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Abstract 

 
We consider the online problem of routing traffic in order to minimize network congestion in settings 
where demands are allowed to be splitted along any number of paths. Previous works in this context 
focused on congestion minimization schemes that limit the traffic of each request to travel along a 

single path. We describe a multipath routing algorithm for congestion minimization with an ( )logO N  

competitive ratio, where N is the number of nodes in the network. We also show that this result is tight 
i.e., for any online multipath routing algorithm, there is a scenario in which the congestion is larger by 

a factor of ( )logNΩ than the (offline) optimum. 

1. Introduction 
 
In an online routing problem, demands arrive one at a time and there is no a priori 
knowledge regarding future demands. Each demand specifies the source and 
destination nodes and the requested bandwidth. Upon the arrival of a new request, the 
algorithm establishes a connection by allocating the required bandwidth along some 
path between the source and destination nodes. The goal of the algorithm is usually 
set to minimize the congestion of the network [1],[2].  
 
The performance of online algorithms is usually evaluated in terms of the competitive 
ratio introduced by [3] and further developed by [4]. In our case, it corresponds to the 
supremum, over all possible input sequences, of the ratio between the congestion 
obtained by the online algorithm and the congestion obtained by the optimal 
algorithm that is based on the entire input sequence.   
 
To the best of our knowledge, multipath routing has not been considered in the 
context of online computation. In order to address this issue, we employ the 
exponential cost functions of [1],[5] that were used thus far in order to route demands 
in an online fashion over single paths. More specifically, the schemes of  [1],[5] 
assign to each link a cost that is exponential in its congestion; then, upon the arrival of 
a new demand, they compute the shortest path with respect to these exponential costs 
and route the demand along the resulting path. In this paper, we establish that such 
cost functions can be used in order to derive a competitive strategy that routes 
demands in an online fashion over multipaths. Roughly speaking, we show that 
identifying for each new demand a min cost flow with respect to the exponential costs 
of [1],[5] while restricting the resulting flow to be integral over each link, achieves a 
network congestion factor larger by ( )logO N  than the optimum. Based on this 

observation, we establish a polynomial online scheme for multipath routing with a 
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competitive ratio of ( )logO N . Moreover, we prove that the resulting online routing 

scheme yields a tight, i.e., best possible, competitive ratio. 
 

2. Model and Problem Formulation 
 
A network is represented by a directed graph G(V,E), where V is the set of nodes and 
E is the set of links. Let N=|V| and M=|E|. A path is a finite sequence  

of nodes p=(v0,v1,…vh), such that, for 0≤n≤h-1, (vn,vn+1)∈E. A path is simple if all its 

nodes are distinct. A cycle is a path p=(v0,v1,…vh) together with the link (vh,v0)∈E i.e., 

(v0,v1,…vh,v0). Let ( ),i jP  denote the collection of all simple paths from the source i to 

the destination j and let 
( )

( ),

,

i j

i j V V
P P

∈ ×
∪� . 

Each link e∈E is assigned a capacity ce∈Z+. We consider a link state routing 

environment, where each source node has a (precise) image of the entire network. 
 
A commodity is a pair of nodes ( ),i j V V∈ ×  that is assigned with a non-negative 

demand ( ),i jγ . Given a commodity ( ),i j V V∈ × , we say that node i  is the source 

node of the given commodity and node j  is the target node. For each node v V∈ , 
denote by ( )O v  the set of links that emanate from v , and by ( )I v  the set of links that 

enter that node, namely ( ) ( ) ( ){ }, ,O v v l v l E= ∈  and ( ) ( ) ( ){ }, ,I v w v w v E= ∈ . 

 

Definition  0.1 Let ( ),G V E  be a network. A flow vector ( ){ },i j
ef f�  is a real-valued 

function { }: 0f E V V +× × → ∪  that satisfies the following two properties:  

Flow conservation: For each commodity ( ),i j V V∈ ×  and each node other than the 

source i and the destination j ( )

( )

( )

( )

, , 0i j i j
e e

e O v e I v

f f
∈ ∈

− =∑ ∑ .  

Flow demand: For each commodity ( ),i j V V∈ × , ( ) ( ) ( ), , ,

( ) ( )

 i j i j i j
e e

e O i e I i

f f γ
∈ ∈

− =∑ ∑ . 

 

Definition 2.2: Given are a network G(V,E), a flow vector ( ){ },i j
ef f=  and a 

commodity ( ),i j V V∈ × . The link flow of commodity ( ),i j  is the collection 

( ){ },i j
ef e E∈ . 

 

Definition 2.3: Given are a network G(V,E), a flow vector ( ){ }, ,i j
ef f=  a commodity 

( ),i j V V∈ × , and a value σ +∈\ . The link flow of commodity ( ),i j  is σ − integral, 

if for each link e E∈  it holds that ( ),i j
ef  is a multiple of σ .   
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Definition 2.4: Given are a network G(V,E), and, for each ( ),i j V V∈ ×  a demand 
( ),i jγ . A path flow is a real-valued function f:P→R+∪{0} that satisfies 

( )
( , )

,( )i j

i j

p P
f p γ

∈
=∑  for each ( ),i j V V∈ × . 

 
Definition 2.5: Given are a network G(V,E) a capacity 0ec >  for each e E∈ , and a 

flow vector ( ){ }, .i j
ef f=  Define ( )

( )

,

,

i j
e e

i j V V

f f
∈ ×
∑�  for each e E∈ . The value e

e

f

c
 is the 

link congestion factor. 
 
Definition 2.6: Given a network G(V,E) and a link flow {fe}, the network congestion 

factor is the largest link congestion factor in the network, i.e., max e

e E
e

f

c∈

 
 
 

. 

 
As noted in [6],[7],[8], the network congestion factor provides a good indication of 
congestion.  
 
In order to evaluate the quality of algorithms in the context of on-line problems, we 
employ the following standard terminology [3]. 
 
Definition 2.7 A solution is off-line if it is based on the entire input sequence.  
 
Definition 2.8 The competitive ratio of a given online algorithm is defined as the 
supremum over all input sequences of the performance achieved by the optimum 
offline algorithm and the performance achieved by this online algorithm. 
 
We proceed to present the problem that considered in this paper. We are given a 
network and requests that arrive in an online fashion, each with a specified flow 
demand, source-destination pairs, and the maximum number of paths over which the 
given demand is allowed to be shipped. The goal is to route each request such that the 
network congestion factor is minimized. This is formulated as follows. 
 
Problem OMR (On-Line Multipath Routing) Given are a network ( ),G V E , and a 

capacity 0ec >  for each link e E∈ . Requests arrive as triples ( ) ( ), , ,k kk
R k s t γΚ  

in an on-line fashion. The k-th request ( )R k  is satisfied by transferring kγ  flow units 

from s to t over at most kΚ  paths. For each index k, upon the arrival of the k-th 

request ( ) ,R k  find an assignment that minimizes the network congestion factor while 

satisfying ( )R k .  

 

We call the triple ( ) { } ( ){ }, , ,eG V E c R k  an instance. 
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3. A Competitive Ratio of O(logN ) for Problem OMR  
 
In this section, we establish a polynomial scheme for Problem OMR with a 
competitive ratio of ( )logO N . Our scheme is based on solving an auxiliary problem 

that introduces an additional integrality restriction to Problem OMR. 
 
Problem I-OMR (Integral OMR) Given are a network ( ),G V E , and a capacity 

0ec >  for each link e E∈ . Requests arrive as triples ( ) ( ), , ,k kk
R k s t γ= Κ  in an 

on-line fashion. The k-th request ( )R k  is satisfied by identifying a 
K

k

k

γ
− integral path 

flow that transfers kγ  flow units from s to t. For each index k, upon the arrival of the 

k-th request ( ) ,R k  find an assignment that minimizes the network congestion factor 

while satisfying ( )R k . 
 
Note that problem I-OMR implicitly limits the number of paths for the k-th request to 

at most kΚ  paths, by restricting the flow to be 
K

k

k

γ
− integral. Thus, Problem I-OMR 

differs from Problem OMR only in the restriction to have a solution (path flow) that is 

integral in 
K

k

k

γ
 for each request ( )R k . 

3.1 Solving Problem I-OMR 
 
Problem I-OMR is solved using Procedure I-OMR that is specified in Fig.1.  The 
procedure is given a network ( ),G V E , a network congestion factor α  and a request 

( )R k . The procedure assigns to each link e E∈  a cost that is exponential in  e

e

x

cα ⋅
 

where ex  is the flow that traverses through link e . Then, the procedure computes a 

K
k

k

γ
− integral min-cost flow with respect to these exponential costs. We prove that, if 

the given network congestion factor α  is at least the network congestion factor of the 
optimal offline solution (that considers all k requests ahead), then this min-cost flow 
computation provides a path flow with a network congestion factor of at most 

( )log 2 mα ⋅ ⋅ . Thus, we establish that, if we know in advance the optimal offline 

network congestion factor, then our procedure derives a solution for Problem I-OMR 

with a competitive ratio of ( ) ( ) ( )2log 2 log 2 logM N O N⋅ = ⋅ = . In order to provide 

the specification of that procedure, consider first the following notations.  
 

Given is an instance ( ) { } ( ){ }, , ,eG V E c R k  of Problem I-OMR. Let 

( ){ } ( ){ } ( ){ }* * *1 , 2 , ,e e ef f f k…  be the link flows assigned for requests 
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( ) ( )1 , ,R R k…  by the optimal offline algorithm, and let 

( ){ } ( ){ } ( ){ }1 , 2 , ,e e ef f f k…  be the link flows assigned by Procedure I-OMR that is 

specified in Fig. 1.  In addition, for each 1 n k≤ ≤  and each e E∈ , let 

( ) ( )
1

n

e e
m

s n f m
=
∑�  and let ( ) ( )* *

1

n

e e
m

s n f m
=
∑� . We denote by ( ){ }es k  the link flow that 

results from the assignment of the first k requests by Procedure I-OMR; similarly, we 

denote by ( ){ }*
es k  the optimal link flow that consider the first k requests. 

 

Definition 3.1 Given an instance ( ) { } ( ){ }, , ,eG V E c R k  of Problem I-OMR, a 

network congestion factor 0α >  and a link flow ( ){ }ex k  for request ( )R k , denote 

for each e E∈  the exponential cost 

( ) ( ) ( )1 1

3 3

2 2

e e e

e e

s k x k s k

c cα α
− + −
⋅ ⋅   −   

   
 as ( )( )e ep x k , i.e.,  

( )( )
( ) ( ) ( )1 1

3 3

2 2

e e e

e e

s k x k s k

c c

e ep x k
α α
− + −
⋅ ⋅   −   

   
� . 

 
Finally, we define the following problem that Procedure I-OMR solves upon the 
arrival of each new request. We note that the problem is a special case of the convex 
cost flow problem [9].  
 
Problem CCF (Convex Cost Flow Problem) Given are a network ( ),G V E , a 

capacity 0ec >  for each link e E∈ , a link flow ( ){ }1es k −  that consider the first k-1 

requests and a new request ( ) ( ), , ,k kk
R k s t γ= Κ . Find a k

kK

γ
−  integral link flow 

( ){ }ex k  that transfer kγ  flow units from s to t such that the total cost ( )( )e e
e E

p x k
∈
∑  is 

minimized.  
 
Unlike general convex cost flow problems that have no finite-time algorithms [10], 
convex cost flow problems (as Problem CCF) that impose integrality restriction on 
link flows can admit a polynomial solution. In particular, Problem CCF can be 
applied by the capacity scaling algorithm for convex cost flows [9] that has a 
polynomial running time. Fig. 1 specifies Procedure I-OMR. This procedure solves an 
instance of Problem CCF by employing the capacity scaling algorithm for convex 
cost flows [9]. 
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Fig. 1 Procedure I-OMR 

( ) { } ( ){ } ( )( )

( )
{ }

( ){ }

( ) k

k

 I-OMR , , , 1 , ,  

  :

        , network

        capacities

       1  the link flow of all previous -1 requests 

        -  the -th of establishing a -integral l

e e

e

e

G V E c s k R k

G V E

c

s k k

R k k
K

α

γ

−

−

−

− −

Procedure

Parameters

( ) ( )( ){ } ( )

kink flow of  flow units from   to  

         the restriction on network congestion factor

1. Use the  [9] in order to solve the instance , , , , ,  

    of Probl

k k

e e kk

s t

capacity scaling algorithm G V E p x k s t

γ

α

γ

−

( )
( ) ( ) ( )

( ){ }

3

2

em CCF. Let   be the resulting link flow.

1
2. If there exists  such that log 2 .

           

    Else 

            link flow .

e

e e

e

e

f k

s k f k
e E m

c

x k

α
− +

∈ > ⋅ ⋅

Return Fail

Return

 
 
 
Definition 3.2 Given an instance of Problem I-OMR, *

kα  is the network congestion 

factor of the optimal offline solution that considers the first k requests i.e., 

( )*
* max e
k

e E
e

s k

c
α

∈

  
 
  

� . 

 

Theorem 1 Given are an instance ( ) { } ( ){ }, , ,eG V E c R k  of Problem I-OMR and 

the corresponding input ( ) { } ( ){ } ( ), , , 1 , ,e eG V E c s k R k α−  for Procedure I-OMR. 

If *
kα α≤ , then Procedure I-OMR never fails. Thus, the returned path flow has a 

network congestion factor of at most ( )3

2

log 2 mα ⋅ ⋅ . 

 

Proof Consider the following potential function ( )
( )

*3
2

2

e

e

s k

c
k

e E

k
α α

α
⋅

∈

  Φ = −  
   

∑ . We 

will first prove that ( ) ( )1 0k kΦ −Φ − ≤ . 
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( ) ( )
( ) ( )

( )
( ) ( )

( )

1
* *

1

1
* * *

1

3 3
1 2 2

2 2

13 1 3
                          2 2

2 2

        

e e

e e

e e

e e

s k s k

c c
k k

e E e E

s k s k

c c
e e k

e E e Ee

k k

s k f k

c

α α

α α

α α
α α

α
α α

−
⋅ ⋅

−

∈ ∈

−
⋅ ⋅

−

∈ ∈

      Φ −Φ − = − − − =      
      

  − +     = ⋅ − − ⋅ − =       
        

∑ ∑

∑ ∑
( )

( )
( )

( )
( )

( )

1
* *

* 1
1

1
**

1

3 1 3
                  2 2

2 2

3 3
                           2 2

2 2

e e

e e

e e

e e

s k s k

c c
e k

k
e E e Ee

s k s k

c c
ek

e E e

f k

c

f k

c

α α

α α

αα
α α

α α
α α

−
⋅ ⋅

−
−

∈ ∈

−
⋅ ⋅

−

∈

       = ⋅ − + − ⋅ − =       
        

    = ⋅ − − − ⋅ −    ⋅    

∑ ∑

∑
( ) ( ) ( )

( )

( ) ( )

*
1

1
**

1

1

3 3 3
                           2

2 2 2

3 3
                           2

2 2

e e e

e e e

e e

e e

k

e E

s k s k s k

c c c
ek

e E e E e

s k s k

c c

f k

c

α α α

α α

α

α
α α

−

∈

−
⋅ ⋅ ⋅

−

∈ ∈

−
⋅ ⋅

 
= 

 

         = − ⋅ − − ⋅ ≤         ⋅         

   ≤ ⋅ −   
   

∑

∑ ∑

( )
( )

( ) ( ) ( ) ( )
( )

1
*

1 1 1
*

3

2

3 3 3
                           2 . 

2 2 2

e

e

e e e e

e e e

s k

c
e

e E e E e

s k f k s k s k

c c c
e

e E e E e

f k

c

f k

c

α

α α α

α

α

−
⋅

∈ ∈

− + − −
⋅ ⋅ ⋅

∈ ∈


   − ⋅ =   ⋅  

 
 
      = ⋅ − − ⋅       ⋅      
 

∑ ∑

∑ ∑

 
Since the capacity scaling algorithm, which solves Problem CCF in step (1), identifies 

a 
K

k

k

γ
− link flow ( ){ }ef k  that minimizes the total cost ( )e

e E

p
∈

⋅∑ , it follows that 

( )( ) ( )( )*
e e e e

e E e E

p f k p f k
∈ ∈

≤∑ ∑ . Thus, by definition, 

( ) ( ) ( ) ( ) ( ) ( )*1 1 1 1

3 3 3 3

2 2 2 2

e e e e e e

e e e e

s k f k s k s k f k s k

c c c c

e E e E

α α α α
− + − − + −
⋅ ⋅ ⋅ ⋅

∈ ∈

  
         − ≤ −                      

∑ ∑ . Therefore, we 

employ this inequality as follows.  
 
 

( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )
( )

*

1 1 1
*

1 1 1
*

3 3 3
1 2

2 2 2

3 3 3
                         2

2 2 2

e e e e

e e e

e e e e

e e e

s k f k s k s k

c c c
e

e E e E e

s k f k s k s k

c c c
e

e E

f k
k k

c

f k

α α α

α α α

α

− + − −
⋅ ⋅ ⋅

∈ ∈

− + − −
⋅ ⋅ ⋅

∈

 
      Φ −Φ − ≤ ⋅ − − ⋅ ≤       ⋅      
 
 
      ≤ ⋅ − − ⋅            
 

∑ ∑

∑

( ) ( )
( )

*1
*3 3

                         2 1   .                
2 2 2

e e

e e

e E e

s k f k

c c
e

e E e

c

f k

c

α α

α

α

∈

−
⋅ ⋅

∈

=
⋅

 
    = ⋅ ⋅ − −    ⋅ ⋅    

 

∑

∑
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In order to show that 

( ) ( )
( )

*1
*3 3

2 1 0
2 2 2

e e

e e

s k f k

c c
e

e E e

f k

c

α α

α

−
⋅ ⋅

∈

 
    ⋅ ⋅ − − ≤    ⋅ ⋅    

 
∑ , we prove that, for 

each e E∈ , 

( )
( )

*

*3
1 0

2 2

e

e

f k

c
e

e

f k

c

α

α
⋅  − − ≤  ⋅ ⋅ 

. Observe that, since it is given that *
kα α≤ , it 

follows that 
( ) ( ) ( ) ( )* * * *

*1e e e e
k

e e e

f k s k f k s k

c c c
α α

− +
≤ = ≤ ≤  for each e E∈ . Therefore, it 

holds that 
( ) [ ]

*

0,1e

e

f k

cα
∈

⋅
 for each e E∈ . Thus, we only have to prove that 

3
(i) 1 0

2 2

x
x  − − ≤ 

 
 for every x in the range[ ]0,1 .  

 

Reference [1] states that if , 1a γ >  and 11a γ= +  then it follows that ( )1xa xγ − ≤  

for each [ ]0,1x∈ . Thus, since both constants 
3

2,
2

aγ = =  are larger than 1 and 

satisfy 11a γ= + ,  it follows that 
3

2 1
2

x

x
   − ≤     

 for each [ ]0,1x∈ . Obviously, this 

validates (i), thus we have established that ( ) ( )1 0k kΦ −Φ − ≤ . 

 
We use this property in order to prove the Theorem, i.e., show that if *

kα α≤ , then 

Procedure I-OMRA never fails.  
 
As it is given that *

kα α≤ , it follows that 

( )
( ) ( )

( )
( ) ( )

max*3 3 3 3
2 2 1

2 2 2 2

e e e e

e Ee e e e

s k s k s k s k

c c c c
k

e E e E e E

k
α α α αα

α
∈

  
 

⋅ ⋅ ⋅ ⋅  

∈ ∈ ∈

        Φ = − ≥ − = ≥        
        

∑ ∑ ∑ . Since 

( ) ( )0 2k MΦ ≤Φ = ⋅ , and since ( )
( )

max
3

2

e

e E e

s k

c
k

α∈

  
 ⋅   Φ ≥  

 
 we conclude that 

( )
max

3
2

2

e

e E e

s k

c
M

α∈

  
 ⋅    ≤ ⋅ 

 
.  Therefore, taking the log from both sides we get, 

( )

( ) ( ) ( )

( ) ( )

max

3 3 3

2 2 2

3

2

3
log log 2   max log 2

2

max log 2   
.

e

e E e

s k

c
e

e E
e

e

e E
e

s k
M M

c

s k
M

c

α

α

α

∈

  
 ⋅  

∈

∈

 
    ≤ ⋅ ⇒ ≤ ⋅    ⋅    

 
 

⇒ ≤ ⋅ ⋅ 
 

 

 
Hence, by construction, Procedure I-OMRA does not fail, thus establishing the 
Theorem. ■  
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Since ( ) ( ) ( )2
3 3

2 2

log 2 log 2 logM N O Nα α α⋅ ⋅ ≤ ⋅ ⋅ = ⋅ , it follows that, given an 

instance of Problem I-OMR and a network congestion factor α  such that *
kα α≤ , 

Procedure I-OMR can be used in order to output a link flow with a network 
congestion factor that is larger than α  by a factor of ( )logO N . In particular, if we 

"guess" a network congestion factor of at most *2 kα⋅ , then the procedure can be used 

in order to establish a scheme for Problem I-OMR with a competitive ratio of 

( )logO N . To that end, consider the following. 

 

Definition 3.3 Given an instance of Problem I-OMR, define the value 
[ ]1, Kmin i

i k i

γ
∈

 
 
 

  

as 
K

γ
 and the set 

[ ]
{ }

1,

2
, 0, log , 0

K

i

i
i ke

K
e E i i

c

γ γ
γ ∈

    ⋅ ∈ ∈ ⋅ ∈ ∪         
∑ ]  as α  i.e., 

[ ]1,K Kmin i

i k i

γγ
∈

 
 
 

�  and 
[ ]

{ }
1,

2
, 0, log , 0

K

i

i
i ke

K
e E i i

c

γα γ
γ ∈

    ⋅ ∈ ∈ ⋅ ∈ ∪         
∑� ] . 

 

Lemma 1 Given an instance of Problem I-OMRA, there exists at least one α α∈ , 
such that * *2k kα α α≤ ≤ ⋅ . 

 

Proof Since for the case that * 0kα =  the lemma is trivially satisfied ( 0 α∈ ), we will 

consider only the case * 0kα > . To that end, consider the optimal offline solution of 

Problem I-OMR. By the definition of *
kα , there exists a link e E∈  with a flow 

( )* *(1) e k es k cα= ⋅ . Since * 0kα >  and 0ec > , it follows that ( )*(2) 0es k > . In 

addition, since for each [ ]1,i k∈ , Problem I-OMR restricts the i -th request to have a 

i

iK

γ
-integral link flow, then, for each e E∈ , it follows that ( )*

1

(3)
K

k
i

e i
i i

s k n
γ

=

=∑  

where [ ]0,Ki in ∈ .Thus, from (2) and (3), it follows that ( )
[ ]

*

1, Kmin i
e

i k i

s k
γ

∈

 
≥  

 
, 

therefore, by Definition 3.3, it follows that ( )*

Kes k
γ

≥ . 

 
On the other hand, it is easy to see that ( )

[ ]

*

1,
e i

i k

s k γ
∈

≤ ∑ . Therefore, 

( )
[ ]

*

1,K e i
i k

s k
γ γ

∈

≤ ≤ ∑ . Thus, there exists some i , 
[ ]1,

0 log 1i
i k

K
i γ

γ ∈

 
≤ ≤ ⋅ −  

 
∑ , such that 

( )* 12 2
K K

i i
es k

γ γ+⋅ ≤ ≤ ⋅ . Hence, it follows from (1) that there exists some  i , 
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[ ]1,

0 log 1i
i k

K
i γ

γ ∈

 
≤ ≤ ⋅ −  

 
∑ , such that * 12 2

K K
i i

k ec
γ γα +⋅ ≤ ⋅ ≤ ⋅ , hence 

1
*2 2

(4)
K K

i i

k
e ec c

γ γα
+

⋅ ≤ ≤ ⋅ . Define 
12

K

i

ec

γα
+

⋅� , and note that α α∈ . We will prove 

that * *2k kα α α≤ ≤ ⋅ . Since it immediately follows from (4) that  *
kα α≥ , we need only 

show that *2 kα α≤ ⋅ . To that end, observe that, since 
12

K

i

ec

γα
+

= ⋅ , it follows from (4) 

that 
* *

1 1

2
K 1

2 2 2
 

K K

i

k k e
i i

e e

c

c c

γ
α α

γ γα + +

⋅
= ≥ =

⋅ ⋅
. Thus, *2 kα α≤ ⋅ , and the lemma was established. ■ 

 

Note that the number of elements in the set α  equals to 

[ ] [ ]
[ ]( )max

1, 1,

log log log log log logi i
i k i k

K K
M M M K kγ γ γ γ

γ γ∈ ∈

   
⋅ ⋅ = ⋅ + ≤ ⋅ + + ⋅ =      

   
∑ ∑  

( )( )maxlog log logO M K k γ= ⋅ + + . We use the fact that the set α  contains a 

polynomial number of elements in order to establish a solution for Problem I-OMR, 
as follows.  
 
Algorithm I-OMR Given are a network ( ),G V E , capacities { }ec  and a link flow 

( ){ }1es k −  that consider the first k-1 requests. Upon the arrival of request ( )R k  

perform the following three steps: 
 

1. perform a binary search over α  in order to find the smallest α α∈  such that 
Procedure I-OMR succeeds for the input 

( ) { } ( ){ } ( ), , , 1 , ,e eG V E c s k R k α− . Denote the resulting network 

congestion factor by minα . 

2. Perform ( ){ } ( ) { } ( ){ } ( )( )minProcedure I-OMR , , , 1 , ,e e ef k G V E c s k R k α← − . 

Apply the flow decomposition algorithm [9] on link flow ( ){ }ef k  in order to 

obtain a path flow f.  
3. Return f. 

 
It follows from Theorem 1 and Lemma 1 that Algorithm I-OMR produces for the first 
k requests a network congestion factor that is larger by a factor of at most 

( ) ( )3

2

2 log 2 logM O N⋅ ⋅ =  than the optimal offline network congestion factor *
kα . 

Thus, Algorithm I-OMR is an online scheme that solves Problem I-OMR with a 
competitive ratio of ( )logO N . In addition, as Algorithm I-OMR performs a binary 

search over α , it follows that it executes Procedure I-OMR for at most 
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( )( ) [ ]( )max maxlog log log log log log log log log logO M K k O N K kα γ γ= ⋅ + + = + + +  
 times. Hence, since the complexity of Procedure I-OMR is determined by the 
complexity of the capacity scaling algorithm, Algorithm I-OMR has a polynomial 
running time. 
  

3.2 Solving Problem OMR 
 
We now employ the solution to Problem I-OMR in order to derive an efficient online 
scheme with a competitive ratio of ( )logO N  for Problem OMR i.e., the general 

problem that has no restrictions on the integrality of the flow. The scheme is based on 
the following key observation.  
 

Theorem 2 Given are an instance ( ) { } ( ){ }, , ,eG V E c R k  of Problem I-OMR and an 

instance ( ) { } ( ){ }, , ,eG V E c R k  of Problem OMR. Let *
OMRα  be the network 

congestion factor of the optimal (offline) solution to Problem OMR. Then, the 
network congestion factor of the optimal (offline) solution to Problem I-OMR is at 
most *2 OMRα⋅ . 

 

Proof Consider the instance ( ) { } ( )k{ }, , ,eG V E c R k  of Problem OMR where 

( ) ( )k{ }, , , 2k kk
s t R kγΚ ⋅ ∈  iff ( ) ( ){ }, , ,k kk

s t R kγΚ ∈ . Let path flow 

{ }* : 0f P +→ ∪\  be the optimal offline solution to the instance 

( ) { } ( ){ }, , ,eG V E c R k  of Problem OMR. For each index k denote by *
kf  the path 

flow that considers solely request ( )R k  in path flow *f i.e., all the positive flows that 

together satisfy request ( )R k  in *f . Obviously, associating a path flow 

{ }: 0kg P +→ ∪\  with each request  ( )kR k  such that ( ) ( )*2k kg p f p= ⋅  for each 

p P∈  is a feasible solution to the instance ( ) { } ( )k{ }, , ,eG V E c R k  of Problem 

OMR; moreover this solution produces a network congestion factor of *2 OMRα⋅ . For 

each index k and each path p P∈  round down the flow ( )kg p  to be a multiple of  

k

kK

γ
. In this process, the flow over each path in kg  is reduced by at most k

kK

γ
 flow 

units. Since for each k, request ( )kR k  employs at most kK  paths, its total flow is 

reduced by at most kγ  flow units. Therefore, since for each k the original demand was 

2 kγ⋅  flow units, it follows that, after the rounding, the total flow is of at least kγ  flow 

units.  
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Thus, for each k we have identified a k

kK

γ
- integral path flow that transfers kγ  flow 

units from ks  to kt . By definition, this is a feasible solution to the instance 

( ) { } ( ){ }, , ,eG V E c R k  of Problem I-OMR. Moreover, since in the rounding process 

we only reduce flow (and never increase it), the network congestion factor is at most 
*2 OMRα⋅ .  ■ 

 

Given an instance ( ) { } ( ){ }, , ,eG V E c R k  of Problem OMR and an instance 

( ) { } ( ){ }, , ,eG V E c R k  of Problem I-OMR, it follows from Theorem 2 that the 

optimal offline network congestion factors of both solutions differ by at most a factor 
of 2. Hence, since Algorithm I-OMR produces a solution with a competitive ratio of 

( )logO N , it follows that the same algorithm can be employed in order to derive a 

solution for Problem OMR with a competitive ratio of ( ) ( )2 log logO N O N⋅ = . The 

latter is summaries as follows.  
 

Algorithm OMR Given an instance ( ) { } ( ){ }, , ,eG V E c R k  of Problem OMR, 

solve the instance ( ) { } ( ){ }, , ,eG V E c R k  of Problem I-OMR using Algorithm I-

OMR. 
. 
Corollary 1 Algorithm OMR is a polynomial online strategy for Problem OMR 
with a competitive ratio of ( )logO N .  

 

4. A Lower Bound of Ω(logN ) for Multipath Routing  
 
In this section, we show that there is a lower bound of  ( )log NΩ  for the competitive 

ratio of any on-line multipath routing algorithm. In [1], it was established that there 
exists a lower bound of ( )log NΩ  for the competitive ratio of online routing 

algorithms that limit the users to route their traffic along a single path. In this section, 
we show that the same lower bound exists if multipath routing is allowed i.e., each 
user can split its traffic along any number of paths. This implies that our ( )logO N -

competitive algorithm presented in the previous section obtains a tight, i.e., best 
possible, competitive ratio.  
 
The basic idea is to modify the lower bound of [1] and [11] to correspond to multipath 
routing. To that end, consider the network that appears in Fig. 2. Assume that N is a 
power of 2. Moreover, assume that the network has a single source node S and 

multiple targets { },i jT . Each target ,i jT  is located in the j -th location of layer i . 

Assume that: target 1,1T  is connected to all the nodes 1 Nv v ; targets 2,1T  and 2,2T  are 

connected to the nodes 1

2

Nv v  and  
1

2

N Nv v
+

, respectively; and so forth. More 
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formally, for each 1 log ,i N≤ ≤  the target ,1iT  is connected to the first set of 
12i

N
−  

nodes i.e., 
1

1

2i

Nv v
−

, target ,2iT  is connected to second set of 
12i

N
−  nodes i.e., 

1 1
1 2

2 2i i

N Nv v
− −+ ⋅

, and in general, the target ,i jT  is connected to the j-th set of 
12i

N
−  nodes 

i.e., nodes ( )
1

1
1

22
ii

j Nj Nv v
−

⋅− ⋅ ⋅+
. Finally, assume that all the links in the network have a 

single unit of capacity. 
 

We construct a sequence of requests from the source S to the targets { },i jT . Each 

request can split its flow among any number of paths. The first aims at transferring a 

flow demand of  
2

N
 units from the source S to some target in layer 1, the second 

request aims at transferring a flow demand of 
4

N
 units from the source S to some 

target in layer 2, and so forth; in general, the k-th request aims at transferring a flow 

demand of 
2k

N
 units from the source S to the some target in layer k. 

 
It remains to specify how to select the target within each layer. To that end, consider 
the first request. By construction, layer 1 has a single target node, namely, 1,1T . In 

order to determine the target within layer 2 (i.e., the target of the second request) we 
consider the congestion of the links { }1is v i N→ ≤ ≤  after applying the demand of the 

first request. More precisely, we consider the congestion of the two disjoint sets A E⊆  

and B E⊆  where A 1
2i

N
s v i
 

→ ≤ ≤ 
 

�  and B 1
2i

N
s v i N
 

→ + ≤ ≤ 
 

� ; note that the 

links in A connect S to the target 2,1T , and the links in B connect S to the target 2,2T . 

The target of the second request is determined according to the set that has the larger 
average congestion factor. More specifically, the target of the next request is 
determined so that the set with the larger average link congestion factor is used again. 
Explicitly, if the set A has an average link congestion factor larger than that of B, the 
target of the next request is 2,1T ; otherwise the selected target is 2,2T . 

 
Consider now the network congestion factor after applying the first request. Since the 

first request transfers 
2

N
 flow units from S to 1,1T  via the links of { }1 ,is v i N→ ≤ ≤  

the average link congestion factor of the links in { }1is v i N→ ≤ ≤  is 

Total flow 1

Total capacity 2
= . Hence, after applying the first request the network congestion 

factor is of at least 
1

2
. Next, consider the network congestion factor when applying 

the second request. The second request transfers 
22 4

N N
=  from S to either 2,1T  or 2,2T . 

Since the target is selected according to the set of links that has the larger average link 
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congestion factor, it follows that, before the second request is satisfied, the links in 

{ }1is v i N→ ≤ ≤  that connect S to the selected target have already an average link 

congestion factor of at least 
1

2
.  Moreover, note that, by construction, the traffic of the 

selected target is carried by at most 
2

N
 links from { }1is v i N→ ≤ ≤ ; hence, the second 

request increases their average link congestion factor by 
1

2
. Thus, after the second 

request is satisfied, the network congestion factor is at least 1.  
 
In general, it is easy to see that this strategy increases the network congestion factor 

by 
1

2
 for each new request. Thus, applying this strategy for a sequence of logN  

requests produces a network congestion factor of at least 
log

2

N
. Thus, in order to 

show that the competitive ratio is ( )logO N , we have to show that the optimal offline 

algorithm can achieve a network congestion factor of ( )1O . We shall show that it can 

achieve a network congestion factor of 1. 
  
To that end, we show that the optimal offline algorithm can maintain for the k-th 

request a dedicated set of 
2k

N
 links from { }1is v i N→ ≤ ≤  that are not employed by 

other requests. Indeed, by construction, if ,k jT , 1,k hT +  are two target nodes selected 

according to the above strategy, then it holds that ,k jT  is reachable from S via two 

disjoint sets, each of  
2k

N
 links from { }1is v i N→ ≤ ≤ , such that only one set can be 

used in order to connect S to 1,k hT + . Therefore, in the offline solution, ,k jT  has a set of 

2k

N
 links that are not employed by other requests. Denote the latter set of links as C. 

Since the demand of the thk−  request is of 
2k

N
 flow units, it holds that the set C can 

transfer the entire flow demand of the thk−  request without exceeding the congestion 
of its links beyond 1. Therefore, the optimal offline solution can achieve a network 
congestion factor of 1.  
 
Therefore, we have shown that for any online algorithm of multipath routing, there is 
a scenario in which a network with at most i logN N N⋅�  nodes achieves a network 

congestion factor larger by 
log

2

N
 than the optimum. Since 

i ( ) ( )log log log log loglog logN N N N N O N= ⋅ = + = , it follows that, for any online algorithm 

for multipath routing, there is a lower bound of ( )logNΩ  for the best possible 

competitive ratio. 
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Fig. 2: A Lower Bound of Ω(logN ) for Multipath Routing 
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