
 1

Online Multipath Routing

Ron Banner and Ariel Orda
Department of Electrical Engineering

Technion – Israel Institute of Technology
Haifa 32000, Israel

{ banner@tx, ariel@ee .technion.ac.il

Abstract

We consider the online problem of routing traffic in order to minimize network congestion in settings
where demands are allowed to be splitted along any number of paths. Previous works in this context
focused on congestion minimization schemes that limit the traffic of each request to travel along a

single path. We describe a multipath routing algorithm for congestion minimization with an ()logO N

competitive ratio, where N is the number of nodes in the network. We also show that this result is tight
i.e., for any online multipath routing algorithm, there is a scenario in which the congestion is larger by

a factor of ()logNΩ than the (offline) optimum.

1. Introduction

In an online routing problem, demands arrive one at a time and there is no a priori
knowledge regarding future demands. Each demand specifies the source and
destination nodes and the requested bandwidth. Upon the arrival of a new request, the
algorithm establishes a connection by allocating the required bandwidth along some
path between the source and destination nodes. The goal of the algorithm is usually
set to minimize the congestion of the network [1],[2].

The performance of online algorithms is usually evaluated in terms of the competitive
ratio introduced by [3] and further developed by [4]. In our case, it corresponds to the
supremum, over all possible input sequences, of the ratio between the congestion
obtained by the online algorithm and the congestion obtained by the optimal
algorithm that is based on the entire input sequence.

To the best of our knowledge, multipath routing has not been considered in the
context of online computation. In order to address this issue, we employ the
exponential cost functions of [1],[5] that were used thus far in order to route demands
in an online fashion over single paths. More specifically, the schemes of [1],[5]
assign to each link a cost that is exponential in its congestion; then, upon the arrival of
a new demand, they compute the shortest path with respect to these exponential costs
and route the demand along the resulting path. In this paper, we establish that such
cost functions can be used in order to derive a competitive strategy that routes
demands in an online fashion over multipaths. Roughly speaking, we show that
identifying for each new demand a min cost flow with respect to the exponential costs
of [1],[5] while restricting the resulting flow to be integral over each link, achieves a
network congestion factor larger by ()logO N than the optimum. Based on this

observation, we establish a polynomial online scheme for multipath routing with a

lesley
CCIT Report # 462
January 2004

 2

competitive ratio of ()logO N . Moreover, we prove that the resulting online routing

scheme yields a tight, i.e., best possible, competitive ratio.

2. Model and Problem Formulation

A network is represented by a directed graph G(V,E), where V is the set of nodes and
E is the set of links. Let N=|V| and M=|E|. A path is a finite sequence

of nodes p=(v0,v1,…vh), such that, for 0≤n≤h-1, (vn,vn+1)∈E. A path is simple if all its

nodes are distinct. A cycle is a path p=(v0,v1,…vh) together with the link (vh,v0)∈E i.e.,

(v0,v1,…vh,v0). Let (),i jP denote the collection of all simple paths from the source i to

the destination j and let
()

(),

,

i j

i j V V
P P

∈ ×
∪� .

Each link e∈E is assigned a capacity ce∈Z+. We consider a link state routing

environment, where each source node has a (precise) image of the entire network.

A commodity is a pair of nodes (),i j V V∈ × that is assigned with a non-negative

demand (),i jγ . Given a commodity (),i j V V∈ × , we say that node i is the source

node of the given commodity and node j is the target node. For each node v V∈ ,
denote by ()O v the set of links that emanate from v , and by ()I v the set of links that

enter that node, namely () () (){ }, ,O v v l v l E= ∈ and () () (){ }, ,I v w v w v E= ∈ .

Definition 0.1 Let (),G V E be a network. A flow vector (){ },i j
ef f� is a real-valued

function { }: 0f E V V +× × → ∪ that satisfies the following two properties:

Flow conservation: For each commodity (),i j V V∈ × and each node other than the

source i and the destination j ()

()

()

()

, , 0i j i j
e e

e O v e I v

f f
∈ ∈

− =∑ ∑ .

Flow demand: For each commodity (),i j V V∈ × , () () (), , ,

() ()

 i j i j i j
e e

e O i e I i

f f γ
∈ ∈

− =∑ ∑ .

Definition 2.2: Given are a network G(V,E), a flow vector (){ },i j
ef f= and a

commodity (),i j V V∈ × . The link flow of commodity (),i j is the collection

(){ },i j
ef e E∈ .

Definition 2.3: Given are a network G(V,E), a flow vector (){ }, ,i j
ef f= a commodity

(),i j V V∈ × , and a value σ +∈\ . The link flow of commodity (),i j is σ − integral,

if for each link e E∈ it holds that (),i j
ef is a multiple of σ .

 3

Definition 2.4: Given are a network G(V,E), and, for each (),i j V V∈ × a demand
(),i jγ . A path flow is a real-valued function f:P→R+∪{0} that satisfies

()
(,)

,()i j

i j

p P
f p γ

∈
=∑ for each (),i j V V∈ × .

Definition 2.5: Given are a network G(V,E) a capacity 0ec > for each e E∈ , and a

flow vector (){ }, .i j
ef f= Define ()

()

,

,

i j
e e

i j V V

f f
∈ ×
∑� for each e E∈ . The value e

e

f

c
 is the

link congestion factor.

Definition 2.6: Given a network G(V,E) and a link flow {fe}, the network congestion

factor is the largest link congestion factor in the network, i.e., max e

e E
e

f

c∈

 
 
 

.

As noted in [6],[7],[8], the network congestion factor provides a good indication of
congestion.

In order to evaluate the quality of algorithms in the context of on-line problems, we
employ the following standard terminology [3].

Definition 2.7 A solution is off-line if it is based on the entire input sequence.

Definition 2.8 The competitive ratio of a given online algorithm is defined as the
supremum over all input sequences of the performance achieved by the optimum
offline algorithm and the performance achieved by this online algorithm.

We proceed to present the problem that considered in this paper. We are given a
network and requests that arrive in an online fashion, each with a specified flow
demand, source-destination pairs, and the maximum number of paths over which the
given demand is allowed to be shipped. The goal is to route each request such that the
network congestion factor is minimized. This is formulated as follows.

Problem OMR (On-Line Multipath Routing) Given are a network (),G V E , and a

capacity 0ec > for each link e E∈ . Requests arrive as triples () (), , ,k kk
R k s t γΚ

in an on-line fashion. The k-th request ()R k is satisfied by transferring kγ flow units

from s to t over at most kΚ paths. For each index k, upon the arrival of the k-th

request () ,R k find an assignment that minimizes the network congestion factor while

satisfying ()R k .

We call the triple () { } (){ }, , ,eG V E c R k an instance.

 4

3. A Competitive Ratio of O(logN) for Problem OMR

In this section, we establish a polynomial scheme for Problem OMR with a
competitive ratio of ()logO N . Our scheme is based on solving an auxiliary problem

that introduces an additional integrality restriction to Problem OMR.

Problem I-OMR (Integral OMR) Given are a network (),G V E , and a capacity

0ec > for each link e E∈ . Requests arrive as triples () (), , ,k kk
R k s t γ= Κ in an

on-line fashion. The k-th request ()R k is satisfied by identifying a
K

k

k

γ
− integral path

flow that transfers kγ flow units from s to t. For each index k, upon the arrival of the

k-th request () ,R k find an assignment that minimizes the network congestion factor

while satisfying ()R k .

Note that problem I-OMR implicitly limits the number of paths for the k-th request to

at most kΚ paths, by restricting the flow to be
K

k

k

γ
− integral. Thus, Problem I-OMR

differs from Problem OMR only in the restriction to have a solution (path flow) that is

integral in
K

k

k

γ
 for each request ()R k .

3.1 Solving Problem I-OMR

Problem I-OMR is solved using Procedure I-OMR that is specified in Fig.1. The
procedure is given a network (),G V E , a network congestion factor α and a request

()R k . The procedure assigns to each link e E∈ a cost that is exponential in e

e

x

cα ⋅

where ex is the flow that traverses through link e . Then, the procedure computes a

K
k

k

γ
− integral min-cost flow with respect to these exponential costs. We prove that, if

the given network congestion factor α is at least the network congestion factor of the
optimal offline solution (that considers all k requests ahead), then this min-cost flow
computation provides a path flow with a network congestion factor of at most

()log 2 mα ⋅ ⋅ . Thus, we establish that, if we know in advance the optimal offline

network congestion factor, then our procedure derives a solution for Problem I-OMR

with a competitive ratio of () () ()2log 2 log 2 logM N O N⋅ = ⋅ = . In order to provide

the specification of that procedure, consider first the following notations.

Given is an instance () { } (){ }, , ,eG V E c R k of Problem I-OMR. Let

(){ } (){ } (){ }* * *1 , 2 , ,e e ef f f k… be the link flows assigned for requests

 5

() ()1 , ,R R k… by the optimal offline algorithm, and let

(){ } (){ } (){ }1 , 2 , ,e e ef f f k… be the link flows assigned by Procedure I-OMR that is

specified in Fig. 1. In addition, for each 1 n k≤ ≤ and each e E∈ , let

() ()
1

n

e e
m

s n f m
=
∑� and let () ()* *

1

n

e e
m

s n f m
=
∑� . We denote by (){ }es k the link flow that

results from the assignment of the first k requests by Procedure I-OMR; similarly, we

denote by (){ }*
es k the optimal link flow that consider the first k requests.

Definition 3.1 Given an instance () { } (){ }, , ,eG V E c R k of Problem I-OMR, a

network congestion factor 0α > and a link flow (){ }ex k for request ()R k , denote

for each e E∈ the exponential cost

() () ()1 1

3 3

2 2

e e e

e e

s k x k s k

c cα α
− + −
⋅ ⋅   −   

   
 as ()()e ep x k , i.e.,

()()
() () ()1 1

3 3

2 2

e e e

e e

s k x k s k

c c

e ep x k
α α
− + −
⋅ ⋅   −   

   
� .

Finally, we define the following problem that Procedure I-OMR solves upon the
arrival of each new request. We note that the problem is a special case of the convex
cost flow problem [9].

Problem CCF (Convex Cost Flow Problem) Given are a network (),G V E , a

capacity 0ec > for each link e E∈ , a link flow (){ }1es k − that consider the first k-1

requests and a new request () (), , ,k kk
R k s t γ= Κ . Find a k

kK

γ
− integral link flow

(){ }ex k that transfer kγ flow units from s to t such that the total cost ()()e e
e E

p x k
∈
∑ is

minimized.

Unlike general convex cost flow problems that have no finite-time algorithms [10],
convex cost flow problems (as Problem CCF) that impose integrality restriction on
link flows can admit a polynomial solution. In particular, Problem CCF can be
applied by the capacity scaling algorithm for convex cost flows [9] that has a
polynomial running time. Fig. 1 specifies Procedure I-OMR. This procedure solves an
instance of Problem CCF by employing the capacity scaling algorithm for convex
cost flows [9].

 6

Fig. 1 Procedure I-OMR

() { } (){ } ()()

()
{ }

(){ }

() k

k

 I-OMR , , , 1 , ,

 :

 , network

 capacities

 1 the link flow of all previous -1 requests

 - the -th of establishing a -integral l

e e

e

e

G V E c s k R k

G V E

c

s k k

R k k
K

α

γ

−

−

−

− −

Procedure

Parameters

() ()(){ } ()

kink flow of flow units from to

 the restriction on network congestion factor

1. Use the [9] in order to solve the instance , , , , ,

 of Probl

k k

e e kk

s t

capacity scaling algorithm G V E p x k s t

γ

α

γ

−

()
() () ()

(){ }

3

2

em CCF. Let be the resulting link flow.

1
2. If there exists such that log 2 .

 Else

 link flow .

e

e e

e

e

f k

s k f k
e E m

c

x k

α
− +

∈ > ⋅ ⋅

Return Fail

Return

Definition 3.2 Given an instance of Problem I-OMR, *

kα is the network congestion

factor of the optimal offline solution that considers the first k requests i.e.,

()*
* max e
k

e E
e

s k

c
α

∈

  
 
  

� .

Theorem 1 Given are an instance () { } (){ }, , ,eG V E c R k of Problem I-OMR and

the corresponding input () { } (){ } (), , , 1 , ,e eG V E c s k R k α− for Procedure I-OMR.

If *
kα α≤ , then Procedure I-OMR never fails. Thus, the returned path flow has a

network congestion factor of at most ()3

2

log 2 mα ⋅ ⋅ .

Proof Consider the following potential function ()
()

*3
2

2

e

e

s k

c
k

e E

k
α α

α
⋅

∈

  Φ = −  
   

∑ . We

will first prove that () ()1 0k kΦ −Φ − ≤ .

 7

() ()
() ()

()
() ()

()

1
* *

1

1
* * *

1

3 3
1 2 2

2 2

13 1 3
 2 2

2 2

e e

e e

e e

e e

s k s k

c c
k k

e E e E

s k s k

c c
e e k

e E e Ee

k k

s k f k

c

α α

α α

α α
α α

α
α α

−
⋅ ⋅

−

∈ ∈

−
⋅ ⋅

−

∈ ∈

      Φ −Φ − = − − − =      
      

  − +     = ⋅ − − ⋅ − =       
        

∑ ∑

∑ ∑
()

()
()

()
()

()

1
* *

* 1
1

1
**

1

3 1 3
 2 2

2 2

3 3
 2 2

2 2

e e

e e

e e

e e

s k s k

c c
e k

k
e E e Ee

s k s k

c c
ek

e E e

f k

c

f k

c

α α

α α

αα
α α

α α
α α

−
⋅ ⋅

−
−

∈ ∈

−
⋅ ⋅

−

∈

       = ⋅ − + − ⋅ − =       
        

    = ⋅ − − − ⋅ −    ⋅    

∑ ∑

∑
() () ()

()

() ()

*
1

1
**

1

1

3 3 3
 2

2 2 2

3 3
 2

2 2

e e e

e e e

e e

e e

k

e E

s k s k s k

c c c
ek

e E e E e

s k s k

c c

f k

c

α α α

α α

α

α
α α

−

∈

−
⋅ ⋅ ⋅

−

∈ ∈

−
⋅ ⋅

 
= 

 

         = − ⋅ − − ⋅ ≤         ⋅         

   ≤ ⋅ −   
   

∑

∑ ∑

()
()

() () () ()
()

1
*

1 1 1
*

3

2

3 3 3
 2 .

2 2 2

e

e

e e e e

e e e

s k

c
e

e E e E e

s k f k s k s k

c c c
e

e E e E e

f k

c

f k

c

α

α α α

α

α

−
⋅

∈ ∈

− + − −
⋅ ⋅ ⋅

∈ ∈


   − ⋅ =   ⋅  

 
 
      = ⋅ − − ⋅       ⋅      
 

∑ ∑

∑ ∑

Since the capacity scaling algorithm, which solves Problem CCF in step (1), identifies

a
K

k

k

γ
− link flow (){ }ef k that minimizes the total cost ()e

e E

p
∈

⋅∑ , it follows that

()() ()()*
e e e e

e E e E

p f k p f k
∈ ∈

≤∑ ∑ . Thus, by definition,

() () () () () ()*1 1 1 1

3 3 3 3

2 2 2 2

e e e e e e

e e e e

s k f k s k s k f k s k

c c c c

e E e E

α α α α
− + − − + −
⋅ ⋅ ⋅ ⋅

∈ ∈

  
         − ≤ −                      

∑ ∑ . Therefore, we

employ this inequality as follows.

() ()
() () () ()

()

() () () ()
()

*

1 1 1
*

1 1 1
*

3 3 3
1 2

2 2 2

3 3 3
 2

2 2 2

e e e e

e e e

e e e e

e e e

s k f k s k s k

c c c
e

e E e E e

s k f k s k s k

c c c
e

e E

f k
k k

c

f k

α α α

α α α

α

− + − −
⋅ ⋅ ⋅

∈ ∈

− + − −
⋅ ⋅ ⋅

∈

 
      Φ −Φ − ≤ ⋅ − − ⋅ ≤       ⋅      
 
 
      ≤ ⋅ − − ⋅            
 

∑ ∑

∑

() ()
()

*1
*3 3

 2 1 .
2 2 2

e e

e e

e E e

s k f k

c c
e

e E e

c

f k

c

α α

α

α

∈

−
⋅ ⋅

∈

=
⋅

 
    = ⋅ ⋅ − −    ⋅ ⋅    

 

∑

∑

 8

In order to show that

() ()
()

*1
*3 3

2 1 0
2 2 2

e e

e e

s k f k

c c
e

e E e

f k

c

α α

α

−
⋅ ⋅

∈

 
    ⋅ ⋅ − − ≤    ⋅ ⋅    

 
∑ , we prove that, for

each e E∈ ,

()
()

*

*3
1 0

2 2

e

e

f k

c
e

e

f k

c

α

α
⋅  − − ≤  ⋅ ⋅ 

. Observe that, since it is given that *
kα α≤ , it

follows that
() () () ()* * * *

*1e e e e
k

e e e

f k s k f k s k

c c c
α α

− +
≤ = ≤ ≤ for each e E∈ . Therefore, it

holds that
() []

*

0,1e

e

f k

cα
∈

⋅
 for each e E∈ . Thus, we only have to prove that

3
(i) 1 0

2 2

x
x  − − ≤ 

 
 for every x in the range[]0,1 .

Reference [1] states that if , 1a γ > and 11a γ= + then it follows that ()1xa xγ − ≤

for each []0,1x∈ . Thus, since both constants
3

2,
2

aγ = = are larger than 1 and

satisfy 11a γ= + , it follows that
3

2 1
2

x

x
   − ≤     

 for each []0,1x∈ . Obviously, this

validates (i), thus we have established that () ()1 0k kΦ −Φ − ≤ .

We use this property in order to prove the Theorem, i.e., show that if *

kα α≤ , then

Procedure I-OMRA never fails.

As it is given that *

kα α≤ , it follows that

()
() ()

()
() ()

max*3 3 3 3
2 2 1

2 2 2 2

e e e e

e Ee e e e

s k s k s k s k

c c c c
k

e E e E e E

k
α α α αα

α
∈

  
 

⋅ ⋅ ⋅ ⋅  

∈ ∈ ∈

        Φ = − ≥ − = ≥        
        

∑ ∑ ∑ . Since

() ()0 2k MΦ ≤Φ = ⋅ , and since ()
()

max
3

2

e

e E e

s k

c
k

α∈

  
 ⋅   Φ ≥  

 
 we conclude that

()
max

3
2

2

e

e E e

s k

c
M

α∈

  
 ⋅    ≤ ⋅ 

 
. Therefore, taking the log from both sides we get,

()

() () ()

() ()

max

3 3 3

2 2 2

3

2

3
log log 2 max log 2

2

max log 2
.

e

e E e

s k

c
e

e E
e

e

e E
e

s k
M M

c

s k
M

c

α

α

α

∈

  
 ⋅  

∈

∈

 
    ≤ ⋅ ⇒ ≤ ⋅    ⋅    

 
 

⇒ ≤ ⋅ ⋅ 
 

Hence, by construction, Procedure I-OMRA does not fail, thus establishing the
Theorem. ■

 9

Since () () ()2
3 3

2 2

log 2 log 2 logM N O Nα α α⋅ ⋅ ≤ ⋅ ⋅ = ⋅ , it follows that, given an

instance of Problem I-OMR and a network congestion factor α such that *
kα α≤ ,

Procedure I-OMR can be used in order to output a link flow with a network
congestion factor that is larger than α by a factor of ()logO N . In particular, if we

"guess" a network congestion factor of at most *2 kα⋅ , then the procedure can be used

in order to establish a scheme for Problem I-OMR with a competitive ratio of

()logO N . To that end, consider the following.

Definition 3.3 Given an instance of Problem I-OMR, define the value
[]1, Kmin i

i k i

γ
∈

 
 
 

as
K

γ
 and the set

[]
{ }

1,

2
, 0, log , 0

K

i

i
i ke

K
e E i i

c

γ γ
γ ∈

    ⋅ ∈ ∈ ⋅ ∈ ∪         
∑] as α i.e.,

[]1,K Kmin i

i k i

γγ
∈

 
 
 

� and
[]

{ }
1,

2
, 0, log , 0

K

i

i
i ke

K
e E i i

c

γα γ
γ ∈

    ⋅ ∈ ∈ ⋅ ∈ ∪         
∑�] .

Lemma 1 Given an instance of Problem I-OMRA, there exists at least one α α∈ ,
such that * *2k kα α α≤ ≤ ⋅ .

Proof Since for the case that * 0kα = the lemma is trivially satisfied (0 α∈), we will

consider only the case * 0kα > . To that end, consider the optimal offline solution of

Problem I-OMR. By the definition of *
kα , there exists a link e E∈ with a flow

()* *(1) e k es k cα= ⋅ . Since * 0kα > and 0ec > , it follows that ()*(2) 0es k > . In

addition, since for each []1,i k∈ , Problem I-OMR restricts the i -th request to have a

i

iK

γ
-integral link flow, then, for each e E∈ , it follows that ()*

1

(3)
K

k
i

e i
i i

s k n
γ

=

=∑

where []0,Ki in ∈ .Thus, from (2) and (3), it follows that ()
[]

*

1, Kmin i
e

i k i

s k
γ

∈

 
≥  

 
,

therefore, by Definition 3.3, it follows that ()*

Kes k
γ

≥ .

On the other hand, it is easy to see that ()

[]

*

1,
e i

i k

s k γ
∈

≤ ∑ . Therefore,

()
[]

*

1,K e i
i k

s k
γ γ

∈

≤ ≤ ∑ . Thus, there exists some i ,
[]1,

0 log 1i
i k

K
i γ

γ ∈

 
≤ ≤ ⋅ −  

 
∑ , such that

()* 12 2
K K

i i
es k

γ γ+⋅ ≤ ≤ ⋅ . Hence, it follows from (1) that there exists some i ,

 10

[]1,

0 log 1i
i k

K
i γ

γ ∈

 
≤ ≤ ⋅ −  

 
∑ , such that * 12 2

K K
i i

k ec
γ γα +⋅ ≤ ⋅ ≤ ⋅ , hence

1
*2 2

(4)
K K

i i

k
e ec c

γ γα
+

⋅ ≤ ≤ ⋅ . Define
12

K

i

ec

γα
+

⋅� , and note that α α∈ . We will prove

that * *2k kα α α≤ ≤ ⋅ . Since it immediately follows from (4) that *
kα α≥ , we need only

show that *2 kα α≤ ⋅ . To that end, observe that, since
12

K

i

ec

γα
+

= ⋅ , it follows from (4)

that
* *

1 1

2
K 1

2 2 2

K K

i

k k e
i i

e e

c

c c

γ
α α

γ γα + +

⋅
= ≥ =

⋅ ⋅
. Thus, *2 kα α≤ ⋅ , and the lemma was established. ■

Note that the number of elements in the set α equals to

[] []
[]()max

1, 1,

log log log log log logi i
i k i k

K K
M M M K kγ γ γ γ

γ γ∈ ∈

   
⋅ ⋅ = ⋅ + ≤ ⋅ + + ⋅ =      

   
∑ ∑

()()maxlog log logO M K k γ= ⋅ + + . We use the fact that the set α contains a

polynomial number of elements in order to establish a solution for Problem I-OMR,
as follows.

Algorithm I-OMR Given are a network (),G V E , capacities { }ec and a link flow

(){ }1es k − that consider the first k-1 requests. Upon the arrival of request ()R k

perform the following three steps:

1. perform a binary search over α in order to find the smallest α α∈ such that
Procedure I-OMR succeeds for the input

() { } (){ } (), , , 1 , ,e eG V E c s k R k α− . Denote the resulting network

congestion factor by minα .

2. Perform (){ } () { } (){ } ()()minProcedure I-OMR , , , 1 , ,e e ef k G V E c s k R k α← − .

Apply the flow decomposition algorithm [9] on link flow (){ }ef k in order to

obtain a path flow f.
3. Return f.

It follows from Theorem 1 and Lemma 1 that Algorithm I-OMR produces for the first
k requests a network congestion factor that is larger by a factor of at most

() ()3

2

2 log 2 logM O N⋅ ⋅ = than the optimal offline network congestion factor *
kα .

Thus, Algorithm I-OMR is an online scheme that solves Problem I-OMR with a
competitive ratio of ()logO N . In addition, as Algorithm I-OMR performs a binary

search over α , it follows that it executes Procedure I-OMR for at most

 11

()() []()max maxlog log log log log log log log log logO M K k O N K kα γ γ= ⋅ + + = + + +  
 times. Hence, since the complexity of Procedure I-OMR is determined by the
complexity of the capacity scaling algorithm, Algorithm I-OMR has a polynomial
running time.

3.2 Solving Problem OMR

We now employ the solution to Problem I-OMR in order to derive an efficient online
scheme with a competitive ratio of ()logO N for Problem OMR i.e., the general

problem that has no restrictions on the integrality of the flow. The scheme is based on
the following key observation.

Theorem 2 Given are an instance () { } (){ }, , ,eG V E c R k of Problem I-OMR and an

instance () { } (){ }, , ,eG V E c R k of Problem OMR. Let *
OMRα be the network

congestion factor of the optimal (offline) solution to Problem OMR. Then, the
network congestion factor of the optimal (offline) solution to Problem I-OMR is at
most *2 OMRα⋅ .

Proof Consider the instance () { } ()k{ }, , ,eG V E c R k of Problem OMR where

() ()k{ }, , , 2k kk
s t R kγΚ ⋅ ∈ iff () (){ }, , ,k kk

s t R kγΚ ∈ . Let path flow

{ }* : 0f P +→ ∪\ be the optimal offline solution to the instance

() { } (){ }, , ,eG V E c R k of Problem OMR. For each index k denote by *
kf the path

flow that considers solely request ()R k in path flow *f i.e., all the positive flows that

together satisfy request ()R k in *f . Obviously, associating a path flow

{ }: 0kg P +→ ∪\ with each request ()kR k such that () ()*2k kg p f p= ⋅ for each

p P∈ is a feasible solution to the instance () { } ()k{ }, , ,eG V E c R k of Problem

OMR; moreover this solution produces a network congestion factor of *2 OMRα⋅ . For

each index k and each path p P∈ round down the flow ()kg p to be a multiple of

k

kK

γ
. In this process, the flow over each path in kg is reduced by at most k

kK

γ
 flow

units. Since for each k, request ()kR k employs at most kK paths, its total flow is

reduced by at most kγ flow units. Therefore, since for each k the original demand was

2 kγ⋅ flow units, it follows that, after the rounding, the total flow is of at least kγ flow

units.

 12

Thus, for each k we have identified a k

kK

γ
- integral path flow that transfers kγ flow

units from ks to kt . By definition, this is a feasible solution to the instance

() { } (){ }, , ,eG V E c R k of Problem I-OMR. Moreover, since in the rounding process

we only reduce flow (and never increase it), the network congestion factor is at most
*2 OMRα⋅ . ■

Given an instance () { } (){ }, , ,eG V E c R k of Problem OMR and an instance

() { } (){ }, , ,eG V E c R k of Problem I-OMR, it follows from Theorem 2 that the

optimal offline network congestion factors of both solutions differ by at most a factor
of 2. Hence, since Algorithm I-OMR produces a solution with a competitive ratio of

()logO N , it follows that the same algorithm can be employed in order to derive a

solution for Problem OMR with a competitive ratio of () ()2 log logO N O N⋅ = . The

latter is summaries as follows.

Algorithm OMR Given an instance () { } (){ }, , ,eG V E c R k of Problem OMR,

solve the instance () { } (){ }, , ,eG V E c R k of Problem I-OMR using Algorithm I-

OMR.
.
Corollary 1 Algorithm OMR is a polynomial online strategy for Problem OMR
with a competitive ratio of ()logO N .

4. A Lower Bound of Ω(logN) for Multipath Routing

In this section, we show that there is a lower bound of ()log NΩ for the competitive

ratio of any on-line multipath routing algorithm. In [1], it was established that there
exists a lower bound of ()log NΩ for the competitive ratio of online routing

algorithms that limit the users to route their traffic along a single path. In this section,
we show that the same lower bound exists if multipath routing is allowed i.e., each
user can split its traffic along any number of paths. This implies that our ()logO N -

competitive algorithm presented in the previous section obtains a tight, i.e., best
possible, competitive ratio.

The basic idea is to modify the lower bound of [1] and [11] to correspond to multipath
routing. To that end, consider the network that appears in Fig. 2. Assume that N is a
power of 2. Moreover, assume that the network has a single source node S and

multiple targets { },i jT . Each target ,i jT is located in the j -th location of layer i .

Assume that: target 1,1T is connected to all the nodes 1 Nv v ; targets 2,1T and 2,2T are

connected to the nodes 1

2

Nv v and
1

2

N Nv v
+

, respectively; and so forth. More

 13

formally, for each 1 log ,i N≤ ≤ the target ,1iT is connected to the first set of
12i

N
−

nodes i.e.,
1

1

2i

Nv v
−

, target ,2iT is connected to second set of
12i

N
− nodes i.e.,

1 1
1 2

2 2i i

N Nv v
− −+ ⋅

, and in general, the target ,i jT is connected to the j-th set of
12i

N
− nodes

i.e., nodes ()
1

1
1

22
ii

j Nj Nv v
−

⋅− ⋅ ⋅+
. Finally, assume that all the links in the network have a

single unit of capacity.

We construct a sequence of requests from the source S to the targets { },i jT . Each

request can split its flow among any number of paths. The first aims at transferring a

flow demand of
2

N
 units from the source S to some target in layer 1, the second

request aims at transferring a flow demand of
4

N
 units from the source S to some

target in layer 2, and so forth; in general, the k-th request aims at transferring a flow

demand of
2k

N
 units from the source S to the some target in layer k.

It remains to specify how to select the target within each layer. To that end, consider
the first request. By construction, layer 1 has a single target node, namely, 1,1T . In

order to determine the target within layer 2 (i.e., the target of the second request) we
consider the congestion of the links { }1is v i N→ ≤ ≤ after applying the demand of the

first request. More precisely, we consider the congestion of the two disjoint sets A E⊆

and B E⊆ where A 1
2i

N
s v i
 

→ ≤ ≤ 
 

� and B 1
2i

N
s v i N
 

→ + ≤ ≤ 
 

� ; note that the

links in A connect S to the target 2,1T , and the links in B connect S to the target 2,2T .

The target of the second request is determined according to the set that has the larger
average congestion factor. More specifically, the target of the next request is
determined so that the set with the larger average link congestion factor is used again.
Explicitly, if the set A has an average link congestion factor larger than that of B, the
target of the next request is 2,1T ; otherwise the selected target is 2,2T .

Consider now the network congestion factor after applying the first request. Since the

first request transfers
2

N
 flow units from S to 1,1T via the links of { }1 ,is v i N→ ≤ ≤

the average link congestion factor of the links in { }1is v i N→ ≤ ≤ is

Total flow 1

Total capacity 2
= . Hence, after applying the first request the network congestion

factor is of at least
1

2
. Next, consider the network congestion factor when applying

the second request. The second request transfers
22 4

N N
= from S to either 2,1T or 2,2T .

Since the target is selected according to the set of links that has the larger average link

 14

congestion factor, it follows that, before the second request is satisfied, the links in

{ }1is v i N→ ≤ ≤ that connect S to the selected target have already an average link

congestion factor of at least
1

2
. Moreover, note that, by construction, the traffic of the

selected target is carried by at most
2

N
 links from { }1is v i N→ ≤ ≤ ; hence, the second

request increases their average link congestion factor by
1

2
. Thus, after the second

request is satisfied, the network congestion factor is at least 1.

In general, it is easy to see that this strategy increases the network congestion factor

by
1

2
 for each new request. Thus, applying this strategy for a sequence of logN

requests produces a network congestion factor of at least
log

2

N
. Thus, in order to

show that the competitive ratio is ()logO N , we have to show that the optimal offline

algorithm can achieve a network congestion factor of ()1O . We shall show that it can

achieve a network congestion factor of 1.

To that end, we show that the optimal offline algorithm can maintain for the k-th

request a dedicated set of
2k

N
 links from { }1is v i N→ ≤ ≤ that are not employed by

other requests. Indeed, by construction, if ,k jT , 1,k hT + are two target nodes selected

according to the above strategy, then it holds that ,k jT is reachable from S via two

disjoint sets, each of
2k

N
 links from { }1is v i N→ ≤ ≤ , such that only one set can be

used in order to connect S to 1,k hT + . Therefore, in the offline solution, ,k jT has a set of

2k

N
 links that are not employed by other requests. Denote the latter set of links as C.

Since the demand of the thk− request is of
2k

N
 flow units, it holds that the set C can

transfer the entire flow demand of the thk− request without exceeding the congestion
of its links beyond 1. Therefore, the optimal offline solution can achieve a network
congestion factor of 1.

Therefore, we have shown that for any online algorithm of multipath routing, there is
a scenario in which a network with at most i logN N N⋅� nodes achieves a network

congestion factor larger by
log

2

N
 than the optimum. Since

i () ()log log log log loglog logN N N N N O N= ⋅ = + = , it follows that, for any online algorithm

for multipath routing, there is a lower bound of ()logNΩ for the best possible

competitive ratio.

 15

Fig. 2: A Lower Bound of Ω(logN) for Multipath Routing

S

1v

2,2T

2,1T

1,1T

3,1T

3,2T

3,3T

3,4T

log ,2NT

log ,
2

N
N

T

2v

3v

1Nv −

Nv

log ,1NT

 16

References

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin and O. Waarts, “On-Line Routing of Virtual Circuits with

Applications to Load Balancing and Machine Scheduling”, Journal of the ACM, vol. 44, no. 3,
pages 486-504, May 1997.

[2] Baruch Awerbuch, Yossi Azar, Serge Plotkin and Orli Waarts, "Competitive Routing of Virtual

Circuits with Unknown Duration", In Proceedings of the 5th ACM-SIAM Symposium on
Discrete Algorithms, pages 321-327, 1994.

[3] D.D. Sleator and R.E. Tarjan, "Amortized efficiency of list update and paging rules",

Communications of the ACM, vol. 28, no. 2, pages 202-208, February 1985.

[4] A. Borodin, N. Linial and M. Saks, " An optimal online algorithm for metrical task system",

Journal of ACM 39, Pages 745-763.

[5] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs, and O. Waarts, "On-line Load Balancing of

Temporary Tasks", In Proceedings of Workshop on Algorithms and Data Structures, pages 119-
130, August 1993.

[6] S. Iyer, S. Bhattacharyya, N. Taft, N. McKeoen, C. Diot, “A measurement Based Study of Load

Balancing in an IP Backbone”, Sprint ATL Technical Report, TR02-ATL-051027, May 2002.

[7] Y. Wang and Z. Wang, “Explicit Routing Algorithms For Internet Traffic Engineering”, In
Proceedings of ICCN'99, Boston, October 1999.

[8] D. Awduche, J. Malcolm, J. Agogbua, M. O'Dell and J. McManus, "Requirements for Traffic

Engineering Over MPLS", IETF RFC 2702, September 1999.

[9] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, "Network Flows: Theory, Algorithm, and

Applications", Prentice Hall, 1993.

 [10] A. Ouorou, P. Mahey, and J.-Ph. Vial, "A Survey of Algorithms For Convex Multicommodity

Flow Problems", Management Science, vol. 46, pages 126-147, January 2000.

[11] Y. Azar, J. Naor and R. Rom. "The Competitiveness of on-line Assignment", In proc. 3rd ACM-

SIAM Symposium on Discrete Algorithms, pages 203-210, 1992.

