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Abstract

Existing supergaussian speech models in the short-time Fourier transform domain are based on the assumption that

distinct spectral components are statistically independent. The corresponding minimum mean-square error (MMSE) spectral

estimators require an estimator for the a priori SNR. Unfortunately, the latter is often obtained by the decision-directed

approach of Ephraim and Malah, which relies on the strong time-correlation between successive speech spectral components.

In this paper, we extend the supergaussian speech models by taking into consideration the time-frequency correlation

between spectral components. We introduce noncausal a priori SNR estimators for Gamma and Laplacian speech models,

and derive noncausal estimators for the clean speech spectral components. The noncausal a priori SNR estimation consists

of two major steps, which follow the rational of Kalman filtering: a “propagation” step and an “update” step. Estimates

for the speech spectral variances and the instantaneous power from the previous frame are propagated in time to obtain an

estimate for the spectral variance in the current frame. Subsequently, the estimate for the spectral variance is updated by

computing the conditional variance of the speech spectral component, based on the underlying speech model. Experimental

results demonstrate the improved performance of the proposed algorithms.

I. INTRODUCTION

Optimal estimators for speech enhancement in the short-time Fourier transform (STFT) domain are often based

on a Gaussian statistical model [1]–[5]. Accordingly, the individual short-term spectral components of the speech

and noise signals are modelled as statistically independent Gaussian random variables. Using this model, Ephraim

and Malah derived a short-term spectral amplitude (STSA) estimator, which minimizes the mean-square error of the

spectral magnitude [1], and a Log-Spectral Amplitude (LSA) estimator, which minimizes the mean-square error of

the log-spectra. Wolfe and Godsill [6] derived under the same modeling assumptions three alternative suppression

rules, which are based on joint maximum a posteriori (MAP) spectral amplitude and phase estimation, MAP spectral

amplitude estimation, and minimum mean-square error (MMSE) spectral power estimation. The resulting suppression
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rules are simpler than those of Ephraim and Malah, yet demonstrate similar effect in reducing residual musical noise

phenomena. Lotter et al. [5] considered a multichannel Gaussian statistical model, where speech spectral amplitudes

in different microphones are identical up to a constant channel-dependent factor, while noise components in different

microphones are statistically independent Gaussian random variables. They assumed statistical independence across

time and frequency in the STFT domain, and generalized the STSA estimator of Ephraim and Malah and the

MAP amplitude estimator of Wolfe and Godsill to the multichannel case. Both multichannel estimators provide

a significant gain compared to the STSA estimator, when the speech components in different microphones are in

phase (nonreverberant environment) and the noise components are sufficiently uncorrelated.

The Gaussian model is motivated by the central limit theorem, as each Fourier expansion coefficient is a weighted

sum of random variables resulting from the random sequence [1]. When the span of correlation within the signal is

sufficiently short compared to the size of the frames, the probability distribution function of the spectral coefficients

asymptotically approaches gaussian as the frame’s size increases. The gaussian approximation is in the central region

of the gaussian curve near the mean. However, the approximation can be very inaccurate in the tail regions away

from the mean [7]. Furthermore, the necessary conditions for the central limit theorem, e.g. that a particular few

of the member random variables does not dominate the sum [7], are not satisfied for speech signals. In addition,

the span of correlation of voiced speech is larger than the typical sizes of frames used in speech enhancement

applications [8]. Consequently, statistical models other than the Gaussian model should also be considered [8].

Porter and Boll [9] pointed out that a priori speech spectra do not have a Gaussian distribution, but Gamma-like

distribution. They proposed to compute the optimal estimator directly from the speech data, rather than from a

parametric model of the speech statistics. Martin [8] considered a Gamma speech model, in which the real and

imaginary parts of the clean speech spectral components are modeled as independent and identically distributed (IID)

Gamma random variables. He assumed that distinct spectral components are statistically independent, and derived

MMSE estimators for the complex speech spectral coefficients under Gaussian and Laplacian noise modeling. He

showed that under Gaussian noise modeling, the Gamma speech model yields higher improvement in the segmental

SNR than the Gaussian speech model. Under Laplacian noise modeling, the Gamma speech model results in lower

residual musical noise than the Gaussian speech model. Breithaupt and Martin [10] derived, under the same statistical

modeling, MMSE estimators for the magnitude-squared spectral coefficients, and compared their performance to

that obtained by using a Gaussian speech model. They showed that improvement in the segmental SNR comes

at the expense of additional residual musical noise. Lotter and Vary [11] derived a MAP estimator for the speech

spectral amplitude, based on a Gaussian noise model and a supergaussian speech model. They proposed a parametric

probability density function (pdf) for the speech spectral amplitude, which approximates, with a proper choice of

the parameters, the Gamma and Laplacian densities. Compared with the STSA estimator of Ephraim-Malah, the

MAP estimator with Laplacian speech modeling demonstrates improved noise reduction. Martin and Breithaupt

[12] showed that modeling the real and imaginary parts of the clean speech spectral components as Laplacian
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random variables, the MMSE estimators for the complex speech spectral coefficients have similar properties to

those estimators derived under Gamma modeling, but are easier to compute and implement.

Unfortunately, in all the above developments the a priori SNR, which is the dominant parameter of the spectral

estimators, e.g., [6], [13], [14], is obtained by the decision-directed approach of Ephraim and Malah [1]. On the

one hand, spectral components in distinct time-frequency bins are assumed statistically independent when deriving

analytical expressions for the speech estimators. On the other hand, the decision-directed a priori SNR estimator

heavily relies on the strong time-correlation between successive speech spectral components. Recently, we introduced

a novel Gaussian statistical model for speech enhancement, which takes into account the time-frequency correlation

of speech signals [15]. We derived causal and noncausal recursive estimators for the a priori SNR, based on the

statistical model, and showed their close relation to the decision-directed estimator. The causal estimator degenerates,

as a special case, to a “decision-directed” estimator with a time-varying frequency-dependent weighting factor. The

noncausal estimator employs future spectral measurements to better predict the spectral variances of the clean

speech. Under the assumed statistical model, the noncausal a priori SNR estimator yields a higher improvement in

the segmental SNR, lower log-spectral distortion (LSD), and better Perceptual Evaluation of Speech Quality scores

(PESQ, ITU-T P.862), than the decision-directed estimator [16].

In this paper, we extend our recursive estimation approach to Gamma and Laplacian speech models, while

the noise model remains gaussian. In contrast with existing supergaussian speech models [8], [10], [12], spectral

components are assumed statistically correlated in the STFT domain, and thus their estimation is conditional on the

information extracted from measurements in neighboring time-frequency bins. We show that the a priori SNR is a

more dominant parameter than the a posteriori SNR, as is the case with the Ephraim-Malah gain functions [1], [17],

which were derived under a Gaussian speech model. However, the MMSE gain functions for Gamma and Laplacian

speech models are monotonically increasing as a function of the a posteriori SNR, whereas the Ephraim-Malah

spectral gains are monotonically decreasing functions of the a posteriori SNR. The latter behavior is generally

preferable, since it introduces a mechanism that counters the musical noise phenomenon [13]. Therefore, when the

a priori SNR is estimated by the decision-directed method, the MMSE gain functions often produce higher levels

of residual musical noise than the Ephraim-Malah gain functions. By contrast, noncausal a priori SNR estimators

for the Gamma and Laplacian speech models, having a few subsequent spectral measurements at hand, facilitate

a distinction between speech onsets and noise irregularities. Local bursts of noise are assigned a lower a priori

SNR, while speech onsets are assigned a higher a priori SNR. Thus, speech onsets are better preserved, while the

musical noise effect is reduced.

The proposed noncausal a priori SNR estimation consists of two major steps, which follow the rational of

Kalman filtering: a “propagation” step and an “update” step. Estimates for the speech spectral variances and the

instantaneous power from the previous frame are propagated in time to obtain an estimate for the spectral variance

in the current frame. Subsequently, the estimate for the spectral variance is updated by computing the conditional
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variance of the speech spectral component, based on the underlying speech model. Experimental results show that

the noncausal estimator consistently yields a higher segmental SNR and a lower LSD, than the decision-directed

method, under all tested environmental conditions and speech models. The performance, in terms of segmental SNR

and LSD, is greatest when using a Laplacian speech model and noncausal a priori SNR estimator. The performance

is worst when using a Gaussian speech model and a decision-directed a priori SNR estimator. The Gamma speech

model yields a higher segmental SNR and a lower LSD than the other speech models, only when the a priori

SNR is estimated by the decision-directed method. However, when the a priori SNR is estimated by the proposed

method, the Laplacian speech model yields a higher segmental SNR and a lower LSD than the other speech models.

The differences between the Gaussian, Gamma and Laplacian speech models are smaller when using the noncausal

estimators than when using the decision-directed method. Informal listening tests confirm that by using the noncausal

estimators, speech components are better preserved, while the residual musical noise is further reduced. The level of

residual musical noise is minimal when using a Gaussian speech model and the corresponding noncausal estimator.

The residual musical noise is maximal when using a Gamma speech model and the decision-directed method.

The paper is organized as follows. In Section II, we present Gaussian, Gamma and Laplacian speech models, which

allow for statistical dependence between speech spectral components in the time-frequency domain. In Section III,

we derive noncausal MMSE estimators for the clean speech spectral components, based on the proposed speech

models. In Section IV, we introduce noncausal estimators for the a priori SNR, and present noncausal recursive

speech enhancement algorithms. Finally, in Section V, we evaluate the performance of the proposed algorithms, and

show experimental results, which demonstrate their advantage, compared to using the decision-directed approach.

II. STATISTICAL MODEL

Let x and d denote speech and uncorrelated additive noise signals, and let y = x + d represent the observed

signal. Applying the STFT to the observed signal, we have in the time-frequency domain

Y (k, ℓ) = X(k, ℓ) + D(k, ℓ) (1)

where k is the frequency-bin index (k = 0, 1, . . . ,K − 1) and ℓ is the time frame index (ℓ = 0, 1, . . .). A statistical

model, which takes into account the time-frequency correlation of speech signals, was recently proposed in [18].

Accordingly,

1) The noise spectral components D(k, ℓ) are statistically independent zero-mean complex Gaussian random

variables. The real and imaginary parts of D(k, ℓ) are IID.

2) For fixed k and ℓ, a speech spectral component X(k, ℓ) is a zero-mean complex random variable. Its real and

imaginary parts are IID.

3) The sequence of speech spectral variances {λX(k, ℓ) | ℓ = 0, 1, . . .}, where λX(k, ℓ)
△
= E

{
|X(k, ℓ)|2

}
, is a

random process. The spectral variances λX(k, ℓ) are generally correlated with the speech spectral magnitudes

|X(k′, ℓ′)|. However, given λX(k, ℓ), X(k, ℓ) is statistically independent of X(k′, ℓ′) for all (k′, ℓ′) 6= (k, ℓ).
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The conditional pdf of X(k, ℓ) given the spectral variance λX(k, ℓ) is determined by the specific speech model.

Let XR = ℜ{X} and XI = ℑ{X} denote, respectively, the real and imaginary parts of a clean speech spectral

component X . Let p (Xρ |λX) denote the conditional pdf of Xρ (ρ ∈ {R, I}) given the spectral variance λX . Then,

for a Gaussian speech model [1]

p (Xρ |λX) =
1√

π λX

exp

(
−

X2
ρ

λX

)
, (2)

for a Gamma speech model [8]

p (Xρ |λX) =
1

2
√

π

(
3

2λX

)1/4

|Xρ|−1/2 exp

(
−
√

3

2λX
|Xρ|

)
, (3)

and for a Laplacian speech model [10], [12]

p (Xρ |λX) =
1√
λX

exp

(
−2 |Xρ|√

λX

)
. (4)

In contrast with existing supergaussian speech models [8], [10], [12], successive spectral components are correlated,

as the random processes {X(k, ℓ) | ℓ = 0, 1, . . .} and {λX(k, ℓ) | ℓ = 0, 1, . . .} are not independent. Therefore, the

speech enhancement problem cannot be formulated as that of estimating X(k, ℓ) from Y (k, ℓ) alone.

III. MMSE SIGNAL ESTIMATION

In this section, we derive a noncausal MMSE estimator for X(k, ℓ), for Gaussian, Gamma and Laplacian speech

models. We assume knowledge of the noise spectrum, which in practice can be estimated by using the Minima

Controlled Recursive Averaging approach [19]. For notational simplicity, we often omit the arguments k and ℓ when

there is no confusion.

Let Yℓ+L
0 = {Y (k, ℓ′) | 0 ≤ k ≤ K − 1, 0 ≤ ℓ′ ≤ ℓ + L} represent the set of spectral measurements up to frame

ℓ + L, where L (L ≥ 0) denotes an admissible time delay in frames between the noisy speech signal and the

enhanced signal. Let p
(
Xρ | Yℓ+L

0 , λX

)
denote the conditional pdf of Xρ (ρ ∈ {R, I}) given the spectral variance

λX and the noisy measurements Yℓ+L
0 . Let p

(
λX | Yℓ+L

0

)
denote the conditional pdf of λX given Yℓ+L

0 . Then, a

noncausal MMSE estimator X̂ρ for Xρ is obtained by

X̂ρ = E
{
Xρ | Yℓ+L

0

}
=

∫∫
Xρ p

(
Xρ | Yℓ+L

0 , λX

)
p
(
λX | Yℓ+L

0

)
dXρ dλX . (5)

Applying Bayes’ rule, we have

p
(
Xρ | Yℓ+L

0 , λX

)
=

p
(
Yρ |Xρ, Yℓ+L

0 \{Yρ}, λX

)
p
(
Xρ | Yℓ+L

0 \{Yρ}, λX

)
∫

p
(
Yρ |Xρ, Yℓ+L

0 \{Yρ}, λX

)
p
(
Xρ | Yℓ+L

0 \{Yρ}, λX

)
dXρ

. (6)

The model assumptions imply

p
(
Yρ |Xρ, Yℓ+L

0 \{Yρ}, λX

)
= p (Yρ |Xρ) , (7)

p
(
Xρ | Yℓ+L

0 \{Yρ}, λX

)
= p (Xρ |λX) . (8)
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Approximating the conditional pdf of λX given the noisy observations Yℓ+L
0 by a Dirac delta function at position

λX|ℓ+L
△
= E

{
|X|2 | Yℓ+L

0

}
, and substituting (7) and (8) into (6), the spectral estimator X̂ρ is given by

X̂ρ =

∫∫
Xρ p (Xρ |Yρ, λX) δ

(
λX − λX|ℓ+L

)
dXρ dλX

=

∫
Xρ p

(
Xρ |Yρ, λX|ℓ+L

)
dXρ = E

{
Xρ |Yρ, λX|ℓ+L

}
. (9)

That is, given the set of noisy measurements Yℓ+L
0 , we first derive an estimate for the clean speech spectral variance

λX|ℓ+L. Subsequently, the estimation problem for the speech spectral component Xρ reduces to that of estimating

Xρ from Yρ alone, assuming knowledge of the variance of Xρ. The latter problem, when the a priori SNR is

defined appropriately, can be solved similar to the MMSE estimation problem under the assumption that speech

spectral components X(k, ℓ) and X(k′, ℓ′) are independent for (k, ℓ) 6= (k′, ℓ′) [8], [12], [20]. Accordingly, an

estimate for X is obtained by applying spectral gains to the real and imaginary parts of Y

X̂ = G (ξ, γR) YR + j G (ξ, γI) YI (10)

where the a priori SNR ξ is defined by

ξ(k, ℓ)
△
=

λX|ℓ+L(k, ℓ)

λD(k, ℓ)
, (11)

the a posteriori SNR’s γR and γI , corresponding to the real and imaginary parts of Y , are defined by

γR(k, ℓ)
△
=

Y 2
R(k, ℓ)

λD(k, ℓ)
, γI

△
=

Y 2
I (k, ℓ)

λD(k, ℓ)
, (12)

and λD(k, ℓ)
△
= E

{
|D(k, ℓ)|2

}
denotes the noise spectral variance.

The specific expression for the spectral gain function G (ξ, γρ) (ρ ∈ {R, I}) depends on the particular choice

of a speech model. For a Gaussian speech model, the gain function is independent of the a posteriori SNR’s. It is

often referred to as Wiener filter, given by [20]

G (ξ) =
ξ

1 + ξ
. (13)

For a Gamma speech model, the gain function is given by [8] (see also Appendix I)

G (ξ, γρ) =
1

Cρ+ − Cρ−

exp
(
C2

ρ−/4
)
D−1.5 (Cρ−) − exp

(
C2

ρ+/4
)
D−1.5 (Cρ+)

exp
(
C2

ρ−/4
)
D−0.5 (Cρ−) + exp

(
C2

ρ+/4
)
D−0.5 (Cρ+)

(14)

where Cρ+ and Cρ− are defined by

Cρ±
△
=

√
3

2
√

ξ
±
√

2γρ , (15)

and Dp(z) denotes the parabolic cylinder function [21, eq. 9.240]. For a Laplacian speech model, the gain function

is given by [12] (see also Appendix II)

G (ξ, γρ) =
2

Lρ+ − Lρ−

Lρ+ erfcx(Lρ+) − Lρ− erfcx(Lρ−)

erfcx(Lρ+) + erfcx(Lρ−)
(16)



7

where Lρ+ and Lρ− are defined by

Lρ±
△
=

1√
ξ
±√

γρ , (17)

and erfcx(x) is the scaled complementary error function, defined by

erfcx(x)
△
= ex2 2√

π

∫ ∞

x

e−t2 dt . (18)

Figure 1 displays gain curves G (ξ, γρ) for several values of γρ, which result from (13), (14) and (16). It shows

that generally the a priori SNR is a more dominant parameter than the a posteriori SNR. The influence of the a

posteriori SNR on the spectral gain is largest for a Gamma model, while it has no effect on the gain for a Gaussian

model. Furthermore, the spectral gains for Gamma and Laplacian speech models are monotonically increasing

functions of the a posteriori SNR, when the a priori SNR is kept constant.

It is worth making a comparison between the above MMSE gain functions and the Ephraim-Malah gain functions

[1], [17], which were derived under a Gaussian speech model for minimizing the mean-square error distortion of the

spectral or log-spectral amplitude. The a priori SNR is likewise a more dominant parameter than the a posteriori

SNR. However, the Ephraim-Malah spectral gains are monotonically decreasing functions of the a posteriori SNR,

for a fixed value of the the a priori SNR. Such a behavior is related to the useful mechanism that counters the

musical noise phenomenon [13]. Local bursts of the a posteriori SNR, during noise-only frames, are “pulled down”

to the average noise level, thus avoiding local buildup of noise whenever it exceeds its average characteristics.

Unfortunately, the MMSE gain function for a Gaussian speech model is independent of the a posteriori SNR, while

the MMSE gain functions for Gamma and Laplacian speech models are adversely increasing as a function of the a

posteriori SNR. Therefore, in case the a priori SNR is estimated by the decision-directed method, the MMSE gain

functions are expected to produce higher levels of residual musical noise, when compared with the Ephraim-Malah

gain functions.

In speech enhancement applications, estimators which minimize the mean-square error distortion of the spectral

amplitude or log-spectral amplitude have been found advantageous to MMSE estimators [1], [9], [17]. Hence,

it would be constructive to derive such estimators for Gamma and Laplacian speech models, and compare their

performances to those obtained under Gaussian modeling (i.e., compare with the STSA and LSA estimators of

Ephraim and Malah [1], [17]). However, this will not be pursued in this paper. Rather, we present in the next

section noncausal estimators for the a priori SNR. These estimators employ future spectral measurements, for

discriminating between speech onsets and noise irregularities. Local bursts of noise are assigned a lower a priori

SNR, while speech onsets are assigned a higher a priori SNR. Thus, speech onsets are better preserved, while the

musical noise effect is reduced.
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IV. NONCAUSAL A Priori SNR ESTIMATION

In this section, we derive noncausal estimators for the a priori SNR for Gaussian, Gamma and Laplacian speech

models. The noncausal a priori SNR estimation consists of two major steps, which follow the rational of Kalman

filtering: a “propagation” step and an “update” step. Estimates for the speech spectral variances and the instantaneous

power from the previous frame are propagated in time to obtain an estimate for the spectral variance in the current

frame. Subsequently, the estimate for the spectral variance is updated by computing the conditional variance of the

speech spectral component, based on the underlying speech model.

Let λ′
X|ℓ+L(k, ℓ)

△
= E

{
|X(k, ℓ)|2 | Yℓ+L

0 \{Y (k, ℓ)}
}

denote the conditional variance of X given Yℓ+L
0 excluding

the noisy measurement Y . Let λ′
X | [ℓ,ℓ+L](k, ℓ)

△
= E

{
|X(k, ℓ)|2 | Yℓ+L

ℓ \{Y (k, ℓ)}
}

denote the conditional variance

of X given the noisy measurements Yℓ+L
ℓ \{Y }. Then, an estimate for λX|ℓ+L can be “updated”, when the noisy

measurement Y is obtained, by computing the conditional variance of X given Y and λ̂′
X|ℓ+L:

λ̂X|ℓ+L = E
{
|X|2 | λ̂′

X|ℓ+L , Y
}

= E
{
X2

R | λ̂′
X|ℓ+L , YR

}
+ E

{
X2

I | λ̂′
X|ℓ+L , YI

}
. (19)

Since XR and XI are IID, as well as the noise components DR and DI , we can write for Yρ 6= 0 (ρ ∈ {R, I})

E
{

X2
ρ | λ̂′

X|ℓ+L , Yρ

}
= H (ξ′, γρ)Y 2

ρ (20)

where ξ′ is an a priori SNR defined by

ξ′(k, ℓ) =
λ′

X|ℓ+L(k, ℓ)

λD(k, ℓ)
(21)

and H (ξ′, γρ) is a MMSE gain function in the spectral power domain. The specific expression for H (ξ ′, γρ)

depends on the particular choice of a speech model. For a Gaussian speech model, the spectral power gain function

is given by [15]

H (ξ′, γρ) =
ξ′

1 + ξ′

(
1

γρ
+

ξ′

1 + ξ′

)
. (22)

For a Gamma speech model, the spectral power gain function is given by1 (see Appendix I)

H (ξ′, γρ) =
3

(Cρ+ − Cρ−)2
exp

(
C2

ρ−/4
)
D−2.5 (Cρ−) + exp

(
C2

ρ+/4
)
D−2.5 (Cρ+)

exp
(
C2

ρ−/4
)
D−0.5 (Cρ−) + exp

(
C2

ρ+/4
)
D−0.5 (Cρ+)

(23)

where Cρ± are obtained from (15) by substituting ξ with ξ′. For a Laplacian speech model, the spectral power gain

function is given by (see Appendix II)

H (ξ′, γρ) =
4

(Lρ+ − Lρ−)
2

(L2
ρ+ + 0.5)erfcx(Lρ+) + (L2

ρ− + 0.5)erfcx(Lρ−) − (Lρ+ + Lρ−)/
√

π

erfcx(Lρ+) + erfcx(Lρ−)
(24)

where Lρ± are obtained from (17) by substituting ξ with ξ′.

1Note that (23) is a much simpler expression than the one derived in [10, sec. 3.2]. In particular, confluent hypergeometric functions are not

involved, and the same expression holds for Cρ− ≥ 0 and Cρ− < 0.
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Equation (20) does not hold in the case Yρ → 0, since it yields H (ξ′, γρ) → ∞, and as a consequence the

conditional variance of Xρ is generally not zero. For Yρ = 0 (or practically for Yρ smaller than a predetermined

threshold) we use the following expressions: For a Gaussian speech model

E
{

X2
ρ | λ̂′

X|ℓ+L , Yρ = 0
}

=
ξ′

1 + ξ′
λD , (25)

for a Gamma speech model we have (see Appendix I)

E
{

X2
ρ | λ̂′

X|ℓ+L , Yρ = 0
}

=
3D−2.5

( √
3

2
√

ξ′

)

8D−0.5

( √
3

2
√

ξ′

) λD (26)

and for a Laplacian speech model we have (see Appendix II)

E
{

X2
ρ | λ̂′

X|ℓ+L , Yρ = 0
}

=

√
2

π

exp
(

1
2ξ′

)
D−3

(√
2
ξ′

)

erfcx( 1√
ξ′

)
λD (27)

Figure 2 shows parametric gain curves describing the spectral power gain functions H(ξ ′, γρ) for several values

of γρ, which result from (22), (23) and (24). In contrast with the gain functions G(ξ, γρ), which minimize the MSE

between Xρ and X̂ρ, the gain functions H(ξ′, γρ) minimize the MSE between X2
ρ and X̂2

ρ , and are not monotonically

increasing functions of the a posteriori SNR. On the contrary, for a Gaussian speech model H(ξ ′, γρ) is a decreasing

function of γρ, and for Gamma and Laplacian speech models H(ξ′, γρ) is a decreasing function of γρ when γρ is

sufficiently small (depending on the a priori SNR ξ′). Therefore, local bursts of noise, which are associated with

moderate values of γρ and small values of ξ′, are assigned lower values of H(ξ′, γρ). This implies lower values of

λ̂X|ℓ+L, lower values of the a priori SNR estimate ξ̂, and eventually lower spectral gains G(ξ, γρ). Such a behavior

avoids the local buildup of noise, and thus counters the musical noise phenomenon.

To obtain an estimate for λ′
X|ℓ+L(k, ℓ), we “propagate” in time the estimates X̂(k, ℓ−1) and

{
λ̂X|ℓ+L−1(k, ℓ − 1)

}K−1

k=0

from the previous frame, and employ the measurements Y ℓ+L
ℓ \{Y (k, ℓ)}. Suppose an estimate λ̂′

X | [ℓ,ℓ+L](k, ℓ) for

λX is given, based on the measurements Yℓ+L
ℓ \{Y }. Let b denote a normalized window function of length 2w+1,

i.e.,
∑w

i=−w b(i) = 1. Then, a useful estimator for λ′
X|ℓ+L(k, ℓ), which combines the information from past and

future frames, is given by [16]

λ̂′
X|ℓ+L(k, ℓ) = max

{
µ|X̂(k, ℓ − 1)|2 + (1 − µ)

[
µ′

w∑

i=−w

b(i) λ̂X|ℓ+L−1(k − i, ℓ − 1)

+(1 − µ′)λ̂′
X | [ℓ,ℓ+L](k, ℓ)

]
, λmin

}
(28)

where µ (0 ≤ µ ≤ 1) is related to the degree of nonstationarity of the random process {λX(k, ℓ) | ℓ = 0, 1, . . .}, b

is related to the correlation between frequency bins of λX , µ′ (0 ≤ µ′ ≤ 1) is associated with the reliability of the

estimate λ̂′
X | [ℓ,ℓ+L] in comparison with that of λ̂X|ℓ+L−1, and λmin is a lower bound on the variance of X . An
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estimate for λ′
X | [ℓ,ℓ+L](k, ℓ) given the measurements Yℓ+L

ℓ \{Y } can be obtained by local averaging. Specifically,

λ̂′
X | [ℓ,ℓ+L](k, ℓ) =






∑
(n,i)∈Γ b(i) |Y (k−i,ℓ+n)|2

∑
(n,i)∈Γ b(i) − β λD , if nonnegative,

0 , otherwise,
(29)

where Γ
△
= {(n, i) | 0 ≤ n ≤ L, −w ≤ i ≤ w, (n, i) 6= (0, 0)} designates the time-frequency indices of the mea-

surements, and β (β ≥ 1) is an over-subtraction factor to compensate for a sudden increase in the noise level.

The steps of the noncausal spectral enhancement algorithm for Gaussian, Gamma and Laplacian speech models are

summarized in Table I.

For comparison, using the decision-directed approach of Ephraim and Malah [1], [13], an estimate for the a

priori SNR ξ(k, ℓ), as defined in (11), can be obtained by

ξ̂DD(k, ℓ) = max

{
α
|X̂(k, ℓ − 1)|2

λD
+ (1 − α) [γR(k, ℓ) + γI(k, ℓ) − 1] , ξmin

}
, (30)

where α (0 ≤ α ≤ 1) is a weighting factor that controls the trade-off between noise reduction and transient

distortion introduced into the signal, and ξmin is a lower bound on the a priori SNR. In the next section we present

experimental results that show the improved performance of the noncausal a priori SNR estimator, compared with

the decision-directed estimator, for MMSE estimation and Gaussian, Gamma and Laplacian speech models.

V. EXPERIMENTAL RESULTS

In this section, the performance of the noncausal a priori SNR estimator is evaluated for different speech models,

and compared to that of the decision-directed estimator. Figure 3 demonstrates the different behaviors of the

noncausal and the decision-directed estimators for Gaussian, Gamma and Laplacian speech priors. The analyzed

signal is sampled at 16 kHz, and transformed into the STFT domain using half overlapping Hamming windows

of 512 samples length (32 ms). It contains only white Gaussian noise (WGN) during the first and last 20 frames,

and in between it contains an additional sinusoidal component at the displayed frequency with 0 dB SNR2. The

noncausal a priori SNR estimate ξ̂ is obtained by using the algorithm in Table I, with the parameters µ = 0.8,

µ′ = 0.5, b =
[
0.25 0.5 0.25

]
, L = 2, β = 2, λmin = ξminλD, and ξmin = −25 dB. The decision-directed

estimator ξ̂DD is obtained by (30) with the parameters α = 0.95 and ξmin = −25 dB. Figure 3 shows that when

the a posteriori SNR’s γR and γI are sufficiently low, the noncausal a priori SNR estimate is smoother than the

decision-directed estimate for all tested speech models. When γR or γI increases, the noncausal estimator, having a

few subsequent spectral measurements at hand, is capable of discriminating between speech onsets and irregularities

in the a posteriori SNR’s corresponding to noise. It responds quickly to speech onsets, but remains close to its lower

bound in case of speech irregularities. On the other hand, the decision-directed estimator cannot respond too fast to

2Note that the SNR is computed in the time domain, whereas the a priori and a posteriori SNR’s are computed in the time-frequency domain.

Therefore, the latter SNR’s may increase at the displayed frequency well above the average SNR.
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an abrupt increase in γR or γI , since it necessarily implies an increase in the level of musical noise. When γR and

γI decrease, the response of ξ̂ is immediate, while that of ξ̂DD is delayed by 1 frame. Consequently, in comparison

with the decision-directed estimator, the noncausal a priori SNR estimator entails lower levels of musical noise

and signal distortion. Furthermore, the suppression of the musical noise phenomenon is more significant under

a Gaussian speech model than under Gamma or Laplacian speech models. This is attributable to characteristics

of the gain curves in Figs. 1 and 2. Under a Gaussian speech model, the spectral power gain function H(ξ ′, γρ)

decreases as a function of γρ, while the spectral gain G(ξ, γρ) is independent of γρ. Thus, abrupt bursts of γρ

during noise-only frames are suppressed. On the other hand, under Gamma or Laplacian speech models, H(ξ ′, γρ)

decreases as a function of γρ only for sufficiently small γρ, while G(ξ, γρ) increases as a function of γρ. Thus, the

mechanism, which counters the musical noise phenomenon, is not as much effective.

An experimental evaluation of the noncausal a priori SNR estimator is performed by enhancing noisy speech

signals under various noise conditions and speech models, and comparing the results to those obtained by using the

decision-directed estimator. The evaluation includes two objective quality measures, and informal listening tests.

The first quality measure is the segmental SNR defined by [22]

SegSNR =
1

J

J−1∑

ℓ=0

T
{

10 log10

∑N−1
n=0 x2(n + ℓN/2)

∑N−1
n=0 [x(n + ℓN/2) − x̂(n + ℓN/2)]

2

}
[dB] (31)

where J represents the number of frames in the signal, N = 512 is the number of samples per frame (corresponding

to 32 ms half overlapping frames), and T confines the SNR at each frame to perceptually meaningful range between

35 dB and −10 dB (T x
△
= min[max(x,−10), 35]). The operator T prevents the segmental SNR measure from

being biased in either a positive or negative direction due to a few silence or unusually high SNR frames, that

do not contribute significantly to the overall speech quality [23], [24]. The second quality measure is log-spectral

distortion, which is defined by

LSD =
1

J

J−1∑

ℓ=0





1

N/2 + 1

N/2∑

k=0

[
10 log10 CX(k, ℓ) − 10 log10 CX̂(k, ℓ)

]2





1
2

[dB] (32)

where CX(k, ℓ)
△
= max

{
|X(k, ℓ)|2 , δ

}
is the spectral power, clipped such that the log-spectrum dynamic range is

confined to about 50 dB (that is, δ = 10−50/10 max
k,ℓ

{
|X(k, ℓ)|2

}
).

The noise signals used in our evaluation are taken from the Noisex92 database [25]. They include white Gaussian

noise, car interior noise, F16 cockpit noise, and babble noise. The speech signal is constructed from six different

utterances, without intervening pauses. The utterances, half from male speakers and half from female speakers, are

taken from the TIMIT database [26]. The speech signal is sampled at 16 kHz and degraded by the various noise

types with segmental SNR’s in the range [−5, 10] dB. The noisy signals are transformed into the STFT domain

using half overlapping Hamming analysis windows of 512 samples length.

The noncausal speech enhancement algorithm (Table I) is applied to the noisy speech signals, using the same
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parameters as in the example of Fig. 3. Alternatively, the a priori SNR ξ is estimated by the decision-directed method

(30), with the parameters ξmin = −25 dB and α = 0.98 (this value of α was determined in [1], [17] by simulations

and informal listening tests), and the spectral estimate X̂(k, ℓ) is computed via (10) by using the appropriate

spectral gain function (13), (14) or (16), according to the speech model. The noise spectral variance is estimated by

recursively averaging past spectral power values of the noise signal: λ̂D(k, ℓ) = 0.95 λ̂D(k, ℓ−1)+0.05 |D(k, ℓ)|2 .

In practice, the periodogram of the noise |D(k, ℓ)|2 is unknown, and λD(k, ℓ) can be estimated by using the Minima

Controlled Recursive Averaging approach [19].

Figure 4 shows the results of the segmental SNR improvement achieved by the noncausal and the decision-

directed a priori SNR estimators for different speech models. The results of the log-spectral distance are displayed

in Figure 5. The noncausal estimator consistently yields a higher segmental SNR and a lower LSD, than the

decision-directed method, under all tested environmental conditions and speech models. The performance, in terms

of segmental SNR and LSD, is greatest when using a Laplacian speech model and noncausal a priori SNR estimator.

The performance is worst when using a Gaussian speech model and a decision-directed a priori SNR estimator.

The Gamma speech model yields a higher segmental SNR and a lower LSD than the other speech models, only

when the a priori SNR is estimated by the decision-directed method. However, when the a priori SNR is estimated

by the proposed method, the Laplacian speech model yields a higher segmental SNR and a lower LSD than the

other speech models. Informal listening tests confirm that by using the noncausal estimator, speech components

are better preserved, while the residual musical noise is further reduced. The level of residual musical noise is

minimal when using a Gaussian speech model and the noncausal estimator. The residual musical noise is maximal

when using a Gamma speech model and the decision-directed method. Additionally, the differences between the

Gaussian, Gamma and Laplacian speech models, in terms of segmental SNR, LSD and residual musical noise, are

smaller when using the noncausal estimator than when using the decision-directed method.

VI. CONCLUSION

We have proposed noncausal recursive algorithms for MMSE estimation of speech signals for Gaussian, Gamma

and Laplacian speech models. Noncausal estimation of the a priori SNR is accomplished by propagating across

time and frequency spectral variance estimates from past and future frames, and updating the result by computing

the conditional variance of the speech spectral component, based on the underlying speech model. We show that the

noncausal a priori SNR estimator yields a higher segmental SNR, a lower LSD, and lower musical noise than the

decision-directed estimator, under all tested environmental conditions and speech models. It should be noted that

the heuristic estimator (28) is not relying on a model for the speech spectral variance process (e.g., a Markovian),

from which the estimator of the signal evolves [27], [28]. The parameters in (28) are related to the nonstationarity

of the variance process, the correlation between frequency bins, and the reliability of the variance estimate from

future noisy measurements. Furthermore, the assumption about the Dirac distribution of the speech spectral variance



13

in (9) allows for the variance estimate to be substituted into the spectral estimate, which significantly simplifies the

resultant algorithm.

We have shown that the spectral gains for Gamma and Laplacian speech models are monotonically increasing

functions of the a posteriori SNR, when the a priori SNR is kept constant. Such a behavior is adverse to the

useful mechanism that counters the musical noise phenomenon, since local bursts of noise are assigned higher

gain values and further emphasized relative to the average noise characteristics. Using the noncausal a priori SNR

estimator instead of the decision-directed estimator, local bursts of noise are assigned a lower a priori SNR, while

speech onsets are assigned a higher a priori SNR. Thus, speech onsets are better preserved, while the musical

noise effect is reduced. Experimental results show that the performance of the noncausal a priori SNR estimator,

when combined with MMSE signal estimation, is best in terms of segmental SNR and LSD improvement under a

Laplacian speech prior. However, the level of the residual musical noise is slightly higher than the level obtained

under a Gaussian speech prior. Additionally, the differences between the Gaussian, Gamma and Laplacian speech

models are smaller when using the noncausal a priori SNR estimator than when using the decision-directed method.

Therefore, by taking into account the uncertainty of speech presence in the noisy measurements [1], [4], [29], [30],

the Laplacian speech model should be very attractive. A Bernoulli-Laplacian speech model may lead to further

suppression of the residual musical noise during speech absence, while preserving the same segmental SNR and

LSD during speech presence. Another deserving study is related to the distortion measure, which is employed for

the spectral enhancement. Estimators which minimize the mean-square error distortion of the spectral amplitude or

log-spectral amplitude are more suitable for speech enhancement than MMSE estimators [1], [9], [17]. Hence, it

may prove beneficial to utilize such estimators derived under Gamma or Laplacian speech modeling. These subjects

are currently under investigation.

APPENDIX I

CONDITIONAL MOMENTS E{Xn
ρ |λX , Yρ} FOR A GAMMA SPEECH MODEL

The conditional moments E{Xn
ρ |λX , Yρ} for n = 1, 2, . . . and ρ ∈ {R, I} are obtained by

E{Xn
ρ |λX , Yρ} =

∫∞
−∞ Xn

ρ p (Yρ |Xρ, λX) p (Xρ |λX) dXρ∫∞
−∞ p (Yρ |Xρ, λX) p (Xρ |λX) dXρ

(33)

Assuming a Gamma speech model and a Gaussian noise, we have

E{Xn
ρ |λX , Yρ} =

∫∞
−∞ Xn

ρ |Xρ|−1/2 exp
(
− (Yρ−Xρ)2

λD
−
√

3
2 λX

|Xρ|
)

dXρ

∫∞
−∞ |Xρ|−1/2 exp

(
− (Yρ−Xρ)2

λD
−
√

3
2 λX

|Xρ|
)

dXρ

(34)

=

∫∞
0

X
n− 1

2
ρ

[
exp

(
−X2

ρ

λD
− Gρ−√

λD
Xρ

)
+ (−1)n exp

(
−X2

ρ

λD
− Gρ+√

λD
Xρ

)]
dXρ

∫∞
0

X
− 1

2
ρ

[
exp

(
−X2

ρ

λD
− Gρ−√

λD
Xρ

)
+ exp

(
−X2

ρ

λD
− Gρ+√

λD
Xρ

)]
dXρ

(35)
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where Gρ± are defined by

Gρ±
△
=

√
3

2
√

ξ
±

√
2Yρ√
λD

. (36)

By using [21, eqs. 3.462.1, 8.339.2, 8.338.2], we obtain

E{Xn
ρ |λX , Yρ} =

(2n − 1)!!

2n

(
λD

2

)n
2 exp

(
G2

ρ−/4
)
D−n−0.5 (Gρ−) + (−1)n exp

(
G2

ρ+/4
)
D−n−0.5 (Gρ+)

exp
(
G2

ρ−/4
)
D−0.5 (Gρ−) + exp

(
G2

ρ+/4
)
D−0.5 (Gρ+)

(37)

where (2n − 1)!!
△
= 1 · 3 . . . (2n − 1). Since Cρ±, as defined by (36), are related to Gρ± by

Gρ± =





Cρ± , if Yρ ≥ 0 ,

Cρ∓ , otherwise,
(38)

we can rewrite (37) for Yρ 6= 0 as

E{Xn
ρ |λX , Yρ} =

(2n − 1)!!

(Cρ+ − Cρ−)n

exp
(
C2

ρ−/4
)
D−n−0.5 (Cρ−) + (−1)n exp

(
C2

ρ+/4
)
D−n−0.5 (Cρ+)

exp
(
C2

ρ−/4
)
D−0.5 (Cρ−) + exp

(
C2

ρ+/4
)
D−0.5 (Cρ+)

Y n
ρ .

(39)

In particular, for n = 1 we have E{Xρ |λX , Yρ} = G (ξ, γρ)Yρ , where G (ξ, γρ) is defined by (14), and for n = 2

we have E{X2
ρ |λX , Yρ} = H (ξ, γρ)Y 2

ρ , where H (ξ, γρ) is defined by (23). Note that for Yρ = 0, (37) reduces

to

E{Xn
ρ |λX , Yρ = 0} =

1 + (−1)n

2

(2n − 1)!!

2n

(
λD

2

)n
2 D−n−0.5

(√
3λD

4λX

)

D−0.5

(√
3λD

4λX

) , (40)

which is not zero in case n is an even number.

APPENDIX II

CONDITIONAL MOMENTS E{Xn
ρ |λX , Yρ} FOR A LAPLACIAN SPEECH MODEL

Assuming a Laplacian speech model and a Gaussian noise, the conditional moments E{Xn
ρ |λX , Yρ} for n =

1, 2, . . . and ρ ∈ {R, I} are given by

E{Xn
ρ |λX , Yρ} =

∫∞
−∞ Xn

ρ exp
(
− (Yρ−Xρ)2

λD
− 2√

λX
|Xρ|

)
dXρ

∫∞
−∞ exp

(
− (Yρ−Xρ)2

λD
− 2√

λX
|Xρ|

)
dXρ

(41)

=

∫∞
0

Xn
ρ

[
exp

(
−X2

ρ

λD
− 2Fρ−√

λD
Xρ

)
+ (−1)n exp

(
−X2

ρ

λD
− 2Fρ+√

λD
Xρ

)]
dXρ

∫∞
0

[
exp

(
−X2

ρ

λD
− 2Fρ−√

λD
Xρ

)
+ exp

(
−X2

ρ

λD
− 2Fρ+√

λD
Xρ

)]
dXρ

(42)

where Fρ± are defined by

Fρ±
△
=

1√
ξ
± Yρ√

λD

. (43)

By using [21, eqs. 3.462.1, 3.322.2], we obtain

E{Xn
ρ |λX , Yρ} = n!

√
2

π

(
λD

2

)n
2 exp

(
F 2

ρ−/2
)
D−n−1

(√
2Fρ−

)
+ (−1)n exp

(
F 2

ρ+/2
)
D−n−1

(√
2Fρ+

)

erfcx(Fρ+) + erfcx(Fρ−)
(44)
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The relation between Lρ±, which are defined by (17), and Fρ± is given by

Fρ± =





Lρ± , if Yρ ≥ 0 ,

Lρ∓ , otherwise,
(45)

Hence, we can rewrite (44) for Yρ 6= 0 as

E{Xn
ρ |λX , Yρ} =

n!
√

2n+1/π

(Lρ+ − Lρ−)n

exp
(
L2

ρ−/2
)
D−n−1

(√
2Lρ−

)
+ (−1)n exp

(
L2

ρ+/2
)
D−n−1

(√
2Lρ+

)

erfcx(Lρ+) + erfcx(Lρ−)
Y n

ρ

(46)

In particular, for n = 1 we have E{Xρ |λX , Yρ} = G (ξ, γρ)Yρ , where G (ξ, γρ) is obtained from (46) by using

[21, eq. 9.254.2], and is given by (16). For n = 2, we have E{X2
ρ |λX , Yρ} = H (ξ, γρ)Y 2

ρ , where H (ξ, γρ) is

obtained from (46) by using [21, eqs. 9.247.1, 9.254.1, 9.254.2], and is given by (24). Note that for Yρ = 0, (44)

reduces to

E{Xn
ρ |λX , Yρ = 0} =

1 + (−1)n

2
n!

√
2

π

(
λD

2

)n
2 exp

(
1
2ξ

)
D−3

(√
2
ξ

)

erfcx( 1√
ξ
)

, (47)

which is not zero in case n is an even number.
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TABLE I

SUMMARY OF THE NONCAUSAL SPEECH ENHANCEMENT ALGORITHM FOR GAUSSIAN, GAMMA AND LAPLACIAN SPEECH MODELS.

Initialization at the first frame for all frequency bins k:

X̂(k,−1) = 0 , λ̂X|L−1(k,−1) = λmin .

For all short-time frames ℓ = 0, 1, . . .

For all frequency bins k = 0, . . . , K − 1

Compute the spectral variance estimate λ̂′
X| [ℓ,ℓ+L]

(k, ℓ) by using (29).

Compute the spectral variance estimate λ̂′
X|ℓ+L

(k, ℓ) by using (28).

Compute the a priori SNR ξ′(k, ℓ) by using (21), and the a posteriori SNR’s γρ(k, ℓ) (ρ ∈ {R, I}) by using (12).

Compute the MMSE spectral-power gains H (ξ′, γρ) (ρ ∈ {R, I}) by using (22), (23) or (24), according to the speech model.

Update the spectral variance estimate λ̂X|ℓ+L(k, ℓ) by using (19) and (20), and update the a priori SNR ξ(k, ℓ) by using (11).

Compute the MMSE spectral gains G (ξ, γρ) (ρ ∈ {R, I}) by using (13), (14) or (16), according to the speech model.

Compute the speech spectral estimate X̂(k, ℓ) by using (10).
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Fig. 1. Parametric gain curves describing the MMSE gain function G(ξ, γρ) for different speech models: (a) Gain for Gaussian speech model,

obtained by (13); (b) Gain curves for Gamma speech model, obtained by (14); (c) Gain curves for Laplacian speech model, obtained by (16).
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Fig. 2. Parametric gain curves describing the MMSE spectral power gain function H(ξ′, γρ) for different speech models: (a) Gain curves for

Gaussian speech model, obtained by (22); (b) Gain curves for Gamma speech model, obtained by (23); (c) Gain curves for Laplacian speech

model, obtained by (24).
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Fig. 3. SNR’s in successive short-time frames for (a) Gaussian, (b) Gamma, and (c) Laplacian speech models: A posteriori SNR’s γR (solid

thin line) and γI (dotted line), decision-directed a priori SNR estimate ξ̂DD (dashed line), and noncausal a priori SNR estimate ξ̂ (solid heavy

line).
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Fig. 4. Segmental SNR improvement for various noise types and levels, obtained by using Gaussian (×), Gamma (◦) and Laplacian (△)

speech models. The a prior SNR is obtained by either noncausal recursive estimation (solid lines) or by the decision-directed approach (dashed

lines). (a) White Gaussian noise; (b) Car interior noise; (c) F16 cockpit noise; (c) Babble noise.
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Fig. 5. Log-spectral distance for various noise types and levels, obtained by using Gaussian (×), Gamma (◦) and Laplacian (△) speech models.

The a prior SNR is obtained by either noncausal recursive estimation (solid lines) or by the decision-directed approach (dashed lines). (a) White

Gaussian noise; (b) Car interior noise; (c) F16 cockpit noise; (c) Babble noise.


