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Abstract

We study a multiclass queueing system operating in the heavy traffic regime proposed by
Halfin and Whitt, a regime that models systems with large number of servers working indepen-
dently. An optimal control problem is considered, where the control corresponds to scheduling
of jobs and the cost is a cumulative discounted functional of the system’s state. Under the
scaling limit a control problem for a diffusion is obtained. The dynamic programming PDE
was proved in [1] to uniquely characterize the value function for the diffusion control problem.
In this paper we show that the solution to the PDE can be used to construct policies for the
queueing system that are asymptotically optimal.

1 Introduction

In [1] we studied the dynamic programming PDE of Hamilton-Jacobi-Bellman (HJB) type for a
diffusion control problem associated with a family of multiclass queueing systems, and characterized
the control problem’s value as the unique solution to the PDE. The diffusion control problem was
obtained by parametrizing the queueing system in a central limit theorem (CLT) regime, and taking
formal weak limits of the processes involved. In the current paper we establish the validity of the
diffusion control problem as the correct asymptotic description of the queueing problem in this
regime, by showing that the optimal solution to the queueing problem converges to that of the
diffusion problem. In addition, we use the PDE solution to construct scheduling policies for the
queueing system that are asymptotically optimal.

The queueing system has a fixed number of customer classes arriving according to renewal
processes, and a fixed number of service stations, where each service station has many servers with
the same capabilities (see Figure 1(a)). Each customer requires service exactly once. The CLT point

“Research supported in part by the Israel Science Foundation (grant no. 126/02)


lesley
CCIT Report #456
December 2003


of view taken here is the one proposed by Halfin and Whitt [7], where the system is parametrized
by taking, in an appropriate fashion, the arrival rates and the number of servers at each station
to grow without bound. See [6] for motivation for this model and parametric regime. The precise
probabilistic model and scaling assumptions, as well as additional assumptions, are described in
Section 2. One then considers scheduling of jobs as control, and attempts to minimize an expected
cumulative discounted functional of rather general performance criteria, including queue lengths of
different classes, number of customers in each of the stations, and number of servers that are idle at
each station. Taking the parametrization limit is meant to simplify the problem. In particular, the
non-Markovian scheduling problem Markovianizes, with the advantage of a dynamic programming
equation, characterizing the diffusion problem’s value, being available.

As explained in [1], because the number of servers is large, the problem of optimally controlling
such a system is very different depending on whether only nonpreemptive scheduling is possible, or
whether it is allowed to use preemptive policies (where service to a customer can be stopped and
resumed at a different station). In general, these two problems give rise to two different diffusion
control problems, and it is the one associated with preemptive scheduling that was analyzed in [1].
However, for reasons explained in detail in [1], it is expected that under a certain structural condi-
tion, the diffusion control problem associated with nonpreemptive scheduling, that in general lies
in higher dimension, degenerates to the one associated with preemptive scheduling. The structural
condition states that the graph, having classes and stations as nodes and having class-station pairs
as edges if the station can serve the class, is a tree (as in Figure 1(b)). In this paper, the treelike
assumption is made so as to make it possible to treat nonpreemptive and preemptive scheduling
under the same umbrella of the PDE studied in [1]. Thus the asymptotic approach simplifies the
problem also in reducing the nonpreemptive problem to the diffusion model of the preemptive
problem.

The main results are the following. Under appropriate assumptions, the scheduling control
problem’s value under preemption converges to the value of the diffusion problem. Moreover,
preemptive and nonpreemptive scheduling policies are constructed, that are asymptotically optimal
in the sense that they asymptotically achieve the diffusion problem’s value. The proof requires two
different types of arguments. One has to do with tightness of the processes involved. To this end
the approach from [2] is adopted and extended. The other regards estimates on the large time
behaviour of the prelimit system, where results from [1] are crucially used.

The organization of the paper is as follows. In Section 2 we introduce the probabilistic queueing
model under study and the assumptions regarding scaling as well as work conservation. We then
describe the diffusion control problem and the HJB equation, propose scheduling control policies
for the queueing model based on the HJB equation, and state the main result regarding asymptotic
optimality of these policies. Section 3 contains the proofs.

Notation. Vectors in RF are considered as column vectors. For z € R* [resp., z € RF¥!] let
2l = 32 [wi| [resp., 2, ;|zi;|]. For two column vectors v,u, v-u denotes their scalar product.
The symbols e; denote the unit coordinate vectors and e = (1,...,1)". The dimension of e may
change from one expression to another, and for example e-a +e-b =), a; + j b; even if ¢ and
b are of different dimension. Write N = {1,2,...}, Z4 = {0,1,2,...}, Ry = [0,00). C™%(D)
[respectively, C™(D)] denotes the class of functions on D C R for which all derivatives up to
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Figure 1: Parallel server station system

order m are Hélder continuous uniformly on compact subsets of D [continuous on D]. Cpei(RF)
denotes the class of continuous functions f on RF, satisfying a polynomial growth condition: there
are constants ¢ and r such that |f(z)| < ¢(1 + ||z]|"), z € R¥. We let Choi = Cpot NC™*. For E a
metric space, we denote by ID(FE) the space of all cadlag functions (i.e., right continuous and having
left limits) from R, to E. We endow D(E) with the usual Skorohod topology. If X™ n € N and
X are processes with sample paths in D(E), we write X" = X to denote weak convergence of the
measures induced by X™ (on D(E)) to the measure induced by X. If X is an R*- or an R¥*!-valued
process (or function on Ry ) and 0 < s <t < oo, [|[X|[[5; = sups<y,<¢| X (u)], and if X takes real
values, [ X5, = sup,<, <[ X (u)]. Also, [| X} = [|X||§, and | X[} :_|X|6,t. The notations X (¢) and
X; are used interchangeably. For a locally integrable function f : Ry — R denote I'f = [ f(s)ds.
In case that f is vector- or matrix-valued, I f is understood elementwise. For y € Rﬁ denote by
[y] the element y' € Z* having y} = |y;| fori =1...k—1, and y}, = |yx] + Zle(yi — |vi]). Note
that e [[y]] = e-y, and

ly = Twlll < 2. (1)

The symbol ¢ denotes a deterministic positive constant whose value may change from line to line.

2 Setting and results

2.1 Queueing model

The queueing model under study has 7 customer classes and 7 server stations. At each service
station there are many independent servers of the same type. Each customer requires service only
once and can be served indifferently by any server at the same station, but possibly at different
rates at different stations. Only some stations can offer service to each class. When referring to
the physical location of customers we say that they are in the buffer, or in the queue if they are
not being served, and we say that they are in a certain station if they are served by a server of the
corresponding type. There is one buffer per each customer class and one station per each server
type (see Figure 1(a)).



A complete probability space (€2, F, P) is given, supporting all stochastic processes defined
below. Expectation with respect to P is denoted by E. Since the set of all classes and all types
constitutes the vertex set of graphs, it is convenient to label the classes as 1,... ,7 and the types
asi+1,...,74+

Z={1,...,4}, J={i+1,...,1+}

The buffers [resp., stations] are labeled as the corresponding classes [resp., types]. For j € J let
N} be the number of servers at station j. Thus the total number of servers is e- N". Let X (t)
denote the total number of class-i customers in the system at time ¢. Let Y;"(¢) denote the number
of class-i customers in the queue at time ¢. Let Zf(t) denote the number of idle servers in station
j at time ¢. And let W7(#) denote the number of class-i customers in station j at time . We have
X" = (Xiez, Y" = (Y)iez, Z" = (Z])jeg, V" = (V]})iez,icy- Straightforward relations are
expressed by the following equations:

Y4 W =Xp, i€l (2)
jeT
ZP+Y W =Np, jeJ, (3)
€T
Y'(t),Z}(t) >0, i€Z,jeJ,t>0. (4)
X7 > 0,97 >0. (5)

To define arrival processes, let, for each i € Z, {U;(k), k € N} be a sequence of strictly positive i.i.d.
random variables with EU;(1) = 1 and squared coefficient of variation (EU;(1)) ?Var(U;(1)) =
C'?]’Z- € [0,00). Assume also that the sequences are independent. Let

n 1 -
Ui (k) = 17 Uilk), (6)
)
where A\ > 0. With 329 = 0, define
l
Af(t) =sup{l >0: > UM(k) <t}, t>0. (7)
k=1

The renewal processes A7 are used to model arrivals: The number of arrivals up to time ¢ is equal
to A?(t). Note that the first class-i customer arrives at U*(1), and the time between the (kK — 1)st
and kth arrival of class-i customers is U (k).

To model service times as exponential independent random variables, let S, ¢ € Z,j € J be
Poisson processes with rate p;; € [0,00) (where a zero rate Poisson process is the zero process).
These processes are assumed to be mutually independent, and independent of the arrival processes.
Let T;;(t) denote the time up to ¢ devoted to a class-i customer by a server, summed over all type-j
servers and note that

t
T{}'(t):/o ii(s)ds, i€Z,jeJ,t>0.



The number of service completions of class-i customers by all type-j servers by time ¢ is SZ(T[]L(t))
Thus, with X;”" := X["(0), we have

t
XP(8) = X"+ AP — S ST (/0 q/;.;.(s)ds>, i€ T,t>0. 8)
J

To introduce a basic assumption on the structure of the system we consider the graph G having
vertex set Z U J with a node per each class and a node per each type, and an edge set £, with an
edge joining a class and a type if the corresponding service rate is nonzero:

E={(i,j) €T x T : puj; > 0}.

Under assumptions that we introduce below (especially (13)) there will be no loss of generality
assuming that £ does not depend on the parameter n. We assume throughout that the graph G is
a tree. The reader is referred to [1] for explanation on how the problem is different in nature with
regard to asymptotic behaviour depending on whether G is a tree or a connected graph other than
a tree. We denote i ~ j and j ~ i if (i,5) € £. By assumption we have

UL =0, idj. (9)

A pair (7,7) is said to be an activity if (i,7) € €.

2.2 Scheduling

Scheduling decisions are made by continuously selecting U™, subject to appropriate constraints.
Scheduling is regarded as preemptive if service to a customer can be stopped and resumed at a
later time, possibly in a different station. Formally this is expressed by stating that the process ¥
may be selected subject only to equations (2)—(9) holding. Note that according to this definition,
customers can be moved instantaneously not only between a service station and the buffer, but
also between different service stations that offer service to the corresponding class. Scheduling is
regarded as nonpreemptive if every customer completes service with the server it is first assigned.
More precisely, consider the processes B:(t), i € Z,j € J, where B[3(0) = 0, and Bj; increases by
k each time k class-i jobs are moved to station j from the buffer or from another station (to start
or resume service), and decreases by k each time k such jobs are moved from station j back to the
buffer or to another station. Then BZ-"J- can be expressed as

t
Bl (t) = Wis(t) — \If?]” + Sij (/0 \If%(s)ds) . (10)

Under nonpreemptive scheduling, each of these processes is nondecreasing. Thus to define nonpre-
emptive scheduling in terms of the model equations (2)—(9), we will require that ¥ is selected subject
to (2)-(9) and such that Bj; are nondecreasing processes. This is summarized in the following.

Definition 1 Let initial data X°™ be given.



i. We say that ¥™ is a preemptive resume scheduling control policy (P-SCP) if V;; have cadlag
paths (i € I,5 € J), and there exist processes X", Y™ and Z™ such that (2)-(9) are met. X"
is said to be the controlled process associated with initial data X°™ and P-SCP W™,

it. We say that ¥" is a non preemptive scheduling control policy (N-SCP) if it is a P-SCP and
B} of (10) have non-decreasing paths.

We collectively refer to P-SCPs and N-SCPs as scheduling control policies (SCPs) (although the
class of SCPs is simply the class of P-SCPs).

Let ¢ = (X% n € N) and p = (¥",n € N) denote a sequence of initial conditions, and
respectively, SCPs. We denote by Pé’ the measure under which, for each n, X™ is the controlled
process associated with X%" and ¥™. Eé’ denotes expectation under Pé’ .

We need a notion of SCPs that do not anticipate the future. Unlike in a Markovian setting,
in presence of renewal processes such a notion has to take into account that the time of the next
arrival is correlated with information from the past, and hence should not be regarded as innovative
information. Denote

7i'(t) = inf{u > t: A} (u) — A} (u—) >0} i€
Set
Fi = o{ A} (s), SH(TH (), Wi (s), X[ (s), Yils), Zj(s) i € I,j € T, s <}, (11)

and

GI = o AN (I (1) +w) — A (1)), SI(TL(E) +w) — SHTEE) i € Toj € Tu> 0} (12)
Definition 2 We say that a scheduling control policy is admissible if

i. for each t, F[* is independent of Gi*;

it. for each i,j and t, the process S[(T7x(t) + -) — S[:(T7(1)) is equal in law to S7i(-).

2.3 Fluid and diffusion scaling

A sequence of systems as described above is considered, of which the symbol n is the index. See
[1] for more information on the relation of this scaling to Halfin and Whitt [7] and to Harrison and
Lépez [9].

Scaling of parameters: There are constants A\; > 0, i € Z, p;; > 0, (4,5) € £, and v; >0, j € J
such that

nil)\? — A, uznj — ij (13)



and
nilNJ” — Vj.
Setting
Hij = Vjlhij,
a central assumption on the limit parameters indicating that the sequence of systems is asymptot-
ically critically loaded is introduced below (cf. [8], [9]).

Linear program: Minimize p subject to

> hij&i =X, i€, (14)
i€
Zfijépa JeJ, (15)
ieT
£ij >0, i€Z,jeJ. (16)

Heavy traffic condition: There exists a unique optimal solution (£*, p*) to the linear program. More-
over, p* =1, and ), ; {;=1foralljeJ.

In the rest of this paper, {; denotes the quantities from the above condition, and z* = (xF),
P* = (¢F;), where

]
zi =Y &y b =& (17)
J

We refer to the quantities &, 27 and ¢j; as the static fluid model.

¥,
ij?

An additional assumption will be the following (see [1] for more details).

Complete resource pooling condition: &5 > 0 for (1,7) € E.

Assumption 1 The graph G is a tree. The heavy traffic and complete resource pooling conditions
hold.

Second order scaling assumptions are as follows.

Scaling of parameters, continued: There are constants S\i,,&ij eR 1eZ,5 € J,such that

nl/Q(n_l)\? - i) = A\, nl/z(u% — i) = flij, (18)

nl/Q(n_lN]n —vj) = 0. (19)



Scaling of initial conditions: There are constants x;,y;, z;,;; such that the deterministic initial
conditions satisfy

~

XM= VXD —naf) o s, V= n Y oy (20)

)

~

Z;-)’” = n_l/QZ][.]’" — 2j, \i/%n = n_1/2( —in) = Pij, (21)

where, due to (2), (3) and (4) we assume y; + ;i = i, 25 + 32, %i; = 0, y; > 0, and 2; > 0,
ieT,jed.

The processes rescaled at the fluid level are defined as

XP () =n"'X](0), V() =n"'Y(1),

Zr(t) =n"'Z0(), W) =T WP().

The primitive processes are centered about their means and rescaled at the diffusion level as

in . —1/2 n n on _—1/2/con n
AP () = n (AR () — M), Sii(t) =n / (S5 (nt) — nugst). (22)
Similarly, the state processes are centered about the static fluid model and rescaled:
XP(t) = n~ (XD () — nay), (23)
VM) =n Y, 23 () =n P21, (24)

WP (t) = n VAW — i)
The relations (2), (3) and (4) take the new form

VR4 O =XP, el (25)

Zn4y 0 =0, jeJ, (26)
7

Yzt >0, i€I,jed. (27)

Using the definitions above of the rescaled processes and the relation A = p(£*), one finds that (8)
takes the form

XPMt) = X" + W, +ent—z%/ (28)

where

r W (t) = Z / (s)ds), (29)



0 =nPnTIN = N) = > Pl — i),
With (18) we have

liTEnE? =Vl;:= )\ — fiiji;- (30)
J
One is free to choose the values of r;, and it is convenient to choose them so that, with the formal
substitution W', =1} ;, one has

liTEnE[(Wi”(l))Q] =1. (31)

Namely, r; = ()\iCIZJ,Z- + X\;)Y/2. Denote also £ = (¢1,... ,¢)", r = diag(r;).

The results of this paper are concerned with constructing sequences of SCPs that, in an appro-
priate sense, minimize the limit as n — oo of cost of the following form:

o
E / e L(X], Uh)dt. (32)
0

2.4 Joint work conservation

A policy is said to be work conserving if it does not allow for a server to idle while a customer
that it can serve is in the queue. In the current context one can consider a stronger condition for
preemptive policies. Recall that if preemption is allowed, customers of each class can be moved
between the queue and the various stations that offer service to them. Let ¢ be given, and recall
that the components of X™(¢) denote the number of customers of each class present in the system
at time ¢. Since t is fixed and its value will be immaterial in the following discussion, we omit it
from the notation and write e.g., X™ for X™(¢). In a preemptive policy, the set of controls W™ that
can be applied at time ¢ correspond to different rearrangements of the customers X" in the stations
and buffers. Let A" denote the set of all possible values of X" for which there is a rearrangement
of customers with the property: either there are no customers in the queue, or no server in the
system is idle. This property is expressed as

eY"Ne- Z" =0. (33)

We shall say that a preemptive policy is jointly work conserving if it is work conserving and, in
addition, for every s, if X™(s) € X™ then customers are arranged according to (33) (see also [1]).

In the heavy traffic regime considered here, it is anticipated that it is nearly always the case
that a rearrangement of customers according to (33) is possible. This element will be justified in
the process of proving our main result.

2.5 The diffusion control problem

We take limits as n — oo in (25), (26), (28) and (33). The process W converges to a standard
Brownian motion. Denoting the weak limit of (X™, Y™, Z™ W™ ¥") by (X,Y, Z, W, ¥), we get the



equation below (at this point this is meant as a formal step only; however, see Proposition 1)
~ t
X)) =+ Wilt) = Yy [ Wiilo)ds, i€z (34)
- 0
J

where W;(t) = r;W;(t) + £;t, W is a standard Brownian motion, and

D Vi =X;-Y, i€l (35)
J

Y Uy=-%, jeJ, (36)
7

eYNeZ=0. (37)

Relations (34)—(37) above can be written in the convenient form dX = b(X,U)dt + rdW. To this
end, note that by (35) and (36), e X =e-Y —e- Z, and thus by (37)

eY =(X)", eZ=(X)".
Hence Y and Z can be represented in terms of the process e- X and an additional process U as
Yi(t) = (- X() uit), Z(t) = (e X(0)"vy(t), i€T.jed (38)
where U(t) = (u(t),v(t)) takes values in
U:= {(u,v) e R 1 u;,0; >0, i€L,j €T, eu=env=1}.

The following is shown in [1].

Lemma 1 Let Assumption 1 hold. Then given o;,Bj € R, i € I,j € J satisfying e-a = e- 3 there
exists a unique solution 1p;; to the set of equations

quij:aia iEIa Zd)ljzﬂja j€j7 (39)

j i
where 1; j =0 for i j.
As a result there is a map, denoted throughout by G : Dg — R*71,
D¢ :={(e, ) ER":e-a = e B},
such that ¢ = G(«, 8). Let also

Cg = Sup{mi?xm(a,ﬁ)iﬂ : (a, B) € Dg, |laf| vV [|B]] < 1} (40)

10



Clearly the map is linear on D¢. Applying Lemma 1 to (35), (36), and by (38) it follows that
U=G(X-Y,-2)=GX — (e X)Tu,—(e- X)"v) =: G(X,U). (41)
For 4 = (1);;) denote by p0 ¢ a column vector with (o ); = >, pijipi;. With
b=—poG+7, (42)

we can now write (34) as
t
X(t) = 2+ rW (1) +/ b(X(s),U(s))ds, 0<t< oo (43)
0
We summarize the equivalence between the two representations in what follows.

Lemma 2 If equations (34)—(37) hold then (43) holds with some U-valued U. Conversely, if (43)
holds (with U taking values in U) then one can find W, Y, Z such that (34)~(37) hold. In both cases,
W (t) =rW(t) + tt.

Proof: We have already proved the first statement of the result. To see the converse, write
U= (u,v),let Y = (e X)Tu, Z = (e X) v, and ¥ = G(X —Y,—Z). (35), (36) automatically
hold, and (41) implies (34). L

Definition 3 We call # = (Q, F, (F;), P,U, W) an admissible system if (Q, F, (F}), P) is a complete
filtered probability space, U is a U-valued, (F})-progressively measurable process, and W is a standard
i-dimensional (Fy)-Brownian motion. The process U is said to be a control associated with w. X
is said to be a controlled process associated with initial data x € R* and an admissible system ,
if it is a continuous sample paths, (Fy)-adapted such that fg |b(X (s),U(s))|ds < oo t >0, P-a.s.,
and (43) holds P-a.s.

For any z € R’ and any admissible system 7 there exists a controlled process X, unique in the
strong sense (cf. [1]). With an abuse of notation we sometimes denote the dependence on z and
7 by writing P] in place of P and E7 in place of E. We denote by II the class of all admissible
systems.

Given a constant v > 0 and a function L, the cost of interest for the queueing system is given by
(32). It is convenient to perform change of variables from (X, ¥) to (X,U). To this end, define L
as

L(X,U) = L(X,G(X — (e X)Tu,—(e- X) v)), X €R, U= (u,v) €. (44)
Our conditions on L (given mostly via conditions on L) are as follows.

Assumption 2 i L(z,U) >0, (z,U) € R* x U.

11



ii. The mapping (z,v) — L(z,1) is continuous. In particular, the mapping (z,U) — L(x,U) is
continuous.

iii. There is p € (0,1) such that for any compact A C R,
|L(z,U) — L(y, U)| < cllz —yl|°
holds for U € U and x,y € A, where ¢ depends only on A.

iv. There are constants ¢ > 0 and my > 1 such that L(z,U) < c(1 + ||z||™E), U € U, z € R".
Consider the cost
oo —
C(z,m) = E;f/ e "L(X(t),U(t))dt, =R, rell
0

Define the value function as

V(z) = ;relﬁ C(z, ).

The HJB equation for the problem is (cf. [5])

Lf+H(z,Df)—~f=0, (45)
where £ = (1/2) Y, 720 /02, and
H(z,p) = jnf [b(e,U)-p + Lo, U)]. (46)

The equation is considered on R* with the growth condition
3C,m, |f(2)| <CA+ [z|™), zeR. (47)
We say that f is a solution to (45) if it is of class C2, and the equation is satisfied everywhere in

R*.

Definition 4 Let x € R* be given. We say that a measurable function h : R® — U is a Markov
control policy if there is an admissible system m and a controlled process X corresponding to x
and 7, such that Us = h(X;), s > 0, P-a.s. We say that an admissible system m is optimal for
x, if V(z) = C(x, 7). We say that a Markov control policy is optimal for x if the corresponding
admissible system is.

Assumption 3 Fither (i) or (ii) below holds.

i. For (i,j) € £, puij depends only on i; or for (i,7) € &, pij depends only on j.

i1. The tree G is of diameter 8 at most.

The following is proved in [1].

12



Theorem 1 Let Assumptions 1, 2 and 3 hold. Then the value V solves (45), (47), uniquely in

Cg;ﬁ(R’_), and there exists a Markov control policy h : R* — U that is optimal for all x € R

To state our main result we need to introduce SCPs defined via the function kA of Theorem 1.
Write h = (hy, he) where (u,v) = h(z) < u = hi(x),v = ho(x). Let oy > 0 denote the constant

ap = (4Cg)~" min ;. (48)
2,]:1~)
Let
Y™ = (e- X") hi(X"), Z" = (e-X") hyo(X™) (49)
9" = QX" —Y",-2Z"). (50)

The quantities Y™, Z™ will be used to propose a P-SCP while U™ will be used to propose an N-SCP.

The proposed sequence of P-SCPs is defined as follows. If || X™(t) — nz*|| < agn, set
Y" = [n'/?Y"), Zz"=[n'?Z"], U"=GX"-Y" N"—2Z"). (51)

Setting U™ this way is in accordance with joint work conservation in the sense that (33) always
holds on {||X™(t) — nz*|| < agn|}. To see this note that by (49), Y™ A Z" = 0, hence by (51),
Y"(t) A Z™(t) = 0. Also, since by definition X™, Y™ and Z™ are integer valued, so is U" as follows
from the proof of Proposition 1 of [1]. It remains to show that setting ¥"(¢) as in (51) meets
relation (5) of the model, namely that \I/Z(t) > 0 for all 4,j. The proof of this fact is deferred
to Section 3.1 (cf. Lemma 3 and the remark that follows). Finally, if || X" (¢) — nz*|| > agn, set
U™ = F,(X™(t)) where, for each n, F, is a fixed function chosen in such a way that the resulting
process U is jointly work conserving (as defined in Section 2.4). Other than that the choice of F),
is immaterial. Denote the resulting sequence of P-SCPs by p*.

The proposed sequence of N-SCPs is described in what follows. The idea is to keep ™ close to
" of (50) by declaring activity (i,7) as “blocked” at any time when W7, > Wi, and not routing
customers through blocked activities. More precisely, given an activity (i,7) and a time interval
[s,t), if WP > Ul holds on [s,t) then no routings take place on the activity throughout this interval:

\i/?] > \TI?J on [s,t)  implies  B;; is constant on [s, ). (52)

On the other hand, when there is a class-i customer in the queue and there are stations j ~ i with
idle servers and such that (i,7) is not blocked, the customer is instantaneously routed to one of
these stations. If there are no such stations, the customer stays in queue. It is not hard to see that
this property can be expressed as follows. For every activity (4, 7),

() < UP(t)  implies  Y(t) A ZP(t) = 0. (53)

The selection of an activity among the non-blocked activities through which to route a customer
does not turn out to be significant, except that care must be taken because it is possible that two
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(or more) customers will be routed instantaneously. Therefore it remains to show that one can
always perform instantaneous routings meeting (53). This is deferred to Section 3.1 (cf. Lemma 4).

A sequence of N-SCPs satisfying the two properties will be denoted by p'.

Our assumption on the interarrival times is as follows. The two parts of the assumption corre-
spond to different parts of the result.

Assumption 4 There is a constant m such that E(U;(1))™A < oo, i € I, satisfying either of the
following.

(a) ma > 2myp, (where my, is as in Assumption 2);

() ma(ma —2)(bBmy —2)" 1 > my.
Our main result is the following.

Theorem 2 Let Assumptions 1, 2 and 3 hold. Let ¢ be a sequence of initial conditions (X*";n €
N) such that X0 = n~Y2(XO" — nz*) — & € R'. Then items (i) and (ii) below hold under
Assumption /(a), and item (iii) holds under Assumption 4(b).

i. For any sequence p of jointly work conserving admissible P-SCPs,

lim inf E? / e ML(XP, UM)dt > V (x);
0

n—o00 C
i1. The sequence p* of jointly work conserving admissible P-SCPs satisfies

o
lim E? /0 e L(X], UYdt =V (2);

n—o0 C

i41. Provided that h (of Theorem 1) is locally Holder on {z € R": e-x # 0} and globally Holder on
{z € R': |e-z| > 1}, the sequence p' of admissible N-SCPs satisfies

’ 0 ~ N
limsupEp/0 6_7tL(X?,‘I’?)dt§V(x)-

n—o0 C

Remarks. (a) The Holder assumption on A required in part (iii) can be shown to hold under some
strict convexity properties of L (similar to Proposition 3 of [2]).

(b) As explained in Section 3.3, there is a particular aspect of the large time estimates that we
are unable to prove in general, and this aspect alone is stopping us from relaxing Assumption 3.
We comment however that Assumption 3 can be removed at the price of assuming v > 7y, where
7o depends on the parameters of the diffusion model alone (by using (89) along with the idea of
Section 3.3 so as to estimate moments of X" in terms of ce¥o! uniformly in n). We do not pursue
this direction here.
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3 Proofs

3.1 Preliminary results

In Section 2 we obtained the convenient representation (43) of the controlled process from equations
(34)-(37). We begin by showing how an equation analogous to (43) is obtained for the prelimit
model. To this end, let

M":=eY"Ne-Z" > 0. (54)

Denote also M™ = n~'/2M™. By (25) and (26) we can write e- X" = e-Y" — e- Z™ and therefore
by (54),

eV = NI (e XM, e 20 = W (e X7 (55)

Let " = Y"/(e:Y"™) when e- Y™ > 0, and arbitrarily set u” = e; otherwise. Similarly, v" =
Z"[(e- Zy) if e- Z™ > 0 and otherwise set v" = ezr;. Letting U™ = (u",v"), noting that U™ takes
values in U, and using Lemma 1 and linearity of G on D¢, we have

Y= (M"+ (e X)), Z" = (M™ + (e- X™) 7)o", (56)

~

\IITL

G — ¥, —7m)
= G(X" — (e X") u, —(e- X™) " 0"™) + M"G(u"™, v"™)
G(X™,U™) + M"G(u",v"). (57)

Defining b = —u™ o G 4 £ we obtain from (28)

~ ~ t ~ ~ t ~
X"(t) = X" + /0 " (X" (s),U"(s))ds + rW"(t) — /0 M"(s)u™ o G(u"(s),v"™(s))ds. (58)

It is useful to note that
1" (z, U) = 0" (g, U)ll < cillz —yll, [0"(z, V)| Sci(l+]lz])), neNUeUuzyeR, (59)
where ¢; does not depend on n,U, z and y.

The following result states that under preemptive scheduling, joint work conservation can be
maintained whenever ||X"(t) — nz*|| < agn. In particular it shows that the p* is a well defined
sequence of P-SCPs.

Lemma 3 Fizt. Assume the following relations hold: equations (2) and (3) (equivalently, U™ (t) =
G(X™(t) = Y"™(t),N" = Z"(t))), e Y™(t) Ne- Z"(t) = 0, and || X" (t) — nz*|| < agn, where ag > 0
is the constant from (48). Then Wik(t) > 0 (in particular (5) holds).
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Remark: The lemma has two implications.

(a) p* is a legitimate sequence of jointly work conserving P-SCPs. As argued in Section 2, one only
has to show that when || X"(¢) — nz*|| < agn, U}.(¢) > 0 holds. This follows from the construction
of p* and Lemma 3.

(b) Let p be any sequence of jointly work conserving P-SCPs. Let 7" = inf{s : M"(s) > 0}. By
Lemma 3, if 7" <t then || X" — nz*||f > aon. In particular, || X" — nz*||%. > apn on {7" < co}.

Proof of Lemma 3: By Lemma 1 and equations (2), (3),
" = G(X" —Y",N" — Z"), (60)
and by (17),
P =G(z*,v). (61)

Since it is assumed that M™ = 0, (55) implies that [|[Y™], ||Z"|| < ||X™ — nz*||. Hence by linearity
of the map G on the domain D¢ and by (19), (40) and (48),

() = G(nz®,nv) + G(X" —na™ = Y™, N" —nv — Z");;
> npl — Cgl| X" —nz™ —=Y"|| V[|N" —nv — Z"|
nipy; — 206 || X" —na®|| — Cg|[N™ —nv|

\Y

> m/):‘] — 2Caagn — en'/?
>0,
where the last inequality holds for all n large enough. U

The following lemma refers to instantaneous routing through non-blocked activities in the con-
struction of the N-SCPs p’ of Section 2.

Y; >0, Z;>0, i€Z,je. (63)

Assume that all components of X.Y,Z and U are integers. Let a subset &1 C & (“non-blocked”
activities) be given. Then one can find (¥, X,Y, Z) satisfying relations analogous to (62), (63), and

X=X, Y<Y, Z<Z, U>1V, (64)

(4,7) € & implies Y; A Z; = 0. (65)
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Proof: Define inductively a sequence (X®) y(®) zk) @)y k=0, ...k as follows. Let
(X©y®, 20, 90) = (¥, X,V,2).

Let k& > 0 be given, for which (X®) y(®) z#) §Kk)) is defined. If Y¥) Z(*) satisfy (65) then
terminate, declaring k; = k. Otherwise, define (X*+1 y(k+1) Zz(k+1) gy(k+1)) a5 follows. Let g
be the smallest 7 € Z such that there is 7 with (4, 7) € & and Yi(k) /\Z](-k) > 0. Let jp be the smallest
such j. For i € 7,7 € J define

X+ = X(k)v Yi(kJrl) = Yi(k) — Lizios Z]('k+1) = Z]('k) — Li—jo, \Ijz(;'Hl) = \Ijgf) + 1(i,j):(io,j0)'

Since by construction 0 < e- Y*¥) = ¢. ¥ —k, the procedure must terminate. Defining (X,Y,Z,0) =
(X (k1) y (k1) 7z (k1) w(k1)) completes the proof. L]

The following lemma will be useful in analyzing the N-SCPs p'.

Lemma 5 Let (v, x,y, z) satisfy
g =mi—yi, i €L, Y tiy=—z, JET, Piy=0, ik}
i 7

and let (1, %, 9, 2) satisfy analogous relations. In addition, assume
if i ~ 3 and i < t/v)i]’ then y; \ zj =0, (66)

and 9; >0, 1 €Z, 2, >0, 5 € J. Then

> lig — il < € (hig — i) T+ cllz — ],

0] 0]

where ¢ does not depend on ), .y, z,, &, 7 or .

Proof of Lemma 5: Let € be an upper bound on ;; — z/v)ij for all 4, j, and on |z; — &;| for all 4.
Let jo be such that z;, = 0. Then

D o = D Pijo + 2o > Y Pijos
and since 1);j, < I/VJZ-J-O + &, Yijo — z/v)ijo > —ce for every i ~ jp. Let ¢y be such that y;, = 0. Then

> thigg =iy > Hig —e =Y Pigj +ig — € > Y igj — €
J J J

Since ;,; < 1[%‘0 j + € for every j, we have ;,; — 1[)i0 j > —ce for every j ~ ig. Thus we have shown
that [1;; — ;| < ce for every (,7), i ~ j with either y; = 0 or z; = 0. In view of (66), we have
shown that |t);; — 1/3”| < ce for every (i,7), i ~ j such that ¢;; < zﬁl] On the other hand, if
$ij > 1jj, then simply |1;; — ;5| = ¢ij — 1ij < € by assumption. L
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Denote

T =1V =Y+ 120 - 22, (67)

t t
Qp = [ unds, Ry = [ e Lo U (68)
0 0

Throughout, let p, p*, p’ and ¢ be as in Theorem 2, and let f denote the unique C’gol solution to
(45).

Proposition 1 Items (i)-(iii) below hold under p (in particular, under p*) and under p'.
(i) (X7, 77, 2, ") = (27,0,0,4").

(ii) (W™, IM™, X" Q" R") is tight.

(iii) (W™, IM™) = (W,0), where W is a standard Brownian motion on R’

Moreover, the following holds under p* and under p':

(i) |5 — 0 and |]\A4"|;‘lt — 0 in distribution, for every 0 < s < t < 00.

Proof: See Section 3.2.

Lemma 6 Under p and under p’ one has the following. Denote by (X,Q, R, W) a limit point of
(X", Q" R", W”) along a subsequence. Let (F}) denote the filtration generated by (X,Q,W). Then
W is an (Fy)-standard Brownian motion, X, Q and R have continuous sample paths, and Q has
sample paths of bounded wvariation over finite time intervals. Moreover, fe_Vst(Xsn)-dQ? =
[ e *Df(Xs)-dQs along the subsequence, where f is the solution to (45).

Proof of Lemma 6: Based on Proposition 1, the proof of Lemma 6 is identical to that of Lemma
6 of [2] and is therefore omitted. U

Proposition 2 For either q = p, with fired mo € (mp,ma/2), or for ¢ = p', with fired my €
(mp,ma(ma —2)(5ma —2)~ 1), one has
EBY|IXP|™ <C(1+6)™ (69)

where C, my do not depend on t.

Proof: See Section 3.3.

The method of [2], that we adopt here, is based on estimating the process
Kp = b(X7, UP)- DF(RT) + DX, UP) — H(XP, DFCXP)) = 0, (70)

where the inequality above follows from (46).
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Lemma 7 Let the assumptions of Theorem 2 hold. For every sequence p of admissible jointly work
conserving P-SCPs

n— 00

lim inf B / e ML(XP, UM dt > V().
0

If q is an admissible SCP under which
/ e PKlds =0, (71)
0

then 0
limsupEg/ 67%[/()@17 Ul)dt <V (x).

n—+00 0

Proof of Lemma 7: Equipped with Proposition 1, Lemma 6 and Proposition 2, the proof is
identical to that of Theorem 4 of [2], and is therefore omitted. U

Proof of Theorem 2: In view of Lemma 7, it suffices to show that under p* and under p/,
Jo e "*Kids = 0. The function h satisfies the following (see the proof of Theorem 1 of [1]):

H(z,Df(x)) = b(z,h(z))- Df () + L(z,h(z)), z€R". (72)
Combining (70) and (72),
K} = (X7, Up') — b(XP, h(XP)))- Df (XP) + L(XP, Up') — L(XT, h(XP)). (73)
By definition of b (42), and by (67),
Ib(XF, UP) = b(X] (X)) < e (74)
By (44) and (50),
L(XP,UP) = L(XP, h(X])) = LXP, U7 () — L(X], 97(1)) (75)
where, using (56),

UL (1) = G(XP — (e XP) Puft, (e X7) 0})
= G(X] = V" + M{'u, —Z7 + Moy

— B+ MG, o). (76)
Note that
107 — U7 = |G(X] =Y, —Z") — G(X} = Y, —Z]")|| < eJf. (77)

By Assumption 2, L is uniformly continuous on compacts, hence there are functions a(6) with
lims_,o g (6) = 0 such that

|L(z,9) = Lz, ") < ax(0), Nz V19l VI < kIl — '] < 6. (78)
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Combining (73)—(78), |X7|| v |#7|| < k implies
K < cPIDF(XD) + aer (T + M) < eJ]'Br + aer (] + M), (79)
where (3, depends only on k. Since by (49), e-Y™ A e- Z™ = 0, we have
M'=eY"Ne- Z" < |eY" —e- Y| +|e- 2" —e- 2" < J". (80)
Moreover, by (25), (26) and (49),
T < (X7 + ). (81)

Fix T and let Q"F<9 denote the event that [|X™||% V [[¥"|% < k and |[J" + M"E,T < 0. By
Proposition 1,

lim lim inf lim inf lim inf P9(Q™%0) = 1, (82)

k  6—0t e—0t n

for ¢ = p* and for ¢ = p', ¢ > 0. Combining (79)(81), on Q™9 we have
T
0< / e V' K'dt < ce(kBy, + ack(ck)) + T (Brd + ack(9)).
0

Taking n — 0o, then e — 0, § — 0 and finally k¥ — oo, using (82), it follows that fOT e ""Kldt — 0
in distribution. Since T' is arbitrary, [je " Kdt = 0. U

Lemma 8 Let Assumption 4 hold. Then
B(|A™[)™ < e(1 4™/,

where ¢ does not depend on n or t.

Proof: See Lemma 2 of [2]. O

3.2 Tightness estimates

We prove Proposition 1. Most involved is the treatment of the nonpreemptive case. The main idea
is a “bootstrap” argument (a variation of which is also used in the next subsection), where one first
establishes tightness of the processes up to a certain stopping time, and then uses this to show that
the probability that the stopping time is incurred in arbitrarily fixed finite time approaches zero.
The proof is established in a number of steps.

Step 1: n~1/2W" = 0.

Step 2: Under p, M"™ = 0 and X" = z*; Under p/, X"(- A 0™) = z*, where 0" = inf{s > 0 :
IM™(s) > 1}.

Step 3: Under p, (X, Y", Z", 0") = (2*,0,0,4*), and (X", W™, Q", R") is tight.
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Step 4: Under p*, J" = 0
Step 5: Under p’, conclusions of Step 3 hold, upon stopping all processes involved at o™. As a
result, IM™ = 0, and conclusions analogous to those of Step 3 hold under p'.

Step 1. Let A;, i € Z, S;j, i ~ j be independent Brownian motions with zero mean and variance
given by EA2(1) = A,C%’Z-, ES’ZZj(l) = pj. Set S;; =0 fori £ j, A= (A;) and S = (5;;). For the
fact (A", S") = (A, S) see [2], Lemma 4(i). Note that by (3) and (4), UPL(t) < Nj for every i,j
and t. Hence by (29),

W™ IE < el A™[F + el S™]|e- (83)

As a result,
nY2|W™|f — 0 in distribution, as n — oo, t > 0. (84)
Step 2. We show first that under p, M™ = 0. Let 7" = inf{s : M;"” > 0}. We shall show that, for

every T, P(7" < T) — 0 as n — oo; this implies that, for every T, [[M™||% — 0 in distribution,
and as a result M" = 0. Indeed, by (58),

tAT™
X"t AT?) = X0 4 / b (X" (s),U"(s))ds + rW"™(t A T").
0
By (59),
~ tAT™ R R
[X* (AT <c+ C/ (L + [1X"(s)[D)ds + c[[W™ (E AT")]],
0
and it follows from Gronwall’s inequality that
IX™ = 2" [fprn = n 2 IX " iarn < en”2et W7 (85)
Hence by Remark (b) following Lemma 3 and (84),
P(r <T) < P(IX" = 2" [0 > a0) = 0. (36)

As a result, M™ = 0. By (84), (85) and (86) it follows that for every ¢, | X" — z*||f — 0 in
distribution as n — co. As a result X" = z*.

Next, under p’, let
o™ =inf{t > 0: IM™(t) > 1}. (87)
By (58) and (59),

tAo™
I X" (t A ™) < c+c/ (L+ || X" (s)]|)ds + ¢||W"™(t A ™).
0

Using again Gronwall’s lemma and (84), we have

IX™ — na*|[fyen — 0 in distribution, t > 0. (88)
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Step 3. This step refers to p only. By (55),
e Y;n — n—l/?(Mn + (6' Xn)-i-) < n—1/2Mn + “Xn —(II*“

Since Y; > 0, i € Z, it follows that Y™ = 0. By a similar argument, Z" = 0. By (60), (61) and
linearity of the map G on Dg,

" =pn 'GX" - Y",N" — Z")
=GX"-Y",n IN" - Z")
=G(X"—z* —Y",n"'N" —v— 2" + G(z*,v)
S G(X" — o — Y N~y 2 4
Since Y™, Z", (X™ — 2*) = 0 and by (19) and continuity of G, we obtain U" = ¢*.

We have now shown that || X™ — z*||f + ||[Y™||; + |27} + ||[¥" — *||; converges to zero in
distribution, for every ¢. Hence (X", Y™, Z" ™) = (x*,0,0,4").

Next we show that the sequence (X", W™, Q", R") is tight in (D(R¥))? x D(R). We have shown
already that S™ = S and U" = ¢*. An application of the time change lemma [3] shows that
S’Z(fo \i/?j(s)ds) = S;i(¢*-). By (29) and (31) it follows that W™ = W, a standard Brownian

motion in R?.

By (58), (59) (recall that If = [; f),
t
X" @O < IXO™ | + W™ (@) + eIM™ (¢) + C/O (1+ 1 X" (s)Il)ds

and therefore by Gronwall’s inequality,
X7 < ee™ (14 IMP + |W"7). (89)
Using tightness of W and M™, it follows that for every ¢,

lim limsup P(|| X"||} > m) = 0. (90)
m—00

n—0o0
Fix T. By (58) and (59), for s,t € [0,T], s < t,
IX™ () = X" ()| < el W (t) = W™ ()| + et — ) (L + | M7 + | X" |I7)- (91)
Let w(z, S) = supg s [|2(s) — z(t)[| where S C [0,T), and let

w’IT(J:? 5) = inf 1I21234<XU’U)(I, [tifla ti))a

where the infimum is over all decompositions [t;_1,%;), 1 <1i < wv of [0,T) such that t; —t;_1 > 0,
1 <i<w (cf [3], p. 171). The notation

wr (ZE, 6) = sup ’LU(ZE, [35 t]) (92)
0<s<t<(s+O)AT
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will also be useful. It follows from Theorem 16.8 of [3] and tightness of W™ that for each ¢ and
e, limg_,o limsup,,_, .o P(wj(W™,d§) > £) = 0. Hence by tightness of M"™ and using (91), for each
t <T and ¢,
lim lim sup P(w}(X",8) > €) = 0. (93)
=0 n—oo
Since T is arbitrary, (90) and (93) imply tightness of X™, using Theorem 16.8 of [3]. By (59), (68)
and Assumption 2, X
1Q™I7 VIR™; < ct(1 + [[X™[7)™*

and for s,t € [0,T], s < t,
1Q"(#) — Q™ ()| V |R™(£) = R™(s)| < et — s)(1 + || X" 17)™*

Hence, using Theorem 16.8 of [3], tightness of Q™ and R" follows from (90). We have shown that
X" W Q" and R" are tight, and using Proposition 3.2.4 of [4], it follows that (X™, W™, Q™, R™)
is tight.

Step 4. Fix T. By (1) and (51), under p* one has [J"|5 < 2(i47)n~"/? on the event {|| X" —z*||% <
ap}. Since || X™ — z*||3. converges to zero in distribution, so does |J"|}, and since T is arbitrary,
J" = 0.

Step 5. This step refers to p'. Let o™ be as in (87) and recall (88). Reviewing Steg 3 shows that all
its conclusions still hold under p’ in place of p, upon replacing X" by X"(-Ac™), Y™ by Y™(- Ao™),
and similar substitutions for the processes ¥™, W" Xn , Q" and R™. As a result

(X-T;\(rnaif-XU”aZ-Tj\ana\ij-n/\an) = ($*,0,0,1/)*), (94)
(X" n, W 0, Q" ny R ,0) is tight. (95)

Let T" be fixed and denote T" =T A o™. For i ~ j let Aj; = \Il” \Il”] Let Q™% denote the

event
X" [17n VY™ l7n V1 Z7 17n V(1€ |70 < K}

By tightness of X™(- A ™) and by (55), (57),

lim liminf P(Q™F) = 1. (96)

k—o00 n—00

We will show that

lim limsup P(c™ < ¢gp) =0, (97)

e0—0t n

and that for every i ~ j and small enough £y > 0,

limsup P(0" > eg, sup Aj; > ce) = 0. (98)

n [507Tn}
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To this end let g9 € (0,T). Fix 4,7, i~ j. If Al >0 on [s,7), no customers are routed on activity
(i,7) on this time interval and by (52) and (10),

Wii(t) = Uis(s) — Afi(s,t), tels,r),

where
Alj(s,1) = S5(IL5 (1) — S5 (s))- (99)
Therefore
TP (1) — §° “1/2 An
i (t) = Vi5(s) —n / Afs(s,t).
Now,
P(o" > o, sup AJ(t) > 3¢) < P((0"F)) + P(Q)F) + P(23"), (100)
t€[eo,T™]
where

QPF =" N {o" >} N{I0<s <r < T AY(s) <k, t i(nf)A;-"”j(t) > e, Ajj(r) > 3e},
E(s,r

Oy = QmE N {o™ > g0} N{ inf AT > e}
t€[0,e0

]

Let k be fixed. By the Hoélder assumption on hy, ho away from e X" = 0, there are positive
constants ¢y, p;, (depending on k and e but not on n) such that the following holds on Q"*:

(BT (1) — W(s)] = |G(X™(8) = Y™M(1), =Z"™(1))ij — G(X"(s) = Y™ (s), —Z"(5)) 5]

< e([(X™(8) = Y1) = (X" (s) = Y™ ()| + 1 2"(t) = Z"(s)]])

< X" () = X" () 1K (1) = XM ()IP) + (/DY mjcess + /DY <

< ]| X (t) — X™(s)|PE + /2. (101)
By (22), for 0 < s <t <r <T" as above,

t
n—l/%?j(s, t) = SEITE(t) — SHIT(s)) + nl/m?j/ (U7(6) — v;)d6

+ 02 (= g )i (E = 5) + Pt (8 — s). (102)
Since W7 < N7, it follows that \Tlfj are all bounded uniformly by a constant. Since the jumps of
the process Si; are all of size n~1/2 a use of (12.9) of [3] shows thatJS{‘j(I\I/%(t)) =S5 (s))| <
QwLITn(S?j,cl(t —5)) +n /2 where ¢! > 0 is a constant. Since ||I" — ¢*||%, < kn~/2 on QMK
using (18), and assuming n is large enough we therefore have

~

nTV2AY (s,8) > = 2w (S, (t — 8)) —n V2 4 Pnl At - s), (103)

where ¢? = 1ij%;;/2. Hence on Q?’k, noting that A7 (s) <e,

AT (8) = Afj(s) + (T5(8) — Wiy (s)) — (PF5(1) — 75 (s))
< = PAL (s, 1) 4 | XM (8) — X7 (s) [P* + 26

< 20 (SF, (= ) — 2 (t — ) + | X" () — X7(s)||P* + 2.
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Since on QF, A% (r) > 3,
e < 2wlipn (Sfh, ¢t (r — ) — nlP(r — 5) + | X (r) — X" (s)|[P* (104)

PQP*) < PQTF) + PP,

where
Qg’k ={30<s<r<Tl:r—s< an_l/Q, (104) holds},
QF =30 <s<r<T":r—s>an /2, (104) holds}.
On Qg’k,

~

£ < 2wipn (S5, ctan™Y?) + cpwhn (X", an”2)PE

and since (S™, X™(- A ™)) are tight, for every a,
lim P(Q5%) = 0.
n
On QZ’k,
c?a < 2S5 l5 e + cr (2 X" [17m)P
and by tightness of (S™, X™(- A o™)),

lim lim sup P(Q7F) = 0.

a—00 p—yoo

As a result we have, for every k,

lim P(QF) = 0. (105)

n—00

Regarding Qg’k, substituting s = 0 and ¢ € [0, &p] in (101), (102) and (103),

A () < AB(0) + 2/ S5, — n'/2t + el | X" (1) — X0 |Px + €/2.
Since A7;(g9) > €, we have on Qg’k
2 < A(0) + 2||SE |5, — Pnt/? X" (g9) — XOm||Pr
e/2 < Af(0) + 2[|SE I, — ¢'n/Te0 + | X7 (o) [P

By tightness of the random variables £" := 2“3’%“2150 + || X" (g0 A 0™) — X0 [Pk, the fact that

o > ¢gp on Qg’k, and since A7;(0) are bounded (as follows from (20), (21)),

limsup P(Q5°") < limsup P(¢" > ceon'/?) = 0. (106)

n—0o0 n—o0

Combining (100), (105), (106) and (96), we obtain (98).
Now, on Q™% M™(c" Aeg) < e-Y™(0™ A egy) < k. Hence by (87),

P(o" < eg) < P(IM™(0™ Agg) > 1) < P((2™%)%) + L1
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Therefore, for every k,

lim sup lim sup P (0™ < g¢) < lim sup P((Q™%)¢),

go—0t n n
and (97) follows using (96).

Having established (97) and (98), we argue as follows. Lemma 5 and the property (53) of the
policy p’ imply that

IA" (@) < e (Al 0T (107)

i~g

By (50) and the uniqueness statement in Lemma 1, X[‘ -Y! = Zj \i/;"”J for every 7. This and (25),
along with an analogous argument for Z” imply that

V™ =Y+ 112" = 2" < c|lA"]. (108)

Combining (80), (107) and (108), on Q™*, for every t € (go, T},

IM™(t) < ckeg + ctz sup(A?j)Jr. (109)
3 -[Eo,t]
i~y
Hence
P(o™ <T) < P((Q¥F)¢) + P(o™ < gg) + P((2"F)° N {o" > EU,IM"(T") >1})
< P((QV9)%) + P(0™ < £9) + P(o" > e0,¢T' Y | sup (A}t >1—ckeg).  (110)
- '[Eo,T"}
i~vj

Taking €y small enough and using (96), (97) and (98), we have that
lim P(o" < T) = 0. (111)
Since T is arbitrary, we finally have from (94), (95) and (111) that
(X", Y", 2", 0") = (2,0,0,9*%), (X", W",Q",R") is tight.
Also, with (111), the relations (98) and (107) show that

lim P(sup ||A"|| > ce) = 0. (112)
n [Eo,T}
In view of (67) and (108), we have from (112) that |J"[5, converges to zero in distribution, for

every 0 < s < t < oo. As follows from (80), a similar statement holds for |M "3+ Moreover, using
again (109), now equipped with (112), letting n — oo, then g — 0T and finally k¥ — oo we obtain
that IM”(T) — 0 in distribution, and since T is arbitrary, IM™ = 0. This completes the proof of
Proposition 1. L]
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3.3 Large time estimates

In this section we prove Proposition 2. A key ingredient is the following estimate from [1].

Proposition 3 Let Assumption 3 hold. Let (25)—(28) hold. Then

IX™ (@) < O+ O™ (llell + W™ + M) (113)

Proof of Proposition 3: We use the following result from [1]: If

mi=wi— Y Iy, =G@—y,—2), eyhez=0, (114)
J

then
[zl < e(1+8)™|wll;, (115)

where the constants ¢, m do not depend on %, z,y,z: Under Assumption 3(i), (115) follows from
Propositions 3 and 4 of [1]. Under Assumption 3(ii), (115) follows from Proposition 3, Theorem 3
and Lemma 4 of [1].

Let
W (t) = W™ (t) —7"1/0 M"™(s)u™ o G(u"(s),v"(s))ds, (116)

we have from (58) X = X0 4 fot b (X!, UM)ds +rW(t). Lemma 2 implies that there are U7, Y}
and Z7 such that (34)—(37) hold. Hence X™, Y}*, Z", W, W satisfy relations analogous to (114).
As a result, a relation as in (115) holds, and using (116) we obtain (113). U

Remark. The only two places in this paper where Assumption 3 is used are in Theorem 1 and in
obtaining (115) from (114). In fact, also the proof of Theorem 1 (that was carried out in [1]) uses
this assumption only in order to establish (115). In other words, if the implication “(114) implies
(115)” holds true in greater generality then so do Theorems 1 and 2.

Proof of Proposition 2: First consider policies of the form p. By (3), (19) and (29),
IW™IE < e(lA™ 7 + 115" [|c)-

By Assumption 4, applying Lemma 8 shows that E(||A™||)™4 < ¢(1+%)™2, and a similar estimate
holds for S™. As a result,

E(IW™[[)™ < e(1+t)™. (117)

As in the proof of Proposition 1, let 7" = inf{t : M}* > 0}. Under {r" > t}, |M™|} = 0 and
therefore by Proposition 3,

IXPI < o+ 0™zl + IW"l7),  {r" >t} (118)

27



On {7™ < t}, by (3), (5) and (19),
N = n~ V2 MYE < 0~ 2le Z0)F < nH2e N™ < enl/?,
and by Proposition 3,
IXP < CO+ 6™l + W] +n'?), {r" <t} (119)
Combining (117), (118) and Lemma 3 (in particular, Remark (b) that follows),
P(r* < 1) < P(|X"[farn > con'’?) <en ™APE(|X"|f0m)™ < en ™A1 4 1), (120)
Therefore by (119), (120) and Hélder inequality, with ¢=' + ¢~ = 1 and ¢mg = ma,
B[ XP[™ < BIIXPI™ Lnsi] + (B X ™) Y9(P(" < 1)1

<c(l+t)™ + cn(Qq)_lmAn_(ZQ)_lmA(l + t)ma/a
<ec(l+1t)me, (121)

1 =

where the inequality ¢=' — ="' < 0, used on the last line above, follows from mg < m 4 /2.

Next consider the policy p’. Let b > 0 be a constant that does not depend on n or ¢, whose
actual value is determined later. Let

O, =inf{t >0: maxA?j > b}.
~)
By (80), (107) and (108), )
M™ < J" < A" < cmax(Af) T
]

Letting T),, = T A 0,, it follows that
IM™(T,) < cTy,

(c depends on b but not on n, T'). Hence by Proposition 3, we have
1X7 5, < (L + Ty (lell + WPl +cTo) < el + )™ (1 + [Wol5),  (122)
where ¢ depends on z and b but not on 7" or n. We establish below the estimate
P(0, < T) < con'/*™a/8(1 4 T)™, (123)

where ¢y and m are constants that do not depend on T or n. Repeating the argument of (121), with
6, in place of 7", and (122) [resp., (123)] in place of (118) [resp., (120)], shows that E||X7||"™ <
c(1 +T)™s, with gmg = m 4, provided that mg < ma(ma — 2)(bmg —2)~L

In the rest of this section we prove (123). The argument is similar to that used to prove tightness
in Section 3.2, but since the estimates are uniform in time, a more careful analysis is required. By
(55) and (122),

X1 1Y, 127 1, 12 1, < (L +T)™ L+ WP I7) =2 E(n, T).
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Clearly

P(6, <T) < ZP(iggA%(t) > b).
i~ IS

Let ¢ ~ j be fixed. Then

P(sup Aj(t) > b) < P(30 < s <r < Ty, : Afj(s) <b/2,A%5(t) >0, € (s,7),Af5(r) > b).  (124)
t<T

Here b is chosen so that 1 + max;.; max, A};(0) < b/2 < co. Note that with A™ as in (99), (102)
still holds. Arguing as in (101), using the global Holder assumption,

D7 (1) — W (s)] < € (n, T)g(X" (1) — X" (s)) + 1,

where g(z) = ||lz|| + ||z[|¢. Also, ¥ — ¢* = n~Y/2¥" and therefore || T™ — Y7, < n=12¢(n, T).
Thus for s,t as in (124), recalling the notation (92) for wy(z,0),

n YA (s, ) > —2wer, (S, c(t — ) — c€(n, T)(t — 5) + en/2(t — 5).

As a result,

A~

b/2 < AJ5(t) < 2wer, (S, c(t — 8)) + E(n, T)(t — s) — en/2(t — ) + c&(n, T)g(X"(t) — X" (5)).

(125)
Hence
P60, <T) < P(QF) + P(Q3),
where
"={30<s<t<T,:t—s<n 4 (125) holds},
QO ={30<s<t<T,:t—s>n"4 (125) holds}.
On QF,

~

b/2 < 2wer, (S5, 0~ + E(n, T)n™ /" + c€(n, T)g(X] — X1,

—1/4

where t — s <n . By Lemma 9 below, if one chooses b > 12,

~

P(2wer (S5, 1) > /6) < cTn!/1-mal®,

By (58), and the bound b on M", we have | X" (t) — X" (s)|| < c&(n, T)(t—s)+c|W™(t) — W"(s)|| +
b(t — s). Arguing again by Lemma 9, choosing [, large enough,

P(ct(n, T)max{g(X! — X™): 0<t—s <n~ /"t <T,} >b/6) < TPinl/4=mal’,
Also, by (83) and Lemma 8,
P(E(n, T)n~Y* > b/6) < P(IW" 7 > en'/*) < (1 + T)ma/2n=mal,
Hence

P(Q}) < TP /4 mal8 4 c(1 4 )y mal 2 mald, (126)
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On 3,
n!/* <|ISEllig, + €, T) T + cb(n, T)g(X} = X7) < IS5 llig, + c(1+T)™ (1+ [W"||7)?,
for an appropriate m;. Hence by (83), n'/® < c3(1 4 T)™2(1 + || A"||% + ||S™||%y). Using Lemma 8,
P(A"[ > n3(1 4 T)772) < oL 4 Tyma/2emamama/s
A similar bound holds for $™. Hence
P(Q3) < c(1 4 T)malzrmomap —ma/s, (127)

Combining (126) and (127) we obtain (123). U

Lemma 9 Given By > 0 there are constants cy, 1, independent of n and T such that

P(wT(/i” n71/4) > Tﬁﬂo) < 01T51n1/47mA/8, neNT > 1.

)

A similar estimate holds for S’Z in place of A?

Proof of Lemma 9: Fix ¢ and suppress it from the notation. By (22),
A™(t) — A™(s) = n~ 2 (A (t) — A™(s)) — n~ ' 2AR(t — s).
Recall that EA™(T) = A™T. Thus
P(wp (A", n=111) > T=%) < P(A™(T) > 2"T) + P(Q.,) + P(2_), (128)
where
O, = {A™(T) < 2M\"T,3s,¢ € [0,2X"T],0 < t —s < =4 A" (1) — A"(s) > n/2T=P0 4 A" (¢ — 5)},

Q= {A™T) < 2\"T,3s,t € [0,2\"T],0 < t—s < n V4 A" (t)—A"(s) < —n'PT o A" (t—s)}.
Recall that EU(k) = 1. Letting U™(k) = U™(k) — (\")"L, by (6) we have EU"(k) = 0. Let
M} = 4_,U"(k) and note that it is a martingale. For a real-valued function X on Z. let
osc(X,i,4) = max{|X (k) — X(I)| : k,1 € [i + 1,7]}. By (7), using A" < ¢pn, denoting p = con3/%,
we have
j+nt/2T=Bo4r
Py ) < PEj <2, 3 <n V0" > UMk) < (A") )
k=j+1
j+n1/2+r
< (3§ < 20T, Ir < cyn®/4, Z U™ (k) < —(A") " tn!/27—Po)
k=j+1
< P(3j < 2¢nT,0s¢(M™", §,§ + 2con3/*) > ¢;tn=1/2—Po)
< P(3j < 2enT,5 =0,p,2p, ... ,05¢(M", j,j + p) > ¢y 'n /2T~ 3)

<1— (1= P(IM"|} > ¢;'n 12T % /6))2n/*T
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Burkholder’s inequality shows that
E(|Mn|z)mA < CgE(p|U(1)|2)mA/2 < c4n3mA/8(>\n)—mA < C5n_5mA/8.

Hence
P( 7[’]L’+) <1-— (1 - cﬁnfmA/STmAﬁ0)2n1/4T < C7n1/4fmA/8T1+mAﬂo’

for an appropriate constant ¢;. By a similar argument one shows that a similar bound holds for
P(Qg ). As follows from Lemma 8,

P(A™(T) > 2BA™(T)) < en ™A/2(1 + T)"™A/2,

Hence by (128),
P(wT(An,n_l/‘l) >1) < cln1/4_mA/8T1+mA,6‘0

for an appropriate constant ¢; independent of n and T' > 1. Since the Poisson processes S;; are
in particular renewal processes (with finite m 4th moment for interarrival times), a similar result

holds for §g;.. O
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