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Abstract—We study the price of anarchy when perform-

ance is dictated by the worst (bottleneck) element. We are 
given a network, finitely many users, each associated with a 
positive flow demand, and a load-dependent performance 
function for each network element; the network objective is to 
route traffic such that the performance of the worst (i.e., 
bottleneck) element in the network is optimized. In the ab-
sence of regulation by some central authority, we assume that 
each user routes its traffic selfishly i.e., through paths that 
optimize the user's performance, in terms of bottleneck ele-
ments. We prove the existence of a Nash equilibrium, consid-
ering two routing scenarios, namely when a user can split its 
traffic over more than one path and when it cannot. Then, we 
quantify the price of anarchy in both scenarios. Specifically, 
we show that, when users are allowed to split their traffic, 
anarchy comes at no price. On the other hand, we show that, if 
each user is limited to a single path, the price of anarchy is 
unbounded. Finally, we turn to consider the case where the 
network objective is additive i.e., minimizing the sum of all 
link performance functions, while users still optimize the 
performance of their bottleneck elements. For this case, and 
for users that can split their traffic, we show that the price of 
anarchy is at most the number of network links. We then 
delineate a possible application of this result for the case 
where both the network and the users consider additive objec-
tives. 

Keywords- bottleneck & additive metrics, Nash equilib-
rium, price of anarchy/coordination factor, selfish routing, 
unregulated traffic. 

I. INTRODUCTION 

Traditional computer networks were designed and op-
erated with systemwide optimization in mind. Accord-
ingly, the actions of the network users were determined so 
as to optimize the overall network performance. Conse-
quently, users would often find themselves sacrificing 
some of their own performance for the sake of the entire 
network. In recent years it has been recognized that sys-
temwide optimization may be an impractical paradigm for 
the control of modern networking configurations 
 [1], [12], [16], [27]. Indeed, control decisions in large scale 

networks are often made by each user independently, ac-
cording to its own individual performance objectives. 
Such networks are henceforth called noncooperative, and 
Game Theory  [17] provides the systematic framework to 
study and understand their behavior.   

Game theoretic models have been employed in the con-
text of flow control  [1], [12], [27] routing  [16], [20], [21] and 
bandwidth allocation  [14]. These studies mainly investi-
gated, the structure of network operating points i.e., the 
Nash equilibria of the respective games. Such equilibria 
are inherently inefficient  [11] and, in general, exhibit 
suboptimal network performance. In order to understand 
this phenomenon, an investigation of the performance ra-
tio between the worst possible Nash equilibrium and the 
social (i.e., overall) optimum was initiated in  [13]. This 
ratio, termed the price of anarchy (also: coordination fac-
tor), was first investigated by  [10], [13], [15] for routing 
problems in which a set of users send traffic along a set of 
parallel links with linear cost functions. A more general 
framework for general topologies was later considered in 
 [19], [20], [21]; in those studies, the cost of each link was a 
load-dependent latency function, and each network user 
chose a minimum-latency path while controlling a negligi-
ble fraction of the overall traffic; the network objective 
was to minimize total latency. 

The above studies solely focused on additive metrics 
i.e., the case where performance is determined by the sum 
of link cost functions. Another fundamental case is that of 
bottleneck metrics, in which network performance is de-
termined by the worst component (link) in the network. 
Bottleneck objectives (also known as Max-Min or Min-
Max objectives) are of major practical importance. For 
example, a commonly used objective for traffic engineer-
ing is to minimize the utilization of the most utilized link 
in the network, in order to move away traffic from con-
gested hot spots to less utilized parts of the network 
 [2], [26]. Another example is when the performance goal is 
to maximize the ability to accommodate momentary traffic 
bursts by maximizing the minimum residual capacity (or 
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the "common scaling factor"  [3] i.e., a common factor that 
can scale up the traffic demands of all users without vio-
lating the capacity constraints). Another commonly used 
bottleneck objective appears in the context of wireless 
networks, where each node has a limited battery (i.e., 
transmission energy). The objective is then to maximize 
lifetime i.e., the time until the first battery in the network 
drains out  [7], [8], [9]. Other scenarios where bottleneck 
metrics are considered occur, for example, in frameworks 
that consider fairness objectives, where the performance of 
the "poorest" user in the network needs to be maximized 
 [4].  

In spite of the major importance of bottleneck metrics, 
they have not been considered in the context of noncoop-
erative networks. Accordingly, in this study we investigate 
non-cooperative network games with bottleneck objec-
tives. More specifically, we assume that each user routes 
its traffic selfishly so as to optimize the performance of its 
bottleneck element, given the traffic of all other users. Un-
der this assumption, we can view the network users as N 
independent agents participating in a noncooperative 
game, and expect the routes chosen by the users to form a 
Nash equilibrium. Our main goal is to quantify the cost of 
selfish routing with respect to bottleneck metrics. 
Throughout the paper, we assume that there are finitely 
many agents, each controlling a non-negligible amount of 
flow. We then consider two routing scenarios, namely, 
when a user can split its traffic over more than one path 
(henceforth, splittable flow) and when it cannot (hence-
forth, unsplittable flow). We show that, for performance 
functions that are convex increasing and continuous, there 
is a (not necessarily unique) Nash equilibrium for both 
splittable and unsplittable flows. We then study the 
price(s) of anarchy of splittable and unsplittable flows. It 
is well known that the price of anarchy is usually more 
than 1, and, moreover, it is often unbounded. However, we 
show that, for convex, increasing and continuous perform-
ance functions, anarchy comes at no price for splittable 
flows1. On the other hand, we show that, for unsplittable 
flows, the price of anarchy may be arbitrarily large. 

Next, we consider the degradation in the additive net-
work objective of "total cost" (i.e., minimizing the sum of 
all link performance functions), when selfish users still 
consider bottleneck objectives. This is the case when the 
network is interested in average performance across the 
network rather than the performance of the worst compo-
nent. For example, in the context of wireless networks, 
users are often interested in maximizing the lifetime of 

                                                           
1  The convexity is needed only to ensure the existence of a Nash equilibrium. 

Whenever there exists a Nash equilibrium, the price of anarchy remains 1 for 
performance functions that are just continuous and increasing.   

their connections, whereas the network may be interested 
in the global objective of minimizing the total network 
power consumption  [24]. As before, we study this scenario 
for splittable and unsplittable flows. For the splittable 
case, we show that the performance is at most M, where M 
is the number of links in the network. For the unsplittable 
case, we show that the price of anarchy remains un-
bounded. Therefore, for splittable flows, we conclude that, 
if there exists a way to enforce users to route their traffic 
with respect to bottleneck metrics (even if they essentially 
consider additive metrics), it may be possible to restrict 
the price of anarchy to M. Accordingly, we suggest a pos-
sible enforcement mechanism.  

The rest of this paper is organized as follows. In sec-
tion 2, we formulate the model and terminology. In section 
3, we establish the existence (and non-uniqueness) of split-
table and unsplittable flows at Nash equilibrium. In section 
4, we quantify the price of anarchy in the two routing sce-
narios and for the case where both the users and the net-
work consider bottleneck objectives. In section 5, we 
quantify the price of anarchy of the corresponding routing 
scenarios for the case where the network considers an ad-
ditive objective; we then describe a possible scheme for 
bounding the price of anarchy when both the network and 
the users consider additive objectives. Finally, section 6 
summarizes the results and discusses directions for further 
research.  

II. MODEL AND TERMINOLOGY 

This section formulates the model and required termi-
nology.  

A. The Model 

A network is represented by a directed graph ( ),G V E , 

where V is the set of nodes and E  is the set of links. Let 
N V= and M E= . A (simple) path is a finite sequence 

of distinct nodes ( )0 1, , , hp v v v= , such that, for 

0 1n h≤ ≤ − , ( )1,n nv v E+ ∈ . Let ( ),i jP  denote the collection of 

all paths from the source i to the destination j and 

( )
( ),

,

i j

i j V V
P P

∈ ×
∪ . 

We consider a finite set of users U, where each user 

u U∈  is associated with a positive demand uγ  and a pair 

of source-destination nodes ( ),u us t . A user u U∈  needs to 

send uγ  units of flow from us  to ut . For each u U∈ , the 
connection of user u is the collection of all paths that user 
u employs. 
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Given are a network G(V,E), and a set of users U. A 

splittable flow vector { }u
pf f  is a real-valued function 

{ }: 0f P U +× → ∪  that satisfies the flow demands of all 

users in U i.e., 
( ),s tu u

u
p u

p P

f γ
∈

=∑  for each u U∈ . For a fixed 

flow vector f and a path p P∈ , the total flow that is carried 

over p is u
p p

u U

f f
∈
∑ . Next, for a fixed flow vector f, a user 

u U∈  and a link e E∈ , the total flow that u  transfers 
through e is defined as u u

e p
pe p

f f
∈
∑ ; finally, for a fixed flow 

vector f and a link e E∈ , the total flow that is carried by e 
is u

e e
u U

f f
∈
∑ .  

Note that, in any splittable flow vector, the flow de-
mands can be split along any number of paths. We shall 
also consider the case where each user is limited to route 
its flow over a single path. Accordingly, we say that 

{ }u
pf f= is an unsplittable flow vector if f is a (splittable) 

flow vector that satisfies { }0,u
p uf γ∈  for each u U∈  and 

p P∈ .   

We associate with each link e E∈  a performance func-
tion ( )eq ⋅  that depends on the total flow ef  carried over e. 

We assume that, for all e E∈ , ( )e eq f  is convex, continu-

ous and increasing in ef . Given link performance func-

tions ( ){ } ,e eq f  the network objective may be either "bot-

tleneck" or "additive". A network with a "bottleneck" ob-
jective aims at minimizing the network bottleneck 
( ),B f defined as the worst performance among all links 

i.e., ( ) ( ){ }max e e
e E

B f q f
∈

; whereas a network with an "ad-

ditive" objective aims at minimizing the network total cost 
( )C f , defined as the sum of all link performance functions 

i.e., ( ) ( )e e
e E

C f q f
∈
∑ . Finally, for each user ,u U∈  we 

define the bottleneck of u as the worst performance among 
the links that u employs i.e., ( ) ( ){ }

0
max

u
e

u e e
e E f

b f q f
∈ >

; 

similarly,  for each p P∈ , we define  the bottleneck of 
path p as the worst link that belongs to p i.e., 

( ) ( ){ }maxp e e
e p

b f q f
∈

.  

The triple { }, , eG U q  is termed a splittable instance if 

all the users in U can split their traffic; it is termed an 
unsplittable instance if all the users of U are limited to a 
single path. 

B. Nash Equilibrium  

We assume that each user u U∈  selects an assignment 
of traffic to paths from ( ),u us tP  so as to meet its traffic de-
mand uγ . This selection shall also be referred to as the 
user strategy. The collection of all possible strategies of a 
user is referred to as the user strategy space. Finally, the 
product of all user strategy spaces is called the joint strat-
egy space; each element in the joint strategy space is 
termed a (strategy) profile, and it is actually a flow vector 
that satisfies the demands of all users.  

Users are assumed to behave selfishly, i.e., ship their 
demands through connections that have the lowest possi-
ble bottlenecks. This setting gives rise to a non-
cooperative game  [17]. A flow f is said to be at Nash equi-
librium if each user considers its chosen traffic assignment 
to be the best under the given choice of other users. This is 
formalized as follows. 

Definition 1:  Considering a splittable instance 

( ) ( ){ }, , , ,eG V E U q ⋅  a flow vector { }u
pf f=  is at Nash equi-

librium if, for each user u U∈  and each feasible (split-

table) flow vector { }u
pg g=  that satisfies u u

p pg f=  for each 

{ }\ ,u U u∈  it holds that ( ) ( )u u
b f b g≤ . f is then termed a 

splittable Nash flow. 

The Nash equilibrium for unsplittable flow is defined 
similarly, as follows.  

Definition 2:  Considering an unsplittable instance 

( ) ( ){ }, , , ,eG V E U q ⋅   a flow vector { }u
pf f=  is at Nash equi-

librium if, for each user u U∈  and each feasible (unsplit-

table) flow vector { }u
pg g=  that satisfies u u

p pg f=  for each 

{ }\ ,u U u∈  it holds that ( ) ( )u u
b f b g≤ . f is then termed an 

unsplittable Nash flow. 

Let ( ) ( ){ }, , , eG V E U q ⋅  be a splittable instance for which 

f  is a Nash flow, *
Af  is an optimal flow with respect to 

the (additive) network total cost objective ( )C ⋅  and *
Bf  is 

an optimal flow with respect to the network bottleneck 
objective ( )B ⋅ . The prices of anarchy of splittable flows 

with respect to bottleneck and additive network objectives 

are 
( )
( )B

B S

B f

B f
ρ × ∗

 and 
( )
( )A

A S

C f

C f
ρ × ∗

, respectively. Simi-

larly, let ( ) ( ){ }, , , eG V E U q ⋅  be an unsplittable instance for 

which f  is a Nash flow, *
Af  is an optimal flow with re-

spect to the (additive) network total cost objective ( )C ⋅  
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and *
Bf  is an optimal flow with respect to the network bot-

tleneck objective ( )B ⋅ . The prices of anarchy of unsplit-

table flows with respect to bottleneck and additive network 

objectives are 
( )
( )B

B US

B f

B f
ρ ×

∗
 and 

( )
( )A

A US

C f

C f
ρ ×

∗
, respec-

tively. 

Remark 1: It is easy to show that the optimal flows 
* * * *, , ,A B A Bf f f f  can be formulated as solutions of convex 

programs over the variables { }upf . While the formulations 

of  * *,A Af f  require the minimization of ( )e e
e E

q f
∈
∑ , the for-

mulation of * *,B Bf f  require the minimization of 

( ){ }max e e
e E

q f
∈

, where in all formulations  u
e p

u U p e p

f f
∈ ∈

= ∑ ∑  for 

each e E∈ . Moreover, while the formulations of the split-
table flows (namely, * *,A Bf f ) allow each variable u

pf  to 

take any value in the range 0 to uγ , the formulations of the 

unsplittable flows (namely, * *,A Bf f ) restrict u
pf  to be either 

0 or uγ  for each u U∈  and path p P∈ . 

Remark 2: It is easy to show that the results of this 
study on bottleneck objectives hold also for link perform-
ance functions ( ){ }e eq f that are concave continuous and 

decreasing in the flows { } ,ef  and the goal (of the users 

and the network) is to maximize the bottleneck values. 

III. EXISTENCE AND NON-UNIQUENESS OF FLOWS AT 

NASH EQUILIBRIUM  

In this section, we establish the existence and non-
uniqueness of splittable and unsplittable Nash flows.  

A. Existence of Nash Equilibrium 

We begin with the splittable case. 

Theorem 1: Given a splittable instance 
( ) ( ){ }, , , eG V E U q ⋅ , there exists a splittable flow vector f 

that is at Nash equilibrium. 

Proof (sketch)  It was established in  [18] that, if the 
allowed strategies for an n-person game are limited to a 
convex, closed and bounded set in some Euclidean space, 
and if the payoff function of each player is continuous and 
convex, then the game has a Nash equilibrium. In the Ap-
pendix, we show that these conditions are satisfied in our 
case. ■ 

Next, the following theorem establishes the existence 
of a Nash equilibrium for unsplittable flows.  

Theorem  2  Given an unsplittable instance 
( ) ( ){ }, , , eG V E U q ⋅ , there exists an unsplittable flow vector f 

that is at Nash equilibrium. 
Proof: First, note that, since f is an unsplittable flow 

vector, each user selects one out of at most P  possible 

paths; hence, each user has at most P  strategies. There-

fore, since there are U  users, the joint strategy space of 

the game is finite. Assume by way of contradiction that 
there is no Nash equilibrium. Hence, for each profile in the 
joint strategy space, there is at least one user that can im-
prove its bottleneck. Let 1 2, ,θ θ  be a sequence of pro-

files, such that, for each two consecutive profiles 1,i iθ θ + , it 
holds that exactly one user in 1iθ +  reroutes its traffic and 
improves its bottleneck with respect to iθ . Since the joint 
strategy space is finite, it follows that, after a finite num-
ber of transitions between successive profiles in 

1 2, ,θ θ , we must encounter some profile θ  for the sec-

ond time, and, without loss of generality, let it be 1θ   and 
let 1 1nθ θ+ = . Consider then the sequence of profiles 

1 2 1, , ,nθ θ θ θ . Let U U⊆  be the collection of users 

whose bottleneck is not constant over all profiles of 

1 2 1, , ,nθ θ θ θ . Let u U∈  be a user that produces the larg-

est (worst) bottleneck among all users of U  and over all 
profiles of 1 2 1, , ,nθ θ θ θ . Let { }kθΘ =  be the collection 

of all profiles in 1 2 1, , ,nθ θ θ θ  for which u achieves the 

worst bottleneck. Since  ,u U∈  it follows that there exists 
at least one profile kθ ∈Θ  such that 1kθ − ∉Θ ; let kθ  be 
such a profile.  

In the transition from the profile 1kθ −  to the profile ,kθ  
there exists exactly one user 'u U∈  that reroutes its traffic 
in order to improve its bottleneck. Since 'u  improves its 
bottleneck, it follows that the bottleneck of u' is not con-
stant in 1 2 1, , ,nθ θ θ θ ; hence, 'u U∈ . Next, since the bot-

tleneck of u has a smaller value in 1kθ −  than in kθ , it fol-
lows that u' transfers a positive amount of flow through 
some bottleneck of u in the profile kθ . Therefore, by defi-
nition, the bottleneck of u' in the profile kθ  is equal to that 
of u. However, since the bottleneck of u in the profile kθ  

is maximal with respect to all users in U  and all profiles 
of 1 2 1, , ,nθ θ θ θ , the bottleneck of the user 'u U∈  is not 

improved in the transition from 1kθ −  to kθ . This contra-
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dicts the way by which user 'u  was selected, hence estab-
lishing the theorem. ■ 

B. Non-Uniqueness of Flows at Nash Equilibrium 

We now show, by way of an example, that the Nash 
Equilibrium is not unique, for both splittable and unsplit-
table flows. Consider the network presented in Figure 1. 
Suppose that there exists a single user that needs to trans-
fer one unit of flow from s to t, and assume that each link 
e E∈  is assigned with a performance function ( )e e eq f f= . 

Let ( )1 1 3,p e e=  and ( )2 2 3,p e e= .  One can see that both 

1 2
1, 0p pf f= =  and 

1 2
0, 1p pf f= =  are optimal flow vec-

tors with respect to both splittable and unsplittable flows. 
As optimal and Nash flows coincide in the case of a single 
user, we have identified two different Nash flows. 

 
 

IV.THE PRICE OF ANARCHY FOR BOTTLENECK NETWORK 

OBJECTIVES 

In this section, we investigate the price of anarchy with 
respect to bottleneck network objectives for splittable and 
unsplittable flows. Specifically, we show that, when users 
are allowed to split their traffic over any number of paths, 
the price of anarchy B Sρ ×  equals to 1 i.e., the lack of regu-
lation for the splittable case incurs no cost.  On the other 
hand, we show that, when such splitting is not possible, 
then the price of anarchy can be unbounded i.e., B USρ × = ∞ .   

A. No Price of Anarchy with Splittable flows 

This subsection establishes that the (network) bottle-
neck obtained by selfish users is optimal for splittable 
flows. We begin by introducing the following definition. 

Definition 3: Given is a splittable instance 
( ) ( ){ }, , , eG V E U q ⋅  for which f  is a Nash flow. Denote by 

( )fΓ  the collection of all users that ship traffic through a 

network bottleneck i.e., ( ) ( ) ( ){ }uf u U b f B fΓ = ∈ = . 

The following lemma states that, if f is a splittable 
Nash flow, then deleting users that are not in ( )fΓ  and 

zeroing their respective flows, results in a flow that is at 
Nash equilibrium (with respect to the new game that cor-

responds to the reduced set of users). Moreover, the new 
flow keeps the bottleneck of the network unchanged.  

Lemma 1: Given a splittable instance ( ) ( ){ }, , , eG V E U q ⋅  

for which f  is a Nash flow, consider the function 

( ) { }: 0g P f +×Γ → ∪  that satisfies u u
p pf g=  for each ( )u f∈Γ  

and p P∈ . Then, g is a splittable flow vector that satisfies 

the demands of all users in ( ),fΓ  such that the following 

three properties hold: 

(i) g is at Nash equilibrium; 
(ii) the (network) bottleneck of g equals to that of f, 

i.e., ( ) ( )B f B g= ; 

(iii)  the bottleneck of each user ( )u f∈Γ  is equal to 

that of the network i.e., ( ) ( )ub g B g=  for each 

( )u f∈Γ .  

The proof appears in the Appendix. While the details 
are rather tedious, the basic idea is quite straightforward, 
namely, the removal of users not in ( )fΓ  cannot change 

the flow on any of the bottleneck links in the network.  

Remark 3: As indicated in the Appendix, Lemma 1 ap-
plies only to splittable flows, and its proof makes a crucial 
use of the fractional nature of such flows. 

 We are now ready to prove a rather surprising result, 
which essentially states that, for bottleneck (network)  ob-
jectives, anarchy comes for free when users are allowed to 
split their traffic. 

Remark 4: In the following theorem we assume that the 
traffic between each source-destination pair belongs to at 
most one user. However, it is easy to see that, for the split-
table case, this assumption incurs no loss of generality, 
since all the users that ship traffic between the same 
source-destination pair can be regarded as a single "aggre-
gated" user with a traffic demand that is equal to the sum 
of demands of all the corresponding users. On the other 
hand, we note that, in the unsplittable case, such an as-
sumption does incur loss of generality. 

Theorem 3: Given a splittable instance 
( ) ( ){ }, , , eG V E U q ⋅ , the price of anarchy with respect to bot-

tleneck network objectives is 1, i.e., 1B Sρ × = . 

Proof: Consider the Nash flow f for the instance 
( ) ( ){ }, , , eG V E U q ⋅  and the corresponding set of users ( )fΓ . 

Let ( ) { }: 0g P f +×Γ → ∪  satisfy u u
p pg f=  for each ( )u f∈Γ  

and p P∈ . From Lemma 1 it follows that g is a splittable 

flow vector that satisfies the demands of all users in ( )fΓ , 

such that:  

3e  

1e  

2e  

t  s  

Fig. 1: Non-uniqueness of flow at Nash Equilibrium 
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(i)  g is a Nash flow;  

(ii) ( ) ( )B f B g=  i.e., the (network) bottleneck of g 

equals to that of f ;  

(iii) ( ) ( )ub g B g=  for each ( )u f∈Γ  i.e., the bottleneck of 

each user is equal to that of the network. 

We now show that ( )B g  is the minimum (network) 

bottleneck among the bottlenecks of the (splittable) flow 
vectors that satisfy the demands of the users in ( )fΓ . 

First, we note that, since ( ) ( )ub g B g=  for each ( ),u f∈Γ  

it holds by definition that there exists a ( ),u us tp P∈  such 

that 0pg >  and ( ) ( )pb g B g=  for each ( )u f∈Γ . 

Assume, by way of contradiction, that ( )B g is not 

minimum. Hence, there exists a feasible flow vector h that 
satisfies the demands of all users in ( )fΓ  such that 

( ) ( )B h B g< . Consider a user ( )u f∈Γ  and its correspond-

ing source-destination pair ,u us t V∈ . Denote by ( ),u us tE  the 
collection of all network bottlenecks with respect to g that 
belong to a path in ( ),u us tP  i.e., 

( ) ( ) ( ) ( ){ }, ,, ,u us t s t
e eE e e p p P q g B g= ∈ ∈ = . In addition, denote 

by ( ),u us tP  the collection of all paths in ( ),\ u us tP P  that inter-
sect with paths in ( ),u us tP  on at least  
one network bottleneck from ( ),u us tE  i.e., 

( )
( ) ( )

( )

, ,
,

,

\ , '  s.t. for at least one 
.

common link, ',  it holds that 

u u u u

u u

u u

s t s t
s t

s t

p P P p P
P p

e p p e E

 ∈ ∃ ∈ 
 

∈ ∩ ∈  
 

Since g is a Nash flow, it follows that every path in ( ),u us tP  
traverses through at least one of the bottlenecks from 

( ),u us tE ; indeed, otherwise u could have decreased its bot-
tleneck value (which equals ( )B g ) by rerouting flow into 

paths whose bottlenecks are lower. Therefore, in order to 
reduce the value of all network bottlenecks in ( ),u us tE , it 
follows that  either the flow demand of user u or the total 

traffic that is carried over the paths from ( ),u us tP  must de-
crease. Since ( ) ( ) ( )pb g B g B h= >  for each ( ),u us tp P∈ , it 

holds that ( ) ( )e e e eq h q g<  for each ( ),u us te E∈ . Therefore, it 

holds for the flow vector h that either the flow demand of 
user u or the total traffic that is carried by the paths from 

( ),u us tP  is smaller than in g. Since the flow demand re-
quirement of user u is uγ  both in g and in h, it follows that 

the total flow of the paths in ( ),u us tP  is reduced i.e., 

( ) ( ), ,s t s tu u u u

p p

p P p P

h g
∈ ∈

<∑ ∑ . 

As already mentioned, since g is a Nash flow, every 
path in ( ),u us tP  traverses at least one link from ( ),u us tE . Thus, 

since ( ),u us tP  is the collection of all paths from ( ),\ u us tP P  
that intersect with paths from ( ),u us tP  on at least one net-

work bottleneck,  it follows that ( ),u us tP  is the collection of 
all paths in ( ),\ u us tP P  that intersect with paths from ( ),u us tP  

i.e., ( ) ( ) ( ){ }, , ,\ '  s.t. 'u u u u u us t s t s tP p p P P p P p p φ= ∈ ∃ ∈ ∩ ≠ . 

Therefore, ( )

( )

,u us t

u f

P P
∈Γ
∪  is the collection of all the paths 

that connect the source-destination pair of some user and 
intersect with paths that connect the source-destination 
pair of some other user i.e., 

( ) ( ){ }, ,'  s.t. '  and u u u us t s tP p P p P p p p Pφ= ∈ ∃ ∈ ∩ ≠ ∉ . Thus, 

since we have shown that 
( ) ( ), ,s t s tu u u u

p p

p P p P

h g
∈ ∈

<∑ ∑  for each 

( )u f∈Γ , it follows that 

( )

( )

( )( ) ( )( ), , ,

u f

s t s t s tu u u u u u

p p p p
p P u f u fp P p P p P

h h h g

∈Γ

∈ ∈Γ ∈Γ∈ ∈ ∈

= = < =∑ ∑ ∑ ∑ ∑ ∑
∪

( )

( )

,

u f

s tu u

p p
p Pp P

g g

∈Γ

∈∈

= =∑ ∑
∪

. 

Finally, note that, for each ( ),u f∈Γ  the total traffic 

from us  to ut  equals uγ  both in g and in h i.e., 

( ) ( ), ,s t s tu u u u

p p

p P p P

h g
∈ ∈

=∑ ∑  for each ( )u f∈Γ . Hence, the total traf-

fic that is carried over the network paths must be the same 
in both cases i.e.,  p p

p P p P

h g
∈ ∈

=∑ ∑ . Therefore, since we es-

tablished that ,p p
p P p P

h g
∈ ∈

<∑ ∑  it follows that 

/ /
p p

p P P p P P

h g
∈ ∈

>∑ ∑ ; that is, the total traffic over the paths 

that do not intersect with paths of other users is larger in h 
than in g. Therefore, there exists at least one user ( )u f∈Γ  

that satisfies  

( ) ( ) ( ) ( ), ,/ /

                       (1)
s t s tu u u u

p p

p P P P p P P P

h g
∈ ∩ ∈ ∩

>∑ ∑  

i.e., the total traffic of user u, carried over the paths that do 
not intersect with paths of other users, is increased. Since 

the paths ( ) ( ),
/

s tu uP P P∩  do not intersect with paths of 

other users, it follows that the traffic that traverses over 

each link ,e p∈  where ( ) ( ),
/ ,

s tu up P P P∈ ∩  is only that of 

user u. Therefore, since each path ( ),s tu up P∈  must traverse 
at least one link that is a bottleneck with respect to g, it 
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follows from (1) that there exists a link e p∈ , where 

( ) ( ),
/ ,

s tu up P P P∈ ∩  that was a bottleneck with respect to g 

and satisfies e eh g> . Therefore, since ( )eq ⋅  is increasing, it 

follows that ( ) ( ) ( )e e e eq h q g B g> = . Obviously, this con-

tradicts the assumption that ( ) ( )B h B g< . Hence, ( )B g  

has the minimum bottleneck over all flow vectors that sat-
isfy the demands of the users in ( )fΓ . 

We point out that, while we have shown that g achieves 
the minimum value when considering only the users in 
( ),fΓ  we still need to show that f achieves the minimum 

value when considering all users in U. Denote by *f  an 
optimal flow, i.e., one that has the smallest bottleneck with 
respect to all flow vectors that satisfy the demands of the 
users of U . Also, let Η  be the set of all splittable flow 
vectors that satisfy the demands of the users in  ( )fΓ . We 

transform the vector *f  into a flow that belongs to the set 

Η  by zeroing the flow of all users in ( )\U fΓ  i.e., by zero-

ing all the flows in ( ){ }* , \u
pf p P u U f∈ ∈ Γ ; denote the 

resulting flow vector by *f  and note that, by construction, 
* *

e ef f≥  for each e E∈ . Since ( )eq ⋅  is increasing, it fol-

lows that ( ) ( )* *
e e e eq f q f≥  for each e E∈ . Therefore, by 

definition,  

( ) ( )* * .                             (2)B f B f≥  

However, since *f ∈Η , it follows that 

( ) ( ){ }* minB f B h h≥ ∈Η . Therefore, from (2), it follows 

that  ( ) ( ){ }* minB f B h h≥ ∈Η . However, we have shown 

that ( )B g  has the minimum bottleneck over all flow vec-

tors that satisfy the demands of the users in ( )fΓ  i.e., 

( ) ( ){ }minB g B h h= ∈Η . Therefore, ( ) ( )*B f B g≥ . Fi-

nally, since we established (item (ii) in the beginning of 
the proof) that ( ) ( ) ,B g B f=  it follows that 

( ) ( )*B f B f≥ ; therefore, since *f  is optimal, 

( ) ( )*B f B f=  i.e., 
( )
( )*

1B S

B f

B f
ρ × = = . Thus, the Theorem is 

established. ■ 

Remark 5: The Braess paradox  [6] shows that addi-
tion of links to a noncooperative network can negatively 
impact the performance of both the network and each of 

the users. However, it follows from Theorem 3 that, for 
bottleneck network objectives and splittable flows, this 
paradox cannot occur.  

B. Unbounded Price of Anarchy with Unsplittable Flows 

We now consider the case where each user is restricted 
to route over a single path. It turns out that, with such a 
restriction, the result of the previous subsection no longer 
holds. Indeed, the following example shows that an 
unsplittable Nash flow may have an arbitrarily larger bot-
tleneck than that of an optimal flow.  

Consider the network presented in Fig. 2, and suppose 
there are two users, each with the same source s and desti-
nation t. For each 0,γ >  the first user (user A) has to trans-

fer a demand of γ  units and the other user (user B) has to 
transfer a demand of 2 γ⋅  units. Finally, assume that both 
users must transfer their demands unsplittably. In the op-
timal solution, A is assigned to the upper link and B is as-
signed to the lower link; the corresponding bottleneck is 

{ }22 1
3 2max ,e e e
γ γ γ⋅ ⋅⋅

= . On the other hand, a profile where A 

chooses the lower link and B chooses the upper link is an 
unsplittable Nash flow with a bottleneck of 

{ }2 42 1
3 32max ,e e e

γγ γ⋅ ⋅ ⋅

= . Hence, the price of anarchy is 

( )
( )

3
*

4
3

B US

B f e
e

eB f

γ
γ

γρ ×

⋅

= = = ; as γ  can be arbitrarily large, 

B USρ ×  is unbounded.  

 
 

V. THE PRICE OF ANARCHY FOR ADDITIVE NETWORK 

OBJECTIVES 

In this section, we investigate the price of anarchy with 
respect to additive network objectives (i.e., minimization 
of total cost). Specifically, we show that, if all users split-
tably route their traffic with respect to bottleneck metrics, 
the resulting total cost is at most M times the optimal cost 
i.e., the price of anarchy A Sρ ×  is at most M. On the other 
hand, we show that the price of anarchy for unsplittable 

  t 

( )
2
3 e

e e

f
q f e

⋅
=  

( )
1
2

e e
efq f e

⋅
=  

s 

Fig. 2: Unbounded price of anarchy for unsplittable flows 
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flows remains unbounded also for additive objectives i.e., 

A USρ × = ∞ . Then, we turn to indicate that the bound of M 
on the price of anarchy when splittable flows are consid-
ered suggests a potential mechanism for bounding the 
price of anarchy in the case where both the users and the 
network consider additive objectives. 

Before proceeding we mention that, for unsplittable 
flows, the price of anarchy remains unbounded. Indeed, 
consider again the example presented in Subsection  IV.B. 
Since users still consider bottleneck objectives, the origi-
nal Nash flow remains to be such. Also, it is easy to see 
that the original optimal network flow remains to be  
such in the (network) additive case, hence, 

( )
( )*

4
3 2

2
3

A US

C f e e

C f e e
γ

γ γ

γ
γ

ρ × →∞

⋅

⋅

+
= = →∞

+
.  

A. The Price of Anarchy is at Most M with Splittable 
flows 

In this subsection we show that, when users route their 
traffic with respect to bottleneck metrics and are allowed 
to split their traffic, the resulting total cost is at most M 
times the optimal cost i.e., A S Mρ × ≤ . 

Theorem 4: Given a splittable instance 
( ) ( ){ }, , , eG V E U q ⋅ , the price of anarchy with respect to ad-

ditive network objectives is at most M, i.e., A S Mρ × ≤ .  

Proof: Let f and *f  denote a Nash flow and an op-

timal flow for the splittable instance ( ) ( ){ }, , , ,eG V E U q ⋅  

correspondingly. It follows from Theorem 3 that the bot-
tleneck ( ) ( ){ }max e e

e E
B f q f

∈
=  is optimal with respect to all 

flow vectors that consider the demands of the users in U. 
Hence, ( ) ( )*B f B f≤ . Therefore, by definition, 

( ){ } ( ){ }*max maxe e e e
e E e E

q f q f
∈ ∈

≤ . Hence, it follows that      

( ) ( ) ( ){ } ( ){ }*max max .  (3)e e e e e e
e E e E

e E

C f q f M q f M q f
∈ ∈

∈

= ≤ ⋅ ≤ ⋅∑
Thus, since  ( ){ } ( )* *max ,e e e e

e E
e E

q f q f
∈ ∈

≤ ∑  it  

follows from (3) that 

( ) ( ){ } ( ) ( )* * *max e e e e
e E

e E

C f M q f M q f M C f
∈

∈

≤ ⋅ ≤ ⋅ = ⋅∑ . 

Hence, 
( )
( )*

,A S

C f
M

C f
ρ × = ≤  and the theorem is established. 

■ 

B. Possible Application 

The above worst case ratio M with respect to additive 
network objectives (for splittable users) potentially gives 

rise to a scheme for bounding the price of anarchy in the 
case where both the network and the users consider addi-
tive objectives, e.g., delay. To that end, we first formalize 
the corresponding traffic model. For concreteness, we fo-
cus on delay minimization.  

Assume that we are given a network ( ),G V E , a link la-

tency function ( )el ⋅  for each e E∈ , and a set of users U 

where each u U∈  intends to send uγ units of flow from us  

to ut . Following the traffic model of  [20], we define the 
average latency of a flow f (often termed as total latency) 
as ( )e e e

e E

l f f
∈

⋅∑  In addition, we assume that each user routes 

its traffic so as to minimize the latency it experiences i.e., 
each user u U∈  minimizes the value ( ) u

e e e
e E

l f f
∈

⋅∑ . 

Recently, it has been established  [22] that, when users 
are allowed to split their traffic, the price of anarchy in the 
above model is at most U 1. Obviously, when U  is large, 

this price may be prohibitive.   

In the previous subsection we showed that, if all users 
splittably route their traffic with respect to bottleneck met-
rics, the price of anarchy with respect to the (additive) to-
tal cost objective is at most M. Therefore, if the perform-
ance function of each link e E∈  is set to ( ) ( )e e e e eq f l f f= ⋅  

and users are driven to route their traffic according to bot-
tleneck metrics, the price of anarchy with respect to total 
latency is bounded by M. Thus, for a large number of us-
ers, specifically ,U M>  it is tempting to make users con-

sider bottleneck metrics (i.e., even though their original 
objective is additive).  

Accordingly, we are currently working on a mechanism 
for driving selfish users (that aim at minimizing their de-
lays) route their traffic with respect to bottleneck metrics. 
The basic idea is that the network advertises to the users 
solely the condition of the worst links (i.e., the network 
bottlenecks) and avoids advertising the condition of the 
rest of the links (i.e., the network image from the user's 
perspective is ( ) 0e eq f =  if ( ) ( ){ }' ' '

'
maxe e e e e e
e E

l f f l f f
∈

⋅ ≠ ⋅  and 

( ) ( )e e e e eq f l f f= ⋅  otherwise).  

VI. CONCLUSION 

We studied the behavior of self-optimizing users with 
bottleneck objectives. We evaluated the worst-possible 
degradation of network performance (due to such behav-

                                                           
1 Furthermore, in [20] it has been established that, for  and 0,uU γ→∞ →  the 

price of anarchy is unbounded. 
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ior) with respect to two main classes of metrics namely, 
bottleneck and additive. Our results are summarized in 
Table 1. 

 

 

 

  

 

 

 

1 
 

∞  

 

 

 

M1 
 

∞  

 

 

Our results clearly show that the combination of lack of 
regulation and inability to split traffic may incur a prohibi-
tive cost. Therefore, in the absence of some global regula-
tion, the employment of splittable flows is much more de-
sired. In particular, for bottleneck network objectives, the 
lack of regulation incurs no cost. This finding suggest an 
important network design rule, favoring multipath routing 
schemes over the more traditional single-path routing  [25].  

There are several directions for future research that 
stem from this study. First, it remains an open question 
whether the upper bound of M on the price of anarchy of 
splittable flows with respect to additive objectives is tight. 
At a more general level, one combination that has not been 
considered yet2, is that of a network with bottleneck objec-
tives and users with additive objectives. Furthermore, it is 
of interest to investigate a "hybrid" case, where some users 
consider bottleneck objectives while others consider addi-
tive objectives.  Finally, in view of the prohibitive value of 
the price of anarchy for a large population of users that 
(together with the network) consider additive objectives  
 [20], [22], it is of interest to find schemes for driving "addi-
tive" self optimizing users consider bottleneck objectives. 
As mentioned, we are currently working on such a 
scheme.  

Acknowledgement:  We would like to thank Amir 
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      Appendix  
This Appendix contains the proofs of Theorem 1 and 

Lemma 1. In addition, we indicate why Lemma 1 does not 
holds for unsplittable flows.  

A.1 Proof of Theorem 1 

Theorem 1: Given a splittable instance 
( ) ( ){ }, , , eG V E U q ⋅ , there exists a splittable flow vector f 

that is at Nash equilibrium. 

Proof  It was established in  [18] that, if the allowed 
strategies for an n-person game are limited to a convex, 
closed and bounded set in some Euclidean space, and if 
the payoff function of each player is continuous and con-
vex, then the game has a Nash equilibrium. We now show 
that these conditions are satisfied in our case. Let Ω  be 
the set of all splittable flow vectors that satisfy the de-
mands of the users in U. Since for each 1k ≥  it holds that 
the function ( )max ⋅  is continuous in the Euclidean space 

,k  and since for each e E∈  we assume that ( )eq ⋅  is con-

tinuous in ef  (hence also continuous in Ω ), it follows that 

the user's payoff function, namely, ( ) ( ){ }
0

max ,
u

e

u e
e E f

b q
∈ >

⋅ = ⋅  

is continuous in Ω .  Next, since we assume that, for each 
splittable flow vector f ∈Ω  and  

link ,e E∈  the performance function ( )e eq f  is convex in 

,ef  it follows that, for each pair of splittable  

flow vectors ,h g ∈Ω , link e E∈  and [ ]0,1 ,λ ∈  it holds 

that ( )( ) ( ) ( ) ( )1 1e e e e e e eq h g q h q gλ λ λ λ⋅ + − ⋅ ≤ ⋅ + − ⋅ .   

Thus, it follows that 

( )( ) ( )( ){ }
0

1 max 1
u

e

u e e e
e E f

b h g q h gλ λ λ λ
∈ >

⋅ + − ⋅ = ⋅ + − ⋅ ≤

( ) ( ) ( ){ }
0

max 1
u

e

e e e e
e E f

q h q gλ λ
∈ >

≤ ⋅ + − ⋅ . Hence, it holds that  

( )( ) ( ) ( ) ( ){ }
0

1   max 1
u

e

u e e e e
e E f

b h g q h q gλ λ λ λ
∈ >

⋅ + − ⋅ ≤ ⋅ + − ⋅ ≤

( ){ } ( ) ( ){ }

( ) ( ) ( )
0 0

 max 1 max  

1 .

u u
e e

e e e e
e E f e E f

u u

q h q g

b h b g

λ λ

λ λ

∈ > ∈ >
≤ ⋅ + − ⋅ =

= ⋅ + − ⋅
 

Therefore, ( )ub f  is convex in f for each user u U∈  

and splittable flow vector f ∈Ω .  

Clearly, the set of feasible (splittable) flow vectors Ω  
is convex. It is also easy to show that it is bounded and 
closed. For completeness we provide the details.  

First, for each value [ ]0,1 ,λ ∈  pair of feasible flow vec-

tors  ,h g∈Ω  and user ,u U∈  it holds that 

( )
( )

( )
( )

, ,

1 1
s t s tu u u u

u u
p p u u u

p P p P

g hλ λ λ γ λ γ γ
∈ ∈

⋅ + − ⋅ = ⋅ + + ⋅ =∑ ∑ . There-

fore, ( )1h gλ λ⋅ + − ⋅  is also a feasible splittable flow vec-

tor i.e., ( )1h gλ λ⋅ + − ⋅ ∈Ω . Thus, by definition, Ω  is a 

convex set  [5]. We turn to show that Ω  is bounded. To 
that end, consider the Euclidean metric 

( ) ( )2

1 2 1 2
1

, ,
P U

i i

i

d x x x x
⋅

=

−∑  which is associated with the 

Euclidean space P U⋅  (recall that U is the set of all users 
and P is the collection of all paths in the network). Note 
that, for each ,f ∈Ω  it holds that 0 u

p uf γ≤ ≤  for each link 

e E∈  and user u U∈ . Therefore, for each two points 
(flow vectors) , ,h g∈Ω   it holds that 

( ) ( ) ( )
2 2

, ,

, u u
p p u

p P u U p P u U

d h g h g γ
∈ ∈ ∈ ∈

= − ≤ =∑ ∑
{ }max u

u U
P U γ

∈
= ⋅ ⋅ . Hence, Ω  is bounded. Finally, we 

show that Ω  is a closed set. To that end, note that Ω  is 
the space of solutions to the following algebraic equations. 

( ),

                        , , \{ , }

     0                                     , ,      

s tu u

u
p u u u

p P

u
p

f u U v V s t

f p P u U

γ
∈

= ∀ ∈ ∀ ∈

≥ ∀ ∈ ∀ ∈

∑
 

The space of solutions Ω  is a polyhedron in P U⋅  . 
Moreover, since each of the above algebraic equations 
considers the sign of equality, it follows that Ω  also con-
sists of the polyhedron's surface. Therefore, the comple-
ment of Ω  (denoted by cΩ )  is an open set  [23]. Thus, 
since any set is open iff its complement is closed [4], it 

follows that ( )ccΩ = Ω   is a closed set. Thus, we conclude 

that Ω  is closed, convex and bounded. Hence, the Theo-
rem is established. ■ 
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A.2 Proof of Lemma 1 

Lemma 1: Given are a network ( ),G V E , a set of users 

U, for each e E∈  a performance function ( ) ,eq ⋅  and a 

splittable Nash flow { }: 0f P U +× → ∪  . Consider the func-

tion ( ) { }: 0g P f +×Γ → ∪  that satisfies u u
p pg f=  for each 

( )u f∈Γ  and p P∈ . Then, g is a splittable flow vector that 

satisfies the demands of all users in ( ),fΓ  such that the 

following three properties hold: 

(i) g is at Nash equilibrium; 
(ii) the (network) bottleneck of g equals to that of f, 

i.e., ( ) ( )B f B g= ; 

(iii) the bottleneck of each user ( )u f∈Γ  is equal to that 

of the network i.e., ( ) ( )ub g B g=  for each ( )u f∈Γ .  

Proof: First, note that, since u u
p pg f=  for each ( )u f∈Γ  

and ,p P∈  it holds that g is a splittable flow vector that 

satisfies the flow demands of all users in ( )fΓ  i.e., 

( ) ( ), ,s t s tu u u u

u u
p p u

p P p P

g f γ
∈ ∈

= =∑ ∑  for each ( )u f∈Γ . 

Next, we show that the bottleneck of g equals to that of 
f i.e., ( ) ( )B f B g= . To that end, consider the given Nash 

flow { }: 0f P U +× → ∪  that satisfies the flow demand of all 

users in U. Denote by E  the set of all links that are the 
bottlenecks of the network with respect to f i.e., 

( ) ( ){ }e eE e E q f B f∈ = . Recall that ( )f UΓ ⊆  is the col-

lection of all users that ship traffic through one or more 
bottleneck from E ; hence, by definition, all users of U 
that ship positive traffic through a link e E∈  are in ( )fΓ . 

Therefore, it holds that 
( )

u u
e p p

u U p e P u f p e P

f f f
∈ ∈ ∈Γ ∈

= =∑∑ ∑ ∑  for each 

e E∈ ; hence, since u u
p pg f=  for each ( )u f∈Γ  and ,p P∈  it 

holds that 
( ) ( )

u u
e p p e

u f p P u f p P

f f g g
∈Γ ∈ ∈Γ ∈

= = =∑ ∑ ∑ ∑  for each e E∈ . 

Therefore,  

( ) ( )e e e eq g q f=  for each e E∈ ;                  (A1)  

hence, since ( ) ( )e eq f B f=  for each e E∈ , it follows that 

( ) ( )e eq g B f= ; hence, by definition, 

( ) ( ){ } ( )max e e
e E

B g q g B f
∈

= ≥ . However, since, by construc-

tion, e eg f≤  for each e E∈ , and since the performance 

functions ( ){ }eq ⋅  are increasing, it follows that 

( ) ( )e eq g q f≤  for each e E∈ ; therefore ( ) ( )B g B f≤ ; thus, 

we conclude that 

 ( ) ( )B g B f= .                               (A2) 

We turn to prove that the bottleneck of each user of g is 
equal to that of the network i.e., ( ) ( )ub g B g=  for each 

( )u f∈Γ . To that end, consider a user ( )u f∈Γ . Since 

( ),u f∈Γ  it follows by definition that u must ship positive 

traffic through at least one bottleneck from E  in the flow 
vector f. Therefore, since  u u

p pg f=  for each ( )u f∈Γ  and 

,p P∈  it follows that user u must ship positive traffic 

through at least one link from E  also in the flow vector  g; 
let e E∈  be a link that carries a positive traffic of user u in 
the flow vector g. Since we have shown in (A1) that 

( ) ( )e eq g q f=  for each ,e E∈  and since, by definition, 

( ) ( )eq f B f=  for each ,e E∈  it follows that the bottleneck 

of user u in the flow vector g is at least ( )B f   

i.e., ( ) ( ){ } ( )
0

max
u
e

u e e
e E g

b g q g B f
∈ >

= ≥ . Therefore, from (A2), 

( ) ( )ub g B g≥ . Finally, since the bottleneck of each user is at 

most that of the network i.e., ( ) ( )ub g B g≤  for each ( )u f∈Γ , 

it follows that  

( ) ( )ub g B g=  for each ( )u f∈Γ .                (A3) 

We turn to show that g is at Nash equilibrium. By way 
of contradiction, assume otherwise. Hence, there exists at 
least one user ( )u f∈Γ  in g that can improve its bottleneck. 

Let ( )u f∈Γ  be such a user. Since we established in (A3) 

that ( ) ( )ub g B g=  for each ( ),u f∈Γ  it follows that, in the 

flow vector g, user u  can decrease its bottleneck below 

( )B g . More formally, there exists a flow vector g  that 

satisfies u u
p pg g=  for each ( ) { }\ ,u f u∈Γ  such that 

( ) ( )u
b g B g< . Consider this flow vector (i.e., the flow 

vector g ). Since ( ) ( ) ,u
b g B g<  it follows by definition 

that ( ) ( )e eq g B g<  for each link e E∈  that carries positive 

traffic of user ,u  i.e., a link that satisfies 0u
eg > ; hence, 

since ( ) ( ),B g B f=  it follows that ( ) ( )e eq g B f<  for each 

link e E∈  that satisfies 0u
eg > . Let E E⊆  be the set of all 

network bottlenecks of f that satisfy 0u
eg > . Since 

( ) ( )e eq g B f<  for each e E∈ , it follows by definition that 
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( ) ( )e e e eq g q f<  for each e E∈ ; hence, since ( )eq ⋅  is an 

increasing function, it follows that  

u u
e eg f<  for each e E∈ .                          (A4) 

We employ (A4) in order to establish that g is a Nash 
flow, as follows. 

For each [ ]0,1 ,λ ∈  consider the vector ( ) ( ){ },u
pf f λλ =  

where  ( )
{ }

( )
\

1 otherwise

u
pu

p u u
p p

f u U u
f

g f
λ

λ λ

 ∈= 
⋅ + − ⋅

 for each 

p P∈  and u U∈ . It is easy to see that ( )f λ  is a feasible 
flow vector that satisfies the demands of all users in U for 
each [ ]0,1λ ∈ . We now show that there exists a ,λ  

0 1,λ< <  such that ( )( ) ( )u u
b f b fλ < . Since by definition 

( )u u
ppf fλ =  for each user { }\u U u∈  and p P∈ , we actually 

show that user u  in the flow vector f can decrease its bot-
tleneck by rerouting its traffic; obviously, this contradicts 
the fact that f is at Nash equilibrium and proves that g is a 
Nash flow. Note that, since ( ) ,u f∈Γ  it follows by defini-

tion that  ( ) ( )u
b f B f= ; hence, in order to show that 

( )( ) ( ) ,u u
b f b fλ <   it is sufficient to show that there exists 

some 0 1λ< <  such that ( )( ) ( )u
b f B fλ < .  

To that end, consider the set \E E  i.e., the set of all 
links that are not the bottleneck of the network with re-
spect to f. It follows by definition that ( ) ( )e eq f B f<  for 

each \E E . Therefore, since the performance function 
( )eq ⋅  is continuous for each e E∈ , it follows by construc-

tion of ( )f λ  that there exists some 0ε >  such that  

( )( ) ( )e eq f B fε <  for each \e E E∈ .                 (A5)   

Therefore, in order to establish that ( )( ) ( ) ,u
b f B fε <  we 

only need to show that ( )( ) ( )e eq f B fε <  for each link 

e E∈  that satisfies ( ) 0u
ef ε > . To that end, we distinguish 

between two cases, namely the links E E⊆  and the links 

\E E . Consider the links E E⊆ . Since we have proven in 

(A4) that u u
e eg f<  for each e E∈ , it follows that 

( ) ( ) ( )1 1u u u u u u
e e e e eef g f f f fε ε ε ε ε= ⋅ + − ⋅ < ⋅ + − ⋅ =  for each 

e E∈ . Hence, since it holds by construction that ( )u u
eef fε =  

for each { }\u U u∈  and e E∈ , it follows that 

( ) ( ) ( )
{ }

( )
{ } { }\ \ \

u u uu u u
e e e ee e e e

u U u u U u u U u

f f f f f f f fε ε ε ε

∈ ∈ ∈

= + < + = + =∑ ∑ ∑  

for each e E∈ . Thus, since ( )eq ⋅  is increasing, it follows 

that ( )( ) ( )e e eeq f q fε <  for each e E∈ . Therefore, since by 

definition ( ) ( )e eq f B f=  for each e E∈ , it follows that 

( )( ) ( )e eq f B fε <  for each e E∈ ; in particular,  

( )( ) ( )e eq f B fε <  for each e E∈  that satisfies ( ) 0.   (A6)u
ef ε >   

Consider now the links \ .E E  We just need to show 

that ( )( ) ( )eq f B fε <  for each \e E E∈  that satisfies 

( ) 0u
ef ε > . To that end, note that, by definition, the links of 

\E E  are the links in E  that satisfy 0u
eg = . Hence, since 

0,ε >  it follows that, if 0,u
ef >  then it holds that 

( ) ( ) ( )1 1u u u u u
e e e eef g f f fε ε ε ε= ⋅ + − ⋅ = − ⋅ <  for each 

\e E E∈ . Thus, following the same arguments as in the 

previous case (i.e., the case of links from E ) it is easy to 
see that  

( )( ) ( )e eq f B fε <  for each \e E E∈  that satisfies ( ) 0.u
ef ε >  (A7) 

Therefore, from (A5)-(A7), we conclude that 

( )( ) ( )e eq f B fε <  for each link e E∈  that satisfies 

( ) 0u
ef ε > . Hence, by definition, ( )( ) ( )u

b f B fε < ; finally, 

as explained, since ( ) ( )u
b f B f=  for the user ( )u f∈Γ , it 

follows that ( )( ) ( )u u
b f b fλ < . As this conclusion contra-

dicts the fact that f is at Nash equilibrium, we deduce that 
g is a Nash flow. Thus, the Lemma is established. ■ 

 

A.3     Why Lemma 1 does not hold for unsplittable flows? 

The proof of the lemma breaks at the point that the 

flow vector ( )f ε  is introduced. Indeed, for the user u , the 

vector ( )f ε  is a superposition of two different unsplittable 

flow vectors namely, ( ) ( )1u u u
p ppf g fε ε ε= ⋅ + − ⋅  for each 

p P∈ , Obviously, if f and g ship the traffic of user  u  on 
two different paths then, in the flow vector ( )f ε , the traffic 

of u  is split among the corresponding paths.  

 

 




