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Abstract

A quasi maximum likelihood framework for blind deconvolution of images is presented.

We generalize the relative Newton algorithm, previously proposed for quasi maximum

likelihood blind source separation and blind deconvolution of time signals, and provide

asymptotic analysis of its performance. Smooth approximation of the absolute value is

used to model the log probability density function, which is suitable for sparse sources.

In addition, we propose a method of sparsification, which allows to perform blind decon-

volution of sources with arbitrary distribution, and show how to find optimal sparsifying

transformations by training.

1 Introduction

Two-dimensional blind deconvolution (BD) is a special case of a more general problem of

image restoration. The goal of BD is to reconstruct the original scene from an observation

degraded by a linear shift invariant (LSI) system, when no or very little a priori informa-

tion about the scene and the degradation process is available, hence the term ”blind”. BD is

critical in many fields, such as astronomy [4, 7, 8, 40], remote sensing [37], biological and

medical imaging [1, 34, 35], microscopy [25, 28, 44], etc. Typically, the image degradation

is a result of imperfections of an optical system, and can be presented in terms of convolu-

tion of the source image with some blurring kernel or point spread function (PSF); in such

applications, the term deblurring is synonymous to deconvolution.
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A more difficult problem of deblurring is encountered in cases where the blur is caused

by a spatially-varying system. However, in this case too, as long as the blurring operator can

be considered to be ”locally-invariant”, deblurring can also be addressed by the presented

methods.

1.1 Problem formulation

The general setup of 2D BD is presented in Figure 1. The observed sensor image X is

created from the source image S passing through a convolutive system described by the

impulse response W ,

Xmn =
∑

k,l

WklSm−k,n−l + Umn, (1)

and is possibly contaminated by additive sensor noise U . We assume that the action of W is

invertible, at least approximately. The aim of BD is to find such deconvolution (restoration)

kernel H that produces an estimate S̃ of S up to integer shift and scaling factor c:

S̃mn =
∑

k,l

HklXm−k,n−l ≈ c · Sm−∆M ,n−∆N
, (2)

or equivalently, the global system response should be

Gmn = (W ∗ H)mn ≈ c · δm−∆M ,n−∆N
. (3)

The quality of deconvolution operation can be quantified by comparing the obtained global

system response with the desired one (for this purpose, H can be assumed to be known) in

sense of some norm. We use the signal-to-interference ratio (SIR) criteria, defined by

SIR =
|c|2

‖Gm+∆M ,n+∆N
− c · δmn‖2

2

(4)

SIR∞ =
|c|2

‖Gm+∆M ,n+∆N
− c · δmn‖2

∞

(5)

as a measure of image restoration quality. Another restoration quality measure, especially in

use in image processing is the peak signal-to-interference ratio (PSIR) defined as

PSIR =
‖S‖2

∞

‖Gm+∆M ,n+∆N
− c · δmn‖2

2

. (6)
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Figure 1: Schematic representation of the blind deconvolution problem. The source S passes

is degraded by convolution with W and contaminated by additive noise U . The resulting

observation X is then restored by the kernel H .

1.2 Previous work

Various approaches to BD and practical algorithm have been previously proposed. We will

only briefly, and exhaustively, outline the basic ones here; for a comprehensive comparison

see e.g. [29, 30].

A stand alone approach is the zero-sheet separation method, which is based on properties

of complex functions of several variables [31]. This method is mathematically beautiful, but

extremely sensitive to noise and computationally expensive.

Most of the approaches can be divided into parametric and non-parametric. In applica-

tions where the form of the PSF can be assumed in advance (e.g. motion blur or defocus), it

is possible to use a parametric model of the PSF. Thus, instead of finding the PSF itself, one

can try to estimate the parameters of its model. Parametric deconvolution is convenient when

the PSF has large support; however, in real applications it is often difficult to derive a good

model for the PSF, hence the results can be inferior compared to non-parametric methods.

The advantages are, obviously, in smaller number of variables.

Secondly, blind deconvolution approaches can be divided into those trying to estimate

the blurring kernel; those trying to estimate the source image and the blurring kernel simu-

lataneously; and those trying to estimate the restoration kernel. The first class includes the

so-called a priory blur identification methods, which first estimate the blurring kernel and

then employ a non-blind deconvolution algorithm to find the source estimate [16,18,22,24].

These methods usually employ a parametric model of the PSF, and suffer from mediocre

performance.

The second class includes methods based on statistical or deterministic priors of the

source image, the blurring kernel and the noise [20, 43]. Estimation of the source image is

performed by maximizing some optimality criterion, which includes these priors. Since, the

variables in this problem are both the source image and the blurring kernel, the computational

complexity is a major problem.

The third class of methods usually employs maximum likelihood estimators of the

restoration kernel; such estimators can incorporate priors on the image and the kernel. Since
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there is no need to estimate the source image, these approaches demand the solution of more

modest optimization problems and, consequently, are much more efficient. However, the

exact source distribution, required for the ML approach is often unknown or leads to numer-

ically untractable problems. A possible remedy is to use an approximate probability density

function; such a modified ML approach is usually referred to as quasi ML. Quasi ML es-

timation techniques were successfully used in blind source separation (BSS) [13, 38, 47].

In [12], the relative Newton quasi ML framework for BD of 1D signals was introduced. In

this work, we extend it for BD of images. In addition, we present a novel approach of using

optimal sparse representation, which can be used for blind deconvolution of source images

with arbitrary distributions.

In Section 2, we present the quasi ML approach for image deconvolution. The relative

optimization and the fast relative Newton method as its particular instance is discussed in

Section 3, and then, we present asymptotic performance analysis of quasi ML image de-

convolution in Section 4. Section 5 is dedicated to optimal sparse representations, and we

also address the possibility of obtaining optimal ”sparsification” transformations by training.

Simulation results on natural images are presented in Section 6.

2 Quasi maximum likelihood blind deconvolution

The likelihood of the observed signal X , given the restoration kernel H, is

p(X|H) = p(S = HX) = pS(HX) · |detH| . (7)

in the zero-noise case. Denoting the source estimate by Y = HX and assuming that S is

i.i.d., the likelihood p(X|H) reduces to

p(X|H) =
∏

m,n

pS(Ymn) · |detH| , (8)

where pS(·) stands for the source probability density function (PDF). Taking logarithm and

assuming that H is an infinite Toeplitz block-Toeplitz operator [11] defined by the impulse

response Hmn, the following minus-log likelihood function is obtained:

L(H; X) = −
MXNX

4π2

∫ π

−π

∫ π

−π

log
∣

∣

∣
Ĥ(ξ, η)

∣

∣

∣
dξdη +

∑

m,n

ϕ(Ymn), (9)

where MXNX is the observation sample size, ϕ(·) = − log pS(·), and

Ĥ(ξ, η) =
∑

m,n

Hmn e−i(mξ+nη) (10)

denotes the Fourier transform of Hmn. We will henceforth assume that Hmn is a FIR, sup-

ported on [−M, ..., M ] × [−N, ..., N ].
In the 1D case, cost functions similar to (9) were also obtained using negative joint

entropy [2, 3] and information maximization [5] considerations.
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2.1 The choice of ϕ(·)

Natural images encountered in most applications are usually characterized by non-log-

concave, multi-modal distributions, which are difficult to model and are not well-suited for

optimization. However, consistent1 estimator of S can be obtained by minimizing L(H; X)
even when ϕ(·) is not exactly equal to − log pS (·). Such quasi ML estimation has been

shown to be practical in instantaneous BSS [27,38,48,50] and BD of 1D signals [3,12]. For

example, when the source is super-Gaussian (e.g. it is sparse or sparsely representable), a

smooth approximation of the absolute value function is a good choice for ϕ(·) [12,23,48,50].

Although natural images are usually far from being sparse, they can be projected by a proper

transformation into a space of sparse representation [14, 27, 48]. in Section 5 we will show

how to transform general classes of natural images into sparse ones. We therefore focus

our attention on modelling super-Gaussian distributions using a family of convex smooth

functions

ϕλ(t) = |t| − λ log

(

1 +
|t|

λ

)

, (11)

where λ is a positive smoothing parameter [47]; ϕλ(t) → |t| as λ → 0+ (see Figure 2). The

derivatives of ϕλ(t) are

ϕ′
λ(t) = sign(t) ·

(

1 −
1

1 + |t|
λ

)

(12)

ϕ′′
λ(t) =

(

1 +
|t|

λ

)−2

, (13)

and it can be shown that ϕ′
λ(t) → sign(t) and ϕ′′

λ(t) → 1
2λ

δ(t) as λ → 0+. For conve-

nience, we will henceforth omit λ from our notation and whenever possible, and refer to

ϕλ(·) without using the subscript, i.e. by using ϕ(·).
Yet another important advantage of working with super-Gaussian sources is the fact that

the asymptotic restoration error variance is significantly smaller compared to sub-Gaussian

sources, i.e., deconvolution is more accurate. This issue will be addressed in Section 4.

2.2 Approximation of the log-likelihood function using the FFT

In practice, the first term of L(H; X), containing the integral, is difficult to evaluate. It can,

however, be approximated with any desired accuracy by [12]

1

4π2

∫ π

−π

∫ π

−π

log
∣

∣

∣Ĥ(ξ, η)
∣

∣

∣ dξdη ≈
1

MF NF

MF
∑

k=0

NF
∑

l=0

log
∣

∣

∣Ĥkl

∣

∣

∣ , (14)

1Consistency is discussed in Section 4.2
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Figure 2: The smooth approximation of the absolute value ϕλ for different values of λ.

Dashed lines show the limit λ → 0+.

where

Ĥkl = FMF ,NF
{Hmn}kl = Ĥ

(

2πk

MF

,
2πl

NF

)

(15)

are the 2D DFT coefficients of Hmn, zero-padded to MF × NF . The approximation error

vanishes as MF , NF grow to infinity. Choosing MF and NF as integer powers of 2, allows

to use 2D FFT. For convenience, we denote

f1 =

MF
∑

k=0

NF
∑

l=0

log
∣

∣

∣Ĥkl

∣

∣

∣

2

(16)

f2 =
∑

m,n

ϕ(Ymn), (17)

and define the approximate normalized minus-log likelihood function as

L(H; X) = −
1

2MF NF

· f1(H) +
1

MXNX

· f2(Y ), (18)

where Ymn = (H ∗ X)mn.

2.3 Gradient and Hessian of L(H; X)

Optimization algorithms discussed in Section 3.3 require the knowledge of the gradient and

the Hessian of L(H; X). Since the optimization variable H is a (2M + 1) × (2N + 1)
matrix, the gradient ∇L is also a (2M + 1)× (2N + 1) matrix, whereas the Hessian ∇2L is
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a (2M + 1) × (2N + 1) × (2M + 1) × (2N + 1) fourth-order tensor. For convenience, we

parse the variables column-wise into a (2M + 1)(2N + 1) × 1 vector

h = vec(H) =
[

H−M,−N , H−M+1,−N , ..., HM,−N , H−M,−N+1, ..., HM,N

]T
, (19)

and define the gradient and the Hessian of L(H; X) as a (2M + 1)(2N + 1) × 1 vector and

a (2M + 1)(2N + 1) × (2M + 1)(2N + 1) matrix, respectively.

The gradient of f1 is given by

∇f1 = vec (Q′
kl + Q′∗

kl) , (20)

and the i-th row of the Hessian of f1 is given by

(

∇2f1

)

i
= vec

(

Q′′
k+k′,l+l′ + Q′′∗

k+k′,l+l′

)

, (21)

where

Q′
kl = FMF ,NF

{

Ĥ−1
mn

}

kl

Q′′
k+k′,l+l′ = −FMF ,NF

{

Ĥ−2
mn

}

k+k′,l+l′
, (22)

and k′ = (i− 1) mod (2M + 1)−M and l′ = ⌊ i−1
2M+1

⌋−N . The gradient of f2 is given by

∇f2 = vec ((Φ′ ∗ JX)kl) (23)

and the i-th row of the Hessian of f2 is given by

(

∇2f2

)

i
= vec

((

Ak′l′ ∗ JX
)

kl

)

, (24)

where Φ′
mn = ϕ′(Ymn), Ak′l′

mn = ϕ′′(Ymn) · Xm−k′,n−l′ , (JX)mn = XMX−m,NX−n,

k′ = (i − 1) mod (2M + 1) − M , and l′ = ⌊ i−1
2M+1

⌋ − N . For derivation see Appen-

dices A.1–A.2. Computational complexities of the functions f1 and f2, their gradients and

Hessians are given in Table 1.

3 Relative Newton algorithm

A fast relative optimization algorithm for BSS based on the Newton method, was introduced

in [47] as a modification of the approach in [38]. This method was extended in [12] to BD

of time series. Here, we extend these results for blind deconvolution of images. We first

present the general relative optimization algorithm. Next, the relative Newton algorithm,

using a Newton step in the relative optimization framework is introduced. A fast version of

the relative Newton step is addressed in Section 3.3.
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Term Computational complexity

f1 MF NF log2 MF NF + kLMF NF

f2 (k + 1)MXNX + 4MXNX log2 MXNX

∇f1 MF NF log2 MF NF

∇f2 (k′ + 1)MXNX + 4MXNX log2 MXNX

∇2f1 MF NF log2 MF NF

∇2f2 k′′MXNX + (2M + 1)(2N + 1) [4MXNX log2 MXNX + MXNX ]

Table 1: Computational complexity of f1 (16), f2 (17), and of their gradients and Hessians.

The constants kL, k, k′ and k′′ stand for the complexity of log| · |2, ϕ(·), ϕ′(·) and ϕ′′(·),
respectively.

3.1 Relative optimization algorithm

The main idea of relative optimization is to iteratively produce source estimate and use it as

the current observation. This yields the following algorithm:

Relative optimization algorithm

1. Start with an initial estimate of the restoration kernel H(0), and with X(0) = X .

2. For k = 1, 2, ..., until convergence

3. Compute current source estimate: X(k) = H(k−1) ∗ X .

4. Starting with V
(k)
mn = δmn, compute coefficients of the restoration kernel, producing

one or few steps of a conventional optimization method, which sufficiently decrease

the objective function L(H = V (k); X(k)).

5. Update current restoration kernel estimate: H(k) = V (k) ∗ H(k−1).

6. End For

This method allows to construct large restoration kernels of the form

H = H(0) ∗ H(1) ∗ ... ∗ H(K−1) (25)

using a set of relatively low-order factors. The algorithm assumes infinite memory and pro-

duce a restoration kernel of order growing at each iteration. In real applications it might be

necessary to limit the support of the restoration kernel. This can be done by cropping the

kernel obtained in Step 5.
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Unfortunately, unlike in the 1D case, reducible kernels of the form (25) constitute a less

general class of kernels than all the bivariate polynomials of order K(2M +1)×K(2N +1)
of the form

H(z1, z2) =
KM
∑

m=−KM

KN
∑

n=−KN

Hmn z−m
1 z−n

2 . (26)

A general bivariate polynomial is ”almost surely” irreducible, i.e. cannot be factorized into

simpler factors. However, empirical observations show that kernels occurring in real ap-

plications are far from being arbitrary bivariate polynomials and can be approximated as a

product of several relatively simple factors, as in (25).

Another remarkable property of the relative optimization algorithm is its equivariance,

stated in the following proposition:

Proposition 1 The relative optimization algorithm is equivariant, i.e. its step at iteration k

depends only on G(k−1) = W ∗ H(k−1).

Proof: Straightforward, since Step 4 and the update in Step 5 do not depend explicitly on

W , but on the currents global system response [3, 12]. ¤

Equivariance implies that for any invertible kernel A, the estimator H̃(X) of the restoration

kernel H given the observation X , obtained by minimization of the target function L(H; X)
obeys [17]

H̃(A ∗ X) = A−1 ∗ H̃(X), (27)

i.e., the parameters to be estimated (in our case, coefficients Hmn of the restoration kernel)

form a group. This is indeed the case for invertible kernels with the convolution operation.

It must be noted, however, that when the restoration filter support is limited by cropping,

equivariance holds only approximately.

Proposition 2 The sequence L(H(k); X) of function values, produced by the relative opti-

mization algorithm, is monotonically decreasing.

Proof: Let us first observe that for H = A ∗ B, the DFT coefficients in (15) are Ĥkl =
Âkl · B̂kl. Consequently,

f1(A ∗ B) =
∑

k,l

log
∣

∣

∣
Âkl

∣

∣

∣

2

+ log
∣

∣

∣
B̂kl

∣

∣

∣

2

= f1(A) + f1(B). (28)
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Next, let us observe that for Hmn = δmn, Ĥkl = 1, hence f1(δmn) = 0. Therefore, for two

consecutive iterations of the relative optimization algorithm, we have

L(H(k); X) = −
f1(H

(k))

2MF NF

+
f2(H

(k) ∗ X)

MXNX

= −
f1(H

(k))

2MF NF

+ L(δmn; X(k+1)) (29)

L(H(k+1); X) = −
f1(H

(k+1))

2MF NF

+
f2(H

(k+1) ∗ X)

MXNX

= −
f1(V

(k+1) ∗ H(k))

2MF NF

+
f2(V

(k+1) ∗ H(k) ∗ X)

MXNX

= −
f1(H

(k))

2MF NF

+ L(V (k+1); X(k+1)). (30)

Since Step 4 decreases the value of L,

L(H(k); X) − L(H(k+1); X) = L(δmn; X(k+1)) − L(V (k+1); X(k+1)) > 0, (31)

which means that the sequence L(H(k); X) is monotonically decreasing. ¥

3.2 Newton method

Newton method often provides very fast (quadratic) rate of convergence. We will first con-

sider the standard Newton method; later we will see how its use in the relative optimization

framework allows to overcome the difficulty resulting from the computationally expensive

Newton iterations. In the standard Newton approach, the direction d at each iteration is given

by solution of the linear system [9]

∇2L · d = −∇L. (32)

Since the objective function is non-convex, in order to guarantee descent direction, positive

definiteness of the Hessian is forced by using modified Cholessky factorization, which finds

such a diagonal matrix R, that the matrix ∇2L+R is positive definite, and provides a solution

to the modified system

(∇2L + R) d = −∇L. (33)

This requires about 1
6
(2M + 1)3(2N + 1)3 + (2M + 1)2(2N + 1)2 operations [9]. Having

the direction d, the new iterate h(k+1) is given by

h(k+1) = h(k) + α(k)d, (34)
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where α(k) is the step size determined by either exact line search

α = argmin L(h(k) + α(k)d; X), (35)

or by backtracking line search:

Backtracking line search algorithm

1. α = 1

2. While L(h + αd; X) > L(h; X) + βα∇L(h; X)T d or log | detH| > −∞

3. α = γα

4. End While,

where β and γ are constants, and H is the cropped Toeplitz-block Toeplitz matrix corre-

sponding to the restoration kernel coefficients h. The use of line search guarantees mono-

tonic decrease of the objective function at every iteration. The condition on log | detH|
guarantees that no search will be performed beyond the subspace, where the inverse of the

restoration kernel is stable. In our implementation, we used the backtracking line search with

β = γ = 0.3. It should be noted that when the gradient norm becomes very small (say, below

10−5), computational inaccuracies may make the line search inefficient. For this reason, we

used the Newton direction as is (i.e. chose α = 1) when the gradient norm fell below 10−5.

Newton method can be used as is to find the restoration kernel that minimizes L(H; X).
Another possibility is to use Newton iteration in Step 4 of the relative optimization algo-

rithm [12, 13, 47]. The latter possibility is advantageous, since it allows to construct a large

restoration kernel using relatively small factors. This, in turn, implies solution of smaller op-

timization problems. Relative optimization algorithm using the Newton step will be termed

henceforth as relative Newton method.

3.3 Fast relative Newton step

Practical use of the relative Newton step is limited to small values of M,N and MX , NX , due

to the complexity of Hessian construction, and solution of the Newton system. This com-

plexity can be significantly reduced if special Hessian structure at the minimum is exploited.

Proposition 3 For X = c · S, the Hessian of L(H; X) at H = δmn is approximately given

by

∇2L(δmn; c · S) ≈















. . .
...

γσ′2 1
αc2 + 1

1 γσ′2

...
. . .















, (36)
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where c is the restoration kernel scaling factor, σ2 = IES2, σ′2 = (cσ)2, α = c2·IEϕ′′(c·S)S2,

γ = IEϕ′′(c · S). When γσ′2 ≫ 1, ∇2L(H = δmn; c · X) is approximately diagonal. When

γσ′2 ≪ 1, ∇2L(H = δmn; c · X) has an approximate anti-diagonal form.

Proof: See Appendix A.3.

Hessian structure is visualized in Figure 3 for different ranges of γσ′2. When γ2σ′4 < 1, the

Hessian at X = c · S, H = δmn is no more positive semi-definite. This case is addressed in

Section 4.2, where we show that the obtained estimator is asymptotically unstable.

Using the diagonal approximation, which is valid for γσ′2 ≫ 1, the Newton system (32)

can be solved as a set of (2M + 1)(2N + 1) independent linear equations

dk = −
(∇L)k

(∇2L)kk

, (37)

for k = 1, ..., (2M + 1)(2N + 1). In order to guarantee decent direction and avoid saddle

points, we force positive definiteness of the Hessian by forcing small diagonal elements to

be above some positive threshold, say, ǫ = 10−8 · max {| (∇2L)kk |}:

dk = −
(∇L)k

max {|(∇2L)kk| , ǫ}
. (38)

For γσ′2 ∼ 1, the diagonal-anti-diagonal approximation of the Hessian should be used,

which allows to reduce Newton system solution to regularized solution of a set of 2 × 2
systems of the form

Dk · dk =

(

(∇2L)kk 1
1 (∇2L)K−k,K−k

)

·

(

dk

dK−k

)

=

(

− (∇L)k

− (∇L)K−k

)

, (39)

and an additional 1 × 1 system
(

∇2L
)

K

2

· dK

2

= − (∇L)K

2

. (40)

Regularization is performed by forcing positive definiteness of each of the 2×2 submatrices

Dk in (39) by inverting the sign of negative eigenvalues and forcing small eigenvalues to be

larger than some positive threshold. This can be done by using either analytic expressions

for eigendecomposition of Dk [12, 47], or numerical procedures.

When the diagonal or the diagonal-anti-diagonal approximations are used, fast

relative Newton algorithm requires about (k′′ + 1)MXNX + 4MXNX log2 MXNX

operations for approximate Hessian construction, which is of the same order as

gradient computation. Additional (2M + 1)(2N + 1) operations are required for

approximate Hessian inversion in case of diagonal approximation, and slightly

more in case of the diagonal-anti-diagonal approximation. This is compared

to k′′MXNX + (2M + 1)(2N + 1) [4MXNX log2 MXNX + MXNX ] operations for exact

Hessian evaluation and additional 1
6
(2M + 1)3(2N + 1)3 + (2M + 1)2(2N + 1)2 compu-

tations for exact Newton system solution required for the full relative Newton step.

12



1 4 7

1

4

7

(a)

1 4 7

1

4

7

(b)

1 4 7

1

4

7

(c)

Figure 3: Hessian structure at Hmn = δmm for M = N = 1: (a) diagonal-anti-diagonal form

for γσ′2 ≈ 10; (b) anti-diagonal form for γσ′2 ≈ 10−6; (c) diagonal form for γσ′2 ≈ 106.

White stands for near-zero elements of the matrix.

3.4 Simulation results

Performance of the fast relative Newton algorithm was compared to the full Newton method

in a simulation. A 101 × 101 Gauss-Bernoully (sparse normally) distributed i.i.d. image

with ρ = 0.2 (see Appendix B) was used as the source. The image was convolved with a

3 × 3 FIR kernel with slowly-decaying inverse (see Figure 5). Full Newton and fast relative

Newton (with the diagonal Hessian approximation) were used to estimate the inverse kernel.

3 × 3, 5 × 5, 7 × 7, and 9 × 9 restoration kernels were used. The smoothing parameter was

set to λ = 10−2. Optimization was terminated when ‖∇L‖ reached 10−10. Gradient norms,

SIR and SIR∞ were measured as a function of CPU time2 and iteration number.

Convergence of both algorithms can be seen in Figure 4. In the specific experiment, fast

relative Newton showed about 10 times faster convergence in terms of SIR, compared with

the full Newton step. For the same values of M,N , the obtained restoration quality of the

fast relative Newton algorithm, compared to the full Newton step, was better by about 2–5

dB (in terms of SIR and SIR∞), since the effective restoration kernel was of higher order.

Figures 6– 7 depict the restoration kernels of different sizes obtained by both algorithms.

4 Asymptotic performance analysis

Asymptotic performance of maximum-likelihood parameter estimation in blind system iden-

tification and deconvolution problems was studied in many previous studies (see, for exam-

2All algorithms were implemented in MATLAB and executed on an ASUS portable computer with Intel

Pentium IV Mobile processor and 640MB RAM.
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(dashed) for different restoration kernel sizes (indicated on the plots).
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Figure 5: True restoration kernel impulse response (cropped) and its central 1D slice.

ple, [6, 17, 41, 42, 45, 46]). In all these studies, the Cramér-Rao lower bound (CRLB) for

the system parameters are found, and lower bounds on signal reconstruction quality are

derived. However, the presented quasi ML approach does not achieve the CRLB, since

ϕ(S) 6= − log pS(S). In this section, we derive an asymptotic restoration error estimate for

the quasi ML BD method. We will first find the asymptotic error covariance matrix and use

it in order to estimate the restoration SIR. We will show that in case of the true ML estimator,

these results coincide with the previously reported CRLB. We also address the asymptotic

stability conditions for the quasi ML estimator and present numerical examples of the gen-

eralized Laplacian distribution. Finally, we compare the predicted restoration SIR with the

true one, obtained from minimization of L(H; X).

4.1 Asymptotic error covariance matrix

Let us assume that the source S is zero-mean i.i.d, and the restoration kernel H is estimated

by minimizing the minus log likelihood function L(H; X) defined in (9), where the real

minus log PDF is replaced by some other function ϕ(S). We will denote the vector of

parameters of H, i.e. the kernel coefficients Hmn as h = vec (H), and assume that H has

enough degrees of freedom to accurately approximate the inverse of W . We also assume that

γ = IEϕ′′(c·S), σ2 = IES2, σ′2 = (cσ)2, α = IEϕ′′(c·S)S2, β = IEϕ′2(c·S), ζ = IEϕ′(c·S)S
and θ = IEϕ′2(c · S)S2 exist and are bounded. 3

Let H∗ = c ·W−1 be the exact restoration kernel (up to a scaling factor). It can be shown

that H∗ satisfies [27]

H∗ = argmin IEXL(H; X). (41)

Let H̄ be the estimate of the exact restoration kernel H∗ based on the finite realization of the

3Note that the expected values are computed with respect to the real PDF os S.
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Figure 6: Restoration kernels and their one-dimensional central slices obtained by the New-

ton algorithm with different values of M, N . From top to bottom: 3 × 3, 5 × 5, 7 × 7, and

9 × 9 estimated restoration kernels.
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Figure 7: Restoration kernels and their one-dimensional central slices obtained by the fast

relative Newton algorithm with different values of M, N . From top to bottom: 3 × 3, 5 × 5,

7 × 7, and 9 × 9 restoration kernels.
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data X ,

H̄ = argmin L(H; X). (42)

Note that ∇L(H̄; X) = 0, whereas ∇L(H∗; X) 6= 0; yet IE {∇L(H∗; X)} = 0. Denote the

estimation error as ∆H = H∗ − H̄ , and h∗ = vec (H∗), h̃ = vec(H̃), ∆h = vec(∆H).
Then, assuming ‖∆H‖ is small, second-order Taylor expansion yields

∇L(H∗; X) ≈ ∇2L(H∗; X) ·
(

h∗ − h̄
)

= ∇2L(H; X)
∣

∣

H=c·W−1 ·
(

h∗ − h̄
)

. (43)

Due to equivariance, the former relation can be rewritten as

∇L(δmn; H∗ ∗ X) ≈ ∇2L(δmn; H∗ ∗ X) ·
(

h∗ − h̄
)

. (44)

Since H∗ = c · W−1, we can substitute H∗ ∗ X = c · S, and obtain

∇L(δmn; c · S) ≈ ∇2L(δmn; c · S) ·
(

h∗ − h̄
)

, (45)

or, alternatively,

∆h = h∗ − h̄ ≈
[

∇2L(δmn; c · S)
]−1

· ∇L(δmn; c · S). (46)

For convenience, we will denote ∇2L(δmn; c · S) as ∇2L. The covariance matrix of ∆h is

therefore given by

Σ∆h = IE(h∗ − h̄)(h∗ − h̄)T

≈
[

∇2L
]−1

· IE
{

∇L∇LT
}

·
[

∇2L
]−T

=
[

∇2L
]−1

· Σ∇L ·
[

∇2L
]−1

. (47)

Using the asymptotic Hessian structure (36) from Proposition 3, allows to split the problem

of finding Σ∆h into a set of symmetric 2 × 2 problems of the form

Σ
(kl)
∇L =

(

IEG2
−k,−l IE {G−k,−l · Gkl}

IE {G−k,−l · Gkl} IEG2
kl

)

(48)

Σ
(kl)
∆H =

(

IE∆H2
−k,−l IE {∆H−k,−l · ∆Hkl}

IE {∆H−k,−l · ∆Hkl} IE∆H2
kl

)

≈

(

γσ′2 1
1 γσ′2

)−1

Σ
(kl)
∇L

(

γσ′2 1
1 γσ′2

)−1

=
1

(γ2σ′4 − 1)2

(

γσ′2 −1
−1 γσ′2

)

Σ
(kl)
∇L

(

γσ′2 −1
−1 γσ′2

)

, (49)
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where

Gkl =
∂L

∂Hkl

, (50)

and an additional 1 × 1 problem

Σ
(00)
∇L = IEG2

00

Σ
(00)
∆H =

Σ
(00)
∇L

(αc2 + 1)2 . (51)

That is, the asymptotic error covariance matrix has a digaonal-anti-diagonal form.

Let us evaluate the 2 × 2 gradient covariance matrix Σ
(kl)
∇L for (k, l) 6= (0, 0). From

Appendices A.1–A.2,

Gkl =
∂L(δmn; c · S)

∂Hkl

= −δkl +
c

MXNX

∑

m,n

ϕ′(c · Smn)Sm−k,n−l, (52)

which for (k, l) 6= (0, 0) reduces to

Gkl =
c

MXNX

∑

m,n

ϕ′(c · Smn)Sm−k,n−l. (53)

Taking the expectation w.r.t. S and neglecting second-order terms, we obtain

IE
{

G2
kl

}

=
c2

(MXNX)2

∑

m,n,m′,n′

IE {ϕ′(c · Smn)ϕ′(c · Sm′n′) Sm−k,n−lSm′−k,n′−l}

≈
c2

MXNX

· IEϕ′ 2(c · S) · IES2 =
1

MXNX

· β(σc)2 =
1

MXNX

· βσ′2

IE {G−k,−l · Gkl} =
c2

(MXNX)2

∑

m,n,m′,n′

IE {ϕ′(c · Smn)ϕ′(c · Sm′n′) Sm+k,n+lSm′−k,n′−l}

≈
c2

MXNX

· IE2ϕ′(c · S)S =
1

MXNX

· c2ζ2, (54)

that is,

Σ
(kl)
∇L ≈

1

MXNX

·

(

βσ′2 c2ζ2

c2ζ2 βσ′2

)

, (55)

where β = IEϕ′ 2(c · S), ζ = IEϕ′(c · S)S.
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Substituting the former result to (49) yields

Σ
(kl)
∆H ≈

1

MXNX (γ2σ′4 − 1)2

(

γσ′2 −1
−1 γσ′2

)(

βσ′2 c2ζ2

c2ζ2 βσ′2

)(

γσ′2 −1
−1 γσ′2

)

=
1

MXNX





βσ′2(γ2σ′4+1)−2γσ′2c2ζ2

(γ2σ′4−1)2
c2ζ2+γσ′2(γσ′2c2ζ2−2βσ′2)

(γ2σ′4−1)2

c2ζ2+γσ′2(γσ′2c2ζ2−2βσ′2)
(γ2σ′4−1)2

βσ′2(γ2σ′4+1)−2γσ′2c2ζ2

(γ2σ′4−1)2



 , (56)

that is, asymptotically

var {∆Hkl} ≈
βσ′2 (γ2σ′4 + 1) − 2γσ′2c2ζ2

MXNX (γ2σ′4 − 1)2 (57)

for (k, l) 6= (0, 0). Note that the asymptotic variance depends on the sample size MXNX

and on parameters β, γ, ζ , c and σ′2, which depend on the source distribution and ϕ(·) only.

For k = l = 0, one has

IEG00 = −1 + c · IEϕ′(c · S)S = c · ζ − 1. (58)

Demanding IEG00 = 0, we obtain the following condition:

c · IEϕ′(c · S)S = 1, (59)

from where the scaling factor c can be found. Neglecting second-order terms, the second

moment of G00 is given by

IEG2
00 ≈ −1 − 2c · IEϕ′(c · S)S + c2 · IE2ϕ′(c · S)S

+
c2

MXNX

·
[

IEϕ′ 2(c · S)S2 − IE2ϕ′(c · S)S
]

= (c · ζ − 1)2 +
c2(ϑ − ζ2)

MXNX

=
c2(ϑ − ζ2)

MXNX

, (60)

where ϑ = IEϕ′ 2(c · S)S2. Hence,

Σ
(00)
∇L ≈

c2(ϑ − ζ2)

MXNX

. (61)

Substituting Σ
(00)
∇L into (51) yields

var {∆H00} ≈
1

MXNX

·
c2(ϑ − ζ2)

(αc2 + 1)2
. (62)
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Asymptotic variance estimate can be used to find the best (at least asymptotically) quasi

ML estimator among a family of estimators. For example, consider that the source is expo-

nentially distributed and contaminated by i.i.d. zero-mean Gaussian noise, independent on

the source. The best choice of ϕ(·) in this case is

ϕ(S) = − log {pS(S) ∗ pG(S)} ,

where pG(S) is the PDF of the Gaussian noise. The resulting function is a smoothed version

of the absolute value and leads to true ML estimation. Yet, it is computationally expensive

and one could replace it with a family of sub-optimal smoothed absolute values ϕλ(·). The

optimal value of the smoothing parameter λ is chosen to minimize the asymptotic estimation

error variance.

4.2 Consistency and asymptotic stability

It is a widely known fact that an ML estimator is consistent, i.e., the estimated parameters

converge in probability to their real values, as the sample size grows to infinity. In the BD

problem, even if ϕ(S) is proportional to log pS(S), the estimator obtained by minimization

of L(H; X) is generally not truly maximum likelihood due to scaling ambiguity, i.e. the

assumed source variance does not correspond generally to the true one. Because of the

scaling ambiguity, a ”good” deconvolution procedure needs to produce W ∗ H close to δmn

up to a scaling factor c only. This factor can be found from relation (59).

We say that the estimator H̃(X) of H , obtained by minimization of L(H; X), is asymp-

totically stable if H = H∗ is a local minimizer of L(H; X) for infinitely large sample size.

Any consistent estimator is asymptotically stable.

Proposition 4 Let H̃QML(X) be the quasi ML estimator of H . Then the following holds:

1. If γ2σ′4 > 1 and αc2 > −1, then H̃QML(X) is asymptotically stable.

2. If γ2σ′4 < 1 or αc2 < −1, then H̃QML(X) is asymptotically unstable.

Proof: The quasi ML estimator is asymptotically stable if in the limit MXNX → ∞,

H = H∗ is a local minimizer of L(H; X), or due to equivariance, H = δmn is a local

minimizer of L(H; c · S). The sufficient conditions for this are the Karush-Kuhn-Tucker

conditions [9]

plim
MXNX→∞

∇L(δmn; c · S) = 0 (63)

plim
MXNX→∞

∇2L(δmn; c · S) ≻ 0, (64)

where plim denotes the probability limit

plim
MXNX→∞

∇L = 0 ⇔ lim
MXNX→∞

P (∀ǫ > 0 : |∇L − 0| > ǫ) = 1.
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The first order necessary condition (64) requires that ∇L = 0 as the sample size goes to

infinity. For (k, l) 6= (0, 0) we obtain from (52)

plim
MXNX→∞

Gkl = IEϕ′(c · S) · IE c · S = 0, (65)

and for k = l = 0, by choice of c,

plim
MXNX→∞

G00 = c · IEϕ′(c · S)S − 1 = 0. (66)

The second-order sufficient condition (64) requires that ∇2L ≻ 0 as the sample size goes

to infinity. Using the asymptotic Hessian given in (36), this condition can be rewritten as
(

γσ′2 1
1 γσ′2

)

≻ 0 (67)

αc2 + 1 ≻ 0. (68)

This implies that H̃QML(X) is asymptotically stable if γ2σ′4 > 1 and αc2 > −1. The

required second-order condition for existence of local minimum of L is

plim
MXNX→∞

∇2L(δmn; c · S) º 0. (69)

Hence, if γ2σ′4 < 1 or αc2 < −1, H̃QML(X) is asymptotically unstable. ¥

It can be observed that when ϕ(·) is chosen proportional to − log pS(S), H̃QML(X) is always

asymptotically stable.

4.3 Super-efficiency

Let us now consider the particular case of truly sparse sources, i.e. such sources that take

the value of zero with some non-zero probability P (S = 0) > 0. An example of such

sources are the Gauss-Bernoully (sparse normally) distributed i.i.d. images; in the latter

case, P (S = 0) = 1 − ρ (see Appendix B.1 for details). When ϕ(·) is chosen according to

(11), ϕ′
λ(·) → sign(·) and ϕ′′

λ(·) →
1
2λ

δ(·) as λ → 0+. Hence, for a sufficiently small λ,

γ = IEϕ′′(c · S) =
1

2λ

∫ ∞

−∞

δ(cs) pS(s) ds =
1

2λc
· P (S = 0).

whereas β is bounded. Hence,

plim
MXNX→∞

MXNX · var {∆Hkl} =
β

γ2σ′2
≤ const · λ2 (70)

for (k, l) 6= (0, 0). Observe that

lim
λ→0+

plim
MXNX→∞

MXNX · var {∆Hkl} ≤ lim
λ→0+

const · λ2 = 0, (71)

that is, the estimator H̃kl of Hkl is super-efficient in the limit λ → 0+.
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4.4 Cramér-Rao Lower Bounds

We now demonstrate that asymptotic error variance in (57), (62) matches the CRLB

on the asymptotic variance of H̃kl, when the true MLE procedure is used, i.e., when

ϕ(S) = − log pS(S). In this case, c = 1, σ′2 = σ2, and under the assumption that

limS→±∞ p′S(S)S = 0,

ζ = IEϕ′(S)S = −

∫ ∞

−∞

p′S(S)

pS(S)
pS(S)S dS = − p′S(S)S|

∞
−∞ +

∫ ∞

−∞

pS(S) dS = 1.

Similarly,

γ = IEϕ′′(S) = −

∫ ∞

−∞

p′S(S)pS(S) − p′2S (S)

p2
S(S)

pS(S) dS

= − p′S(S)|
∞
−∞ +

∫ ∞

−∞

p′2S (S)

p2
S(S)

pS(S) dS = IEϕ′2(S) = β.

Substituting c, σ′2, γ and ζ into (57), we obtain for (k, l) 6= (0, 0)

var {∆Hkl} ≈
βσ2

MXNX (β2σ4 − 1)
=

1

MXNX

·
L

L2 − 1
, (72)

where L = σ2 · IEϕ′2(S) is known as Fisher’s information for location parameter. This result

coincides with the CRLB on Hkl developed in [45].

Observe that differentiating the equation
∫ ∞

−∞

pS(S)S2dS = σ2

w.r.t. S yields

0 =

∫ ∞

−∞

p′S(S)S2dS + 2

∫ ∞

−∞

pS(S)SdS

=

∫ ∞

−∞

p′S(S)

pS(S)
S2pS(S)dS + 2IES

= −

∫ ∞

−∞

ϕ′(S)S2pS(S)dS.

Differentiating again w.r.t. S, we obtain

0 =

∫ ∞

−∞

ϕ′′(S)S2pS(S)dS + 2

∫ ∞

−∞

ϕ′(S)SpS(S)dS +

∫ ∞

−∞

ϕ′(S)S2p′S(S)dS

= IEϕ′′(S)S2 − 2

∫ ∞

−∞

p′S(S)SdS −

∫ ∞

−∞

(

p′S(S)

pS(S)

)2

S2pS(S)dS

= IEϕ′′(S)S2 − IEϕ′2(S)S2 − 2pS(S)S|∞−∞ + 2

∫ ∞

−∞

pS(S)dS

= IEϕ′′(S)S2 − IEϕ′2(S)S2 + 2.

23



Hence, θ = α + 2. Substituting c = 1, ζ = 1 and the latter result into (62) yields

var {∆H00} ≈
1

MXNX

·
ϑ − 1

(α + 1)2
=

1

MXNX

·
α + 1

(α + 1)2
=

1

MXNX

·
1

α + 1

=
1

MXNX

·
1

cum {ϕ′(S), ϕ′(S), S, S} + βσ2 + 1

=
1

MXNX

·
1

S
, (73)

where S = cum {ϕ′(S), ϕ′(S), S, S}+L+1 is the Fisher information for the scale parameter.

This result coincides with the CRLB on H00 in [45].

4.5 Asymptotic restoration quality

An asymptotical estimate of restoration quality in terms of signal-to-interference ratio (SIR)

can be expressed as

SIR =
IE‖S‖2

2

IE‖H ∗ X − S‖2
2

=
|H∗

00|
2

IE‖∆H‖2
2

≈
1

∑

(k,l)6=(0,0) IE(∆Hkl)2

≈
1

[(2M + 1)(2N + 1) − 1] · var {∆H11}

≈
MXNX (γ2σ′4 − 1)

2

[(2M + 1)(2N + 1) − 1] (βσ′2 (γ2σ′4 + 1) − 2γσ′2c2ζ2)
. (74)

In particular, when ϕ(S) = − log pS(S),

SIR ≈
MXNX (L2 − 1)

[(2M + 1)(2N + 1) − 1] · L
≤

MXNX · L

(2M + 1)(2N + 1) − 1
. (75)

This result coincides with the bound on the SIR derived in [45].

4.6 Simulation results

In the first simulation, we examine the derived asymptotic estimates in the particular case of

the generalized Laplacian distribution (see Appendix B) with the parameters a, b > 0, the

minus-log PDF is

− log pS(S) =
|S|a

b
. (76)

This family of probability density functions makes analytical computations possible on one

hand, and covers a wide range of distributions (nearly uniform for a ≫ 1, ”short-tale” sub-

Gaussian for a > 2, normal for a = 2, ”long-tale” super-Gaussian for a < 2, exponential for

a = 1, and nearly sparse for a ≪ 1).
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The best choice of ϕ(S) is ϕ(S) = 1
b
|S|a, which yields the true ML estimator and mini-

mizes Σ∆H . The derivatives of ϕ(S) are

ϕ′(S) =
a

b
· sign(S) |S|a−1

ϕ′′(S) =
a(a − 1)

b
· sign(S) |S|a−2 (77)

for a 6= 1, and ϕ′′(S) = 2a
b

δ(S) for a = 1. In this case, as well as in the case ϕ(·) =
| · |, there exist closed-form analytic expressions for the distribution-dependent parameters

α, β, γ, ζ, θ, σ2 and c. For other choices of ϕ(·) (e.g., the smoothed absolute value), these

parameters were evaluated by numerical integration.

Figure 8 depicts var {∆H11}·MXNX versus the distribution parameter a for the true ML

estimator. The parameter b was fixed to 1. It can be seen that the variance grows very fast to

infinity as a approaches 2, which implies the well-known fact of impossibility to deconvolve

Gaussian sources. The variance drops dramatically for sparse sources, i.e. when a ≤ 1. This

observation stresses the reason why one should use sparse representations of source images.

In Figure 9, var {∆H11}·MXNX for the true ML estimator, and two quasi ML estimators:

one using ϕ(·) = | · |, and another using the smooth approximation of the absolute value

with λ = 10−3, are plotted as a function of the distribution parameter a. Figure 10 depicts

γ2σ′4 − 1 as function of the distribution parameter a for the true ML estimator and the quasi

ML estimator with ϕ(·) = | · |. Note that the true ML estimator always obeys the asymptotic

stability condition, whereas the quasi ML is asymptotically stable for a < 2 and unstable

for a > 2, since α + 1 ≡ 1 and γ2σ′4 − 1 becomes negative for a > 2. This fact justifies

the choice of ϕ(·) = | · | for super-Gaussian sources. The scaling factor c is depicted in in

Figure 11 for different values of a for the true ML estimator and the quasi ML estimator with

λ = 0. The parameter b was fixed to 1.

An additional simulation was performed to assess the asymptotic SIR estimation in (74).

A set of 25 i.i.d. source images of size 100 × 100 was generated from the Gauss-Bernoully

distribution with different parameter values (see Appendix B), and convolved with a stable

recursive filter, ideally invertible by a 3 × 3 FIR filter. Restoration kernel was estimated by

minimizing L(H; X), using the Newton method, which was terminated when the gradient

norm reached the value of 10−10. Smoothing parameter λ = 10−2 was used. Asymptotic

SIR estimates were calculated according to (74), where the values of β, γ, σ′2 and c were

approximated by empirical averages on a set of 106 i.i.d. samples.

The obtained results are presented in Figure 12, indicating that the asymptotic estimate

is very close to experimentally obtained SIR. Restoration quality increases dramatically for

sparser distributions, i.e. when ρ is small [27].
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Figure 8: Var {∆H11} normalized by the sample size, plotted as a function of the distribution

parameter a for the true ML estimator.
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Figure 9: Var {∆H11} normalized by the sample size, plotted as a function of the distribution

parameter a for the true ML estimator (solid), and the quasi ML estimators with λ = 0
(dashed), and λ = 10−3 (dotted).
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Figure 10: The value of γ2σ′4 − 1, plotted as a function of the distribution parameter a

for the true ML estimator (solid) and the quasi ML estimator with λ = 0 (dashed). When

γ2σ4 − 1 < 0, the estimator is asymptotically unstable.
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Figure 11: The scaling factor c, plotted as a function of the distribution parameter a for the

true ML estimator (solid) and the quasi ML estimator with λ = 0 (dashed).
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Figure 12: Experimental (solid) and asymptotic (dashed) restoration SIR obtained for Gauss-

Bernoulli i.i.d. sources as a function of the sparseness parameter ρ.

5 Optimal sparse representations of images

The quasi-ML framework presented in Section 2 is valid for sparse sources; this type of a

prior of source distribution is especially convenient for the underlying optimization problem

due to its convexity, and results in very accurate deconvolution. However, natural images

arising in the majority of BD applications can by no means be considered to be sparse in

their native space of representation (usually, they are sub-Gaussian, i.e. have negative kur-

tosis), and thus such a prior is not valid for ”real-life” sources. On the other hand, it is

very difficult to model actual distributions of natural images, which are often multimodal

and non-convex. This apparent gap between a simple model and the real world calls for an

alternative approach. In this section, we show how to overcome this problem using sparse

representation.

5.1 Sparsification

While it is difficult to derive a prior suitable for natural images, it is much easier to transform

an image is such a way that it fits some universal prior. Hence, we need some kind of a

transformation from the native space of natural images with arbitrary distributions to the

space of images with distribution defined by a simple prior, which makes the quasi ML

function convenient for optimization. In this study, we limit our attention to the sparsity

prior, and thus discuss sparsifying transformations, though the idea is general and is suitable

for other priors as well.

The idea of sparsification was successfully exploited in BSS [14,27,32,33,48,49]. In [14]

it was shown that even such simple transformation as a discrete derivative can make the
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Figure 13: Natural image (left top) with sub-Gaussian distribution (negative kurtosis, left

bottom). After sparsification by convolution with a second-order discrete derivative kernel

(right top), the distribution becomes super-Gaussian (positive kurtosis, right bottom).

image sparse (Figure 13). Let assume that there exists a sparsifying transformation TS ,

which makes the source S sparse. In this case, our algorithm is likely to produce a good

estimate of the restoration kernel H since the source meets the sparsity prior. The problem

is that in the BD setting, S is not available, and we can apply TS only to the observation

X . Hence, it is necessary that the sparsifying transformation commute with the convolution

operation, i.e.

(TSS) ∗ W = TS(S ∗ W ) = TSX, (78)

such that applying TS to X is equivalent to applying it to S. Obviously, TS must be a shift-

invariant (SI) transformation.4 We use X ′, S ′ to denote TSX and TSS, respectively; the

subscript S in TS will be omitted for brevity.

Using the most general nonlinear form of T , we have a wide class of sparsifying trans-

4In BSS problems, the sparsifying transformation needs to be linear and not necessarily shift-invariant, e.g.

wavelet packets were used for sparsification in [27, 48, 49].
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formations. An important example is a family of SI transformations of the following form:

(TSS)mn =
√

(T1 ∗ S)2
mn + (T2 ∗ S)2

mn, (79)

where T1, T2 are some convolution kernels. After sparsification with T , the prior term f2 of

the likelihood function becomes

∑

m,n

|Y ′
mn| =

∑

n

√

(T1 ∗ Y )2
mn + (T2 ∗ Y )2

mn, (80)

which is a generalization of the 2D total-variation (TV) norm. The TV norm, which has

been found to be a successful prior in numerous studies related to signal restoration and

denoising [10, 15, 19, 26, 39], and was also used by Chan and Wong as a regularization in

BD [21], is obtained when T1, T2 are chosen as discrete x- and y-directional derivatives.

For the sake of simplicity, we limit our attention in this study to linear shift-invariant

(LSI) transformations, i.e. T that can be represented by convolution with a sparsifying kernel

T S = T ∗ S. (81)

The class of images which can be sparsified by an LSI transformation (LSI sparsely repre-

sentable images) is obviously smaller than the class of SI sparsely representable images; yet,

as will be shown, even in such a limited setting, it is possible to perform deconvolution of

some classes of natural images using the sparsification approach.

Thus, we obtain a general BD algorithm, which is not limited to sparse sources. We

first sparsify the observation data X by convolving it with T (which has to be found in a

way described in Section 5.5), and then apply the sparse BD algorithm on X ′. The obtained

restoration kernel H is then applied to Y to produce the source estimate.

5.2 The sparsifying kernel

An important practical issue is how to find the kernel T . By definition T must produce a

sparse representation of the source; it is obvious that T would usually depend on S (e.g. if

the source is sparse in its native representation, the optimal sparsifying kernel is likely to be

the Kroenecker delta-function). It should be also noted that T does not necessarily have to

be stable, since we use it as a pre-processing of the data and hence never need its inverse.

Let assume for simplicity of the presentation that the source S is given (this is, of course,

impossible in reality; the issue of what to use instead of S will be addressed in Section 5.5). It

is desired that the unity restoration kernel δmn be a local minimizer of the quasi-ML function

(18) given the transformed source S ∗ T as an observation, i.e.:

∇L(δmn; S ∗ T ) = 0. (82)
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Figure 14: Scheme of blind deconvolution using sparsification. Arbitrarily distributed source

S undergoes convolution with unknown kernel W and possibly contaminated by additive

noise U . The observed signal X is sparsified using the kernel T , and the restoration kernel

H is estimated. Then, H is applied on X to produce an estimate Y of the source.

Informally, this means that S ∗ T optimally fits the sparsity prior (at least in local sense).

Due to equivariance, (82) is equivalent to

∇L(T ; S) = 0. (83)

In other words, we can define the following optimization problem:

min
T

L(T ; S), (84)

whose solution is the ”most sparsifying kernel” for S. This problem is equivalent to the

problem

min
H

L(H; S) s.t. H is stable, (85)

solved for deconvolution itself, with the exception of the stability condition, which is not

needed here since T is not necessarily invertible. The term f1(T ) in L(T ; S) defined in

(16) eliminates the trivial solution T = 0. We will start from the one-dimensional case as a

motivating example, and then show sparsifying kernels in the two-dimensional case.

5.3 Sparsifying kernel in 1D

First, consider the sparsification problem of one-dimensional signals. One-dimensional

quasi-ML BD was treated extensively in our previous study [12]; we adhere here to the
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same notation. In the current context, we can consider 1D signals as rows or columns of im-

ages. It is common to model natural images as piecewise-constant functions; consequently,

each row of a natural image can be considered a block signal.

Here, in order to illustrate the computation of the sparsification kernel, we take two 1D

signals. The first signal is a synthetic block signal resulting from a Poisson process; the

length of each step is exponentially distributed with λ = 10 and the amplitude of each step

is normally distributed (Figure 15, left). The second signal is row number 140 in the Baby

image (Figure 15, right). A 3-tap sparsifying kernel t is computed for both signals by solution

of the 1D version optimization problem (84),

min
t

L(t; s) = min
t

−
1

2NF

· f1(t) +
1

T
· f2(t; s). (86)

(see details on the 1D quasi ML function in [12]). The results are shown in Figure 15 and in

Table 2.

Block signal Row from Baby image

Source Size 504 256

t [−0.0124, 0.9909,−1.0000] [0.0040,−0.9902, 1.0000]

Table 2: Normalized 1D sparsifying kernels.

In both cases, the normalized sparsifying kernel is very close to the 2-tap 1D discrete

derivative kernel tdif = [1,−1] (as can be seen in Table 2, the rest of the coefficients in both

sparsifying kernels are close to zero). After sparsification with tdif , the prior term f2 of the

likelihood function becomes
∑

n

|y′
n| =

∑

n

|(tdif ∗ y)n|, (87)

which coincides with the 1D TV norm. Unlike the 2D case, here the TV norm stems from a

linear sparsifying transformation.

5.4 Sparsifying kernel in 2D

The same approach is used to find optimal sparsifying kernels for images. Unlike 1D signals,

the sparsifying kernels in 2D have much more degrees of freedom; e.g. the discrete derivative

kernel can have different orientations.

To account for these phenomena, we consider three synthetic piecewise-constant images

at different orientations (0◦, 30◦ and 45◦). Three 5 × 5 sparsifying kernels T are computed

for each image by solution of the optimization problem (84). The results are presented in

Figures 16–17.
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Figure 15: Sparsification results obtained in 1D: synthetic block signal before (left top) and

after (left bottom) convolution with sparsifying kernel [−0.0124, 0.9909,−1.0000]. Row

number 140 from the Baby image before (right top) and after (right bottom) convolution

with sparsifying kernel [0.0040,−0.9902, 1.0000].
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Figure 16: Synthetic block images (orientations at 0◦, 15◦ and 45◦, left to right) before (top)

and after (bottom) their sparsification.

For the block image at 0◦, the optimal sparsifying kernel is very close (neglecting near-

zero elements) to the 2 × 2 corner detector:

Tcor =

(

1 -1

-1 1

)

. (88)

For the block image at 15◦ and 45◦, the sparsifying kernels have the form of diagonal corner

detectors (see Figure 17).

5.5 Finding the sparsifying kernel by training

Unfortunately, since the source image S is not available, computation of the sparsifying

kernel by the procedure described above is possible only theoretically. However, empirical

results show that for images belonging to the same class, the sparsifying kernels are also

sufficiently similar. Though we cannot give a formal mathematical definition of such classes

of similarity, we will assume that given an image in a class, it is possible to find other images

belonging to the same class.
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Figure 17: Normalized optimal sparsifying kernels for synthetic block images (orientations

at 0◦, 15◦ and 45◦, left to right).

Let C1 denote a class of images, e.g. of human faces, and assume that the unknown source

S belongs to C1. We can find find images S(1), S(2), ..., S(NT ) ∈ C1 and use them to find the

optimal sparsifying kernel of S. Optimization problem (84) becomes in this case

min
T

−
1

2MF NF

· f1(T ) +
1

MXNX

·
1

NT

·

NT
∑

n=1

f2(S
(i) ∗ T ), (89)

i.e. T is required to be the optimal sparsifying kernel for all S(1), S(2), ..., S(NT ) simultane-

ously. We term the images S(1), S(2), ..., S(NT ) as the training set, and the process of finding

such T as training. Given that the images in the training set are ”sufficiently similar” to S,

the optimal sparsifying kernel obtained from (89) is similar enough to TS .

For experimental assessment of this idea, we take three classes of images: piecewise

constant (block) images, text images and aerial photos. A 3 × 3 sparsifying kernel is found

by training on a single image, then the same kernel is used as a pre-processing for BD applied

to a different blurred source image from the same class of images. All the source images are

convolved with a symmetric FIR 31 × 31 Lorenzian-shaped blurring kernel. Deconvolution

kernel is of size 3 × 3.

In the class of block images, both the training and the source image are synthetic (Fig-

ure 18); In the class of text images, the training and the source images contain anti-aliased

text of two different citations from Hamlet (Figure 20); in the case of aerial photos, the train-

ing image is synthetic (drawn using PhotoShop) and the source image is a real aerial photo

of a factory (Figure 22). The results are presented in Figures 18–23 and Table 3.

The sparsifying kernels obtained for all the three classes of images are very close to a

corner detector. The best results (in terms of SNR) were obtained on block images, which are

optimally sparsified using a corner detector; the worst results are obtained on aerial photos.

However, even in the worst case the SNR is sufficiently high (20.1561 dB) and the image

quality is plausible.
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Blocks Text Aerial

SIR 62.672 44.9952 20.1561

SIR∞ 74.7353 47.8011 25.7228

Table 3: Results of BD with training: reconstruction quality assessed in terms of signal-to-

interference ratio [dB].

Training image Source S Convolution S∗W

Sparsified training image Sparsified source Restored image

Figure 18: Deconvolution results on synthetic block images: training block image (left top)

and its optimal sparsification (left bottom); source block image (middle top) and its sparsifi-

cation, using the kernel obtained for the training image (middle bottom); convolution result

(right top) and the restored image (right bottom).
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Convolution kernel  W Sparsifying kernel  T

Deconvolution kernel  H Global system response  G

Figure 19: Kernels used in the deconvolution experiment on synthetic block images: convo-

lution kernel (left top), sparsifying kernel obtained by training (right top), estimated decon-

volution kernel (left bottom) and the global system response (right bottom).
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Training image Source S Convolution S∗W

Sparsified training image Sparsified source Restored image

Figure 20: Deconvolution results obtained with text images: training text image (left top)

and its optimal sparsification (left bottom); source text image (middle top) and its sparsified

version after applying the kernel obtained by training (middle bottom); convolution result

(right top) and the restored image (right bottom).
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Convolution kernel  W Sparsifying kernel  T

Deconvolution kernel  H Global system response  G

Figure 21: Kernels used in the deconvolution of text images: convolution kernel (left top),

sparsifying kernel obtained by training (right top), estimated deconvolution kernel (left bot-

tom) and the global system response (right bottom).
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Training image Source S Convolution S∗W

Sparsified training image Sparsified source Restored image

Figure 22: Deconvolution of aerial images: training aerial image drawn in PhotoShop (left

top) and its optimal sparsification (left bottom); source aerial image (middle top) and its

sparsified version after applying the kernel obtained by training (middle bottom); convolu-

tion result (right top) and the restored image (right bottom).
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Convolution kernel  W Sparsifying kernel  T

Deconvolution kernel  H Global system response  G

Figure 23: Kernels used in the deconvolution experiment with aerial images: convolution

kernel (left top), sparsifying kernel obtained by training (right top), estimated deconvolution

kernel (left bottom) and the global system response (right bottom).
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5.6 Alternatives to the optimum sparsifying kernel problem

In some cases, it may be inconvenient to solve the optimum sparsifying kernel problem (84).

We present here an alternative way to find sparsifying kernels; it is derived from different

considerations, but produces similar results.

The sum of absolute values (f2 in the quasi ML function) can be used as the objective

function to find a kernel T which yields the sparsest image, i.e.

min
T

∑

m,n

|(T ∗ S)mn| s.t. ‖T‖2
2 = 1, (90)

where the constant energy constraint is posed on T to avoid the trivial (zero kernel) solution.

This is an optimization problem with nonlinear convex objective and a non-convex quadratic

constraint; one of the most common methods to solve such a problem is by using the penalty

method [9]. According to this approach, the constrained problem (90) is replaced by the

penalty aggregate

Fp =
∑

m,n

ϕ((T ∗ S)mn) + µψp(‖T‖2
2 − 1), (91)

which is minimized by an unconstrained optimization algorithm. Here as previously, ϕ(t)
denotes a smooth approximation of the absolute value; ψp(t) is an equality constraint penalty

function (e.g. a quadratic penalty ψp(t) = t2), and µ is a parameter determining the tradeoff

between the objective function and the penalty, and ideally should equal the Lagrange multi-

plier of the constraint. A variation of this approach is the Augmented Lagrangian method, in

which the Lagrange multiplier is introduced as a parameter into the penalty function ψ [9].

Note the similarity between problems (84) and (91): in both cases we have (up to a

factor) f2 and a penalty requiring T to be a non-trivial solution. Problem (91) is more con-

venient from an optimization viewpoint; using artificial variables, it can be rewritten as a

quadratically-constrained optimization problem, in which case no approximation of the ab-

solute value function is needed. The feasible domain {T : ‖T‖2
2 = 1} can be approximated

as a polytope using linear constrains, and thus the problem can be approximately presented

as a linear program (LP).

6 Simulation results

The presented quasi ML deconvolution approach was tested on simulated data in zero-noise

conditions. Four natural source images were used: S1 (Susy), S2 (Aerial), S3 (Gabby) and

S4 (Hubble). The images are presented in Figure 24. Four nearly-stable Lorenzian-shaped,

kernels W1,W2,W3 and W4 (Figure 25) were applied to the corresponding sources. This

type of kernels characterizes scattering media, such as biological fluids, aerosoles found in
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the atmosphere, etc [36]. The observed images are depicted in Figure 26. Quality of the

degraded images in terms of SIR, SIR∞ and PSIR is presented in Table 4.

Fast relative Newton step with kernel size set to 3×3 was used. The smoothing parameter

was set to λ = 10−2. Corner detector was used as the sparsifying kernel. Optimization was

terminated when the gradient norm reached 10−10. Convergence was achieved in 10 − 20
iterations taking about 10 sec on an ASUS portable computer with Intel Pentium IV Mobile

processor and 640MB RAM. The restored images are depicted in Figure 27. Restoration

quality results in terms of SIR, SIR∞ and PSIR are presented in Table 5.

Source SIR [dB] SIR∞ [dB] PSIR [dB]

S1 Susy -1.4648 7.8416 -16.1491

S2 Aerial -1.4648 7.8416 -19.9403

S3 Gabby 4.9018 11.5504 -1.6315

S4 Hubble 3.3969 10.6454 -0.7940

Table 4: SIR, SIR∞ and PSIR of the observed images.

Source SIR [dB] SIR∞ [dB] PSIR [dB]

S1 Susy 17.7994 22.2092 22.6132

S2 Aerial 17.0368 23.5482 9.6673

S3 Gabby 19.3249 23.8109 29.8316

S4 Hubble 14.5152 17.1552 19.8083

Table 5: SIR, SIR∞ and PSIR of the restored images.

7 Conclusion

We have extended the 1D quasi ML BD framework studied in [12] for BD of images. We

have also presented an extension of the relative optimization approach to quasi ML BD in the

2D case and studied the relative Newton method as its special case. Sparse approximation of

the Hessian in a neighbourhood of the solution allows the derivation of a fast version of the

relative Newton algorithm, with iteration complexity compared to that of gradient methods.

Although in the 2D case restoration kernels obtained from the relative optimization algorithm

constitute a more limited class of filters compared to the 1D case, good restoration accuracy

is observed in simulations.
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S1 (Susy) S2 (Aerial)

S3 (Gabby) S4 (Hubble)

Figure 24: Source images S1, S2, S3 and S4 used in the simulations.
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W1 W2

W3 W4

Figure 25: Convolution kernels used in the simulation. Kernels W1,W2,W3,W4 were ap-

plied to the source images: Susy, Aerial, Gabby and Hubble, respectively.
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X1 (Susy) X2 (Aerial)

X3 (Gabby) X4 (Hubble)

Figure 26: Observed (blurred) images obtained by convolving Sk with Wk, for k = 1, ..., 4.
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S̃1 (Susy) S̃2 (Aerial)

S̃3 (Gabby) S̃4 (Hubble)

Figure 27: Restoration results using the quasi ML deconvolution approach.
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Additionally, asymptotic performance analysis of quasi ML deconvolution and asymp-

totic stability conditions were presented and assessed by simulations. This analysis revealed

some important insights, which justify the particular choice of the smoothed absolute value

as the minus-log PDF, ϕ(·), and explain where the high accuracy of BD of sparse sources

stems from. It was also demonstrated that for the true ML estimator, the obtained asymptotic

performance bounds coincide with the Cramér-Rao bounds, previously reported in literature.

In this study, we have also presented a novel approach of optimal sparse representations,

which allows various classes of images with different distributions to be transformed in a way

that they fit the sparsity prior used in our quasi ML deconvolution framework. As the result,

a general-purpose BD method is obtained. We discussed a particular class of LSI sparsify-

ing transformations and showed that they generalize some previously used approaches such

as the total variation prior. We have also shown how optimal sparsifying transformations

can be found by training. In our current research, non-linear transformations are addressed

explicitly as well.

Simulation results demonstrated the efficiency of the proposed methods. Though in this

work we limit our attention to noiseless blind deconvolution, it is important to emphasize

that the sparsification framework is applicable to the noisy case as well. Sparsifying kernels

are typically high-pass filters, since by their very nature sparse signals have high-frequency

components. Such kernels have the property of amplifying noise - thus in case when the

signal is contaminated by additive noise, using such kernels in undesired. Intuitively, to

cope with the problem of noise, the signal should be smoothed with a low-pass filter F

and afterwards the sparsifying kernel T should be applied. Due to commutativity of the

convolution, it is equivalent to carrying out the sparsification with a smoothed kernel T ∗ F .

Noise can be incorporated into the quasi ML deconvolution framework as well. In future

works, we intend to study this issue in depth.

Potential powerful applications of our approach and results are in optics, remote sensing,

microscopy and biomedical imaging, especially where the amount of noise is moderate.

Particularly, this approach is especially accurate and efficient in problems involving slowly-

decaying (e.g. Lorenzian-shaped) kernels, which can be approximately inverted using a

kernel with small support. Such kernels are typical for imaging through scattering media.
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A Proofs and derivations

A.1 Gradient and Hessian of f1

Let us first find the first- and second-order derivatives of Ĥmn. Differentiating

Ĥmn =
M

∑

k=−M

N
∑

l=−N

Hkl e
−i

(

2πk

MF
+ 2πl

NF

)

(92)

with respect to Hkl yields

∂Ĥmn

∂Hkl

= e
−i

(

2πk

MF
+ 2πl

NF

)

. (93)

Let us define

q =

MF
∑

m=0

NF
∑

n=0

log Ĥmn, (94)

so that f1 = q + q∗. Differentiating q with respect to Hkl, we obtain

∂q

∂Hkl

=

MF
∑

m=0

NF
∑

n=0

Ĥ−1
mn ·

∂Ĥmn

∂Hkl

=

MF
∑

m=0

NF
∑

n=0

Ĥ−1
mn · e

−i
(

2πkm

MF
+ 2πln

NF

)

= FMF ,NF

{

Ĥ−1
mn

}

kl
= Q′

kl, (95)

where FMF ,NF
stands for the DFT of size MF × NF . Differentiating again with respect to

Hk′l′ yields

∂2q

∂Hkl∂Hk′l′
= −

MF
∑

m=0

NF
∑

n=0

Ĥ−2
mn ·

∂Ĥmn

∂Hkl

∂Ĥmn

∂Hk′l′

= −

MF
∑

m=0

NF
∑

n=0

Ĥ−2
mn · e

−i 2π

MF
(k+k′)+i 2π

NF
(l+l′)

= −FMF ,NF

{

Ĥ−2
mn

}

k+k′,l+l′
= Q′′

k+k′,l+l′ . (96)

Hence, the gradient of f1 is given by

∇f1 = vec (Q′
kl + Q′∗

kl) , (97)

and the i-th row of the Hessian of f1 is given by
(

∇2f1

)

i
= vec

(

Q′′
k+k′,l+l′ + Q′′∗

k+k′,l+l′

)

, (98)

where k′ = (i − 1) mod (2M + 1) − M and l′ = ⌊ i−1
2M+1

⌋ − N .

49



A.2 Gradient and Hessian of f2

In order to derive ∇f2 and ∇2f2, let us first express the first- and second-order derivatives of

Ymn. The source estimate Y is given by

Ymn = (H ∗ X)mn =
∑

k,l

Hkl Xm−k,n−l. (99)

Differentiating (99) with respect to Hkl from both sides, we obtain

∂Ymn

∂Hkl

= Xm−k,n−l, (100)

which due to commutativity of the derivative operator with convolution, can be expressed as

∂Ymn

∂Hkl

=
∂Ym−k,n−l

∂H00

. (101)

Differentiating (100) again with respect to Hk′l′ yields

∂2Ymn

∂Hkl∂Hk′l′
= 0. (102)

Differentiating f2(Y ) defined in (17) with respect to Hkl yields

∂f2

∂Hkl

=
∑

m,n

ϕ′(Ymn)
∂Ymn

∂Hkl

=
∑

m,n

ϕ′(Ymn) Xm−k,n−l = (Φ′ ∗ JX)kl , (103)

where Φ′
mn = ϕ′(Ymn) and (JX)mn = XMX−m,NX−n. Hence,

∇f2 = vec

(

∂f2

∂Hkl

)

. (104)

Differentiating again with respect to Hk′l′ yields

∂2f2

∂Hkl∂Hk′l′
=

∑

m,n

ϕ′′(Ymn)
∂Ymn

∂Hkl

∂Ymn

∂Hk′l′

=
∑

m,n

ϕ′′(Ymn) Xm−k,n−l Xm−k′,n−l′

=
(

Ak′l′ ∗ JX
)

kl
, (105)

where Ak′l′

mn = ϕ′′(Ymn) Xm−k′,n−l′ . Hence, the i-th row of the Hessian of f2 is given by

(

∇2f2

)

i
= vec

(

∂2f2

∂Hkl∂Hk′l′

)

, (106)

where k′ = (i − 1) mod (2M + 1) − M and l′ = ⌊ i−1
2M+1

⌋ − N .
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A.3 Approximate Hessian structure

We consider the Hessian of f1(H) and f2(H; X) defined in (21) and (24) for Hmn = δmn

and X = c · S. Substituting Hmn = δmn yields Ĥ ≡ 1, from where by (95)

∂2f1

∂Hkl∂Hk′l′

∣

∣

∣

∣

Hmn=δmn

= −FMF ,NF

{

Ĥ−2
mn

}

k+k′,l+l′
−F∗

MF ,NF

{

Ĥ−2
mn

}

k+k′,l+l′

= −2MF NF δk+k′,l+l′ . (107)

It can be easily seen that ∇2f1 is a constant anti-diagonal matrix with −2MF NF on the

secondary diagonal. Therefore, f1 contributes a unit anti-diagonal to ∇2L.

For Hmn = δmn and X = c · S, one obtains Y = c · S. Substituting to (105) yields

∂2f2

∂Hkl∂Hk′l′
= c2 ·

∑

m,n

ϕ′′(c · Smn) Sm−k,n−l Sm−k′,n−l′ . (108)

For sufficiently large MX , NX ,

∂2f2

∂Hkl∂Hk′l′
≈ c2MXNX · IE {ϕ′′(c · Smn) Sm−k,n−l Sm−k′,n−l′} . (109)

Without loss of generality, let us assume that Smn is zero-mean. Since S is i.i.d.,

∂2f2

∂Hkl∂Hk′l′
≈ MXNX ·







αc2 : k = k′ = l = l′ = 0
γ(cσ)2 : k = k′ 6= 0, l = l′ 6= 0
0 : otherwise,

(110)

where

α = c2 · IEϕ′′(c · S)S2 (111)

γ = IEϕ′′(c · S) (112)

σ2 = IES2. (113)

B Probability density functions (PDFs)

B.1 Gauss-Bernoully distribution

A random variable s is said to obey the Gauss-Bernoully distribution with sparsity ρ and

variance σ2 if its probability function is given by

p(s) = (1 − ρ)δ(s) +
ρ

√

2πρσ2
exp

{

−
s2

2ρσ2

}

, (114)

where ρ ∈ [0, 1] and σ2 > 0. PDFs and cumulative distribution function (CDFs) of the

Gauss-Bernoully distribution are depicted in Figure 28.
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Figure 28: PDF (top) and CDF (bottom) of the Gauss-Bernoully distribution for σ2 = 1 and

ρ = 0.2 (solid), 0.5 (dotted), and 0.8 (dashed). Vertical arrows denote delta functions.
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B.2 Generalized Laplacian distribution

A random variable s is said to obey the generalized Laplacian distribution with parameters

a, b > 0 if its probability function is given by

p(s) =
1

2Γ(1 + 1
a
)b

1

a

exp

{

−
|s|a

b

}

, (115)

where Γ(z) is the Euler Gamma function defined by

Γ(z) =

∫ ∞

0

tz−1 exp {−t} dt, (116)

Distribution (115) can be interpreted as a generalization of the Laplace distribution obtained

for a = 1, and of the normal distribution obtained for a = 2. For a < 2, the distribution

is super-Gaussian. PDFs and CDFs of the generalized Laplace distribution are depicted in

Figure 29.
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Figure 29: PDF (top) and CDF (bottom) of the generalized Laplace distribution for b = 1
and a = 1 (solid), 0.5 (dotted), and 0.4 (dashed).
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C Notation

I, IN Identity matrix of size N × N .

AT Transpose of a matrix A.

A∗ Complex conjugate of a matrix A.

AH = (A∗)T
Hermitian transpose of a matrix A.

vec(X) Column-stack representation of matrix X .

f ′(t), df(t)
dt

First-order derivative of f(t) with respect to t.

f ′′(t), d2f(t)
dt2

Second-order derivative of f(t) with respect to t.

∂xf, ∂f

∂x
Partial derivative of f with respect to x.

∂2
xyf, ∂2f

∂x∂y
Second-order partial derivative of f with respect to x and y.

∇xf(x0), ∇f Gradient of f with respect to x at x = x0.

∇2
xxf(x0), ∇

2f Hessian of f with respect to x at x = x0.

W, Wmn Blurring kernel.

H, Hmn Restoration kernel.

G = HW ,

G = H ∗ W Global system response.

TS, T , Tmn Sparsifying kernel for image S.

S Source image.

S ′ Sparsified source image.

X Observed blurred image.

FMN M × N DFT-2D operator.

JXmn = XM−m,N−n Mirror operator of image Xmn,

m = 0, ..., M − 1; n = 0, ..., N − 1.

δmn Kroenecker delta image.

δt Dirac delta function.

IE {x} Expectation value of a random variable x.

var {x} Variance of a random variable x.

Ỹ (X) Estimator of the parameters Y given the observation X .

X̂ Fourier transform of X .
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D Abbreviations

BD Blind Deconvolution

BSS Blind Source Separation

CDF Cumulative Distribution Function

CRLB Cramér-Rao Lower Bounds

DFT Discrete Fourier Transform

FIR Finite Impulse Response

FFT Fast Fourier Transform

ICA Independent Component Analysis

i.i.d. independent identically distributed

LP Linear Programming

LSI Linear Shift-Invariant

ML Maximum Likelihood

MLE Maximum Likelihood Estimation

PDF Probability Density Function

PSF Point Spread Function

PSIR Peak Signal-to-Interference Ratio

QML Quasi Maximum Likelihood

SI Shift Invariant

SIR Signal-to-Interference Ratio

SNR Signal-to-Noise Ratio

TV Total Variation
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