel coding),
additional channel resources become available (time slots, bandwidth, etc.), and we wish then to
transmit an additional (refinement) message, on the top of the one that has already been transmit-
ted, in order to improve on the quality of the reproduction. Several questions then naturally arise:
What would be the best stragtegy for joint source—channel coding in the two stages? What is the
best performance attainable? Does the separation principle apply? What happens in the presence
of feedback from the output of the first channel (of the coarse description) to the refinement en-
coder? What happens if there is side information (SI), correlated to the source, available at the

two receivers?

In this paper, we make an attempt to address these questions. In the most basic setting of the
problem, we consider a communication system with the following structure (see Fig. 1, ignoring, for
the moment, the decoder inputs V; and V3): a block drawn from a memoryless source is mapped, by
two joint source—channel encoders, directly into two channel input vectors, the first corresponding
to a coarse description, and the second — to an additional, refinement description. These two
descriptions are transmitted separately via two independent memoryless channels, in compliance
with certain limitations on average transmission costs (generalized power constraints), I'y and I'y,
and are received by two receivers that provide estimates of the source vector, with distortion levels
Dy and D», where it is assumed that receiver no. 2, that is connected to the second channel, has

access also to the output of the first channel.

Our first result is a single-letter characterization of the region achievable distortion-cost quadru-

ples (D1,T'1, Dy,T's). The main feature of this characterization is that it admits a separation prin-



ciple, which tells that no optimality is lost if one first applies optimum lossy successive-refinement
source coding, independently of the channels, and then apply good channel coding for each one
of the compressed bitstreams, independently of the source. Earlier, we raised the question of
the potential impact of feedback from the output of the first channel to the input of the second,
refinement transmitter. One might speculate that in the presence of such feedback, the second
transmitter could be significantly improved, for example, by implementing, at the second stage
encoder, a copy of the first decoder, subtracting the estimated source vector from the original
source vector (whenever substraction is well-defined), and then encoding this estimation error vec-
tor of the first—stage decoder (in the spirit of the idea of differential/predicitive coding techniques,
frequently encountered in applications of audio and video coding techniques). It is then perhaps
somewhat surprising that neither this idea of using the feedback, nor any other idea one may have,
can improve asymptotic performance: The same achievable region continues to apply even in the
presence of feedback. In this context, it may not only be surprising that feedback does not help,
but also that the separation principle continues to apply, because both the source encoder and the
channel encoder of the refinement stage may ignore the feedback information altogether, without
loss of asymptotic optimality, in the limit of long block coding. Also, from the mathematical point
of view, feedback breaks the Markov structure of the communication system, which in the classical
case, gives rise to the data processing theorem, the standard tool for proving the converse to the

joint source-channel coding theorem.

It turns out, however, that similarly to the well-known features of feedback in the classical
case,! here too, feedback sometimes enables optimum performance using extremely simple systems,
such as single-letter codes (i.e., codes of unit block length). On the other hand, in the absence
of feedback, optimum performance may not be achievable, in general, using single-letter codes.
Indeed, as we demonstrate in two examples, optimum performance using single-letter codes is
sometimes achievable by applying the above described idea of transmitting, at the second stage,
the estimation error signal of the first stage decoder. This observation motivates us to furnish
general conditions under which single—letter codes are optimal with and without feedback, in the
spirit of [7] (see also [4]). An interesting corollary of these conditions is that, under the quadratic

distortion measure, feedback is necessary to achieve optimality with single-letter codes.

Another ingredient that we incorporate into our model of two—stage joint source—channel coding

!For example, the capacity of the erasure channel with feedback is well-known to be easily achievable by repeated

repetition requests until the first successful reception.



system is the possible availability of side information (SI) streams, correlated to the source, at the
two decoders (cf. V; and Vs in Fig. 1). The main motivation is that it makes the present work
a joint extension of two earlier works, where the models considered include SI at the decoder(s).
The first is [15], where the pure source coding problem in two stages and in the presence of SI
at the decoders (that is, successive refinement for the Wyner-Ziv problem [18]) was studied. In
other words, [15] is a special case of the present work, where the channels are noiseless. The
other work is [14], where there is only one stage of coding and only one (noisy) channel through
which coded information is transmitted. One of the motivations of the model in [14] is, as its
title suggests, systematic lossy joint source—channel coding, where the SI channel (corresponding to
the conditional probability distribution of the SI given the source) is thought of as a channel that
conveys uncoded transmission of the source, that is, the systematic part of the code. The model we
present in this work then gives rise to three layers of information, the first layer being of uncoded
information (the systematic part), the second is a relatively weak code, and the third one is a
stronger code. Alternatively, another way to look at it, is as a system of systematic source—channel

coding with a successive-refinement structure.

Vi
U | Encodert X Channel 1 Yy Decoder 1 Ui
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Figure 1: Hierarchical joint source-channel coding with side information at the receivers.

To summarize then, the model we consider serves as a common umbrella to the notions of
Wyner—Ziv coding, successive refinement, and joint source—channel coding with the option of (block-
wise) feedback. Beyond the motivations that have already been dicussed, it is hoped that this unified

perspective will give rise to new insights.

The outline of the paper is as follows. In Section 2, we define the notation conventions as well as



some terminology and give a formal definition of the problem. In Section 3, we give the main result
on the characterization of the achievable region (D1,T'1, D9, I') in the presence of SI, with/without
feedback. Section 4 is a preparatory section (for Section 5), which defines notions of optimality
of a point (D1,T'1, D2,T'2) and relates it to optimality of a working point in successive refinement
source coding for the Wyner—Ziv problem [15]. In Section 5, the results of Sections 3 and 4 are
used in order to establish conditions on optimality of single-letter codes. Finally, in Section 6, the

proofs of the main results are provided.

2 Notation, Preliminaries, and Problem Formulation

We begin by setting up notation conventions. Throughout this paper, scalar RVs will be denoted
by capital letters, their sample values will be denoted by the respective lower case letters, and their
alphabets will be denoted by the respective calligraphic letters. A similar convention will apply to
random vectors and their sample values, which will be denoted by the same symbols superscripted
by the dimension. When the dimension is clear from the context, boldface fonts will sometimes be
used instead of superscripts. Thus, for example, U™ or U will denote a random n-vector (U, ..., U,),

and u"” = u = (uy,...,u,) is a specific vector value in U™, the n-th Cartesian power of . The
notations uf and Uz-j , where ¢ and j are integers and 4 < j, will designate segments (u;,...,u;) and
(Ui, ..., Uj), respectively, where for i = 1, the subscript will be omitted (as above). For i > j, u{
(or Uij ) will be understood as the null string. Some of the vectors, in our setting, will have common
notation but with different subscripts, for example, X and X5, or y; and y,. In this case, the
t-th coordinate of X'; will be denoted by X, the substring (y2,i,y2,i+1, ", Y2,), for j > 4, will
be denoted yéﬂ, etc. The alphabets of all random variables, throughout most of this paper, will be

assumed finite unless specified otherwise.

Sources and channels will be denoted generically by the letter P or @, subscripted by the name
of the RV and its conditioning, if applicable, e.g., Py (u) is the probability function of U at the point
U = u, Py 5(z|s) is the conditional probability of Z = z given S = s, and so on. Whenever clear
from the context, these subscripts will be omitted. The notation IE will denote the expectation
operator, and it will be subscripted by the probability measure w.r.t. which the expectation is
taken, whenever this is may not be clear from the context. Information theoretic quantities like

entropies, mutual informations and divergences will be denoted following the usual conventions of



the information theory literature, e.g., H(UN), I(Z™; W*), D(Py|xs||Py), and so on.

We refer to the communication system depicted in Fig. 1. Consider a source, {(U;, V1 i, V2,i) }321,
of independent copies of a triplet of RVs, (U, V1, V»), taking values in U x Vi X Vo, and drawn under
a joint distribution Prry;y;,. The process {U;} is the part of the source to be encoded, whereas {V7 ;}
and {V5;} will play the roles of SI streams (correlated to the source), available to decoder no. 1
and decoder no. 2, respectively. Consider next two memoryless channels. Channel no. i operates

at the relative rate of p; channel uses per source symbol (triplet), and is defined by
Py, x.(yslz:i) = [ Pyix, (Wiglzie), i=1,2. (1)
t

The number p; is referred to as the bandwidth expansion factor of channel no. 7. A block of length n,
U" = (Uy,...,U,), generated by the source, is fed into two joint source-channel encoders: Encoder
no. ¢ produces a block of length n; = pin, X; = (X;1,...,X; ;) € (&)™, which is the input to
channel no. i, ¢ = 1,2. Each transmitted block X; must satisfy a transmission cost constraint
(generalized power constraint):

E¢;(X;) < nily, (2)

where ¢;(z;) = Y12, ¢i(w;,) for some cost function ¢; : X; — IR In the absence of a transmission
cost constraint at channel no. i, we set I'; = oo (or define ¢; = 0). The output of channel no.
LY, =M1,....,Y10) € (V)™ is fed into both decoders, whereas the output of channel no. 2,
Yo=(Y21,...,Y2,,) € (V2)™ is fed into decoder no. 2 only. In the case of a system with feedback,
Y is fed also into encoder no. 2 (in addition to U™). Decoder no. i is also fed by the SI block
Vi=(Vi1,...,Vin) € (Vi)" and produces an estimate of the source U, = (Ui,h .. ,ﬁzn) e un,
1 = 1,2. The quality of each estimate is judged in terms of the expectation of an additive distortion

measure:

n
d;(U,Uy) = > di(Up, Uyy) (3)

=1
where d;(u,4;) > 0, u € U, U; € Z), 1 = 1,2, is a given single-letter distortion measure. As usual
in rate-distortion theory, we assume that for every u € U, there exist letters 4; € LAli, 1 =1,2, such

that dz(u,ﬁl) = 0.

Definition 1 An (n,nq,ne, D1,T'1, Dy, T's) joint source—channel code of successive refinement for

the source Pyvyv, and the channels Py, x,, Py, x,, consists of a first-stage encoder—decoder pair



(f1,91)
froU" = ()™ (4)

gr: (V)" x (V)" = U" (5)

and a second-stage encoder—decoder pair (fa,92)

fo U™ = ()™ (fo: U™ x (V1)™ = (X)™ in the case of feedback) (6)
g2+ (V)™ x (M)™ x (V)" = U" (7)
such that
Ed,(U,91(Y1,V1)) < nDy, (8)
Edy(U,g2(Y1,Y2,Vs)) < nDo, (9)
E¢ (/1(U)) < mly, (10)
E¢y(f2(U)) < maoly, (11)

where, again, in the case of feedback, fo(U), in the last inequality, is replaced by fo(U,Y ).

We will say that the code (f1, g1, f2,92) incurs a distortion-cost quadruple (D1,T'1, D2, T'5), when

the last four inequalities are replaced by equalities.

Definition 2 A distortion—cost quadruple (D1,T'1, D2,T's) is said to be achievable with bandwidth
expansion factors py and pa, if for every € > 0, and sufficiently large blocklength n there exists
an (n,pin, pan, D1 + €,T'1, Dy + €,T'3) joint source-channel code of successive refinement for the
source Pyvyv, and the channels Py,|x,, Py, x,. The distortion—cost region, denoted D(p1,p2), is
the closure of the set of all quadruples (D1,T'1, Dy, T'9) that are achievable with bandwidth expansion
factors p1 and ps.

Since the bandwidth expansion factors, p; and py, will be fixed parameters throughout the
sequel, we will use the shorthand terminology of “achievable distortion—cost quadruple”, without
explicit reference to the bandwidth expansion factors. By the same token, D(p1, p2) will occasionally

be replaced by the shorthand notation D, without denoting explicitely the dependence on p; and ps.

From Definition 1, and similarly as in [15], it is clear that the distortion—cost performance

depends on Pyy;y, only via its marginals Pyy, and Pyy,. We say then, that a source Py, vy, is



stochastically degraded if there exists a distribution Py, such that Py = Pyv,, Py, = Pov,,

and U< Vae V] is a Markov chain. Since the distortion—cost region depends on the source only
via its marginals, no distinction has to be made between physically degraded (Markov structured)
and stochastically degraded sources. As is the case in [15], we restrict attention in this work to

degraded SI sources.

Our first objective is to provide a single-letter characterization of D and to propose strategies
for (asymptotically) achieving any given point in D. Since this characterization is strongly based on
the main results of [15], we now pause to provide a brief description of these results. As mentioned
in the Introduction, in [15], we considered the special case of the present model, where the channels
are clean, namely, the problem of pure source coding with a successive refinement structure, in
the presence of SI at the decoders. In particular, the main result of [15] is a characterization of

the achievable region of rate—distortion quardruples {(R;, D1, AR, D2)}, where R; is the rate (in

. A . . .
bits/symbol) at the first stage, AR = Ry — R; is the rate in the second stage, Ry is the total rate
at both stages, and D; and D, are the distortion levels of the two reconstructions. The main result

of [15] (in the notation of the present paper) is the following:

Theorem 1 [15] A rate—distortion quadruple (Ry, D1, AR, Ds) is achievable if and only if there
exists a triple of random variables (W, S, Z), taking values in finite alphabets, W, S, Z, respectively,

such that the following conditions are satisfied:

1. (W,S,Z)eUeVae V) is a Markov chain.
2. There exist deterministic mappings f1: W X Vi — U and fo: ZXxXVy— U such that

Ed(X, fi(W,V1)) < Dy (12)
Ed(X, f2(Z,V2)) < Dy (13)

3. The alphabets W, S, Z satisfy |W| < [U|+2, |S| < (|U]+1)?%, and | Z] < |U|(JU]+2)(JU|+1)% +1.
4. The rates Ry and Ra satisfy

L({U;W|WVy) + L(U; S|W, Vs)

A
G
=
=

N

AR. (15)



The achievability of a given rate—distortion quadruple that satisfies these conditions is shown in [15]
by random binning arguments, in the spirit of [18], but applied in an hierarchical structure of
successive refinement. The details can be found in the proof of the direct part of the main theorem

in [15].

Remark 1 — Properties of the achievable region: Let us denote by R the set of all achievable
rate-distortion quadruples (R, D1,AR, D). By application of the time-sharing principle, R is
convex. By the properties of the distortion measures d;, + = 1,2, reproduction of the source with
zero distortion at both decoders is possible with finite (although high) rates. It follows that if
(Ry, D1, AR, D) € R, then for every ¢ > 0 there exists ¢’ > 0 such that (Ry +0d’, D1 — 3, AR, D) €
R provided that Dy > §, and (Ry, D1, AR+ ', Dy —0) € R provided that Dy > §, and in addition,

d" — 0 as d — 0. We will make use of this observation in Section 4 (see Remark 2 there).

3 Main Results

In this section, we give a single-letter characterization of D for a given degraded source Pyy,y, and
channels Py, |x,, Py,|x,, with bandwidth expansion factors p; and py. Define D* to be the set of
all distortion—cost quadruples {(D1,T'1, D2,I'9)} for which there exists a triple of random variables
(W, S, Z), taking values in finite sets W, S, and Z, respectively, such that the following conditions

are satisfied:

1. (W,S,Z)eU=Vye Vi is a Markov chain.

2. There exist deterministic maps ¥ : W x V; — U and Yo 1 Z X Vo — U such that

Edl(Ua l/Jl(Wa VI)) < Dl (16)
Ed?(Uad)Q(Za VQ)) < D (17)
3. The alphabets W, S, Z satisfy
Wl < Ul +2, (18)
S| < (| +1)% (19)
2] < U] +2) (] + 1) + L (20)



4. The capacity—cost functions, C;(T;) 2 maxyx;: me;(x;)<r; 1 (Xi; Ys), @ = 1,2, satisfy

I(U; W) + I(U; SIW, Va) < p1Ci(T) (21)
I(U; Z|W,8,Va) < paCa(le). (22)

Our main result is the following:

Theorem 2 For any discrete, memoryless, stochastically degraded source, and a pair of indepen-

dent discrete memoryless channels with bandwidth expansion factors p1 and po, D = D*.

The proof appears in Section 6.1.

The similarity between the characterization of the region of achievable rate-distortion quadru-
ples of [15], as described at the end of Section 2, and the characterization of D = D*, is self evident.
In fact, the only difference is that the first-stage coding rate R; and the second-stage incremental
rate, Ry — Ry, of the former, are replaced, in the latter, by p;Ci(I'1) and paCs(I'9), respectively.
The immediate conclusion from this observation is that the separation principle applies to our
model. In other words, given a stochastically degraded memoryless source and a pair of indepen-
dent memoryless channels, joint source-channel coding with successive refinement, at the presence
of ST at the decoders, can be implememted, without loss of asymptotic optimality, by first applying
an optimal successive refinement source code, as in [15], regardless of the channels, and then using

separate capacity—achieving channel codes for transmission over the channels.

It is interesting to examine the case of feedback. It turns out, as we mentioned in the Introduc-
tion, that feedback does not increase the distortion—cost region D. This is in analogy to the well
known result that feedback cannot increase the capacity of a memoryless channel. Formally, let us
denote by Df the distortion—cost region for successive refinement with feedback. Then, we have

the following result.

Theorem 3 For any discrete, memoryless, stochastically degraded source, and a pair of indepen-
dent discrete memoryless channels, Df = D = D*. That is, feedback from the output of the

first—stage channel to the encoder of the second stage does not increase the distortion—cost region.

The proof is identical to the proof of Theorem 2. In particular, the proof of converse part of

Theorem 2 is general enough to allow feedback (whereas the direct part is without feedback).

10



An important special case is that of identical SI, i.e., when V; = V5. In this case, the achievable

region admits a simpler characterization, as follows. Define D; similarly as D*, where V; = V5 2 Vv,

the bounds on the alphabets sizes (18), (19), and (20), are replaced by

Wl < Ul +2, (23)

|1Z] < WU|(U|+2)+1. (24)
and the inequalities (21), (22), are replaced by

I(U; W|V)

IN

p1C1(T) (25)
IU; ZW, V) < p2Ca(l). (26)

Defining now D (resp. le ) as D (resp. Df) with the restriction of identical SI, we have the following

corollary to Theorem 3.

Corollary 1 For any discrete memoryless joint source (U,V) and a pair of independent discrete

memoryless channels, D; = le =D;.

Proof . In view of Theorem 3, we have to show that when V3 = Vo =V, the characterization of D*

reduces to that of D). Indeed, in that case, by (21), (22), we can write

pCi(l) > IU;W|V)+1(U; S|W, V) = I(U;W,S|V) (27)
p202(T2) > I(U; ZIW,S,V). (28)

Observe that W and S appear in the mutual information functions of (27) and (28) always together.
The functions ¢; and 1), by definition, do not depend on S. Thus, we can define a new auxiliary
random variable W' = (W, S), and a new function | (W', V) = ¢ (W, V), without altering the
distortions or violating the inequalities (21) or (22). This proves the corollary with the only
exception that the alphabet size of Z is given by (20) instead of (24), and that of W' is given by
IW'| = [W)] - |S| instead of the right hand side of (23). The fact that the alphabet sizes can be
restricted to (23) and (24), follows from Carathéodory’s theorem. The details are omitted. O

Although feedback does not improve performance in terms of achievable distortion—cost trade-
offs, it turns out that feedback can significantly reduce the complexity of optimum (or nearly

optimum) communication schemes. We next give two examples of situations where the presence of

11



feedback enables to achieve optimal performance with the use of simple single-letter codes (n = 1)
when p; = p2 = 1, as an alternative to separate source and channel coding in long blocks. With-
out feedback, in the first example (binary-Hamming), it will be obviously impossible to achieve
optimality using single-letter codes, whereas in the second example, which is Gaussian—quadratic,
it will become evident from the more general theory developed in Section 5. The common idea in
both examples is to use the second stage in order to transmit the estimation error of the first stage
(as described in the Introduction). In both examples, there is no SI correlated to the source which
is available to the decoders, and the distortion measures at both stages are identical, i.e., d; = ds.
Finally, in both examples, the optimality is in the sense that the joint source—channel bound is

attained at both stages at the same time, i.e., R(D;) = C1(I'1) and R(D3) = C1(I'1) + Ca(T'2).

Ezample 1 (Binary-Hamming). Let U be the binary symmetric source (BSS) with & =/ = {0, 1},
and let the first channel be the binary symmetric channel (BSC) with crossover probability p < 1/2,
input and output alphabets X} = Y = {0,1}, and no transmission constraint (I'; = 0o). Let the
second channel be a clean binary channel, with Xy = ), = {0,1}, and with a transmission cost
constraint EX, < I'y, where p < I'y < 0.5. Let di = ds be the Hamming distortion measure.
Consider the following single-letter code with feedback: The first stage encoder is X; = f1(U) = U
(no coding) and the first stage decoder is U; = ¢1(Y;) = Y;. This obviously achieves Hamming
distortion D; = p which is well-known to be optimum as R(D;) =1 —h(D;) =1 — h(p) = Ci(c0).
As for the second stage, the encoder would be Xy = f5(U, Y1) = U @ Y1, where @ denotes addition
modulo 2. This encoder satifies the power constraint since IEXy = Pr{Y; # U} = p <T'y, and the

decoder is Uy = g2(Y1,Y) = Y] & Ys. Since
VieY=Yi0X.=YiaUoY, =T,

the distortion at the second stage is Dy = 0. Notably, for p = [’y the system is, moreover,
optimal in the sense that there is no ‘waste’ on unused channel resources since R(Dy =0) =1 =
[1 — h(p)] + h(p) = C1(c0) + C2(I'2). Note that due to the power constraint, a single-letter code
without feedback cannot be optimal: Since both X and U are binary, there are only four possible
functions Xy = fo(U), two of which cause information loss (fa(u) = 0 and f2(u) = 1) and the other

two violate the transmission cost constraint since I's < 0.5.

12



Ezample 2 (Gaussian—Quadratic). Let U ~ N(0,0%), N1 ~ N(0,07), and Ny ~ N(0,03) be
independent, where U respresents the source, N1 — the additive noise of the first channel, Y7 =
X1+ Ni, and Ny — the additive noise of the second channel, Y5 = X5 4+ No. The model is depicted

in Figure 2.

Ny

Y

Figure 2: Hierarchical joint source-channel coding for the Gaussian channel.

Both channels are subjected to power constraints X, ZQ <T}y,1=1,2, and the distortion measure

at both stages is quadratic. The first—stage encoder is

X, = f1U) = U (29)
ou
and the first—stage decoder is
- oyvIl
=22 12 Y (30)
Fl + 0’1
The resulting distortion level is
N2 oty
D, =EU-U,)"=——F— 31
! ( v 1+Ty/0? (31
which satisfies, as is well-known, the equation:
R(D) = t1og 70 = 1) (1+F1>—0(r) (32)
1—20gD1—20g U%—11-

13



As for the second stage, let Xo = aF where £ = U — (71 and where « is chosen to match the second

power constraint, i.e., & = /I'y/D;. Let the second—stage decoder be defined as

(72201+Eé01+ﬂy2, (33)

where

(34)

The resulting distortion is

D,
1 —I—FQ/U%

0.2
S+ Fl/o%)(Ul +'y/02) (35)

which satisfies the equation

1 o
R(Dy) = Elog—U

1 I} 1 Iy
= -1 1+—= —1 1+—=
5 0g< +U%>+2 og< +a§>

= C1(I'1) + C2(Ty). (36)

These two simple examples motivate us to investigate single-letter codes in more generality.
The remaining part of this paper is dedicated to this goal. Necessary and sufficient conditions for
the optimality of single-letter codes will be established in Section 5 (with and without feedback)
in the spirit of the techniques of [7] (cf. also [4]). In particular, the idea of using the second stage
for transmission of error signal of the first stage (when feedback is present) will be examined more

generally.

14



4 Notions of Optimality

This section is devoted to a preparatory step before we can turn to derive conditions for optimality
of single—letter codes in the next section. In particular, we give a formal definition of optimaility
of a rate-distortion quadruple (Ry, D1, Ro, D2), or more precisely, a quadruple (Ry, D1, AR, D5),
where AR = Ry — Ry, for the pure source coding problem of [15], and a similar formal definition
of optimality of a distortion—cost quadruple (Dq,T'1, D2,T'3). We then characterize the relation-
ship between them. Generally speaking, this characterization is related to, and strongly based
upon the separation principle that we have shown in Section 3: Given a distortion—cost quadruple

(D1,T'1, D2, T'y) € D*, one can always find two numbers Ry and AR such that

IU; W) +I(U; S|W1,Va) <R < p1Ci(IN) (37)
I(U; ZIW, S8, Vo) SAR < paCy(ly). (38)

A good combination of a source encoder and a channel encoder is characterized by tightness of
these inequalities. Obviously, tightness of (at least one of) the above two left—-hand inequalities
(of upper bounding the mutual information expressions by R; and AR) are necessary conditions
for tightness of the corresponding inequalities in the definition of D* (of upper bounding the same
expressions by p1C1(I'1) and paC2(I'9), respectively). The additional condition needed is, of course,
that Ry and/or AR would be close to p;C1 (') and paCy(I'2), respectively. This simple observation
will help us to decompose the problem of optimality to a subproblem related to the source and a
subproblem related to the channels, i.e., to handle separately conditions for optimality w.r.t. the
source and the distortion measures, on the one hand, and optimality w.r.t. the channels and the

transmission cost functions, on the other hand (similarly as in [7]).

As mentioned in Section 2, in [15], it is shown that for the pure source coding problem, a
rate—distortion quadruple (Ry, D1, AR, D>) is achievable if and only if there exist random variables
(W, S, Z) and a pair of mappings (11,12), such that (W, S, Z)e Ue VooV is a Markov chain, and

the distortions and rates satisfy

Ed, (U, ,(W,V1)) < D
Edy(U,2(Z,V3)) < Dy
I(U; W) + I(U; SIW, V2) < Ry
I(U; Z|W,S,V2) < AR.
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We proceed to the definition of optimality of a rate—distortion quadruple.

Definition 3 An achievable rate—distortion quadruple (Ry, D1, AR, Dy) € R is said to be optimal
if (Ry—01,D1—09, AR—03,D3—04) € R whenever §;, i = 1,2,3,4, are all non—negative and at least
one of them is strictly positive. It is said to be distortion-optimal if (Ry, D1 —d1, AR, D2 —62) € R

whenever d;, 1 = 1,2, are non-negative and at least one of them is strictly positive.

Loosely speaking, optimality means that (R, D1, AR, Ds) lies on the boundary of the achievable
region in at least one of the four dimensions of the space of quadruples. In simple words, any
improvement in one of the components of this vector must come at the expense of degradation in

some other component.

Remark 2 — Properties of optimal rate-distortion quadruples: We will explore here some
properties of optimal points, in particular, the relations between optimal and distortion-optimal
quadruples will be highlighted. The following can be deduced from the properties of R (see Re-
mark 1). Let

(R1,D1,AR, D7) € R. (39)
If D1 > 0, and
(R1,D1 —6,AR,D3) ¢ R Vo >0, (40)
then necessarily
(R1 —0,D1,AR,Dy) ¢ R Vo > 0. (41)

To see this, assume that (40) holds, yet
(Ry — 61,D1,AR,D3) € R (42)
for some §; > 0. By the properties of R (see Remark 1), for any d2 € (0, Dy)
(Ry — 01 + 05, D1 — 62, AR, D) € R, (43)
where 05 — 0 as 3 — 0. Thus, choose d2 small enough so that
Ry — 01 + 0, < Ry. (44)

Then, a convex combination of the left hand side of (43) with the left hand side of (39), with
weights A and 1 — A, resp., yields that

(R, D1 — M2, AR, D) € R (45)
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for some A > 0, contradicting (40). A similar conclusion holds for the second stage, with the differ-
ential rate: if Dy > 0 and (Ry,Dy,AR, Dy — 6) ¢ R for all § > 0, then necessarily (Ry, D1, AR —
0,Dy) ¢ R for all § > 0. In view of the above discussion, we conclude that an achievable rate-

distortion quadruple with strictly positive distortions is optimal if and only if it is distortion-optimal.

We proceed to the definition of optimality of a distortion—cost quadruple, which is in the same

spirit.

Definition 4 A distortion—cost quadruple (D1,T'1,D9,T'3) € D is said to be optimal if (Dy —
01,11 — 89, Do — 03,9 — 04) & D whenever §;, i = 1,2,3,4, are all non-negative and at least one
of them is strictly positive. A code (f1,g1, f2,92) is optimal if it incurs an optimal distortion—cost

quadruple.

The next lemma gives necessary and sufficient conditions for a quadruple of strictly positive
distortions and costs to be optimal. Note that since D = D/ (Theorem 3), Lemma 1 below holds

in the presence, as well as in the absence, of feedback.

Lemma 1 A quadruple (D1,T'1, D9, T'y) with T'; > 0 and D; > 0, i = 1,2, is optimal if and only if
the following three conditions hold:

1. There ezist random variables (W, S, Z) and mappings 11 : W XV — Z], Yo ZX Vo — 1;{, such
that the conditions defining D* hold, with the distortion inequalities and the mutual information

inequalities all holding with equalities.
2. The rate—distortion quadruple
(L(U;WW1) + I(U; S|W, V), D1, I(U; Z|W, S, V2), Ds)
is optimal (in the sense of Definition 3).
3. Th < Iy implies C;(T}) < Cy(Ty), i =1,2.
Proof . We start with the necessity part. Let an optimal distortion—cost quadruple (D1,T'1, Dy, T'9) €

D be given. By Theorem 3, there must exist random variables (W, .S, Z) and functions ¢;, i = 1,2,
satisfying the conditions in the definition of D, namely, (W,S,Z)e Ue Ve Vi is Markov, and
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eqs. (16) to (22) hold. For these random variables, the Markovity condition of the theorem
clearly holds. Assume, conversely, first that condition 3 of the lemma does not hold, i.e., T’y
(or I's) can be reduced without reducing Cy (or C3). Thus, Theorem 3 implies that, by sepa-
rately coding for the source and the channels, we can reduce I'y (I'y) without altering the dis-
tortions, contradicting the assumption that (Dq,I'y, D2,I'y) is optimal. Hence condition 3 is
necessary. Assume next that condition 2 of the lemma is violated. In particular, say, that
(L(U;W|Vy) + L(U; S\W,Va) — 6, D1, I(U; Z|W, S, V,), Dy) is achievable for some 6 > 0. Then
by the results of [15], we can separately code the for source (using a successive-refinement code
for source, as in [15]) and the channels, with smaller I'y, contradicting, again, the optimality of
(D1,T'1, D2, T'3), where we have used the continuity of C;(-), and the fact that I'y > 0. Similar

considerations show that

(L(U; W) + 1(U; S|W, Va), D1, I(U; Z|W, S, V2) — 6, D2) (46)
(I(U; W|Vi) + [(U; S|W, Va), Dy, I(U; Z|W, S, V), Ds — 6) (48)

are inachievable for any § > 0. Hence condition 2 of the lemma is necessary. It remains to prove
necessity of condition 1. By Theorem 2, these equations should hold with inequality sign ‘<’.
Assume that

Ed(U, 4 (W,V1)) = D} < D;. (49)
Then, by Theorem 3, the quadruple (D},T'1, D3,T'3) is achievable, again in contradiction to the
assumption that (Dq,T'1, D2,T'3) is optimal. The necessity of equalities in the other distortion

inequality and in the mutual information inequalities are proved similarly.

Turning now to the sufficiency part, let (D;,['1, D9, I'9) satisfy the conditions of Lemma 1.
Assume, conversely, that it is not optimal. Thus,

(D1 —61,I'1 = 62,D9 — 63,19 — 04) € D (50)

for some non—negative d;, ¢+ = 1,2,3,4, at least one of which is strictly positive. By Theorem 3,

there exist random variables (W', S, Z'), and maps v}, 14, such that

Ed, (U, (W', V1)) < Di—d (51)
Edo (U, 4(Z',V3)) < Dy —d3 (52)
LU; W'V +1(U; 812", V) < p1Ci(T1 — d2) (53)
IU; Z'\W', 8", Va) < paCa(Tg — d4), (54)
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implying that the rate-disotrtion quadruple
is not optimal, contradicting condition 2 of Lemma 1. L]

In the case of identical SI, Vi = V5 =V, the conditions of Lemma 1 can be simplified. We state

these as a corollary.

Corollary 2 In the case of identical SI, a quadruple (Dy,T1,Do,T5), with T; > 0 and D; > 0,
i = 1,2, is optimal if and only if there exist random variables (W, Z) and mappings 11 : WXV — u

and Py : Z XV — Z], such that the following conditions simultaneously hold:

1. (W, Z)e U=V form a Markov chain.

NS

- Ed (U, (W,V)) = Dy, Eda(U,42(Z,V)) = Do,

o

(a) IU;W|V) = p1C1(T1)
(b) I(U; ZIW, V) = paCs(I's)

4. The rate—distortion quadruple (I(U; W V'), Dy, 1(U; Z|W, V'), Ds) is optimal.
. F; < T'; implies CZ(F;) < Ci(Fi), 1=1,2.

The proof follows the lines of the proof of Lemma 1 (making use of Corollary 1 instead of Theorem 3),

and is therefore omitted.

5 Single—Letter Codes

Equipped with the results of Sections 3 and 4, we are now ready to turn to the derivation of
necessary and sufficient conditions for the optimality of single-letter joint source—channel codes
(namely, codes of block length n = 1) for channels with bandwidth expansion factors p; = ps = 1,
in the presence and in the absence of feedback. For the sake of simplicity, we assume, in this section,

identical SI, i.e., V3 = Vo =V, and, of course, V; =V, = V.

The outline of the derivations in this section is as follows. Lemma 2 below gives generic necessary

and sufficient conditions for the optimality of a given single-letter code in terms of the random
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variables induced by this single-letter code. In Lemmas 3 and 4 that follow, these conditions
are translated into equivalent, but more explicit conditions that can be checked relatively easily.
In particular, Lemma 3 focuses on the relation between capacity—achieving channel inputs and
the form of the transmission cost functions, whereas Lemma 4 is, analogously, about the relation
between optimum test channels and the form of the distortion measures. Lemma 5 then fills in
the missing link of conditions for equality between the relevant source-related mutual informations
(“source coding rates”) and the corresponding channel-related mutual informations (capacities),
so as to make the corresponding data processing inequalities tight. Finally, Theorem 4, which is
the main result of this section, puts it all together and gives the full set of explicit necessary and
sufficient conditions for the optimality of a given single-letter code. An immediate consequence
of Theorem 4, stated in Corollary 3, is that under the quadratic distortion measure, and in the
absence of SI, feedback is necessary to achieve optimality with single-letter codes, provided that
the distortion at the first stage, D1, is less than the a priori variance of the source. This conclusion
holds in full generality - i.e., it is not restricted to Gaussian sources, nor to additive channels. The
proofs of Lemma, 2 and Lemma 4 appear in Subsections 6.2 and 6.3, respectively, and the proofs of

Theorem 4 and Corollary 3 are provided in this section. The rest are omitted.

Lemma 2 Let a single-letter code (f1, g1, f2, g2), incurring a distortion—cost quadruple (D1,T'1, D9, T'3),
D;>0,T;>0,i=1,2, be given. There exists random variables (W, Z) and functions (11,12),
satisfying conditions 1-4 of Corollary 2, if and only if the following conditions are simultaneously

satisfied:

1. Fori=1,2, I(X;Y;) = I(f;(U);Y;) = Ci(1;). If feedback is included, then for i = 2, we set
Xo = fo(U,Y7).

2. The rate—distortion quadruple (I(U;Y1|V'), D1,1(U;Y3|Y1,V), Ds) is optimal.

3. (a) I(U;Y1|V) = I(X1; Y1)
(b) I(U;Y1,Y2|Y1,V) = I(X2;Y)

As explained earlier, and following the methodology of [7], we now proceed to decompose the
requirements of Lemma 2 into separate, but more explicit conditions regarding the transmission

cost functions and the distortion measures. The next result was stated and proved in [7].
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Lemma 3 For a given source distribution Py, single-letter encoders f1, fo, and conditional dis-

tributions Py, |x,, Pyy|x,-

1. Fori=1,2,if I(X;Y;) = I(fi(U);Y;) < Ci(00), then I(f;(U);Y;) = Ci(T;) if and only if for all
T € X:

¢i(ac){ = ¢;D(Py,x,(-[2)|1Pyv;) + doq if Px,(z) >0, 55)

> ¢;D( Py, x,(:|7)[| Py;) + ¢o; otherwise
where ¢; > 0 and ¢o; are constants.

2. Fori=1,2, if I(X;;Y;) = I(fi(U); Vi) = Ci(00), then I(fi(U);Y;) = Ci(T;) for any function ¢;.

As the channels in our model are independent, each one is treated separately, exactly as the single—
user channel model of [7]. In particular, note that Lemma 3 is exactly [7, Lemma 3]. Thus, the

proof is omitted.

Analogously to Lemma 3, we next state the conditions under which the distortion measures
“match” the source, channels, and code (fi,g1, f2,92), yielding an optimal coding scheme. In
contrast to the conditions on the transmission cost functions ¢;, ¢+ = 1,2, stated in Lemma 3, the
conditions on the distortion measures are not the same as those stated in [7, Lemma 4]. Moreover,

the condition on ds depends on whether or not feedback is present.

Lemma 4 Let a source distribution Pyy, channel conditional distributions Py, x,, Py, |x,, and a
single-letter code (f1,91, f2,92), be given. Assume that I(U;Y1|V) > 0, I(U;Y2|Y1,V) > 0, and
D;>0,i=1,2.

1. In the absence of feedback, condition 2 of Lemma 2 is satisfied if and only if the distortion
measures satisfy, for every u € U, y1 € V1, and ys € Yo:

E {dy (u, 01 (51, V))IU =u} = ME {log Py, y (1 |V)|U = u}
=1 log Py jur(y1fu) + ki (u), (56)
E {da(u, g2(y1,y2, VI)IIU =} = Mo {log Py, v (yelyr, V)IU = u
—Az log Py, 7 (y2lu) + k2(u) (57)

for some positive constants A1, A2, and functions ki (u), ko(u), where the expectations are taken

w.r.t. PV|U:u'
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2. If the presence of feedback, condition 2 of Lemma 2 is satisfied if and only if dy satisfies (56),

and do satisfies

E{dy(u, g2(y1, 42, V)IU = u} = XE {log Py, vy v (y2lyn, V)IU = U}

—A2log Py, v, v (y2ly1, u) + ka2 (y1, u)

(58)

for some positive constant Ay and a function ko(y1,u), where, again, expectations are taken w.r.t.

Pyio—y-

As a final step before stating our main result, we characterize the situations under which

condition 3 of Lemma 2 holds.

Lemma 5 Condition 3 of Lemma 2 holds if and only if the random wvariables Y1, Yo, and V are

independent and the encoding functions f1 and fo are information lossless, that is, if and only if,

in the absence of feedback

Py, v, v = Py,Py,Py
I(U;Y1) = I(X1;;3Y7)
I(U;Yz) = I(Xa;Y3),

and, in the presence of feedback, (61) is replaced by

I(U, Yl; Yg) == I(XQ; Yg)

(62)

The proof of Lemma 5 follows by simple applications of the chain rule for mutual information,

and is omitted.

We are now in a position to state the main result concerning single-letter source—channel codes

for successive refinement with SI. For simplicity of the exposition, we assume here that condition 5

of Corollary 2 holds, that is, the transmission costs cannot be reduced without decreasing the

capacities of the channels. We also make the assumptions that I(U;Y1|V), I(U;Y>|Y1,V), and the

distortions at both stages, are strictly positive.

Theorem 4 Assume that the following hold:

e Assumption 1: T'; cannot be reduced without reducing C;(T';), and I(X;;Y;) < Cj(00), i
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o Assumption 2: I(U;Y1|V), I(U;Y2|Y1,V), and D;, i = 1,2, are strictly positive.

Then, a single-letter code is optimal if and only if the following conditions simultaneously hold:

1. The random wvariables Y1, Ys, and V are independent.

2. The encoding functions fi and fa are information lossless, i.e.,

I(X1;Y1) =1(U; Y1) (63)
and
) = { JND, e e o, (64
3. The transmission cost functions satisfy
bi(2) { = ciD(Pyx, (12)|1Py.) + doi if Px,(x) >0, (65)
> ¢;D( Py, x;(:|7)[| Py;) + ¢o;  otherwise
fori=1,2, where c¢; >0 and ¢o; are constants.
4. The distortion measures satisfy
E {di(u,91(y1,V))|U = u} = A log Py, (y1) — A1 log Py, (y1]u) + ki (u), (66)
and
A2 log Py o (o) 67)

Py, (y2) + ko(y1,u) with feedback

Ao log 5———2—+——
2 gPYZ\Yl,U(Zﬂ\Z/l,U)

Pry(v2) y + ko (u) without feedback
E {dZ(ua 92(y17 Y2, V))|U = ’LL} =

for some positive constants \1, Ao, and functions ki, ko.

Proof. The proof is a combination of Corollary 2, and Lemmas 2, 3, 4, and 5. In view of Assumption

1 of Theorem 4, we only have to guarantee the satisfaction of the conditions stated in Lemma 2.
Thus:

e First condition of Lemma 2 — due to Lemma 3, this is satisfied by (65) above.

e Third condition of Lemma 2 — due to Lemma 5, this amounts to Conditions 1 and 2 of Theorem 4.
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e Second condition of Lemma 2 — is satisfied due to the independence of Y7, Y5, and V, and

Lemma 4.

This completes the proof of the Theorem. L]

This result provides a tool to examine optimality of successive refinement schemes, operating over
noisy channels, possibly with the presence of SI correlated with the source, at the decoders. It is easy
to verify, that Example 2 of Section 3 satisfy the conditions of Theorem 4. In addition, it enables
us to examine when a feedback channel is necessary in order to achieve optimality with relatively
simple, single-letter codes. In this context, let us return now to discuss the Gaussian example that

was given in Section 3, and to re-examine it in view of the results stated in Theorem 4.

Ezample 2 (cont’d). We now show that feedback is necessary for the given system to be optimal.
That is, while the (asymptotically) achievable region D of distortion-cost quadruples is independent
of whether feedback is present, it cannot be achieved using single-letter codes without feedback.
To see this, observe that the right hand side of (67) for the case of no feedback, does not depend on
y1. On the other hand, the left hand side there may depend on y, via the decoding function of the
second stage, g2(y1,%2) (no side information is present here, therefore we dropped the dependence
on v, and the conditional expectation). Therefore, if the second stage decoder g, really utilizes v,
equation (67) cannot hold for the case of no feedback. Note that the linear decoder of the second
stage in the Gaussian-quadratic example makes use of the output of the first channel, y;. We can
further examine whether a choice of another decoder facilitates optimality without feedback. Note,
however, that once the encoder of the first stage f; is linear, and the noise random variables Ny,
Ns, are independent, the optimal second stage decoder g, makes use of Y, and therefore feedback
is necessary for optimality. This is because Y; is an additional observation on U with noise Ny that

is independent of the noise N7 of Y7.

Clearly, this observation goes beyond the Gaussian-quadratic regime with linear encoders.
Specifically, we claim that under the quadratic distortion measure, feedback is necessary to achieve
optimality with single-letter codes, whenever the distortion of the first stage, Dy, is strictly less
than the variance of the source U. This is the subject of the next corollary. Note that it is not

restricted to the Gaussian model, nor to additive channels.

Corollary 3 Let U be an arbitrary zero mean random wvariable with variance O'2U, and Py,|x,,

Py, |x,, be arbitrary channels. In the absence of SI and under quadratic distortion measure, feedback
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s necessary to achieve optimality with single-letter codes, whenever D < O'2U.

Proof. Let g1(Y1) be the estimator of U at the output of the first stage. The mean square error of

this estimator is given by
Dy =E[(U — g1(1))*] = E(U?) + Eg; (Y1) — 2E[Ug1(V1)], (68)
therefore we must have
E[Ugi(Y1)] # 0, (69)

as otherwise, choosing ¢;(Y1) = 0 will yield a better estimator, with MSE equal to o%. Next,
observe that IE(U|Y>) is the best estimator that the second encoder can produce without using Y;.

Thus, in view of the discussion in Example 2 above, it is enough to show that
arg moin]E(U —EU|Y2) —a-gi(Y1))2#0  whenever E[Ug;(Y1)] # 0, (70)

as this implies that the use of Y7 improves on the best estimation that is based on Y5 only. Hence
the best estimator go must depend on y;, the left hand side of (67) depends on y;, implying, in
turn, that (67) cannot hold for the case of no feedback.

Differentiating (70) with respect to «a and equating to 0, we obtain for the optimal «

o — E(Ug (Y1) —E{g:(Y1)EU|Y2)} (71)
E(gf (Y1) '

However
E[g1(V)E(UY2)] = E[E {g:(Y1)E(U[Y2)[Y2}] = E[E(g:(Y1)[Y2) E(U[Y2)] = 0, (72)

where we have used, in the last equality, the fact that in optimal systems Y7 and Y5 are independent

(first condition of Theorem 4), and that
Egi (Y1) = EU =0, (73)
as otherwise, distortion can be reduced by subtracting a constant from g;(y;). Hence the optimal
a is
«_ E{Uqa (1))
E(gf (V1)) ’

yielding (70). U

(74)

To summarize, optimality cannot be achieved without feedback, whenever the encoders f1(U) and

f2(U) are such, that the optimal second stage decoder go(Y7,Y2) makes use of Yj.
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6 Proofs

6.1 Proof of Theorem 2

The direct part follows by applying Wyner—Ziv successive rate—distortion coding, as in [15, Theorem
1], followed by classical, single-user channel coding for each stage (i.e., separate source and channel
coding, without feedback). Proceeding to the converse part, consider first stage no. 1, for which we

can write the chain of inequalities:

plnC’l(I‘l) Z IXl;Yl)
> I(U;Y))

(

(

I(U,V;Y,)

I(U;Y4|V3)
(

= I(U;Y,Vo|Vy) —I(U;Va]Y 1, V)

n
= YUY, VU, Vi) = I(U; VoY1, Vi, V3T (75)
=1

where the first inequality in (75) is due to the fact that the input constraint for the first channel

is satisfied. For convenience, we use the notation U”\! to denote U~ 41, and similarly for all
other vectors of random variables, e.g., Vln\i = (Vf;l, Vi%41), ete. Since (Uj, V1 ;) is independent of

(U=t Vln\i), we have, for the first term in the summand of (75):
IUsY L, VoU L V) = HUVLU L V™Y = BU Vi, Y, Vo, UL 1Y)
= H(Ui|Vig) — HU|Vi;, Y1, Vo, UL VMY
= I(UsU" L V"N Y Vo V). (76)
Next, due to the Markov structure
Vaio (Up, Vig)e (U™, Y1, ViT V™) (77)
we have, for the second term in the summand of (75)
IU; Vo Y1, Vi, V5T = H(VauY1, Vi, V5T — HVau|U, Y1, Vi, V31
= H(ValY1,V1,Va1') = HVa,i|U, Y1, Vi, Va1 )

= I(U;VaulY1, V1, Va1 h). (78)
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Substituting (76) and (78) into (75) results in

pinCi(I'y) >

>

>[I U LY Vo V) — T(U Vgl Y, Vi Vi)
=1

[I(Ui; Vln\zv Yy, VZZ,II |V1,Z) + I(Us; U%lv V27?z'|vln\z’ Yy, VZZ,II’ Vl,i)
=1

(2
—I(Ui; Va,4lY 1,V 7y, Vzﬁl)]
n

SV Y, VT Vi) + LU U Ve Vo, Vi, VY Y, Vi (79)
i=1

The Markovity Vie Voo U implies also

Vige Voo (U, Y1, V)Y, Vail), (80)

and the second term in the summand of (79) can be written as

Y

(U U, Volip1lY1, Vi, V2i,1)
H(Ui|Y1,V1,V3,) — HUJU Y1, V1, V5)
H(Ula Vi,i

Y, v, Vi) — H(Vi|Yy, v, Vi) —HU|U ™Y1, V1, Vy)

H(Vl,i|Uia Yla ‘/1n\la ‘/27:,1) + H(UZ|Y13 ‘/ln\la ‘/27:,1)

— HVi Y1, VY, VE) = HUU'™, Y1, Vi, Vo)
H(Ui|Y1aV1n\iaV2i,1) —HU;|U Y, V4, V)
I(U;; Ui_lavl,iav27i+1|Yl,V1n\iav2i,1)

U UV [V L, VY V) (81)

where (80) was used in(a) above. Substituting (81) in (79), we obtain the following bound on the

capacity of the first channel:

n

pnCi(D1) > 3 [1U Y1, VY VT V) + 10 U Ve YL v vi | (82)

=1
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Proceeding to the second channel, observe that given X, the output vector Y5 is independent of

all other random vectors, that is,
(X1,Y1,V,Va,U).e X322 Y, (83)
Hence

I(U;Y Y ,V,Vy)

H(Y3|Y1,V1,V3) = H(Y2|Y,V1,V3,U)

< H(Y3)—H(Y3|X2,Y1,V1,Vy,U)
K H(Y3) — H(Y 2| X2) = I(X2;Y )
< np2Ca(Ty), (84)
where (a) holds by (83). Therefore
n
npzCa(T2) > I(U;Y5|Y 1, V1, Vo) =Y I({UsYo[U LY, Vi, V). (85)
i=1
We now define the random variables
Wi = (Y, v (86)
S = (U7, Valiv1 Wi) (87)
Zi = (Y2,5). (88)

With these definitions, the following Markov relations hold:
Wie Sie Zje Uie Vye Vi, (89)

and the bounds (82) and (85) become

n

1

p1C1(T1) > EZ[[(Ui;WHVu)+I(Ui;5i|V2,i,Zi)] (90)
i=1
1 n

p2C2(T2) > EZI(Ui;ZHSi,Wi,Vz,i)- (91)
i=1

It remains to show that the sums in (90) and (91), as well as the required distortion inequalities, can
be replaced by single—letter expressions with variables W,S, and Z, satisfying the Markov structure
and the conditions stated in egs. (12) to (22) in the definition of the region D*. These steps follow

exactly the parallel derivations in [15, Proof of Theorem 1], and are therefore omitted.
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6.2 Proof of Lemma 2

Starting with the sufficiency part, assume that conditions 1, 2, and 3 above hold. Let the variables

W and Z, and the mappings 11 and 19, be defined as follows:

W =" 92

VA 93

(Y1,Y2)

P»i(W, V) = q1("1,V) 94

(92)
(93)
(94)
$a(Z,V) = g(11,Ya,V). (95)

We now show that conditions 1 to 4 of Corollary 2 are satisfied. For the first condition, observe

that
Py yv,viv = PviovivaPyvivelu = Pviv Privaiv (96)
where the second equality holds regardless of whether feedback is present or absent. Thus, we have

the Markov structure (Y1,Y3)e U<V and condition 1 of Corollary 2 holds. Next, since the code
(f1,91, f2,92) incurs (D1,I'1, Dy, I'9), we must have

Ed\(U,g1(Y1,V)) = Di (97)
EdQ(U,gg(Yl,YQ,V))

Do, (98)

which, together with egs. (92)—(95), imply condition 2 of Corollary 2. Condition 3 of Corollary 2
is satisfied due to conditions 3 and 1 of the lemma. Condition 4 of Corollary 2 is satisfied due to
condition 2 above, again with the substitutions given by eqgs. (92)—(95). This completes the proof
of the sufficiency part.

Turning to the necessity part, assume that for a given code (f1, 91, f2,92), incurring strictly
positive distortions and costs (Dq,T'1, D2, T's), there exist random variables (W, Z) and mappings

(11,19), satisfying conditions 1-4 of Corollary 2. We have

—~

a

I(X1;Y1) > I(U;Y)

~

—~
o>
~

> I({U;h|V)
(©

> I(U;W|V)
@D o ry)
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= max I(X];Y/ 99

o e, (X1 Y7) (99)

where Y] is the output of the first channel due to input X{, and where (a) is implied by the

data processing inequality, (b) due to the Markov chain Ve Ue X e Y7, (c) is due to condition 4

of Corollary 2 (as W minimizes I(U;-|V) over a set of RV’s that includes Y1), and (d) is due to
condition 3 of Corollary 2, with p; = 1. Similarly,

—

a

I(X9;Ys) > I(U,Y1;Y3)

~

[V Y,
@NNN
=5 S S
T N X
] =
S s

= max I(X5;Y, 100
X r, (X;Y3) (100)

where here note that (a) holds whether or not feedback is included. Hence we conclude that

egs. (99) and (100) must hold with equalities. This implies all the conditions of Lemma, 2.

6.3 Proof of Lemma 4

Part 1 — no feedback. Beginning with the conditions on di, we establish first the sufficiency part.

Assume that the distortion measures satisfy (56) and (57). Let Qy. y, ;71 be a distribution satisfying

Z QYI,YKQ,U,V(ylvyZvuvv) = Pyy(u,v) Yu,v (101)
Y1,Y2

and the following Markov structure holds
(Y1,Ys)e Ue V. (102)
To establish sufficiency, it is enough to show that if
Eqdi (U, 91(Y1,V)) < Epda(U, g1(Y1,V)) (103)
then

U ¥|V) > I V), (104)
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and if the following simultaneously hold

Eqda (U, g2(Y1,Y2,V)) < Epdy(U,g2(Y1,Y2,V)) (105)
Eqdi(U,g1(Y1,V)) = Epda(U,g1(V1,V)), (106)
(U;n|V) = I(U;Y|V), (107)
then
I({U;Y2|Y1,V) > I[(U; Ya|Y1, V), (108)

and moreover, whenever the inequality in (103) is strict, so is the inequality in (104), and whenever
the inequality in (105) is strict, so is (108). This will imply that (I(U;Y1|V), D1, I(U;Y2|Y1,V), D2)

is distortion optimal, and hence also optimal (see Remark 2).

Let us examine the following quantity

. Py, v (V1|U
I(U; Y1|V) — Eqlog P (FilU) _
Py, y(M1|V)
[ Qpu () Py (y1|w)
= Puv (u,v) Qs (y1]u) |log ————— —log ——
ug;y Y1|U | i Q}~/1|V(y1|1)) PY1|V(y1|v)
(a) [ Qf/l UV(yl,u,v) Py, UV(ylaUaU)
= Pov (u, v)Qy, 7 (y1|u) |log - — log -
u%: (4, 0) Qg oy (y1|u) 8 Q. (1, 0) Py (ulo) Pyy v (y1,0) Pojy (ufv)
[ Qupyy v (uly,v) Py, v (ulyr,v)
= P > 1 L - 1 L :
u%l:,v UV(U’U)QY1|U(y1|u) I 08 PUV(U'aU) o8 PUv(U,U)
= D(Quiyy vIIPuyiv)
> 0, (109)

with equality if and only if Qy, ;;, = Py;,u,v- (We have used the Markov structure (102), and

Ye U<V, in (a).) Thus, we can deduce that, for every A; > 0

MI(UV) — LU Y1|V))]

Qy, v (y1]u) Py (y1|w)
= A Py (u,0) | Qg pr(y1lu) log —————— — Qg ;7 (y1|u) log -=—=——
Z n Qupy (o) N7 Py v (ya]o)

Py o (yi|u) Py ju(yifu)

+ Qv 17 (y1|u) log =————— — P, y1|u) log ————

7 (v1/) Py, v (y1lv) o i) Py, v (y1lv)
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(@) o
> M u;w Py (,0) [Q, 1 (y1]u) = Py (91]u)] log P;Z(Z IZ)

Q] .

> > Pyv(u,v) [QYI\U(WU) — PY1|U(?J1|’U,):| <>\1 IOgM B dl(%m(yl,v)))

Py, v (y1]v)

u,y1,v

Py, (y1|u)

= 32000 Qs ~ o] 5 Pt (3o S

u’yl

—dy (ua g1 (ylv v)))

C

= 0, (110)

—~
~

where (a) follows from (109), (b) follows from (103), and (¢) upon using (56). If the inequality
in (103) is strict, so is the inequality in (b). This indeed proves that under (56), eqn. (103)
implies (104).

We now proceed to the conditions on dg, namely, that under (57), egs. (105), (106), and (107),
imply (108). To this end, note first that under (56), a necessary condition for (107) to hold is that
inequality (a) in (110) is satisfied with equality, which in turn holds if and only if Qy, vv =y
Clearly, this will imply also (106). Hence, a necessary and sufficient condition for (106), (107) to
hold is that Qy, 171, = Pyy,u,v. Thus, instead of a general distribution Qy, y, ;- satisfying (101),

(102), we examine now a distribution Qy, v, v,y such that

> Qv 50w W1,y2,u,0) = Pruy (y,u,0) Y yi,u,v (111)
Y2

and such that the following holds
(Y1, Yo)eUeV (112)
(see also eq. (93)). Note that, although we have, due to the two-channel structure, the Markov

conditions

Yoo Ue (V,Y1), (113)

we do not impose

Yye Ue (V,Y)) (114)

We cannot impose such a structure, since for the quadruple (I(U;Y1|V), D1,I(U;Y2|Y1,V), D2) to
be rate-distortion optimal, it has to compete with the rates and distortions implied by distributions

Qy, v, .y that satisfy the conditions stated in Theorem 1, where Y; and Y, play the role of the
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auxiliary random variables W and Z, respectively. A structure like (114) is not implied by the

conditions stated in Theorem 1.
Assume that eq. (57) holds. We have to show that if
Eqdy(U, g2(Y1,Y2,V)) < Epda(U, g2(Y1,Y2,V)) (115)

then necessarily

I(U;Ya|Y1,V) > I(U; Y2|Y1, V). (116)

The proof now follows quite closely the lines of the proof of the sufficiency part for d;. We give
here few details, as we will refer to it in the case of feedback. Note first that
P YQ\U(Y2|U)

I(U;Y»|Y1,V) — Eglog . =
Py, v, v (Y2|Y1,V)

Qy,u,v,y, W2lu, v, 1) Py, jv(y2|u)
= Py (u,0)Qy, v, (Y1, y2|u) |log —2=== —log ’
u,,},zy;’yz hLBlU Qy, vy, W2lv, y1) Py, jvvi (y2lv,91)
(@)
= D(QU|Y1,Y2,V |PU‘Y1,Y2,V)
> 0, (117)

where in (a) we have used (112) and (113). Thus, we can deduce that for any Ay > 0

X [I(U: Ya¥1, V) = (U3 Ya]Y, V)] >

PYQ\U(y2|u)
Py, v, v (y2ly1,v)

(a)

Y

Ao Y Pyv(u,v) [leyQ|U(y1,y2|U) - PYI,YQ\U(yIay2|U)] log

UyU,Y1,Y2

(b)
> > Pyv(u,v) [thf@w(ylayﬂu) - PYl,YQ\U(ylayZ|u):|

u,v,Y1,Y2
Py, v (y2|u)
x | Ao log 2 — da(u, 92(y1, Y2, v
( Py, v, v (y2ly1,) ( ( )
© 4 (18)

where (a) is due to (117), (b) is due to (115), and (c) follows from (57). This completes the proof
of the sufficiency part.

We proceed to the necessity part. Starting with dy, recall that Pyy is fixed, and in addition,

from the classical Wyner—Ziv results [18], we must have the Markov structure Yo U< V. Thus,
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we have to minimize the conditional mutual information I(U;Y1|V) only over Py, |y satisfying the

distortion constraint

> Pyv(u,v) Py, (yiu)dy (u, g1 (y1,v)) = Dy (119)

Y1,u,v

with the reproduction function given by the decoder g;. Note also that I(U;Y1|V) is a convex

function of Py, ;7. Consider the Lagrange functional

L = IUYV)+ D lZPylw(wIU)—l]
u Y1

+ A1 Y Pov(u,0) Py (yi|u)di(u, g1 (y1,v)) —Dll
Y1,u,v
Py, v (y1|u)
= Pyy(u,v)P y1|u) lo ! + " P yiju) — 1
y%:’v v (u,v) Y1|U( 1|u) gzu, PYI\U(?J1|U,)PU\V(UI|U) Xu:u %: Yl\U( 1|u)
+ X Y Pov(u,0)Pyu(yilu)di (u, g1 (y1,0)) — Dl] : (120)
Y1,u,v

(Using common optimization techniques, the positivity constraints on Py, (y1|u) are taken care

of later, when we consider positive (resp. negative) derivatives of L if the optimality point occurs

at Py, y(y1lu) = 0 (resp. Py;y(y1lu) =1). See (125).) Introducing the new variables

w

we can write

L= Z Pyy (u, v)l(u,v,y1) + ZPUv(’U,,U) log r(u,v) — AD; (122)

Y1,u,v u,v
where
Py, v (y1|u)
12 = P 1 !
i) = B o8 S L P o) P (o)

+ APy, v (1 |u)di (u, g1 (y1,v)). (123)

Differentiating with respect to Py, i7(y1|u'), we obtain, after some algebraic manipulations:

oL
9Py, v (') yiaw 9Py v (y1|u')
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Py, v (yu')
Pyy(u',v) |log ! + M, g1 (yy,v) |, 124
21;: ( ) [ T(U’,U)PY1|V(?/,1|U) ( 1( 1 )) ( )

implying that the optimal distribution Py, |y satisfies:

(S E {1ogpylw(y1|V)|U = u}
—log Py, (y1lu) + k(u)  if Py, p(yifu) =0,
AE {d (. g1 (V)T =) < PUBPav V0 = uf (125)
—log Py, (y1lu) + k(u)  if Py jp(yifu) =1,
-E {1ogPY1\v(y1|V)|U = u}
—log Py, (y1|u) + k(u)  otherwise.

For the pairs (u,y1) satisfying Py, y(y1|u) = 0, the exact value of the right hand side of (125)
is inconsequencial, as these pairs occure with probability 0. For those pairs (u,y;) satisfying
Py, (y1|u) = 1, the value of the right hand side of (125) depends only on u, and hence can be set
to any desired function by proper choice of k(u). Therefore, (125) implies that we can set altogether

NE {d: (u, g1 (y1, V))|U = u} = B {log Py v (41| V)|[U = u} —log Py jir(yfu) + k(w)  (126)
in accordance with the assertion of the lemma.

Regarding the necessity part on dz, we minimize I(U;Y2|Y1, V) with respect to Py,|y; 7. Note
again that I(U;Y2|Y1,V) is a convex function of Py,)y, iy for fixed Py, |;;. Moreover, due to the
Markov structure (113), Py,|y; v(y2|y1, u) is independent of ;. Thus we can take the same approach

as above, and consider the Lagrange functional
L = IU;Ya|Y,V)+ > [Z Py, 7 (y2lu) — 1]
U Y2

> Puy(u,v) Py o (y1|u) Py (y2lu)da(u, g2 (y1, y2,v)) — Da| . (127)

Y1,Y2,u,v

From this point, the proof of the necessity condition on dy proceeds along the lines of the proof of

the necessity condition on dy, and is therefore omitted.

Part 2 — with feedback. Note that the feedback has no effect on the achievable distortions and costs,
and no effect on the distribution of the random variables involved in the first stage. Therefore, the

condition on d; remains as in the case of no feedback. The presence of feedback comes into account
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in the condition on ds, since (113), which was used in (117), no longer holds. Thus, instead of

proceeding along the lines of (117) and (118), we examine now the following quantity

- P, Ys|U, V, Y,
I(U;Y2|Y1,V) — Eqlog GACHLE U
Py, y,,v(Ya|Y1,V)

Z P (U U)Q (y % |U) log QY2|U’V’YI (y2|u,v’y1) PY2|U:V,Y1 (y2|uavay1)
Uv i, y 1, Y2 _
u,V,Y1,Y2 Y1,Ya|U Q}~’2|V,Y1 (y2|v, y1) PY2|V,Y1 (y2|v, y1)

—~
s
~

= D(QU|Y1’?2,V||PU|Y1,Y2,V)

Y

0, (128)

where in (a) we have used (112). Thus, we can deduce that for any Ae > 0

X [[(U: Y31, V) = (U3 Ya Y1, V)] >

—
IS
~

Py, iuviy; (Y2lu, v,y1)
> A Puv (u,v) |Qy, 3,10 (W1, ¥2[u) — Py, vy (Y1, y2lu) | log —5 =
u,U%I:JIZ [ Yl . } Pyy v, v (Y2]y1,0)
(b)
> Y Pyv(uv) [QYIyQ\U(ylayZW) - PYl,YzIU(ylay2|u)]
U,U,Y1,Y2
Py, vy, (Y2lu, v, 1)
X | Aglog —2L — da(u, 92(y1, Y2, v
( Py, v, v (y2ly1,) ( ( )
© (129)

where (a) is due to (128), (b) due to (115), and (c) due to (58). Hence the sufficiency follows.

To establish the necessity part in case of feedback, observe that I(U;Y5|Y1,V) is still a con-
vex function of Py,y, iy, but the dependence on y; cannot be dropped, i.e., (113) does not hold.

Therefore we consider the Lagrange functional

L = IU;Y2YL,V)+ D pug | D Py o(y2lyr,uw) — 1
u,Yy1 Y2

+ X1 D Poy(u,0) Py u(yilu) Py, o (yalyr, w)ds (v, g2 (y1,y2,v)) — D2 | . (130)
Y1,Y2,u,v

From this point, the proof proceeds along the lines of the proof on the necessity condition on dj,
and is omitted. We just note that the dependence of the Lagrange mutipliers ji, ,, on y; results in

the dependence of the function ks in (58) on yy, in addition to its dependence on w. L
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