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Abstract

Determining the spatial position of a speaker finds a growing interest in video confer-
ence scenario where automated camera steering and tracking are required. Speaker
localization can be achieved with a dual step approach. In the preliminary stage
microphone array is used to extract the time difference of arrival (TDOA) of the
speech signal. These readings are then used by the second stage for the actual lo-
calization. In this work we present novel, frequency domain, approaches for TDOA
calculation in a reverberant and noisy environment. Our methods are based on the
speech quasi-stationarity property, and on the fact that the speech and the noise
are uncorrelated. The mathematical derivations in this work are followed by an
extensive experimental study which involves static and tracking scenarios.
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1 Introduction

Determining the spatial position of a speaker finds a growing interest in video
conference scenario where automated camera steering and tracking are re-
quired. Microphone array, which is usually used for speech enhancement in
a noisy environment [1], can be used for the task of speaker localization as
well. The related algorithms can be divided into two groups: single and dual
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step approaches. In single step approaches the source location is determined
directly from the measured data (i.e. the received signals at the microphone
array). In the dual step approaches, the location estimate is obtained by ap-
plying two algorithmic stages. First, time difference (or time delay) of arrival

(TDOA) estimates are obtained from different microphone pairs. Then, these
TDOA readings are used for determining the spatial position of the source.
Single step approaches can be further divided into two groups. The first group
is the high resolution spectral estimation methods. The well known multiple

signal classification (MUSIC) algorithm is a member of this group. In the
second group of single step approaches we find the maximum likelihood (ML)
algorithms, which estimate the source locus by applying maximum likelihood
criterion. Usually, the ML formulation leads to algorithms involving maximiza-
tion of the output power of a beamformer steered to potential source locations
(i.e. [2], [3], [4], [5]). In the dual-step approaches group, the first algorithmic
stage involves TDOA estimation from spatially separated microphone pairs.
The generalized cross correlation (GCC) method presented by Knapp and
Carter [6] is considered to be the classical solution for this algorithmic stage.
However, the GCC method assumes a reverberant free model such that the
acoustical transfer function (ATF), which relates the source and each of the
microphones, is a pure delay. Champagne et al. showed this approximation
to be inaccurate in reverberant conditions, which frequently occur in enclosed
environments [7]. Consequently, algorithms for improving the GCC method
in presence of room reverberation, were suggested [8], [9]. Unfortunately, the
GCC method suffers from another model inaccuracy. It is assumed that the
noise field is uncorrelated, assumption that usually does not hold. Thus, the
GCC method cannot distinguish between the speaker and a directional inter-
ference, as it tends to estimate the TDOA of the stronger signal. Directional
interference is a practical problem in video conference applications. It usu-
ally occurs when a point source, e.g. computer fan, projector or a ceiling fan,
exists. The authors in [10] suggested discriminating speaker from directional
noise with a Gaussian mixture model. A different approach was presented
in [11] and [12], where higher order statistics (HOS) was employed for TDOA
estimation of a non-Gaussian source and correlated Gaussian noise.

Recently, subspace methods were suggested for TDOA estimation. Assuming
spatially uncorrelated noise, Benesty suggested a time domain algorithm for
estimating the (truncated to shorter length) ATF-s for TDOA extraction [13].
Extension of that work, for spatially correlated noise was presented by Doclo
and Moonen [14] [15]. Assuming that the noise correlation matrix is known
(using a voice activity detector (VAD)), the authors present a time domain
algorithm for TDOA estimation using generalized eigenvalue decomposition

(GEVD) approach and a pre-whitening approach.

In this work, we tackle the TDOA estimation problem. Our model assump-
tions consider reverberations and spatially correlated noise scenarios [16],[17].
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In [1] the speaker’s ATF-s ratio was used as part of a beamformer in a speech
enhancement application. Here, we exploit this quantity for the source lo-
calization application. Particularly, we show that the TDOA reading can be
extracted from the location of the maximal peak in the corresponding impulse
response. Similarly to [1] and the preceding work by Shalvi and Weinstein [18]
we also assume that the interfering noise is relatively stationary, and present
a framework where the ATF-s ratio and a noise related term are estimated si-
multaneously without any VAD employment. Quasi-stationarity of the speech
and stationarity of the noise are exploited to derive batch and recursive so-
lutions. The importance of the recursive solution manifests itself in tracking
scenarios, where the estimated ATF-s ratio and noise statistics might slowly
vary with time. Following the work in [19], we have additionally exploited the
fact that there is no correlation between the speaker and the directional noise.
The authors in [19] showed that in an application of signals separation, im-
posing a decorrelation criterion on the estimated signals results ATF-s ratio
estimation. The authors further suggested exploiting speech non-stationarity,
resulting a set of decorrelation equations. However, the obtained equation set
is nonlinear, and due to this nonlinearity an inherent frequency permutation

ambiguity results. The authors in [19] did not give a closed form solution for
the resulting, frequency domain, nonlinear equation set. Instead, it was sug-
gested to solve the problem iteratively, by assuming a simplified FIR model for
the mixing channels and conducting the solution in the time domain. To main-
tain simplicity of the solution, we are solving the problem in the frequency
domain. Furthermore, we do not assume the simplified mixing channel.

The obtained decorrelation equations are closely related to blind source sep-

aration (BSS) problems. Gannot and Yeredor considered the case of instan-
taneous mixture of a non-stationary signal with a stationary noise [20] where
joint diagonalization of correlation matrices is carried out in the time domain.
Considering a convolutive mixture (due to room reverberation), researches
suggested solving the nonlinear frequency domain decorrelation equations by
applying joint diagonalization of the PSD matrices obtained from different
time epoches. Special attention is given to the inherent frequency permutation
problem, which is usually solved by finite impulse response (FIR) constraint
on the separating ATF-s [21],[22] or (equivalently) imposing smoothness in
the frequency domain [23]. In our contribution we exploit the stationarity of
one of the sources (the directional noise) to resolve frequency permutations.
No FIR constraint is employed, and the estimated ATF-s ratio is exploited
for TDOA extraction. Our simulative study shows that the decorrelation con-
straint presents improved TDOA estimation for the batch methods at low
signal to noise ratio (SNR) conditions.

Special attention is given for deriving a recursive solution applicable for track-
ing scenarios. Since the involved decorrelation equation set is nonlinear, we
present a general framework for an approximated recursive solution of a nonlin-
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ear equation set. The method, notated by Recursive Gauus (RG), is applied to
the nonlinear decorrelation equations, resulting a solution applicable for track-
ing scenarios. Opposed to the GCC based methods, our solutions deal with
reverberant environment and directional additive noise scenario. Opposed to
the subspace methods [13][14], the suggested algorithms are conducted in the
frequency domain, resulting computationally more efficient implementations
which do not rely on a VAD for prior knowledge of the noise characteristics.
Furthermore, simulative study shows that the suggested algorithms are suit-
able for tracking scenarios, while the subspace method fails to lock on the
TDOA readings, which constantly change due to source movement.

The outline of this work is as follows. In Section 2 we present the model
assumptions and suggest the use of ATF-s ratio quantity for TDOA estimation.
Section 3 presents the TDOA estimation algorithms, exploiting speech quasi-
stationarity, noise stationarity and the fact that there is no correlation between
the speech and the noise. Finally, extensive experimental study is presented
in Section 4.

2 Problem Formulation and Motivation

In this section the problem is formulated and the basic assumptions are pre-
sented. By analytical expression and by simulative study, we justify the use
of ATF-s ratio for TDOA extraction.

2.1 Basic Model Assumptions

Define a set of M microphones for which the measured signal at the m-th
microphone, zm(t), is:

zm(t) = am(t) ∗ s(t) + nm(t) ; m = 1, . . . , M (1)

where ∗ stands for convolution, s(t) is the source signal and nm(t) is the
interference signal at the m-th microphone. t stands for the discrete time
index. Naturally, we assume that the interference signal is uncorrelated with
the source signal. am(t) is a time-varying ATF from the desired speech source
to the m-th microphone. When nm(t) is a directional interference, we can
state:

nm(t) = bm(t) ∗ n(t) ; m = 1, . . . , M (2)

where bm(t) is the ATF between the noise n(t) and the m-th microphone. s(t)
is assumed to be quasi-stationary, while the interference signals are assumed
to be stationary (or at least more stationary than the speech signal s(t)).
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2.2 Usage of ATF-s Ratio for TDOA Extraction

Let Am(ω) be the frequency response of the m-th ATF am(t). Similarly, let
Bm(ω) be the frequency response of bm(t). Define

Hm(ω) ,
Am(ω)

A1(ω)

the ATF-s ratio and its corresponding impulse response hm(t). Usually, the
desired TDOA value can be extracted from hm(t) by estimating its peak value
location. Assume that:

Am(ω) = αn0e
−jωn0 +

S1
∑

i=1
αni

e−jωni ; m = 2 . . . M

A1(ω) = βp0e
−jωp0 +

S2
∑

i=1
βpi

e−jωpi

with αn0 , βn0 and n0, p0 being the amplitudes and the delays of the main peaks
of am(t) and a1(t) respectively. Then the ratio can be stated as:

Hm(ω) =
αn0e−jωn0

βp0e−jωp0
e(ω); e(ω) =

1+
S1
∑

i=1

αni
e−jωni

αn0e−jωn0

1+
S2
∑

i=1

βpi
e−jωpi

βp0e−jωp0

.

At low reverberation, where |αn0| ≫ |αni
| and |βp0| ≫ |βpi

| ; (i 6= 0) the
error multiplicative term e(ω) tends to be close to 1, and the peak of the
corresponding hm(t) can be used to determine the TDOA 1 . Experimental
study supports this approach.

2.2.1 Preliminary Simulation

To justify the use of the ATF-s ratio for TDOA extraction the following simu-
lation was carried out. In a rectangular room with dimensions [4, 7, 2.75], 125
possible source locations were considered, by uniformly distributing 5 posi-
tions along each axis. A pair of microphones was placed near the center of
the room at coordinates [2, 3.5, 1.375] and [1.7, 3.5, 1.375]. Using the image
method [24][25], the ATF-s relating each possible source position to each mi-
crophone were simulated. Six reverberation values (denoted by Tr) were con-
sidered. Ranging from low reverberation conditions (Tr = 0.1[sec]) to intense
conditions (Tr = 0.6[sec]). Two approaches were examined. TDOA estimation
using ATF-s ratio, and TDOA estimation using the GCC method [6]. Assume

1 We note that hm(t) is a non-causal impulse response, since ATF-s are usually
non-minimum phase. Thus, evaluation of the ATF-s ratio in the Z domain, contains
poles both inside and outside the unit circle.
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a noise free case, such that zm(t) = am(t) ∗ s(t) ; m = 1, . . . , M . The ATF-s
ratio can be estimated from the cross-PSD divided by the auto-PSD:

Φzmz1(ω)

Φz1z1(ω)
=

Am(ω)A1
∗(ω)Φss(ω)

A1(ω)A1
∗(ω)Φss(ω)

= Hm(ω)

where Φss(ω) is the speech PSD at the estimation frame and ∗ stands for con-
jugation. In practice however, PSD-s will be estimated using a finite support
observation window. Suppose that Welch method [26] is applied for the PSD
estimation, using window w(t) of length P . Denote Φ̂zizj

(ω) the PSD esti-

mate of zi with zj. Only for P → ∞ the statement
Φ̂zmz1 (ω)

Φ̂z1z1 (ω)
→ Hm(ω) holds.

However, for a finite length analysis window w(t) this does not hold as the
PSD estimates are smoothed by a circular convolution over the [0, 2π) interval
and exact elimination of common terms in the nominator and denominator of
the stated ratio is not possible. However, for implementing a tracking system,
where fast changes in Hm(ω) might occur, only short observation intervals
can be used. Furthermore, fast update rate and low complexity calculations
can be obtained with short observation frames. Thus, in the simulation to
follow, we will present two approaches. First, long observation intervals are
considered. For this purpose P was set to 4096 samples 2 . While this allows
us to evaluate the ATF-s ratio for TDOA extraction, this is less practical for
tracking applications. We then proceed by evaluating the PSD-s with shorter
frames, i.e. P = 256[samples]. However, as will be seen shortly, reasonable
performance (with respect to TDOA estimation) can be obtained. For the
simulation purposes it is assumed that s(t) is white, such that Φss(ω) is con-
stant ∀ω ∈ [0, 2π). In practice, speech signals are non-white, and might require
longer observation intervals for obtaining meaningful data in each frequency
bin. Using the Welch method with Hanning window of length P , 50% over-
lap and 10 (weighted) periodograms in total, the PSD-s are estimated. For
each source position 10 realizations of s(t) are conducted, resulting a Monte-
Carlo simulation of 1250 evaluations in total. From the evaluated ATF-s ratio,
the corresponding (two-sided) impulse response is extracted. To obtain sub-
sample precision, the calculated impulse response, is Shannon interpolated
with 0.1[sample] resolution. Finally, the TDOA is evaluated by extracting the
position of the maximal peak of the impulse response. Divergence of more than
2 samples from the true TDOA (which is known from the geometry of the prob-
lem) is considered to be anomaly. Non-anomalous estimations are considered
for calculating the root mean square error (RMSE). Figure 1 presents the re-
sult for P = 4096[samples] and Figure 2 for P = 256[samples]. As can be seen
from Figure 1, non-anomalous estimations achieve low RMSE. However, the
anomaly percentage, presents a basic difference between the methods. Note
that by using the long support window the GCC method render useless at
Tr = 0.3[sec] due to divergence from the ideal, reverberant-free, model. This

2 Throughout this work the sampling frequency is 8000[Hz].
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Fig. 1. Simulative model test. Long observation frame.
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Fig. 2. Simulative model test. Short observation frame.

result is compatible with the one presented by Champagne et al. in [7]. On the
other hand, the ATF-s ratio model maintains low anomaly percentage even
at high reverberations. Figure 2 presents the TDOA estimation results based
on short observation interval. As can be seen, the methods still have small
RMSE. From the presented anomaly percentage we can see that by evaluating
the PSD-s with small P we can actually improve the GCC estimation (note
that the analysis carried out in [7] exploited long observation frames). Examin-
ing the anomaly percentage for the ATF-s ratio method, we notice an increase
for large Tr values (up-till 32% for Tr = 0.6[sec], instead of 25% for the long
frame case). However, aiming to mid range reverberation of Tr = 0.2, 0.3[sec]
and exploiting additional, spatially separated, microphone pairs we hope to
achieve reasonable performance despite the use of small P . It is worth men-
tioning that the GCC method still suffers from another modelling assumption;
it assumes uncorrelated measurement noise. In the sequel, we will demonstrate
that the GCC method render useless in the presence of correlated noise and
low SNR conditions, while the algorithms derived in Section 3 present robust
behavior.
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3 Algorithm Derivation - TDOA

In this section we address the problem of ATF-s ratio estimation. Quasi-
stationarity of the speech signal, stationarity of the noise signal and the fact
that speech and noise signals are uncorrelated are exploited for deriving several
algorithms.

3.1 Speech Quasi-Stationarity

An unbiased method for estimating Hm(ω), exploiting the speech signal quasi-
stationarity, was first presented in [1], based on a method derived in [18].
Noting that the speaker and the noise source are uncorrelated, we can state
the following equation:

Φzizj
(ω) = Ai(ω)Aj

∗(ω)Φss(ω) + Bi(ω)Bj
∗(ω)Φnn(ω) (3)

with Φzizj
(ω) being the PSD of zi and zj, Φss(ω) is the speech auto-PSD and

Φnn(ω) is the noise auto-PSD. Examining (3), we note that

Φzmz1(ω) −Hm(ω)Φz1z1(ω) = Φb1(ω) (4)

where
Φb1(ω) = (Gm(ω) −Hm(ω)) |B1(ω)|2 Φnn(ω) (5)

is a noise-only term. In practice however, stationarity of the speech signal can
be assured only over small time intervals. Consider an analysis interval for
which the noise signal can be regarded stationary and the ATF-s time invari-
ant, while the speech signal statistics is changing (quasi-stationarity assump-
tion for speech signals). Dividing the observation interval into N consecutive
frames, an overdetermined set of equations for Hm(ω) is obtained. This set can
be solved by virtue of the least squares (LS) method. The resultant frequency
domain algorithm is now presented.

Exploiting the quasi-stationarity property of the speech and defining:

Φ̂b1(n, ω) , Φ̂zmz1(n, ω) −Hm(ω)Φ̂z1z1(n, ω); n = 1, . . . , N

where, Φ̂zizj
(n, ω) is an estimate of the PSD of zi and zj at the n-th frame,

Equation (4) become a set of equations for Hm(ω). This overdetermined set
for Hm(ω) can also be stated as:

Φ̂zmz1(n, ω) = Hm(ω)Φ̂z1z1(n, ω) + Φb1(ω) + ξ(n, ω); n = 1, . . . , N (6)

where, ξ(n, ω) , Φ̂b1(n, ω) − Φb1(ω) is an error term, which is minimized in
the LS sense, using the overdetermined set (6). The noise-only term Φb1(ω)
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which is regarded stationary, and the ATF ratio Hm(ω), which is assumed to
be slow time varying, are independent of the frame index (n). We denote this
set of equations (or the equivalent relation depicted in (4)) as the first form

of stationarity (S1). The weighted LS (WLS) solution to (6) is:







Ĥm(ω)

Φ̂b1(ω)






=

(

A†WA
)−1

A†WΦ̂zmz1
(ω) (7)

with

A ,















Φ̂z1z1(1, ω), 1
...

Φ̂z1z1(N, ω), 1















; Φ̂zmz1
(ω) ,















Φ̂zmz1(1, ω)
...

Φ̂zmz1(N, ω)















.

W is an optional weight matrix and † stands for Hermitian transpose. In
practice, for a non-moving source, W is set to the identity matrix.

Alternatively, a second form of stationarity (S2) can be stated. Examine

Φ̂zmzm
(n, ω) = Hm(ω)Φ̂z1zm

(n, ω) + Φbm
(ω) + ξ2(n, ω); n = 1, . . . , N (8)

where Φbm
(ω) is also a stationary noise-only term:

Φbm
(ω) = (Gm(ω) −Hm(ω))B1(ω)Bm

∗(ω)Φnn(ω). (9)

This second form of stationarity has LS solution similar to (7):







Ĥm(ω)

Φ̂bm
(ω)






=

(

B†WB
)−1

B†WΦ̂zmzm
(ω) (10)

with

B ,















Φ̂z1zm
(1, ω), 1
...

Φ̂z1zm
(N, ω), 1















; Φ̂zmzm
(ω) ,















Φ̂zmzm
(1, ω)
...

Φ̂zmzm
(N, ω)















.

3.2 Decorrelation Criterion

Until this point we estimated Hm(ω) based on noise stationarity and the
speech quasi-stationarity characteristics. Though this led us to an attractive
closed-form solutions, it is interesting to evaluate the influence of an additional
constraint. Namely, the fact that the speaker and the interference noise are
uncorrelated.
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Our observations are a mixture of the filtered speech sm(t) , am(t) ∗ s(t) and
the noise nm(t). As for directional noise nm(t) , bm(t) ∗ n(t), the cross-PSD
matrix of the first and the m-th microphone can be written as:

P(ω) ,







Φz1z1(ω) Φz1zm
(ω)

Φzmz1(ω) Φzmzm
(ω)






(11)

where Φzizj
= Ai(ω)A∗

j(ω)Φss(ω)+Bi(ω)B∗
j (ω)Φnn(ω). Applying an unmixing

transformation U(ω) to
[

Z1(ω) Zm(ω)

]T

such that the output PSD matrix

R(ω) , U(ω)P(ω)U†(ω) is diagonal yields decorrelated outputs. We show
now that a by-product of the diagonalization process will lead us to an estimate
of Hm(ω). In particular, setting:

U(ω) =
(

u1(ω) −1
−u2(ω) 1

)

and constraining the off diagonal elements of R(ω) to zero we obtain the
(nonlinear) decorrelation criterion:

u∗
2(ω) (Φzmz1(ω) − u1(ω)Φz1z1(ω)) = Φzmzm

(ω) − u1(ω)Φz1zm
(ω). (12)

Note that (12) is a single (nonlinear) equation in two unknowns. Equation
(12) was derived in [19], and it was iteratively solved in the time domain for a
simplified version of the mixing channel, where the problem was constrained
to FIR decoupling filters. The authors in [19] suggested to exploit speech
quasi-stationarity to obtain a set of equations for u1(ω) and u2(ω). Indeed, by
exploiting the quasi-stationarity property of the speech, equation (12) becomes
a set of equations, obtained by evaluating the PSD-s at different frame indices:

u∗
2(ω)

(

Φ̂zmz1
(ω) − u1(ω)Φ̂z1z1

(ω)
)

≈ Φ̂zmzm
(ω) − u1(ω)Φ̂z1zm

(ω) (13)

with

Φ̂zmz1
(ω) ,















Φ̂zmz1(1, ω)
...

Φ̂zmz1(N, ω)















; Φ̂z1z1
(ω) ,















Φ̂z1z1(1, ω)
...

Φ̂z1z1(N, ω)















; Φ̂zmzm
(ω) ,















Φ̂zmzm
(1, ω)
...

Φ̂zmzm
(N, ω)















where N is the number of evaluated frames. For N ≥ 2 we have enough equa-
tions to solve the problem, though the expressions are still non-linear in u1(ω)
and u2(ω). Simple assignment shows that the pair {u2(ω) = Gm(ω), u1(ω) =
Hm(ω)} as well as the pair {u1(ω) = Gm(ω), u2(ω) = Hm(ω)} solves the
equations at hand. This is referred to as the frequency permutation ambiguity
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problem 3 . The authors in [19] did not present a solution to (13). In partic-
ular, they avoided the permutation problem inherent in (13), by solving the
problem (iteratively) in the time domain. In this contribution we solve (13)
directly to obtain an estimate for Hm(ω). Furthermore, we tackle the permu-
tation problem by exploiting noise stationarity.

3.3 Decorrelation Algorithms

To maintain simplicity of the solution, we wish to solve the problem in the
frequency domain. The main attraction of the frequency domain approach is its
ability to translate the problem from convolutive mixture to an instantaneous
mixture. Noting that the equation set (13) is nonlinear in u2(ω) and u1(ω), the
Gauss method is employed. Though other search algorithms can be applied,
this method was chosen due to its simplicity and since a simple way for deriving
a recursive solution for it exists. This recursive solution, which we will address
in the sequel, allows tracking of a moving source.

3.3.1 Linear Solution

We start by presenting a simple and non-iterative way for obtaining an esti-
mate of u1(ω) = Hm(ω) from the set (13). Special attention will be given to
avoid the permutation problem, i.e. the solution u1(ω) = Gm(ω).

Experimental results revealed that the first (and second) form of stationarity
perform well at reasonable signal to noise ratio (SNR), but at negative SNR
values their estimate of Hm(ω) deteriorates. On the other hand, it is speculated
that for negative SNR values, the estimated noise bias terms (Φ̂b1(ω) in (7)
and Φ̂bm

(ω) in (10)) can be reliably obtained 4 . Using (5) and (9) it is evident
that

Φbm
(ω)

Φb1(ω)
= G∗

m(ω) (14)

Thus, a possible initialization for u∗
2(ω) is

u∗
2(ω) =

Φ̂bm
(ω)

Φ̂b1(ω)
(15)

3 Indeed this is a difficulty, since permutations in each frequency prevents consistent
construction of Hm(ω).
4 In general, there is an inherent tradeoff in the algorithm. While estimating noise
bias terms and the speaker’s ATF-ratio in a single LS formulation, an accurate
solution for both cannot be obtained for very high and very low SNR conditions
simultaneously.
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This assignment has a twofold advantage. First, using this initialization, the
set (13) becomes a linear set in u1(ω). Thus, LS solution can be obtained:

Ĥm(ω) =
(

A†A
)−1

A†[Φ̂zmzm
(ω) − u∗

2(ω)Φ̂zmz1
(ω)] (16)

where
A , Φ̂z1zm

(ω) − u∗
2(ω)Φ̂z1z1

(ω)

and u∗
2(ω) is set according to (15). Second, by setting u∗

2(ω) = G∗
m(ω), u1(ω)

must tend to become Hm(ω), thus overcoming the frequency permutation
problem. The resultant algorithm is notated by Linear Decorrelation (LD)
and is summarized in Figure (3).

(1) Estimate Φb1(ω) using (7) and Φbm
(ω) using (10).

(2) Estimate u∗
2(ω) = G∗

m(ω) using (15).
(3) Estimate Hm(ω) using (16).

Fig. 3. Linear Decorrelation (LD) algorithm. Batch solution.

The stated solution is a batch solution i.e. all the available data is used at
once. A recursive solution, directly applicable to the tracking problem, will be
presented in the sequel.

3.3.2 Gauss and First Form of Stationarity

We now present an iterative solution to (13) based on the Gauss method.
In the previous section the LD algorithm resolved the permutation problem
by simply relying on a proper initialization for u2(ω). An alternative approach
(which also exploits noise stationarity), is to solve the sets (13) and (6) si-

multaneously as one large LS problem. Concatenating these equations we
get:







Φ̂z1zm
(ω) Φ̂zmz1

(ω) −Φ̂z1z1
(ω) 0

Φ̂z1z1
(ω) 0 0 1



























Hm(ω)

G∗
m(ω)

Hm(ω)G∗
m(ω)

Φb1(ω)





















≈







Φ̂zmzm
(ω)

Φ̂zmz1
(ω)






(17)

where 0 and 1 stand for column vectors (of proper dimensions) of zeros and
ones respectively. Denote the parameter set by

θ , [Hm(ω),G∗
m(ω), Φb1(ω)]T .
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Denote also:

h(θ) , Hm(ω)







Φ̂z1zm
(ω)

Φ̂z1z1
(ω)





 + G∗
m(ω)







Φ̂zmz1
(ω)

0





 +

+Hm(ω)G∗
m(ω)







−Φ̂z1z1
(ω)

0






+ Φb1(ω)







0

1







(18)

Then Gauss iterations take the form:

θ(l+1) = θ(l) +
(

H(θ(l))
†
H(θ(l))

)−1

H(θ(l))
†(

d − h(θ(l))
)

(19)

where the superscript denotes the iteration index, H(θ(l)) is the gradient ma-
trix at the l-th iteration:

H(θ(l)) , ∇θh(θ)|θ=θ(l) =

=







Φz1zm
(ω) − G(l)

m

∗
(ω)Φ̂z1z1

(ω), Φ̂zmz1
(ω) −H(l)

m (ω)Φ̂z1z1
(ω), 0

Φ̂z1z1
(ω), 0, 1







(20)

and

d ,







Φ̂zmzm
(ω)

Φ̂zmz1
(ω)





 . (21)

Two stopping criterions can be considered. First, the residual norm
∥

∥

∥θ(l+1) − θ(l)
∥

∥

∥

can be limited to a predefined threshold. Second, the number of the iterations
can be limited apriori.

The resultant algorithm is denoted by Gauss and First Form of Stationarity

(GS1) and is summarized in Figure 4.

(1) Denote θ = [Hm(ω),G∗
m(ω), Φb1(ω)]T .

(2) Initialize G(0)
m

∗
(ω) as in the LD algorithm, H(0)

m (ω) as the output of

the LD algorithm and Φ
(0)
b1

(ω) from the LS solution of (7).
(3) Calculate h(θ) using (18).
(4) Calculate H(θ) using (20).
(5) Set d as in (21).
(6) Iterate (19) till a pre-defined convergence criterion is reached.

Fig. 4. Gauss and first form of stationarity (GS1) algorithm. Iterative, batch solu-
tion.
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3.4 Recursive Estimation

In real life scenarios we have to cope with slow changes of the noise statistics
and the ATF-s (due to speaker movement). A sequential solution will allow
us to perform low-complexity, low-latency algorithms which can be applied
directly to the tracking problem.

3.4.1 Recursive Linear LS

By applying the RLS equations (A.3) to the S1 algorithm, using forgetting
factor α < 1, slow variations of Hm(ω) are trackable. This recursive solution
for S1 (Notated by RS1) is summarized in Figure 5.

(1) Use θ = [Hm(ω), Φb1(ω)]T .
(2) Apply (A.3) with: aT

n = [Φ̂z1z1(n, ω), 1] and yn = Φ̂zmz1(n, ω).

Fig. 5. Recursive solution for S1 (RS1)

Similarly, recursive solution can be derived for the LD algorithm. The recursive
version of the LD algorithm, notated by RLD, is summarized in Figure 6.

(1) Use the current estimate of Φb1(ω) available from RS1 algorithm.
(2) Apply (A.3) with θ = [Hm(ω), Φbm

(ω)]T , aT
n = [Φ̂z1zm

(n, ω), 1] and
yn = Φ̂zmzm

(n, ω) for recursive estimation of Φbm
(ω).

(3) Evaluate u∗
2(ω) = G∗

m(ω) using (15).
(4) Apply (A.3) with θ = Hm(ω), an = Φ̂z1zm

(n, ω) − u∗
2(ω)Φ̂z1z1(n, ω)

and yn = Φ̂zmzm
(n, ω)−u∗

2(ω)Φ̂zmz1(n, ω) for recursive estimation of
Hm(ω).

Fig. 6. Recursive solution for LD (RLD)

3.4.2 Recursion for GS1

Algorithms which employ the nonlinear decorrelation equation (12) can be
solved recursively using the Recursive Gauss (RG) method, presented in Ap-
pendix B. For the GS1 algorithm, the parameter set is θ = [Hm(ω),G∗

m(ω), Φb1(ω)]T

and the update stage includes the evaluation of two equations. Consider the
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n-th time instance for which we receive the measurements hn(θ) ≈ dn with:

hn(θ) , Hm(ω)







Φ̂z1zm
(n, ω)

Φ̂z1z1(n, ω)






+ G∗

m(ω)







Φ̂zmz1(n, ω)

0






−

−Hm(ω)G∗
m(ω)







Φ̂z1z1(n, ω)

0






+ Φb1(ω)







0

1






;

dn ,







Φ̂zmzm
(n, ω)

Φ̂zmz1(n, ω)






.

(22)

The gradient matrix of hn(θ) is:

Hn(θ) =







Φ̂z1zm
(n, ω) − G∗

m(ω)Φ̂z1z1(n, ω), Φ̂zmz1(n, ω) −Hm(ω)Φ̂z1z1(n, ω), 0

Φ̂z1z1(n, ω), 0, 1






.

(23)
Using the previous notations, the measurements for the LS problem, at the
n-th time instance take the simple form:

y
n
= dn − hn(θ̂(n − 1)) + Hn(θ̂(n − 1))θ̂(n − 1) = (24)

=







Φ̂zmzm
(n, ω) − Ĥm(n − 1, ω)Ĝ∗

m(n − 1, ω)Φ̂z1z1(n, ω)

Φ̂zmz1(n, ω)







where Ĥm(n − 1, ω)Ĝ∗
m(n − 1, ω) is the estimation of Hm(ω)G∗

m(ω) available
after n−1 measurements. Since for each time instance we have two equations,
the form of RLS depicted in Appendix C should be used. Namely, for each time
instance we perform two RLS iterations, one for each equation. The resultant
recursive algorithm is denoted by RGS1 and summarized in Figure 7.

4 Experimental Study

In this chapter we assess the proposed algorithms, namely S1, LD, and GS1,
and compare them with the classical GCC algorithm [6] and the recently pro-
posed subspace method (GEVD algorithm) presented by Doclo and Moonen
in [14]. The latter is notated by DM.
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Notate the current time instance by n and the sequential number of the
evaluated equation by 2n + m; m ∈ {1, 2}. Evaluate (A.3) with:

(1) a
†
2n+m is the m-th row of the 2 × 3 matrix Hn(θ̂(n − 1)). Hn is

evaluated according to (23).
(2) The current measurement y2n+m is the m-th row of y

n
. y

n
is eval-

uated according to (24).
(3) According to Appendix C, the forgetting factor α should be switched

to 1, whenever m 6= 1.

Fig. 7. Recursive solution for GS1 (RGS1)

4.1 TDOA Estimation - Simulation Setup

We start by describing the simulation setup for TDOA estimation. Through-
out this work, the sampling frequency is Fs = 8000[Hz]. Speech signals are
drawn from the TIMIT database [27] and the noise source is the speech-like
noise drawn from the NOISEX-92 [28] database. Throughout the simulations
speech sentences and the directional interference are filtered by the respective
ATF-s, and summed at different SNR values to create the received micro-
phone signals. Most of the simulations consider ATF-s created with the image
method [24][25]. We also consider a static scenario simulation for which the
ATF-s were obtained beforehand using real room recordings.

4.1.1 Evaluated Algorithms

For the static scenarios, we evaluate the proposed batch algorithms (S1, LD,
GS1). For the tracking scenario, we evaluate the recursive forms of the algo-
rithms (RS1, RLD, RGS1). In both cases, we compare the TDOA estimation
results with the classical GCC method and the subspace DM method.

Unless stated differently, the setup for the DM method is as follows:

(1) The ATF-s length is underestimated to 170 samples. This value was found
to be sufficient for TDOA estimation at Tr = 0.25[sec].

(2) LMS sub-sampling is set to 10 samples.
(3) LMS step-size of 10−8 is used.
(4) First 20000 samples are used for noise covariance matrix estimation.

For the GCC method, the entire available data of each experiment is used to
produce the PSD estimates.

For all evaluated methods sub-sample TDOA calculation is performed using
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Shannon interpolation, on a Ts

10
[sec] resolution grid, where Ts is the sample

interval.

4.1.2 Figures of Merit

The quality of the TDOA estimation algorithms is assessed by the following
figures of merit.

(1) Anomaly percentage. Anomaly is defined as divergence of more than 2
samples from the actual TDOA (known in advance from the geometry of
the problem).

(2) Root Mean Square Error (RMSE) in sample units. When the anomaly
percentage figure of merit is used, the RMSE value is obtained only from
non-anomalous estimates.

(3) For tracking scenario, the perceptual impression of the estimated TDOA
values with respect to their true trajectory is the most important figure
of merit.

4.1.3 PSD estimation

Throughout the simulation we have conducted the PSD estimation using the
Welch method [26]. For tracking purposes it is important to evaluate short ob-
servation intervals as the ATF-s themselves vary with time. For this purpose,
and throughout the simulations, PSD estimates were obtained with Hanning
analysis windows of length 256 samples and 50% overlap. 10 (weighted) peri-
odograms were used for each PSD estimate. For static scenarios, we allowed
for 10 non-overlapping frames for each LS formulation. For statistical signif-
icants we repeated the experiments in a Monte-Carlo simulation (180 trials).
For tracking scenarios it is important to achieve fast update rate in the TDOA
readings. For this purpose, and opposed to the static scenarios, overlapping
frames are used. In particular, in each new frame the recent periodogram is
considered while the oldest periodogram is discarded. This results in strong
overlapping between frames. During the tracking scenarios, the RLS algorithm
is employed, where we have used a forgetting factor of α = 0.8222.

4.2 TDOA Estimation - Static Scenarios

We start by evaluating static scenarios. Namely, scenarios for which the speaker
is not moving and time invariant ATF-s relate its position with each micro-
phone. Though for static scenarios there is no inherent constraint on the data
length that can be used, we have considered the selection of short analysis win-
dow (as in the tracking scenario to follow). We note that the usage of small
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window support should reduce the reverberation effects on the GCC method,
as was previously presented in Section 2.

4.2.1 Simulated ATF-s

For the first static scenario we used room dimensions of [4, 7, 2.75] (all dimen-
sions are in meters). Microphone pair is placed at [2, 3.5, 1.375], [1.7, 3.5, 1.375].
Noise source positioned at [1.5, 4, 2.08] and speech source is placed at [2.53, 4.03, 2.67].
Various reverberation times and SNR values are tested and the ATF-s are sim-
ulated using the image method [24][25]. For this experiment, the percentage
of anomalies is calculated and only non-anomalous estimates are involved in
calculating the RMSE. The anomaly and RMSE results are summarized in Ta-
bles 1 and 2 respectively. As can be seen from Table 1, at low reverberation

Tr[sec] SNR[dB] S1 LD GS1 GCC DM

0.10 5.0 1 0 0 16 1

0.50 5.0 2 5 5 65 46

0.25 5.0 0 0 0 20 12

0.25 0.0 4 3 3 98 19

0.25 −5.0 52 37 24 100 31

Table 1
Static scenario with simulated ATF-s. Anomaly results.

Tr[sec] SNR[dB] S1 LD GS1 GCC DM

0.10 5.0 0.06 0.06 0.06 0.07 0.22

0.50 5.0 0.15 0.15 0.14 0.13 0.80

0.25 5.0 0.09 0.10 0.10 0.09 0.48

0.25 0.0 0.12 0.12 0.13 0.07 0.72

0.25 −5.0 0.12 0.12 0.15 - 0.89

Table 2
Static scenario with simulated ATF-s. RMSE results.

conditions (Tr = 0.1[sec]) and high SNR (5[dB]) all methods perform well (this
might exclude the GCC method that even at these mild conditions has 16%
anomaly). When we test severe reverberation of Tr = 0.5[sec], even in the high
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Fig. 8. Real room ATF-s. Geometric configuration.

SNR level, the performance of the subspace method DM and the GCC rapidly
deteriorate. It seems that despite the use of short support analysis window P ,
the GCC still lacks the reverberant model. The subspace methods becomes
inadequate probably due to the underestimated ATF length. Possibly, this
can be solved on the expense of increased complexity. On the other hand, the
simulation shows that the proposed frequency domain methods present low
anomaly results. This is also the case at mid-range reverberation Tr = 0.25[sec]
and at lower SNR conditions. Note that at low SNR the decorrelation based
algorithms LD, GS1 outperform the stationarity based algorithm S1. Further-
more, at low SNR conditions the GCC render useless, since it locks on the
directional interference TDOA instead of the speaker TDOA. We note that
the DM method, which exploits a priori knowledge of noise covariance ma-
trix, does not deteriorate fast at the low SNR conditions. However, it is still
outperformed by GS1. Evaluation of the RMSE (for the non-anomalous ex-
periments) demonstrates that the TDOA is extracted with high accuracy. The
DM method presents slightly higher deviation from the true TDOA.

4.2.2 Real Room ATF-s

The actual room configuration is depicted in Figure 8. Using real room record-
ings, the ATF-s were calculated beforehand and then used in the simulations.
From the geometry of the problem, and from the obtained ATF-s it was calcu-
lated that the speaker’s TDOA is 1.5[sample] and the directional noise TDOA
is −1.1[sample]. Table 3 presents the RMSE for the evaluated algorithms,
at various SNR values. Within this experiment anomaly is not considered.
Several phenomena are manifested by Table 3. Note that the proposed meth-
ods have lower RMSE than the GCC algorithm. This also holds for the DM
algorithm, except for the very low SNR= −5[dB] (however, we note that the
DM algorithm uses a priori knowledge of the noise covariance matrix, while
in the proposed methods the noise bias term is directly estimated from the
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SNR[dB] S1 LD GS1 GCC DM

−5.0 1.44 1.11 0.86 2.70 0.77

−2.5 0.46 0.41 0.41 2.71 0.62

0.0 0.36 0.09 0.08 2.65 0.60

2.5 0.07 0.07 0.05 1.19 0.67

5.0 0.05 0.04 0.03 0.30 0.93

Table 3
Static scenario with real room ATF-s. RMSE results.

noisy observation). We also note that the RMSE value of 2.7[samples] pre-
sented by the GCC method at negative SNR is mainly caused by the bias
of the method, due to its tendency to lock on the stronger (correlated) signal
(bias level of 2.6−2.7 samples is the value that diverts the GCC readings from
the speaker’s TDOA to the noise TDOA). We also note, that as before, slight
improvement is obtained by the decorrelation methods (LD, GS1) compared
with the stationarity method (S1) at low SNR conditions.

4.3 TDOA Estimation - Tracking Scenario

We proceed by discussing the tracking scenario in which a moving speaker
is considered. Room dimensions and the noise source position are as in the
first static scenario, depicted in Subsection 4.2.1. The speaker trajectory is
set to an helix with radius R = 1.5[m] around the reference microphone, at
movement speed of 0.5[m/s] and for a total movement time of T = 30[sec].
The speaker Cartesian position as a function of time t ∈ [0, T ] is,

x(t) = 2 + R cos(2πft), y(t) = 3.5 + R sin(2πft), z(t) = 1 + t
T

with f = 0.0529[Hz]. This trajectory is depicted in Figure 9. TDOA esti-
mation results are presented with respect to the microphone pair placed at
[2, 3.5, 1.375], [2.3, 3.5, 1.375]. Sampling every 3.75[cm] along the speaker tra-
jectory, the ATF-s between the speaker and the microphones are simulated
using the image method and used to filter the speech. Reverberation time is
set to 0.25[sec]. The mean SNR for the 30[sec] long signal is set to a relatively
high value of 10[dB] to produce reasonable results. The TDOA extraction
procedures are the same as in the static scenario. However, for the proposed
methods, we now solve the LS problem recursively with a forgetting factor
smaller than one and use overlapping frames.
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Fig. 9. Speaker trajectory

4.3.1 Tracking Scenario - Evaluation

We proceed by presenting estimation results for 6 methods. Recursive forms of
S1 (RS1), LD (RLD) and GS1 (RGS1) are evaluated and compared with the
GCC and DM methods for the tracking scenario. Here, we further consider
the adaptive eigenvalue decomposition method, proposed by Benesty 5 [13]
and denoted here by EVD. For the latter, a step size of 10−7 is used. In order
for the subspace methods (i.e. EVD and DM) to work in the tracking sce-
nario, Doclo [29] proposed to slightly modify the algorithms by introducing
intermediate initializations, reducing the LMS sub-sampling to 1 sample and
using underestimated ATF-s of 20 samples. Figure 10 presents the TDOA es-
timation plots for the different methods. As can be seen from Fig. 10 the
subspace methods have difficulties in locking on the relatively fast chang-
ing ATF-s, thus introducing large anomaly percentage. We note that despite
the relatively high mean SNR, the instantaneous SNR might be low. This
causes the EVD method, and especially the GCC method, to lock on the
noise TDOA reading (which is approximately at 4.2[samples]) during low-
SNR time epoches. As the DM method takes into account the noise field, it
does not have the EVD tendency to lock on the noise, but still many of its
readings are erroneous, especially when the speech TDOA is close to the noise
TDOA. In contrast, the proposed methods (RS1, RLD, RGS1) usually manage
to track the changes in the speaker TDOA. We note however, that due to the
memory introduced by the RLS-based algorithm, time instances where wrong
TDOA is estimated, cause the estimated trajectory to slightly distract from
the real trajectory. Nevertheless, the obtained performance is significantly su-

5 Since the mean SNR is relatively high, applying this subspace method is at place
here.
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Fig. 10. TDOA estimation results. Solid line: True TDOA. Dots: Estimation results.
The method’s name, its bias, RMSE and anomaly results are presented in the title
of each plot.

perior to the other methods. We further note that, as the the decorrelation
methods (RLD, RGS1) did not yield an improvement in the tracking scenario
compared with the simpler RS1 method, only the latter is presented in the
evaluation to follow.

4.3.2 Switching Scenario - Evaluation

Consider the following simulation which is typical for a video conference sce-
nario. Two speakers, located at two different and fixed locations alternately
speak. The camera should be able to maneuver from one person to the other.
For this scenario, using the same settings as in the previous experiment, simu-
lation was conducted with one speaker located at the position [2.75, 4.75, 2.436]
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and the other at [1.47, 4.03, 2.674]. A directional interference was placed at the
position [2, 4.207, 2.082]. Figure 11 presents the TDOA estimation results by
the RS1 algorithm (which gave the best results), for the previously mentioned
microphone pair. For this experiment, anomaly was defined as divergence of
more than 0.5 [sample] from the true TDOA. As can be seen from the plot, for
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Fig. 11. TDOA estimation results. Solid line: True TDOA. Dots: Estimation results.
The method’s name, its bias, RMSE and anomaly results are presented in the title
of the plot.

the stated scenario and microphone pair, the algorithm demonstrates excellent
tracking capabilities.

5 Summary

In this work novel TDOA estimation algorithms, based on the ATF-s ra-
tio Hm(ω) for TDOA extraction, were presented. Speech quasi-stationarity,
noise stationarity and the the fact that there is no correlation between the
speech and the noise were used for Hm(ω) estimation. Noise stationarity was
employed for resolving frequency permutation ambiguity, inherent to the fre-
quency domain decorrelation criterion. Simulation results revealed superiority
over the classical generalized cross correlation (GCC) method and the recently
proposed subspace method. Usage of short support analysis window was con-
sidered for improving GCC robustness to reverberation. Computational con-
siderations, presented in Appendix D, revealed that the suggested frequency
domain methods result in low computational costs. Special care was given to
recursive implementation which is applicable for the tracking scenario. This
resulted in a general formulation, notated by recursive Gauss (RG), for recur-
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sive solution of a nonlinear equation set.
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A Recursive Least Squares

Sequential solution to the linear LS problem Aθ ≈ y can be obtained on
a frame-by-frame basis, using the recursive least squares (RLS) algorithm.
Consider a weighted LS (WLS) problem for estimating the parameter set
θ ∈ C

p based on N equations:

θ̂(N) = arg min
θ

(

A1:Nθ − y
1:N

)†
W1:N

(

A1:Nθ − y
1:N

)

(A.1)

with

W1:N =





















αN−1 0 . . . 0

0
. . .

...
... α 0

0 . . . 0 1





















(A.2)

a diagonal N × N weight matrix, with the n-th element along the diagonal
set to αN−n. α is the forgetting factor, 0 < α ≤ 1. A1:N stands for an N × p

matrix and y
1:N

is an N × 1 measurement vector

A1:N ,















a
†
1

...

a
†
N















; y
1:N

,















y1

...

yN















with an; n = 1, . . . , N a p × 1 vector. Then, the recursive solution to (A.1)
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takes the known form (see for example [30],[31]):

Kn =
Pn−1an

α+a
†
nPn−1an

θ̂(n) = θ̂(n − 1) + Kn

(

yn − a†
nθ̂(n − 1)

)

Pn =
(

n
∑

t=1
αn−tata

†
t

)−1

=
(

Pn−1 − Kna†
nPn−1

)

1
α

(A.3)

where Pn is the weighted inverse. To avoid direct calculation of the initial
inverse P0, a common approach is to use the diagonal initialization P0 = βI

with β ≫ 1.

B Recursive Nonlinear Least Squares

In this appendix a method is derived for recursive estimate of a nonlinear LS
problem. The method first resolves the nonlinearities by first-order approxi-
mation, as in the Gauss method. Then, by proper approximation, a recursion
is derived. We denote this recursive procedure by Recursive Gauss (RG).

Consider a nonlinear equation set for a p × 1 parameter vector θ ∈ C
p

h1:N(θ) = d1:N

with

h1:N(θ) ,















h1(θ)
...

hN(θ)















; d1:N ,















d1

...

dN















.

Applying first-order approximation around an initial guess θ(0) (as with the
Gauss method) we obtain:

h1:N(θ(0)) + H1:N(θ(0))
(

θ − θ(0)
)

≈ d1:N (B.1)

where H1:N is the N × p gradient matrix:

H1:N(θ) ,















H1(θ)
...

HN(θ)














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with Hn(θ) = ∇θhn(θ) the gradient row vector of hn(θ). According to the
Gauss method, the iterative LS solution to the linearized set (B.1) is:

θ(l+1) =
(

H1:N(θ(l))
†
H1:N(θ(l))

)−1

H1:N(θ(l))
†(

d1:N − h1:N(θ(l)) + H1:N(θ(l))θ(l)
)

where the superscript denotes the iteration number. Consider the next mea-
surement hN+1(θ) = dN+1 available at time instance N+1. In order to estimate
θ we will use all the available measurements simultaneously. Though we could
approximate all N + 1 equations at the current estimate θ(l+1), we will do so
only for the new equation. Namely, instead of minimizing in the LS sense the
following residual norm:

min
θ

∥

∥

∥d1:N+1 −
(

h1:N+1(θ
(l+1)) + H1:N+1(θ

(l+1))
(

θ − θ(l+1)
))

∥

∥

∥

we will minimize:

min
θ

∥

∥

∥

∥

∥

∥

∥

d1:N −
(

h1:N(θ(l)) + H1:N(θ(l))
(

θ − θ(l)
))

dN+1 −
(

hN+1(θ
(l+1)) + HN+1(θ

(l+1))
(

θ − θ(l+1)
))

∥

∥

∥

∥

∥

∥

∥

The reason for this approximation is to keep past solutions intact, i.e. when
new equation becomes available there is no need to update past solutions
based on the new equation, thus, enabling a recursive solution to be derived.
Now, using stochastic approximation, i.e. replacing the iteration index by the
time index, a sequential algorithm is obtained. To summarize the procedure,
an estimate for θ at the current time instance n (denoted by θ̂(n)) is obtained
by solving the following LS problem sequentially using the RLS procedure:

θ̂(n) = arg min
θ

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥















H1(θ̂(0))
...

Hn(θ̂(n − 1))















θ − y
1:n

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(B.2)

where

y
1:n

,















d1 − h1(θ̂(0)) + H1(θ̂(0))θ̂(0)
...

dn − hn(θ̂(n − 1)) + Hn(θ̂(n − 1))θ̂(n − 1)















with θ̂(0) the initial estimate for the parameter set. Recalling that in tracking
problems the parameter set θ might slowly vary with time, a common practice
is to apply the RLS algorithm with a diagonal weight matrix, as depicted in
(A.2).
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C Recursive Least Squares for Multiple Readings

Assume a scenario in which for each time instance we have K scalar measure-
ments zt ∈ C

K related to an unknown p × 1 parameter vector θ ∈ C
p by a

linear K × p transformation Ht

zt ≈ Htθ.

The approximation is due to the fact that the measurements are noisy, or due
to slight modelling errors. N time instances can be augmented to a matrix
form z1:N ≈ H1:Nθ where

z1:N ,















z1

...

zN















; H1:N ,















H1

...

HN















.

The weighted LS (WLS) solution for θ, using nonnegative weight matrix W1:N

(of size KN × KN) is:

θ̂ =
(

H1:N
†W1:NH1:N

)−1
H1:N

†W1:Nz1:N (C.1)

Our goal is to evaluate (C.1) recursively. If the parameters slowly change, a
common approach is to apply a diagonal weight matrix W1:N with powers of
a forgetting factor 0 < α ≤ 1 along its diagonal. Note, that for measurements
associated with the same time instance, we wish to apply the same factor,
since equations of the same time instance have equal importance. Such weight
matrix can be represented recursively as:

W1:N =







αW1:N−1 0

0† I






; W1:1 = I

where I and 0 stand for the identity and zero matrices of sizes K × K and
(N − 1)K × K respectively. Though it might seem that in order to derive
a recursive solution for (C.1) a K × K matrix inversion should be made in
each RLS iteration, in practice the complexity can be further reduced. This
is obtained by applying the well known RLS algorithm with a minor twist.
Consider a single equation which is updated into the recursion. We must check
if this new equation belongs to the next time instance. If so, a memory factor
α ≤ 1 is applied. If this is not the case and we are evaluating one of the K

equations of the current time instance, a memory factor of 1 is used. Thus,
in order to derive a recursion, where the update stage considers a single

equation, the forgetting factor should vary. Notating the time instance by n
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and the sequential number of the equation by nK + k (where k ∈ {1, . . . , K})
the forgetting factor becomes

forgetting factor =







α ; k = 1,

1 ; otherwise.

D Computational Complexity

In this section we address the computational complexity of the proposed fre-
quency domain algorithms. Denote by P the periodogram length and by K

the periodogram shift involved in the Welch PSD estimation. Applying one
iteration of the RLS algorithm on a parameter set θ ∈ Cp involves 10p2 + 12p
real multiplications and one complex division. Noting that RLS iteration is
performed in each frequency bin and that there are P

2
frequencies to evaluate,

the total number of real multiplications performed by the RLS is P (10p2+12p)
2

.
The suggested frequency domain algorithms further involve one IFFT oper-
ation and interpolation. Assuming that the interpolation is conducted for S

samples 6 with a 1
10

sample resolution, the last stage involves approximately
2P log2 P +10S2 real multiplications. Consider for example the RS1 algorithm.
Cross-PSD Φzmz1(ω) and auto-PSD Φz1z1(ω) can be compactly evaluated for
every new K samples using

2(P + 2P log2 P +
3P

2
) = 2P (2.5 + 2 log2 P )

real multiplications. Considering the RLS iterations and the time domain post-
processing, the computational burden per sample is

2P (2.5 + 2 log2 P ) + P (10p2+12p)
2

+ 2P log2 P + 10S2

K

real multiplications. For RS1 algorithm p = 2. Assuming that S = 17, P =
256, K = 128 this yields approximately 193 multiplications per sample. Recall
that this algorithmic stage is only the first one in the localization task. How-
ever, we note that the computational complexity of the second algorithmic
stage (namely, localization from the TDOA estimates) is negligible comparing
with the first algorithmic stage.

6 The region of interest for conducting the interpolation is bounded by the micro-
phone pair separation.
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