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Abstract
Underwater imaging is important for scientific research

and technology, as well as for popular activities. It increas-
ingly benefits from computer vision. In this work, we present
a computer vision approach which easily removes degrada-
tion effects in underwater vision. We analyze the physical ef-
fects of visibility degradation. We show that the main degra-
dation effects can be associated with partial polarization of
light. We therefore present an algorithm which inverts the
image formation process, to recover a good visibility image
of the object. The algorithm is based on a couple of images
taken through a polarizer at different orientations. As a by
product, a distance map of the scene is derived as well. We
successfully used our approach when experimenting in the
sea using a system we built. We obtain great improvements
of scene contrast and color correction, and nearly doubled
the underwater visibility range.

1 Underwater Vision

Underwater imaging is widely used in scientific research
and technology. Computer vision methods are being used
in this mode of imaging for various applications [3, 32, 35],
such as mine detection, inspection of underwater power and
telecommunication cables, pipelines [11, 27], nuclear reac-
tors, and columns of offshore platforms [11]. Underwater
computer vision is commercially used to help swimming
pool life guards [19]. As in conventional computer vision,
algorithms are sought for navigation and control [36] of sub-
merged robots. In addition, underwater imaging is used
for research in marine biology [1, 14, 30, 35], archaeology
[2, 16] and mapping [36]. Moreover, underwater photogra-
phy [34] is becoming more accessible to the wider public.

Underwater vision is plagued by poor visibility condi-
tions [12, 15, 17, 32, 35]. According to Ref. [11], most com-
puter vision methods (e.g., those based on stereo triangula-
tion or on structure from motion) cannot be employed di-
rectly underwater. This is due to the particularly challenging
environmental conditions, which complicate image match-
ing and analysis. It is therefore important to alleviate these
visibility problems. What makes underwater imaging me-
dia so problematic? To understand the challenge, consider

underwater scene

Figure 1. An underwater archaeological site. The visibility
and colors quickly degrade as a function of distance.

Fig. 1, which shows an underwater archaeological site about
2.5 meters deep. It is easy to see that visibility degradation
effects vary as distances to the objects increase [15]. Since
objects in the field of view are at different distances from
the camera, thecausesfor image degradation are spatially
varying. This situation is analogous to open-air vision in
bad weather (fog or haze), described in Refs. [5, 23, 24, 26].
Contrary to this fact, traditional image enhancement tools,
e.g., high pass filtering and histogram equalization are typ-
ically spatially invariant. Since they do not model the spa-
tially varying distance dependencies, traditional methods are
of limited utility in countering visibility problems, as has
been demonstrated in experiments [24, 26].

In this work we develop a physics-based approach for re-
covery of visibility when imaging underwater scenes in nat-
ural illumination. Since it based on the models of image for-
mation, the approach automatically accounts for dependen-
cies on object distance, and estimates a distance map of the
scene as a by-product. The approach is fast, and it relies on
raw images taken through different states of apolarizing fil-
ter.1 These raw images have slight photometric differences.
These differences serve as initial cues for algorithms that
factor out turbidity effects. The work is inspired by recent
computer vision methods, that were devised to recover open-
air scenes (not underwater) degraded by atmospheric haze or
fog [23, 24, 29, 26]. It is also interesting to note that marine
animals use polarization for improved vision [30, 35].

Some methods improve underwater visibility by using

1Polarization filtered images have been used in various computer vision
algorithms dealing with reflections [10, 25, 28, 35]. These methods evolved
along with developments of polarimetric imaging devices [7, 8, 35].
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Figure 2. Underwater imaging of a scene, e.g., a reef, through a polarizing filter. [Dashed rays] Light coming from a source is
backscattered towards the camera by particles in the water. The backscatter increases with the distancez to the object. [Solid ray]
Light emanating from the object is attenuated and somewhat blurred asz increases, leading to the signalS. Without scattering and
absorption along the line of sight (LOS), the object radiance would have beenLobject.

specialized active radiation hardware [12, 15, 17]. In con-
trast, we deal with a passive computer vision approach,
exploiting natural illumination. Another prior approach is
based on a simple subtraction of the differently polarization
filtered images [8, 12], or displays the degree of polariza-
tion (DOP) [9, 32]. That approach has fundamental dis-
advantages. It assumes that polarization is associated with
the object radiation, rather than the causes which degrade
this signal. However, due to depolarization, this assump-
tion becomes invalid as distances increase. Moreover, such
enhancement methods are far from inverting the image for-
mation process and recovering the objects. In contrast, our
approach inverts the physical model, thus the recovered im-
age is similar to clear visibility appearance. Our approach is
based on afact [18, 22]: in natural illumination, underwa-
ter polarization is associated with the prime visibility distur-
bance which we wish to delete (termedbackscatter).

To demonstrate the approach, we built an underwater po-
larization imaging system composed of both custom and off-
the-shelf components (the considerations for selecting the
components are described). We used the approach by experi-
menting in the sea. Significant improvements of contrast and
color are obtained. The recovered range map indicates that
the visibility range has been approximately doubled, thanks
to the approach.

2 Theoretical Background
As depicted in Fig. 2, when imaging underwater we sense

two sources. The first source is the scene object at distance
z, whose radiance is attenuated by absorption and scattering
in the water. It is also somewhat blurred. The image corre-
sponding to this degraded source is thesignal. The second
source is the ambient illumination. Part of that light is scat-
tered towards the camera by the particles in the water. It
is termedbackscattered lightin literature dealing with un-
derwater optics [15, 21, 22], and is analogous to the airlight
phenomenon in atmospheric imaging [23, 24]. This section

describes each of these components.

2.1 The Signal
2.1.1 Direct Transmission
The signal is composed of two components, termeddirect
transmissionandforward scattering[15, 21, 22]. This sec-
tion details the direct transmission, while the next section
describes forward scattering. As a light ray progresses from
the object towards the camera, part of its energy is lost due
to scattering and absorption. The fraction which does reach
the camera is the direct transmission2, given by

D = Lobjecte
−ηz , (1)

whereη is the attenuation coefficient. HereLobject is the
object radiance we would have sensed, had there been no
scattering and absorption along the line of sight (LOS).

The attenuation coefficient is given byη = α + β, where
α is the absorption coefficient andβ is the total scattering co-
efficient of the water. The scattering coefficientβ expresses
the ability of an infinitesimal water volume to scatter flux in
all directions. Integrating over all solid angles~Θ,

β =
∫

~Θ

β(~Θ)dΩ =2π

∫ π

0

β (θ) sin (θ) dθ , (2)

whereθ is the scattering angle relative to the propagation di-
rection. The angular scattering coefficientβ(θ) is sometimes
referred to as thephase function. Note that the variables
α, β(θ), η andLobject are all functions of the wavelengthλ.

2.1.2 Forward Scattering
The forward scattering component is similar to the direct
transmission. However, it represents light scattered forward
at small angles relative to LOS. This creates image blur
given by the convolution

F = D ∗ gz , (3)

2There is a proportion factor between the scene radiance and image ir-
radiance that depends on the imaging system, but does not depend on the
medium and its characteristics.
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whereD is given by Eq. (1) andgz is a point spread function
(PSF). The PSF is parameterized by the distancez, since the
farther the object, the wider the support of the blur kernel.

There are several models in the literature for the form
of the underwater PSF [21, 33]. Since the PSF depends on
the hydrsols floating in the water, the models are typically
parameterized by various empirical constants. For example,
the model in Refs. [15, 21] is of the form
gz =

(
e−γz − e−ηz

)F−1 {Gz} where Gz = e−Kzω (4)

while K > 0 andγ are empirical constants,F−1 is the in-
verse Fourier transform, andω is the spatial frequency in the
image plane. Note thatGz is a low pass filter. The effective
frequency “width” ofGz is inversely proportional toz. This
expresses the increase of spatial blur spread for distant ob-
jects. The constantγ is limited to |γ| ≤ η [21]. It is impor-
tant to note that the models of the PSF obtained empirically
and through numerical simulations [21, 33] do not conserve
energy as light propagates inz. This is clearly the case in
Eq. (4). Thus forward scattering is a blurred and attenuated
versionD.

Accounting for both the direct transmission (1) and the
forward scattering (3), we define thesignalas

S = D + F . (5)

We define aneffective object radianceLeffective
object as

Leffective
object = Lobject + Lobject ∗ gz . (6)

It is a somewhat blurred version ofLobject. From
Eqs. (1,3,5), the signal is

S = e−ηz Leffective
object . (7)

2.2 Backscattered Light
Backscatter does not originate from the object on the

LOS. Rather, light coming from ambient illumination
sources is scattered towards the camera (Fig. 2). The LOS
is naturally lit mostly from the water surface above. In addi-
tion, the LOS is illuminated by the ground and by scattering
particles in the surrounding water volume. Before integrat-
ing all the contributions, let us first analyze the effect of a
single distant source.

The source illuminates the particles on the LOS from di-
rection~r = (θ, ϕ) relative to the LOS, with intensityIsource.
Following Refs. [15, 21], the contribution of this source to
the backscatter is

B (~r) =
∫ z

0

β (θ) Isource (~r) e−ηl[1− f/(l + l0)]2dl (8)

wheref is the focal length of the camera andl0 is the dis-
tance between the lens and the underwater housing window.
This integral accounts for scattering into the LOS at some
distancel, followed by attenuation until reaching the cam-
era. It also accounts for geometric projection of the irradi-
ance on the detector, via the ratiof/(l + l0).

In practice, we can simplify Eq. (8), because typically
f/(η−1 + l0) ¿ 1. Consider typical ranges of values as

η−1 ∈ [3m, 10m] (according to [22]),f ∈ [20mm, 50mm],
l0 ≈ 80mm, and object distance in the order of meters. We
assessed the integrals numerically. It can be shown that to
an accuracy of98%, we can write Eq. (8) as

B(~r) ≈ cβ(θ)Isource(~r)
∫ z

0

e−ηldl (9)

wherec = 1.08. Solving the integral yields
B(~r) = B∞(~r)

(
1− e−ηz

)
, (10)

where
B∞(~r) ≡ cIsource(~r)β(θ) (11)

is the backscatter in a LOS which extends to infinity in the
water. Summing up the contribution from light sources at all
directions, the total backscatter is

B =
∫

~r

B(~r)d(~r) = B∞
(
1− e−ηz

)
, (12)

where

B∞ ≡
∫

~r

B∞(~r)d~r (13)

is a scalar which depends onλ.
It is simple to show that a similar expression is obtained

when generalizing to non-distant light sources (as particles
in the water volume). This happens under the assumption
that lighting does not vary along the LOS, or that such vari-
ations are practically integrated out. We believe that this is
a reasonable assumption when imaging approximately hori-
zontally, since natural underwater light comes from a limited
light cone directlyabove[6, 14], and is thus typically unob-
scured along the LOS.

We now discuss the significance of backscatter in the im-
age degradation. The total image irradiance is

Itotal = S + B = e−ηz Leffective
object + B . (14)

To gain intuition about the contribution of each component,
we performed a simulation of underwater imaging, whose
results are shown in Fig. 3. The effects of water are simu-
lated using a model for oceanic water [22] with a low con-
centration of chlorophyll and a moderate concentration of
hydrosols. Fig. 3 shows a colorful set of objects with radi-
anceLobject. Then it showsLeffective

object , which accounts for
blur by forward scattering. Note that the colors change a
little due to forward scattering, since Eq. (4) includes an at-
tenuation factor, which is implicitly wavelength dependent.
We simulated the effects of varying distances by setting a
distance map to the scene: the distance linearly increases
from 0.5m at the bottom of the image to 3.5m at its top.

The visibility strongly deteriorates at the imageItotal,
which incorporates backscatter3 and attenuation effects.
Now, even objects at moderate distances are swamped in
a veiling blue light and become obscured. Backscatter af-
fects the color and contrast also of the close objects. This

3The weight of the backscatter relative to the signal depends on the ob-
ject albedo. The larger the albedo, the stronger the signal is. Based on em-
pirical studies of typical terrestrial objects [13], we set the average albedo
to 0.2 .
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Figure 3. Simulating underwater imaging. The bottom part
of the scene is set to be 0.5 meters away. The distance linearly
changes to 3.5 meters at the top. We rendered the scene as if it
is underwater, accounting for attenuation, blur (forward scat-
tering) and backscatter. The latter effect is the prime cause
for contrast degradation.

observation is consistent with analogous conclusions regard-
ing airlight in the atmosphere. In the atmosphere, the airlight
in daylight is the most prominent image component, much
more than the signal [13] (except for very short distances).
For this reason, the airlight is the most important contributor
to aerial image degradation, rather than blur [26]. A simi-
lar conclusion applies underwater: backscatter is the major
contributor to image degradation.

2.3 Polarization
Underwater scattering involves polarization effects. We

exploit these effects to compensate for underwater visibility
degradation, as we describe in the following sections. First,
however, we describe the models for these effects. Consider
a narrow source, which illuminates the scattering particles
residing on the LOS. The narrow source and the LOS from
the camera to the object define a plane of incidence. We
divide the backscattered light into two polarization com-
ponents that areparallel and perpendicularto this plane,
B‖(~r) and B⊥(~r) respectively. Underwater the illumina-
tion distribution is rather predictable: its dominant direction
lies within a cone around the vertical axis [6, 14]. For this
reason, underwaternatural backscatter is typically partially
polarized horizontally [6, 14, 18].

In order to sense the different polarization components
we image the scene through a polarizing filter (Fig. 2). Since
natural backscatter is partially polarized, then its intensity
depends on the filter’s orientation around the optical axis.
There are two orthogonal orientations of the polarizer for
which its transmittance of the backscattered light reach ex-
tremum valuesBmax andBmin. These are the two linear
polarization components of the backscatter, i.e.,

B = Bmax + Bmin , (15)

whereB is given by Eq. (12). The DOP of the backscattered
light is defined by:

p ≡ (
Bmax −Bmin

)
/B . (16)

As for the signalS, we assume that its polarization is in-
significant relative to the backscatter, for three reasons. One
reason for this assumption is the depolarized nature of reflec-
tion from rough surfaces. This particular reason is invalid
in case of specular or other polarizing objects. Yet even in
those cases the assumption still holds, for the remaining two
reasons: multiple scattering along the LOS, and the inten-
sity dominance of the backscatter over the signal. Multiple
scattering of the signal along the LOS diminishes the origi-
nal signal polarization as distance increases. In addition, the
signal decreases (Eq. 7) while the backscatter (Eq. 12) in-
creases with distance. Thus backscatter and its polarization
dominate the measurements as distance increases. There-
fore, as in atmospheric haze [29], the accuracy of the model
increases where it is needed most - at distant objects, which
are most affected by visibility degradation.

3 Image Acquisition
When a polarizer is mounted, the sensed intensity at each

image pixel changes as a cosine function of the filter orien-
tation angle. Similarly to backscattered light, there are two
orthogonal polarizer angles corresponding to extremum val-
ues of the intensity,Imax andImin, where

Itotal = Imax + Imin , (17)

whereItotal is given by Eq. (14). Since we assume that the
signal polarization is insignificant, the polarizer modulates
only the backscatter. Therefore, the raw images correspond-
ing to the exrema of the intensity measure

Imax = S/2 + Bmax and Imin = S/2 + Bmin . (18)

Note thatImin is the image taken at the “best state” of the
polarizer, where the disturbing backscatter is minimal. On
the other hand,Imax is the image taken at the “worst state”
of the polarizer, where the backscatter is maximal.

In order to acquire such images we built a custom system
for underwater polarimetric imaging. Several specifications
determined its design, as detailed in the Appendix. Based
on that, we built the system shown in Fig. 4. The housing
is commercially available. For the reasons explained in the
Appendix, we close the housing with adomeport made of
glass, while acircular polarizer is attachedexternallyto it.
The surrounding water flows to the space between the exter-
nal polarizer and the dome, through several openings in the
housing’s interface to the polarizer mount. We use the Nikon
D100 digital SLR camera, which allows for raw output data
having a linear response (i.e., no gamma correction) without
white balancing.4

4We confirmed the linear response of the system using different expo-
sures of the MacBeth ColorChecker calibration chart.
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Figure 4. The imaging system we used. [Left] With the
polarizer mount separated, the dome and lens are visible.
[Right] The complete system mounted on a tripod.

minmaxworst polarization state best polarization state II

Figure 5. An underwater scene 26m below the water surface.
The images were taken using horizontal and vertical polarizer
orientations. Both images are contrast stretched, yet their vis-
ibility is poor. Their difference is hardly noticeable.

We scuba-dived to a depth of 26 meters in a sea contain-
ing coral reefs. We took images at the two states of the po-
larizer. The raw images5 are shown in Fig. 5. Both of the
images have a very low contrast, yet their slight differences
provid the key for substantial visibility improvement by a
mathematical algorithm, described next.

4 Clear Underwater Visibility

The algorithm for overcoming the underwater visibility
degradation has similarities to dehazing methods for aerial
images, described in [23, 24, 29]. For this reason, we use
the adjectivedehazedto describe the image resulting from
the algorithm, although haze is certainly not the proper word
to use for underwater effects. In addition to “dehazing” we
need to address the underwater illumination color bias. As
we go deeper underwater, the red portion of the illumination
spectrum is absorbed by the water [34]. Hence, for percep-
tual plausibility, we apply a white balancing procedure after
we compensate for the effects occurring along the LOS.

5For clarity of display, the brightness of the displayed pictures in this pa-
per underwent a standard contrast enhancement (stretching), while their hue
and color saturation were untouched. The recovery algorithms, of course,
used the raw (not enhanced) images.

4.1 Recovering the Object Radiance
Assume for a moment that we have an estimate of the

global parametersB∞ andp. From Eqs. (15,16,18), we es-
timate the backscatter as

B̂ = (Imax − Imin)/p . (19)

Inserting this estimate into Eqs. (12,14,17), we obtain an es-
timate for the “dehazed” object radiance

L̂effective
object = (Itotal−B̂)/t̂ where t̂ = 1−B̂/B∞ . (20)

Heret̂ is the estimated water transmittance, which is related
to the object distancez by

t̂ = e−ηz . (21)

We process each color channel independently this way.
The “dehazed” image is an estimate ofLeffective

object . We
therefore do not compensate for image blur, but only for
the veiling effect of backscatter, and for attenuation. At this
point we make do with this estimate. The reason stems from
the discussion in Sec. 2.2: backscatter is the prime reason
for image contrast degradation, hence overcoming backscat-
ter, rather than blur, is the prime step for clearing visibility.
Note that the dehazed images is a result of inversion of the
image formation process. It therefore represents a recovery
of the object, in contrast to methods which apply ad-hoc ex-
pressions of the DOP [4] for image enhancement.

To perform this recovery we need estimates of the global
parametersB∞ andp. These are intrinsic parameters of the
water and lighting. This estimation is similar to algorithms
which had been developed for open-air imaging [23, 29]. We
obtain these estimates by measuring pixels corresponding to
objects “at infinity”, i.e., which are so distant inside the wa-
ter, that their signals are negligible due to attenuation. In this
regard, the estimation underwater is easier than in the atmo-
sphere, since the visibility range underwater is very short.
Therefore, there are usually plenty of horizontal viewing di-
rections in which no object is visible.

We ran this algorithm on the raw images shown in Fig. 5.
In Fig. 6, the “dehazed” image is shown in conjunction a
region of the best raw image. The dehazed image indeed has
a better contrast, it shows details that are not seen in the input
photographs, and better shows the far objects. The colors,
however, remain very biased towards the blue. The reason
for this is that at this depth under the water surface, the red
component of the illumination has lost most of it energy.

4.2 Compensating for Illumination Color
To compensate for the illumination blue color bias, we

performed a simple white-balancing operation on the images
after being processed for dehazing. Knowing that the sand
in that diving site it rather white, we normalized the color
of each image by the color of a sandy patch in the field of
view. We must note that this multiplicative normalization
compensates only for the illumination color, but not for the
additive backscatter. For this reason, the white patch should
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dehazed image
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Figure 6. Comparison between the best raw image (left) and
the “dehazed” image (right). The dominant hue is blue due
to the spectrum of the illumination reaching deep below the
water surface.

be measured as close as possible to the camera, where the
backscatter is minimal. We therefore measured the color of
a sandy patch at thebottomof the picture, where it is closest.

We performed this process independently on the “de-
hazed” image and onImin. In analogy to Fig.6, portions
of both color-corrected images are shown in Fig.7. It is
now clear that the dehazed image has a much improved con-
trast and color. The ability to see objects of orange hue in
natural illumination at such an underwater depth is remark-
able [34]. White balancing improves the raw polarized im-
age (left side of Fig.7), to a lesser degree. The reason is that
in the raw image the backscatter is very significant, espe-
cially as distances increase. The backscatter is not compen-
sated by white balancing, thus it persists in its degradation
of the raw image.

5 How Far Do We See?
We are interested in aquantitativeestimate for the vis-

ibility improvement. A common visibility criterion is the
visibility range, i.e., at which distance we may still observe
certain details. Therefore, in this section we deal with the
aspects of this criterion.

As a by-product of the radiance recovery process, we get
an estimate of the distance map of the scene. From Eq. (21)
The distancez is estimated as a function of(x, y) up to a
global scale factorη . It is given by

η̂z(x, y) = − ln[1− B̂(x, y)/B∞] , (22)

and shown in Fig. 8. We do not know what the attenuation
coefficientη is. Nevertheless, we can quantitatively deter-
mine therelative distancesin the scene. For example, when
comparing two image regions, we can determine that one
of them is, say, three times as distant from the camera as
the other one. This fact enables assessing the ratio of im-
provement of the visibility range, which is achieved by the
“dehazing” method.

To calculate the ratio of visibility ranges, we should com-
pare the appearance of the same object at different distances.

best polarization state

best polarization state dehazed image

dehazed image

*

*

Figure 7. Comparison between the best raw image and the
“dehazed” image. These images underwent white balancing
based on a close white sand patch. For the “best polarized”
image this process quickly loses its effectiveness as object
become more distant. In the “dehazed” image colors are re-
covered to large distances. [Marked Points]: The regions
around the points have the same contrast in their respective
images. However, the point in the “dehazed” image part is
twice as distant as the one in the raw image part, indicating
the increase of visibility range.

For a rough estimate, we selected from the scene two regions
which have the following characteristics:
• Both regions have a similar object content.
• The contrast level of one region in the raw image, matches
the contrast of the second region in the dehazed image.
The selected regions are around the marked points in Fig. 6.
Both regions contain the same type of objects: chunks of
the coral reef. We therefore assume that the intrinsic object
properties are the same in these two regions.

The contrast of the left marked region in raw image is
the same as the contrast of the right marked region in the
dehazed image. To make this claim, we use a generalized
definition of contrast at a region. The intensity contrast be-
tween two pointsk = 1, 2 is defined by|I1 − I2|/|I1 + I2|.
In a region havingN pixels, we use

c = STD{Ik}/
(
ΣN

k=1Ik

)
, (23)

whereSTD{Ik} is the standard deviation of theN inten-
sity values. In order to minimize the contribution of noise,
Eq. (23) was estimated only in the blue channel, for which
the signal to noise ratio is greatest.

To conclude, both regions have a similar object content.
The contrast level of one region at a certain distance in the
raw image, matches the contrast of the second region in the
dehazed image, but at a longer distance. Using Eq. (22), the
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Figure 8. The estimated range map of the object. Longer
distances are displayed at darker graylevels. The distance to
some points is written in units of the attenuation distanceη−1.

range ratio between the points is 1.8. We therefore, conclude
that the method demonstrated an increase of the visibility
range by a factor of≈ 2. We plan to follow up with more
controlled experiments using standard calibration targets.

6 Discussion

We presented a method that can overcome degradation
effects occurring in underwater vision. It is based on sim-
ple analysis of images acquired through a polarizing filter.
Since it is physics-based, the method also recovers informa-
tion about the scene structure (distances). We believe that
this approach can lead touseful tools in underwater pho-
tography, underwater research, and underwater technologi-
cal applications.

Appendix : Building an Underwater Polaricam
As mentioned in Sec. 3, there are several specifications

needed for the underwater imaging system. They arise since
we makequantitativephotometric measurements with the
polarizer. The camera should have a linear radiometric re-
sponse and low noise. It should be housed in a watertight
housing which withstands the pressures in the depths we
work. In addition, there should be full control of the cam-
era parameters (exposure time, aperture, etc.). Therefore,
the housing should have mechanical controls which couple
to these camera controls.

Optical Considerations
The main concern in the optical design is its affect on po-

larization. We use a polarizer to analyze the scene. However,
we would like therestof the optical system components to
haveminimal effectsor sensitivities related to polarization.
We achieve this by making the following decisions:
A dome port, or a flat port? The camera lens views the
scene through aport, i.e., a transparent window in the hous-
ing [34]. Typical ports are flat or spherical. Consider Fig. 9.
The chief ray from an object point in the water to the detec-
tor undergoes an angular deviation [34] at flat window in-
terfaces. In this case, the window transmittance depends on

lens
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Figure 9. [Top] An unwanted effect: the transmittance of
a flat port (window) is polarization dependent at oblique in-
cidence. [Bottom] The preferred design: a spherical dome
concentric with the center of projection eliminates this effect
by creating normal incidence angles.

the polarization of the passing light [31]. This polarization
dependence distorts the intensity readout values.

Dome ports, on the other hand, alleviate this problem. If
the sphere’s center coincides with the center of projection of
the camera, then the chief ray from an object point to the de-
tector is normal to the dome interface. At normal incidence
the transmittance is independent of the linear polarization
state [31]. For this reason, we decided to use adome port.

An external or internal polarizer? Stress in the transparent
port’s material changes the polarization of the light it trans-
mits. This effect is called thephotoelastic effect[31]. Due
to inhomogeneities in the material, this polarization effect
is spatially varying. This spatially varies the transmittance
though the polarizer, depending [31] onλ and the polariza-
tion state. Moreover, the effect may vary with the underwa-
ter depth, due to changes of the external water pressures.

In principle, placing the polarizer externally should elim-
inate visible photoelastic effects. We thus decided to place
the polarizing filteroutsidethe housing. The filter is thus
the first optical component the light from the scene encoun-
ters as it enters the imaging system. The space between the
external polarizer and the dome is filled with the water com-
ing from the surroundings. In practice, the photoelastic visi-
ble effects are indeed greatly diminished, but not completely
eliminated. Residual effects persist due to complicated re-
fractions in the transparent port. To minimize such residual
effects, we refer to the following considerations.

A glass dome, or a polycarbonate dome?The photoelastic
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effect is much smaller in glass than in polycarbonate mate-
rials (plastics) [31]. We thus decided to use aglass dome.

A circular or linear polarizer? In practice, the dome may
not be precisely concentric with the center of projection.
In non-normal incidence, different polarization components
are differently transmitted, affecting the intensity readouts.
To counter this possibility, we decided to use acircular po-
larizer: it filters the linear polarization of its input (scene)
while it outputs circular polarization [31] to the dome. In
this case, the light transmittance of the dome is independent
of the polarizer angle. Yet, circular polarizers are tuned to
a narrow band (typically “green”), and do not perform per-
fectly across the spectrum. So, while this measure helps in
minimizing unwanted polarization effects, the other consid-
erations listed above should be employed as well.
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