
 1 

The Power of Tuning: a Novel Approach for the 
Efficient Design of Survivable Networks  

Ron Banner and Ariel Orda  
Department of Electrical Engineering  

Technion – Israel Institute of Technology 
Haifa 32000, Israel 

{banner@tx, ariel@ee}.technion.ac.il 
 

Abstract— Current survivability schemes typically of-
fer two degrees of protection, namely full protection (from 
a single failure) or no protection at all. Full protection 
translates into rigid design constraints, i.e. the employment 
of disjoint paths. We introduce the concept of tunable sur-
vivability that bridges the gap between full and no protec-
tion. First, we establish several fundamental properties of 
connections with tunable survivability. With that at hand, 
we devise efficient connection establishment schemes for 
both 1:1 and 1+1 protection architectures and formally 
establish their optimality. Then, we show that the concept 
of tunable survivability gives rise to a novel hybrid protec-
tion architecture, which offers improved performance over 
the standard 1:1 and 1+1 architectures. Next, we investi-
gate some related QoS extensions. Finally, by way of simu-
lations, we demonstrate the advantage of tunable surviv-
ability over full survivability. In particular, we show that, 
by just slightly alleviating the requirement of full surviv-
ability, we obtain major improvements in terms of the 
"feasibility" as well as the "quality" of the solution. 

Keywords— Survivable Connections, Path Protection, 
Routing, Theory of Algorithms, Combinatorial Optimiza-
tion.  

I. INTRODUCTION 

In recent years, transmission capabilities have in-
creased to rates of 10 Gbit/s and beyond  [9]. With this 
increase, any failure may lead to a vast amount of data 
loss. Consequently, several survivability strategies have 
been proposed and investigated. These strategies are 
based on securing an independent resource for each po-
tentially faulty network element  [6]. This requirement 
usually translates into the establishment of pairs of dis-
joint paths. Two major survivability architectures that 
employ the use of (link) disjoint paths are the 1+1 and 
1:1 protection architectures. In the 1+1 protection archi-
tecture, the data is concurrently sent on a pair of disjoint 
paths. The receiver picks the better path and discards 
data from the other path. In the 1:1 protection architec-
ture, data is sent only on one (active) path, while the 
other (backup) path is activated by signaling only upon a 
failure on the active path. 

Under the common single link failure model, the em-
ployment of disjoint paths provides full (100%) protec-
tion against network failures. However, in practice, this 
requirement is often too restrictive. Indeed, in many 
cases this requirement is infeasible (when pairs of dis-
joint paths do not exist  [12]) and in other cases it is very 
limiting and results in the selection of inefficient routing 
paths  [9]. Therefore, it has been noted that a milder and 
more flexible survivability concept is called for, which 
would relax the rigid requirement of disjoint paths [9]. 
However, to the best of our knowledge, no previous 
work has systematically addressed this problem. 

In this study, we introduce the concept of tunable 
survivability, which provides a quantitative measure to 
specify the desired level of survivability. This concept 
allows any degree of survivability in the range 0% to 
100% and, in contrast to the rigid requirement of disjoint 
paths, it offers flexibility in the choice of the routing 
paths; consequently, it enables to consider valuable 
tradeoffs for designing survivable networks, such as sur-
vivability vs. feasibility, survivability vs. available 
bandwidth, survivability vs. delay performance, etc. 

We adopt the widely used single link failure model, 
which has been the focus of most studies on survivabil-
ity e.g.,  [5], [7], [10], [14]. Tunable survivability enables 
the establishment of connections that can survive a sin-
gle failure with any desired probability p. Such connec-
tions are termed p-survivable. More specifically, a p-
survivable connection is a set of paths between some 
source and destination nodes such that, upon a single 
network failure, the probability to have at least one op-
erational path is at least p. The following example illus-
trates the power of p-survivable connections with respect 
to the traditional scheme of disjoint paths.  

Example 1:  Consider the network described in Fig.1. Assume 
that each link ie E∈  is associated with a bandwidth value ib . Let the 

failure probabilities (given the event of a network failure) be 0.05 for 
all links but 6 ,e  and 0 for 6e . 

As no pair of disjoint paths from S to T exists in the network, the 
traditional survivability requirement is infeasible. On the other hand, 
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it is easy to see that the paths ( )1= S,a,b,d,Tπ  and ( )2 = S,c,d,Tπ  pro-

vide full protection against single failures i.e., they can support a 1-
survivable connection. Assume now that we employ the 1:1 protec-
tion architecture. As we shall see, for this architecture the maximum 
protected traffic rate that can be transferred through any survivable 

connection i j( )1 2,π π  is 
j j

{ }
1 2i

i
e
Min b
π π∈ ∪

. Therefore, the bandwidth of 

( )1 2,π π  is 10. Suppose now that we are satisfied with a 0.95-

survivable connection. It is easy to see that, for ( )3 ,= S,a,b,c d,Tπ  and 

( )4 ,= S,c,d,Tπ  the connection ( )3 4,π π  fits; moreover, its bandwidth 

is now doubled to 20. Finally, suppose that we are satisfied with 

( )2
0.95  survivability. In that case, it is easy to see that, for 

( )5 6 ,= S,c,d,Tπ π=  the connection ( )5 6,π π  fits i.e., a single path is 

sufficient. Moreover, the bandwidth now is tripled to 30. 

We investigate p-survivable connections from several 
aspects and for different protection architectures. To that 
end, we first establish several fundamental properties of 
such connections. In particular, we show that, if it is 
possible to establish a p-survivable connection with 
some supported bandwidth B through more than two 
paths, then it is also possible to establish such a connec-
tion (i.e., with the same probability p and bandwidth B) 
through exactly two paths.1 Hence, in this study, we fo-
cus on survivable connections that consist of exactly two 
paths. Next, for both the 1+1 and the 1:1 protection ar-
chitectures, we design efficient schemes for the estab-
lishment of p-survivable connections. Basically, for each 
protection architecture, we propose two types of surviv-
ability schemes: schemes that aim at widest p-survivable 
connections (i.e., p-survivable connections with maxi-
mum bandwidth) and schemes that aim at maximum 
survivability (i.e., connections with the maximum prob-
ability to survive single failures). We also show that 
each of the proposed schemes can be enhanced in order 
to consider QoS requirements. Finally, we show that all 
schemes achieve the optimal solution and are computa-
tionally efficient.  

                                                           
1 While this is a trivial property for disjoint paths under the single link failure 

model, it is far from trivial, and actually quite surprising, for paths that may 
be non-disjoint. 

Next, we turn to show that the concept of tunable 
survivability gives rise to a third protection architecture, 
which is an hybrid between 1:1 protection and 1+1 pro-
tection. This new architecture is shown to have several 
important advantages over both the 1:1 and the 1+1 pro-
tection architectures; moreover, we show that the 
schemes that we have established for achieving either 
widest or most survivable connections in the case of 1:1 
protection achieve the same goals in the case of hybrid 
protection.  

Finally, we conduct a set of simulations and present 
results that demonstrate the major advantages of tunable 
survivability. In essence, we show that, at the price of a 
negligible reduction in the level of survivability, we ob-
tain a major increase in the bandwidth as well as the fea-
sibility of the solutions. 

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce some terminology and formally de-
fine the concept of tunable survivability. In Section 3, 
we investigate several properties of connections with 
tunable survivability. In Section 4, we design efficient 
schemes that establish most survivable and widest p-
survivable connections for the 1:1 and 1+1 protection 
architectures. In section 5, we introduce the Hybrid Pro-
tection architecture, demonstrate its advantages and es-
tablish corresponding algorithmic schemes.  In Section 
6, we show how our schemes can be enhanced in order 
to consider QoS requirements. Section 7 presents simu-
lation results that demonstrate the advantages of tunable 
survivability. Finally, Section 8 summarizes our results 
and discusses directions for future research. 

II. MODEL AND PROBLEM FORMULATION 
A network is represented by a directed graph G(V,E), 

where V is the set of nodes and E is the set of links.  
Let N=|V| and M=|E|. A path is a finite sequence  
of nodes ( )0 1, , ,hv v vπ = "  such that, for 0≤n≤h-1, 
(vn,vn+1)∈E. A path is simple if all its nodes are distinct. 

Given a source node s∈V and a target (destination) 
node t∈V, the set P(s,t) is the collection of all directed 
paths from the source s to the target t.  

Each link e∈E is assigned a weight we∈Z+, a bandwidth 
be∈Z+ and an independent failure probability [ ]0,1ep ∈ . 
We note that, since survivability schemes consider re-
covery upon the event of a failure in the network  [5], pe 
is the probability that, given a (single) failure event in 
the network, the link e is the failed component. Under 
the single line failure model, it is straightforward to ob-
tain the probabilities { }ep  out of a priori link failure 
probabilities. The latter are estimated out of available 
failure statistics of each network component  [5].  

 We consider a link state routing environment, where 
each source node has a (precise) image of the entire net-
work. 
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Fig. 1:  p- survivable connections 
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Definition 1: Given a (non-empty) path π, its band-
width B(π) is defined as the bandwidth of its bottleneck 
link, namely, ( ) { }e

e
B Min b

π
π

∈
� . 

A link is classified as faulty upon its failure; it remains 
faulty until it is repaired. We say that a link e E∈  is op-
erational if it is not faulty. Likewise, we say that a path 
π is operational if it has no faulty link i.e., for each 

,e π∈  link e is operational. 

Definition 2 Given a network ( ),G V E  and a pair of 
source and destination nodes s and t, a survivable con-
nection is a pair of paths ( ) ( ) ( ), ,

1 2, s t s tP Pπ π ∈ × .1  

We say that a connection ( )1 2,π π  is operational if ei-

ther 1π  or 2π  are operational. Moreover, as survivability 
is defined to be the capability of the network to maintain 
service continuity in the presence of failures  [8], we 
quantify the quality of (tunable) survivable connections 
as their probability to remain operational in the presence 
of failures. This is formalized as follows. 

Definition 3 Given are a network ( ), ,G V E  a failure 

probability 0ep ≥  for each link e E∈ , and a survivable 

connection ( )1 2,π π . We say that ( )1 2,π π  is a p-

survivable connection if, upon a link failure, it remains 
operational with a probability of at least p. The value of 
p is then termed as the survivability level of the connec-
tion.2 

Definition 3 formalizes the notion of tunable surviv-
ability. Note that, under the single link failure model, 
any pair of disjoint paths is a 1-survivable connection.  

We now quantify the bandwidth of a survivable con-
nection. We consider first a connection ( )1 2,π π  under the 

standard (full) survivability requirement. This means 
that  1π  and 2π  are disjoint, namely 1 2π π φ∩ = . Obvi-
ously, for 1+1 protection, the maximum protected traffic 
rate that can be transferred via  ( )1 2,π π  is the minimum 

available bandwidth on any of the two paths. That is, the 
bandwidth of the connection ( )1 2,π π  is  

( ) ( ){ } { }
1 2

1 2min , min e
e

B B b
π π

π π
∈ ∪

= . However, for connec-

tions with tunable survivability, paths are not necessarily 
disjoint. Therefore, for the 1+1 protection architecture, 
the total traffic rate that traverses links that belong to 
both 1π  and 2π  is twice the rate that traverses links that 
belong to only one out of the two paths. Accordingly, the 

                                                           
1 As was already mentioned, we will show that there is no advantage in the 

employment of more than two paths; hence, the definition focuses on two 
paths. 

2  Note that the a-priory probabilities that a p-survivable connection is opera-
tional is (considerably) larger than p. Specifically, it is equal to 

j( )1 1 ,e
e E

p p
∈

 
⋅ − − 
 

∏  where jep  is the a-priory probability that a link e fails. 

available bandwidth of a survivable connection with re-
spect to 1+1 protection is defined as follows.  

Definition 4 Given a survivable connection ( )1 2, ,π π  

its bandwidth with respect to the 1+1 protection archi-
tecture is the maximum 0B ≥  such that 2 eB b⋅ ≤  for 
each 1 2e π π∈ ∩  and eB b≤  for each 

( ) ( )1 2 1 2\e π π π π∈ ∪ ∩ . 

In contrast to 1+1 protection, in 1:1 protection only 
one duplicate of the original traffic is carried at any 
given time. Therefore, the only restriction here is that 
traffic rate should not exceed the bandwidth of any of 
the links in 1 2π π∪ . Accordingly, we formulate the 
bandwidth of a survivable connection with respect to the 
1:1 protection architecture as follows. 

Definition 5 Given a survivable connection ( )1 2, ,π π  

its bandwidth with respect to the 1:1 protection architec-
ture is the maximum 0B ≥  such that eB b≤  for each 

1 2e π π∈ ∪ . 

For a source-destination pair, there might be several 
p-survivable connections. Among them, we may be in-
terested in those that have the best "quality". The follow-
ing definitions correspond to two important quality crite-
ria namely, maximum survivability and maximum band-
width.  

Given a network ( ),G V E  and a pair of nodes s and t, 

we say that a p-survivable connection 
( ) ( ) ( ), ,

1 2, s t s tP Pπ π ∈ ×  is a most survivable connection if 

there is no lp -survivable connection l m( ) ( ) ( ), ,
1 2, s t s tP Pπ π ∈ ×  

such that lp p> ; p is then termed the maximum level of 
survivability. Next, we say that a p-survivable connec-
tion ( )1 2,π π  is the widest p-survivable connection for the 

1+1 protection architecture if it is a p-survivable con-
nection that has the largest bandwidth with respect to 
that architecture. Similarly, we say that ( )1 2,π π  is the 

widest p-survivable connection for the 1:1 protection 
architecture if it is a p-survivable connection that has the 
largest bandwidth with respect to that architecture. In 
section 5 we shall define additional quality criteria. 

Finally, note that, whereas the widest p-survivable 
connection depends on the considered protection archi-
tecture, a most survivable connection for one architec-
ture is also such for the other architecture. 

III. PROPERTIES OF SURVIVABLE CONNECTIONS 

In this section we establish several fundamental 
properties of survivable connections. We begin with a 
rather straightforward quantification of the probability of 



 4 

a survivable connection to remain operational upon a 
failure.  

We are given a network ( ),G V E  and a survivable 

connection ( ) ( ) ( ). .
1 2, s t s tP Pπ π ∈ × . Under the single link 

failure model, a link that is not common to both paths 
can never cause a survivable connection to fail. Simi-
larly, a failure in a common link, causes a failure of the 
entire connection. Hence, the survivable connection 
( )1 2,π π  is operational iff for each 1 2e π π∈ ∩  it holds that 

e is operational, i.e., all the links that are common to 
both paths are operational. Therefore, the probability 
that a survivable connection remains operational upon a 
link failure is equal to the probability that all its common 
links are operational upon that failure. Thus, since link 
failure probabilities are independent, it holds that the 
probability that all common links are operational under 
the condition of a failure is equal to the product of their 
success probability under the condition of a failure. This 
is summarized as follows.  

Property 1 Given are a survivable connection 
( )1 2, ,π π  and for each ,e E∈ a failure probability ep . The 

probability that ( )1 2,π π  is operational upon a failure 

event is equal to ( )
1 2

1 e
e

p
π π∈ ∩

−∏ . 

We now turn to present a rather surprising property 
that shows that the employment of more than two paths 
is worthless. Consider a more general protection frame-
work that admits any ( )2≥  number of paths. Basically, 

we show that, in any network and for each survivability 
constraint 0 1,p≤ ≤  if there exists a p-survivable con-
nection that admits more than two paths, then there ex-
ists a p-survivable connection that admits exactly two 
paths. Moreover, we show that the bandwidth of the 
widest p-survivable connection in protection frameworks 
where connections are allowed to employ any number of 
paths is not larger than the bandwidth of the widest p-
survivable connection that is limited to at most two 
paths.  

Remark 1 For completeness, we note that a p-
survivable connection in protection frameworks that ad-
mit more than two paths is a collection of paths 

( ) ( ) ( ) ( ), , ,
1 2, , , s t s t s t

k P P Pπ π π ∈ × × ×" "  that has a probabil-

ity of at least p to have at least one operational path after 
a failure. The bandwidth of such a connection with re-
spect to the 1:1 protection architecture (i.e., in the case 
where the traffic is sent only over a single path) is the 

maximum 0B ≥  such that eB b≤  for each 
1

k

i
i

e π
=

∈∪ . 

Similarly, the bandwidth of such a connection with re-
spect to the 1+1 protection architecture (i.e., in the case 

where the traffic is carried independently over each path) 
is the maximum 0B ≥  such that en B b⋅ ≤  for each link 
e E∈  that is common to some n paths out of  
( )1 2, , , kπ π π" . 

We are now ready to formulate two fundamental 
properties of survivable connections; the first corre-
sponds to widest p-survivable connections and the sec-
ond to most survivable connections. The proof of both 
properties can be found in the Appendix. 

Property 2 Let ( ) ( ) ( ) ( ), , ,
1 2, , , s t s t s t

k P P Pπ π π ∈ × × ×" "  

be the widest p-survivable connection in ( ),G V E  with 

respect to the 1:1 (alternatively, 1+1) protection architec-
ture. There exists a p-survivable connection 

( ) ( ) ( ), ,
1 2, s t s tP Pπ π ∈ ×  that has at least the bandwidth of  

( )1 2, , , kπ π π"  with respect to the 1:1 (correspondingly, 

1+1) protection architecture. 

Property 3 Let ( ) ( ) ( ) ( ), , ,
1 2, , , s t s t s t

k P P Pπ π π ∈ × × ×" "  

be the most survivable connection in ( ),G V E  and let 

( ) ( ) ( ), ,
1 2, s t s tP Pπ π ∈ ×  be the most survivable connection 

in ( ),G V E  that consists of at most two paths. The sur-

vivability level of ( )1 2,π π  is not smaller than that of 

( )1 2, , , kπ π π" . 

The above key observations show that there is no in-
centive to define survivable connections that consist of 
more than two paths. Therefore, under the standard sin-
gle link failure model, this finding indicates an important 
network design rule in terms of survivability.  

IV. ESTABLISHING P-SURVIVABLE CONNECTIONS 

In this section we show how to construct p-survivable 
connections for the 1+1 and 1:1 protection architectures. 
In view of the findings of the previous section, we focus 
on survivable connections that consist of at most two 
paths. We begin with the establishment of widest p-
survivable connections and most survivable connections 
for the 1+1 protection architecture.  

A. Establishing Survivable Connections for the 
1+1 Protection Architecture 

The first step towards the establishment of either 
widest p-survivable or most survivable connections is 
the development of an efficient algorithm that, for any 

0B ≥ , establishes a survivable connection with a band-
width of at least B that has the maximum probability to 
remain operational upon a link failure. We term such a 
connection as the most survivable connection with a 
bandwidth of at least B.  
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Remark 2 Finding the most survivable connection 
with a bandwidth of at least B is beneficial per se. For 
example, in cases where the traffic demand γ  is known 
in advance, it may be desired to establish a connection 
with a bandwidth of at least γ  that has the maximum 
probability to remain operational upon a failure. 

I. Establishing most survivable connections with a 
bandwidth of at least B 

We now establish an efficient algorithm that, for any  
0,B ≥  outputs the most survivable connection that has a 

bandwidth of at least B. Given a network ( ),G V E , a pair 

of nodes s and t, a bandwidth constraint 0B ≥ , and, for 
each link e E∈ , a bandwidth 0eb ≥  and a failure prob-
ability 0ep ≥ , the algorithm reduces the problem of 
finding the most survivable connection with a bandwidth 
of at least B into an instance of the Min Cost Flow prob-
lem  [1]. In essence, the construction is based on a net-
work transformation that considers three different cases, 
as illustrated in Fig 2. In the case of a link e E∈  with a 
bandwidth eb B< , it follows by definition (Def. 4)  that 
link e cannot be used by any survivable connection that 
has a bandwidth of at least B. Therefore, this link can be 
discarded from the network without any influence on the 
optimal solution. On the other hand, each link e E∈  that 
satisfies 2eb B≥ ⋅  can concurrently be used by both of 
the connection's paths in order to establish a survivable 
connection with a bandwidth of at least B. In that case, 
the corresponding link is transformed into two parallel 
links, each with a link bandwidth of B; however, 
whereas the first link is assigned with a zero weight, the 
other link is assigned with a weight that is a function 
( ( )eg p ) of the link's failure probability ( ep ). The reason 

for that stems from Property 1 (of the previous section) 
that shows that the degree of survivability of each con-
nection is solely determined by its common links. More 
specifically, only when both of the connection's paths 
share the same link e, the link's failure probability ep  
should be considered. Indeed, a Min Cost Flow (where 
"cost" is "weight") over the constructed network ensures 
that, when a single path traverses link e, the incurred 
cost is zero, whereas when both paths traverse through e, 
the cost ( )eg p  depends on the failure probability ep  

( ( )eg p  shall be specified in the following). The third 

case corresponds to links that satisfy 2 .eB b B≤ < ⋅  In 
that case, at most one path with a bandwidth B can trav-
erse through such a link without violating the link band-
width eb . Thus, these links can be transformed into links 
that have a bandwidth B without any effect on the opti-
mal solution. In addition, since these links can be used 
by at most one path, their failure probabilities should not 

be considered and therefore the transformed links are 
assigned zero weight.  

Denote the transformed network as i i i( ),G V E . The al-

gorithm computes a min-cost flow { }ef  with a flow de-

mand of 2 B⋅  units over the network i i i( ),G V E  by em-

ploying any standard Min Cost Flow algorithm that re-
turns an integral link flow when all link bandwidths { }eb  
are integral (see  [1]). Since all link bandwidths in 
i i i( ),G V E  are integral in B, the link flow { }ef  is B-integral 

i.e., ef  is a multiple of B for each e E∈ . Therefore, 
since the total traffic equals to 2 B⋅  flow units, the flow 
decomposition algorithm  [1] can be applied in order to 
decompose the link flow { }ef  into a flow over two paths 

1 2,π π  such that each carry B flow units from s to t. 
Moreover, since the flow has minimum cost, it follows 
that 

i
( ) ( )

1 2 1 2

e ee e
e ee E

f w B g p B g p
π π π π∈ ∩ ∈ ∩∈

⋅ = ⋅ = ⋅∑ ∑ ∑� �
�

 has mini-

mum value. Thus, ( )
1 2

e
e

g p
π π∈ ∩
∑  has minimum value. Fi-

nally, if we define ( ) ( )ln 1e eg p p− −�  for each e E∈ , 

Fig. 2: Finding the most survivable connection with a bandwidth 
of at least B (for the 1+1 protection architecture) by a reduction to 
the Min Cost Flow problem.  

( )( )2 2, eb B w g p= =  

( )1 1, 0b B w= =  

( ), 0e eb B w= =  

Discard the link 
from the network 

For each link e E∈ with a bandwidth 2eB b B≤ < ⋅  and 

a failure probability :ep  

 ( ),e eb p  

For each link e E∈ with a bandwidth 2eb B≥ ⋅  

and a failure probability :ep  

 

( ),e eb p  

( ),e eb p  

For each link e E∈  with a bandwidth eb B<  and a 

failure probability :ep  
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the algorithm defines a pair of paths 1 2,π π  that mini-

mizes ( ) ( )
1 2 1 2

ln 1 ln 1e e
e e

p p
π π π π∈ ∩ ∈ ∩

− − = − −∑ ∏  and therefore 

maximizes ( )
1 2

ln 1 e
e

p
π π∈ ∩

−∏ . Thus, the connection 

( )1 2,π π  maximizes ( )
1 2

1 e
e

p
π π∈ ∩

−∏  which, according to 

Property 1, equals to the probability that the connection 
( )1 2,π π  is operational upon a failure. The formal de-

scription of the algorithm appears in Fig. 3.  

The following theorem shows that, for every 0,B ≥  
our algorithm establishes the most survivable connection 
with a bandwidth of at least B.  

Theorem 1: Given are a network ( ),G V E , a pair of 

nodes s and t, a bandwidth constraint 0B ≥ , and, for 
each link e E∈ , a bandwidth 0eb ≥  and a failure prob-
ability 0ep ≥ . If there exists a survivable connection 
with a bandwidth of at least B, then Algorithm B-Width 
Most Survivable Connection returns the most survivable 
connection with a bandwidth of at least B; otherwise, the 
algorithm fails.  

Due to space limits the proof is omitted. It is based 
on the ideas that were described above. 

II.  Establishing most survivable and widest p-
survivable connections 

Finally, we are ready to construct most survivable 
connections and widest p-survivable connections for the 
1+1 protection architecture. As is easy to see, the most 
survivable connection with a bandwidth of at least B=0 
is in essence also a most survivable connection. As the 
corresponding problem is a special case of the problem 
that was addressed in the previous subsection, in this 
section we only focus on the establishment of widest p-
survivable connections.  

In order to establish the widest p-survivable connec-
tion, we employ Algorithm B-Width Most Survivable 
Connection. Specifically, given a network and a surviv-
ability constraint p, we search for the largest value of B 
such that the most survivable connection with a band-
width of at least B is a p-survivable connection i.e., has a 
probability of at least p to remain operational upon a link 
failure. Obviously, this strategy is attractive only if we 
consider a small number of bandwidth constraints before 
we get to the bandwidth of the widest p-survivable con-
nection. Fortunately, in the following we show that it is 
sufficient to consider ( )logO N  bandwidth constraints in 

order to find the bandwidth of the widest p-survivable 
connection.  

First, we observe that, for every given network, the 
bandwidth of the widest p-survivable connection belongs 
to a set of at most 2 M⋅  values. To see this, recall that 

{ } { } { }( )

( )

{ }
{ }

, , , , ,

:

        , network

         source

         target (destination)

        link bandwidth values

        failure probabilities

e e

e

e

G s t b p B

G V E

s

t

b

p

−

−
−

−

−

Algorithm B - Width Most Survivable Connection

Parameters

i i i( )
i{ }
i{ }
i{ }
i

i i i( )

:

        bandwidth constraint 

         , network  

          link bandwidth values

          weights

          link flow

              flow demand
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Fig. 3: Algorithm B-Width Most Survivable Connection. The 
algorithm establishes the most survivable connection that has a 
bandwidth of at least B. 
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the bandwidth of each survivable connection ( )1 2,π π  

with respect to the 1+1 protection architecture, is defined 
as the maximum 0B ≥  such that 2 eB b⋅ ≤  for each 

1 2e π π∈ ∩  and eB b≤  for each ( ) ( )1 2 1 2\e π π π π∈ ∪ ∩ . 

Hence, if the survivable connection ( )1 2,π π  admits a 

link e E∈ , then by definition, its bandwidth with respect 

to the 1+1 protection, is not larger than either 
2
eb

 (for 

1 2e π π∈ ∩ ) or eb  (for ( ) ( )1 2 1 2\e π π π π∈ ∪ ∩ ). More-

over, it follows by definition that there exists at least one 
link 1 2e π π∈ ∪  such that the bandwidth of ( )1 2,π π  is 

either 
2
eb

 or eb . Therefore, each survivable connection in 

( ),G V E  has a link e E∈  whose bandwidth is either  
2
eb

 

or eb . In particular, the bandwidth of the widest p-

survivable connection in the network, denoted as *,B  

must belong to the set ,  1,2eb
e E k

k
 ∈ = 
 

� , which 

consists of at most 2 M⋅  members.  

Remark 4 Note that we can employ a binary 
search over the set   in order to find the value of *.B  
Indeed, for each B∈ , if the most survivable connection 
with a bandwidth of at least B is a p-survivable connec-
tion then so are all the other most survivable connections 
with bandwidths of at least ', 'B B B≤ ; on the other hand, 
when the most survivable connection with a bandwidth 
of at least B is not a p-survivable connection, then none 
of the most survivable connections with bandwidth of at 
least '', '' ,B B B>  is a p-survivable connection.  

In Fig. 4 we provide the formal specification of the 
algorithm.  

Finally, we consider the complexity incurred by the 
establishment of most survivable connections and widest 
p-survivable connections. To that end, we denote by 
( ),T N M  the running time of any standard min-cost flow 

algorithm for an N-nodes M-links network. Since Algo-
rithm B-Width Most Survivable Connection solves a 
single instance of the min-cost flow problem, the com-
plexity of establishing most survivable connections and 
widest p-survivable connections is ( )( ),O T N M  and 

( )( ), logO T N M N⋅ , respectively. 

Remark 5 We note that it is possible to solve the 
min-cost flow problem in ( ) ( )( )log logO M N M N N⋅ ⋅ + ⋅  
operations  [1]; hence, we can establish widest p-
survivable connections and most survivable connections 

within a total complexity of ( )2 2 3log logO M N M N N⋅ + ⋅ ⋅  

and ( )2 2log logO M N M N N⋅ + ⋅ ⋅ , respectively.  

B. Establishing Survivable Connections for the 1:1 
Protection Architecture 

We turn to establish survivable connections for the 
1:1 protection architecture. Obviously, the most surviv-
able connection in the 1+1 protection architecture is the 
same as that of the 1:1 protection architecture; therefore, 
we will only consider the establishment of widest p-
survivable connections for the 1:1 protection architec-
ture. Moreover, as the establishment of the widest p-
survivable connection with respect to the 1:1 protection 
architecture is quite similar as for the 1+1 protection ar-
chitecture, we only sketch the main ideas.  

As before, we begin by finding a solution to the dual 
problem of establishing the most survivable connection 
with a bandwidth of at least B (however, this time the 
bandwidth is computed according to the 1:1 protection 
architecture). This is based on a reduction that is similar 
to the one presented in Fig 2. However, as the bandwidth 
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        link bandwidth values

        failure probabilities

        

e e

e

e

p G s t b p p

G

s

t

b

p

p

−
−
−

−

−

Algorithm Widest -Survivable Connection

Parameters

( )1 2

 survivability constraint

:

        bandwidth constraint
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Fig. 4: Algorithm widest p-survivable connection. 
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of any survivable connection ( )1 2,π π  for the 1:1 protec-

tion architecture is defined as the largest 0B ≥  such that 

eB b≤  for each 1 2e π π∈ ∪ , it follows that only two cases 
should be considered in the reduction, namely eb B<  
and eb B≥ . More specifically, as before, all the links 
that satisfy eb B<  should be discarded from the network 
since they cannot be used in order to construct a surviv-
able connection with a bandwidth of at least B. How-
ever, in contrast to the solution of the 1+1 protection 
architecture, all other links can be concurrently em-
ployed by the pair of paths that constitute the survivable 
connection. More precisely, the only difference between 
the reduction that corresponds to the 1+1 protection 
architecture and the reduction that corresponds to the 1:1 
protection architecture, is the type of links that can be 
used by both paths; namely, whereas in the 1+1 protec-
tion architecture, the most survivable connection with a 
bandwidth of at least B cannot employ a link e E∈  that 
satisfies 2eB b B≤ < ⋅  for both paths, in the 1:1 protec-
tion architecture such a link can be common to both 
paths. The reduction for the 1:1 protection architecture is 
illustrated in Fig. 5.  

As before, given a scheme for constructing most sur-
vivable connections with a bandwidth of at least B, we 
employ a binary search in order to find the largest B 
such that the most survivable connection with a band-
width of at least B is a p-survivable connection. How-
ever, this time the bandwidth of the widest p-survivable 
connection belongs to the set { },eb e E∈  which consists of 

at most M elements (as opposed to the previous case 
where it belongs to a set of at most 2 M⋅  elements). To 

see this, note that, by definition, the bandwidth of the 
survivable connection ( )1 2,π π  with respect to the 1:1 

protection architecture is the bandwidth of its bottleneck 
link i.e., { }

1 2

min e
e

b
π π∈ ∪

. Therefore, the bandwidth of each 

survivable connection with respect to the 1:1 protection 
architecture is determined by some link in e E∈  i.e., it 
belongs to { }eb e E∈ .  

V. A HYBRID PROTECTION ARCHITECTURE 

Thus far, we have focused on the 1+1 and 1:1 protec-
tion architectures. However, the tunable survivability 
concept gives rise to an efficient third protection archi-
tecture, which is a hybrid approach that combines the 1:1 
and 1+1 protection architectures. More specifically, 
given a survivable connection ( )1 2,π π  with a traffic de-

mand ,γ  we present a new architecture that, for a con-

nection ( )1 2,π π , transfers γ  flow units over the links in 

1 2π π∩ , as in 1:1 protection, while over the links in 

( ) ( )1 2 1 2\ ,π π π π∪ ∩  it transfers γ  flow units, as in 1+1 

protection. This new architecture is illustrated through 
the following example. 

Example 2: Consider the network depicted in Fig. 6. Suppose that 

we are given a survivable connection ( )1 2,π π  such that  

( )1 1 3 4, ,e e eπ =  and ( )2 2 3 5, ,e e eπ = . Hybrid Protection transfers 

one duplicate of the original traffic through link 1 1e π∈  and another 

duplicate through link 2 2e π∈ . While both duplicates arrive to node 

u, only the first to arrive is assigned to link u v→  and the other one 
is discarded. When the duplicate that was assigned to u v→  arrives 

to v, Hybrid Protection transfers one duplicate through link 4 1e π∈  

and another through link 5 2e π∈ . Finally, as with 1+1 protection, 

node t considers only the duplicate that is the first to arrive. Note that 
such an assignment of traffic to links is not a flow.  

Hybrid Protection has several important advantages. 
First, it reduces the congestion of all links that are shared 
by both paths with respect to 1+1 protection. At the 
same time, upon a link failure, it has a faster restoration 
time than 1:1 protection. Finally, it provides the fastest 
propagation of data with respect to the propagation time 
of all paths that can be constructed out of the links in 

1 2π π∪ . We demonstrate this property on the above ex-
ample. Assume that the link propagation delays satisfy 

Fig. 6: The Hybrid Protection Architecture 

 

e2 

e3 

e4 

 

e5 

e1 
 

s 
 

u 

 

v 

 

t ( )( )2 2, eb B w g p= =  

( )1 1, 0b B w= =  

Discard the link 
from the network 

For each link e E∈ with a bandwidth eb B>  and a 

failure probability :ep  

 

( ),e eb p  

( ),e eb p  

For each link e E∈  with a bandwidth eb B<  and a 

failure probability :ep  

Fig. 5: Finding the most survivable connection with a bandwidth 
of at least B for the 1:1 protection architecture by a reduction to 
the Min Cost Flow problem.  
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1 2e ed d<  and 
5 4e ed d< . Then, by construction, node u 

assigns the incoming flow of link 1e  over link 3e , and 
node t considers only the duplicate of link 5e . Thus, data 

is propagated through the path ( )1 3 5, , ,e e eπ =  which has 

the minimum propagation delay among all the paths that 
can be constructed out of the links in 1 2π π∪ . 

The above advantages notwithstanding, the imple-
mentation of the Hybrid Protection architecture requires 
additional nodal capabilities in comparison with the 1+1 
and 1:1 architectures. To see this, note that node u in the 
example must be able to discard all the duplicates that it 
encounters for the second time i.e., the duplicates that 
contain data that was already sent to node v. This is in 
contrast to the 1+1 protection architecture, where such 
functionality is required only from the destination, and 
the 1:1 protection architecture, where this functionality 
is not required at all.  

Finally, note that the Hybrid Protection architecture 
transfers through each link exactly one duplicate of the 
original traffic. Hence, the maximum traffic rate that can 
be transferred through a survivable connection ( )1 2,π π  

with respect to Hybrid Protection is bounded by 
{ }

1 1

min e
e

b
π π∈ ∪

. In other words, the bandwidth of the surviv-

able connection ( )1 2,π π  with respect to Hybrid Protec-

tion is the maximum 0B≥  such that eB b≤  for each 

1 2e π π∈ ∪ . Since this is precisely the definition of band-
width with respect to 1:1 protection, the widest p-
survivable connection with respect to Hybrid Protection 
is also the widest p-survivable connection with respect to 
1:1 protection. Hence, we can employ the solution for 
1:1 protection in order to establish widest p-survivable 
connections for Hybrid Protection. Nevertheless, it is 
important to note that, while 1:1 protection assigns traf-
fic only to the links that belong to either 1π  or 2 ,π  Hy-
brid Protection assigns traffic to all the links in 1 2π π∪ .  

VI. QUALITY OF SERVICE EXTENTIONS  

For any pair of nodes in a given network, there might 
be several widest p-survivable connections as well as 
several most survivable connections. Among them, we 
may be interested in those that optimize some QoS tar-
get, such as end-to-end delay, jitter, cost, etc. Such (ad-
ditive) metrics can be represented by weights { }ew . In 

this section we investigate most survivable and widest p-
survivable connections that have the minimum total 
weight. More precisely, given a network and a surviv-
ability constraint p, we establish, for the 1+1, 1:1 and 
Hybrid Protection architectures, widest p-survivable 

connections as well as most survivable connections that 
minimize the total weight 

1 1

e
e

w
π π∈ ∪
∑ . 

In the following, we outline the solution methodol-
ogy for 1+1 protection; the solution for the 1:1 and Hy-
brid Protection architectures can be addressed in a simi-
lar way. 

The solution is based on a similar reduction to the 
one presented in Fig. 2. The only difference lies in the 
weight that each link is assigned in the reduced instance 
of the min-cost flow problem. More specifically, all the 
links that were assigned with zero weight in the original 
reduction of Fig. 2, are now assigned with a weight of 

ew

K
. We choose the value of K to be large enough such 

that a min-cost flow with respect to the new weights is 
also a min-cost flow with respect to the original weights; 
indeed, for ,K →∞  the new weights converge to the 
original weights, and a min-cost flow for the new in-
stance is also a min-cost flow for the original instance. 
Therefore, for a sufficiently large K, the new instance 
establishes a survivable connection that is also a solution 
for the original instance; hence, it establishes a most sur-
vivable connection with a bandwidth of at least B. How-
ever, as we shall now show, for such a K, the new reduc-
tion, which is illustrated in Fig. 7, produces a most sur-
vivable connection with a bandwidth of at least B that 
minimizes the total weight 

1 1

e
e

w
π π∈ ∪
∑ . 

To that end, note that, for a sufficiently large K, the 
min-cost flow { }ef  with respect to the new costs, is a 

min-cost flow with respect to the original costs, such that 

the increment in the total cost (i.e., 
j e

e

e
e

w
e E w

K

w
f

K
∈ =

⋅∑ ) is 

minimized. Let ( )1 2,π π  be the survivable connection that 

corresponds to { }ef . As the link bandwidth values is B 

and the flow demand requirement is 2 B⋅  (both in the 
new and in the original instances), it follows that 

{ }0,ef B∈  for each e E∈   [1]; hence, by construction, 

j 1 2 1 2e
e

e e
e e

w e e
e E w

K

w w B
f B w

K K Kπ π π π∈ ∪ ∈ ∪
∈ =

⋅ = ⋅ = ⋅∑ ∑ ∑  is minimized. 

Thus, the new reduction produces a most survivable con-
nection with a bandwidth of at least B, such that the total 
weight 

1 2

e
e

w
π π∈ ∪
∑  is minimized. Finally, the most 

survivable connection and the widest p-survivable con-
nection are established as before. More specifically, the 
most survivable connection with the minimum total 
weight is established by requiring that B=0; the widest p-
survivable connection with the minimum weight is es-
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tablished by searching for the largest 

,  1, 2 ,eb
B e E k

k
 ∈ ∈ = 
 

 such that the most survivable 

connection with a bandwidth of at least B is a p-
survivable connection; since each iteration produces the 
most survivable connection with a bandwidth of at least 
B such that the total weight is minimized, this strategy 
produces the widest p-survivable connection that mini-
mizes the total weight.  

Finally, we derive a lower bound on K. To that end, 
consider the original instance and the new instance, de-
scribed in Fig. 2 and Fig. 7, respectively. Assume that 
{ }ef  is a min-cost flow with respect to the original in-

stance; recall that { }0,ef B∈  for each e E∈ . Our goal is to 

find a lower bound for K such that { }ef  is a min-cost 

flow with respect to the new instance. 

In practice, the weight that is assigned to each link in 
the original instance is represented as some rational 

number ,e

e

m

n
 where em  and en  are integers. It can be 

shown that 1e e
e E e E

K w n
∈ ∈

= ⋅ +∑ ∏  is sufficiently large for 

our purposes. Moreover, it is easy to see that the repre-
sentation of e e

e E e E

w n
∈ ∈

⋅∑ ∏  is polynomial in the input, thus 

maintaining the polynomial complexity of our solution. 

VII. SIMULATION RESULTS 

The goal of this section is to demonstrate how much 
we gain by employing tunable survivability instead of 
traditional "full" survivability. To that end, we first 
compare between the maximum bandwidth of survivable 
connections that consist of a pair of disjoint paths (i.e.,1-
survivable connections) and the maximum bandwidth of 
p-survivable connections, where [ )0,1p∈ . Then, we 

compare between the feasibility of both approaches i.e., 
the incidences where the establishment of pairs of dis-
joint paths is impossible and the incidences where the 
establishment of p-survivable connection is impossible. 
Through comprehensive simulations, we show that, at 
the price of a marginal reduction in the common re-
quirement of 100% protection, a major increase in 
bandwidth as well as in feasibility is accomplished. 

Remark 6: In Section 5 we have shown that the band-
width of survivable connections with respect to the 
hybrid protection architecture is equal to that of the 1:1 
protection architecture. Therefore, it is sufficient to con-
duct the simulations only for the 1:1 and 1+1 protection 
architectures. All the results of the 1:1 protection archi-
tecture also apply to the Hybrid Protection architecture. 

We generated two types of random networks: net-
work topologies that follow the four power laws defined 
by  [4] (henceforth: power-law topologies), and networks 
with a flat topology i.e., Waxman networks  [13] (hence-
forth: flat topologies). Then, we constructed 10,000 ran-
dom networks for each combination of the following 
three items: (a) the degree of survivability [ ]0,1 ;p∈  (b) 

the type of protection architecture (i.e., either 1+1 or 
1:1); and (c) the class of random networks (i.e., either 
power-law or flat). For each network, we identified a 
source-destination pair. We then conducted the follow-
ing measurements: (1) We measured the number of net-
works ( )N p  that admits a p-survivable connection 

among the 10,000 networks; we then derived the feasi-

bility ratio ( ) ( )
( )1N

N p
p

N
ρ � ;  (2)  for each of the ( )1N  net-

works that admit 1-survivable connections, we measured 

the ratio 
( )
( )1

B p

B
, where ( )B p  denotes the bandwidth of 

the widest p-survivable connection, and derived the cor-
responding bandwidth ratio ( )B pρ , which is the average 

value of  
( )
( )1

B p

B
 over the corresponding  ( )1N  networks. 

Fig. 7: Finding a most survivable connection with a bandwidth of 
at least B that minimizes total weight. 

Discard the link 
from the network 

( ), ,e e ew b p  

For each link e E∈  with a bandwidth eb B< , a weight 

,ew and a failure probability :ep  

i j, e
e e

w
b B w

K
 = = 
 

 

For each link e E∈  with a bandwidth 2eB b B≤ < ⋅ , 

a weight ,ew  and a failure probability :ep  

( ), ,e e ew b p  

For each link e E∈  with a bandwidth 2eb B≥ ⋅ , a weight 

,ew  and a failure probability :ep  

 

i j ( )( )2 2, eb B w g p= =  

i i
1 1, ew

b B w
K

 = = 
 

 

( ), ,e e ew b p  
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In all runs, we assumed that the link bandwidths are 
distributed uniformly in [5,150] MB/sec and the failure 
probability of each link is distributed normally with a 
mean of 1% and a standard deviation of 0.3%.  

We turn to specify the way we generated each type of 
random topology, starting with flat topologies. Our con-
struction follows the lines of  [13]. We first located the 
source and the destination at the diagonally opposite 
corners of a square area of unit dimension. Then, we 
randomly spread 198 nodes over the square. Finally, we 
introduced a link between each two nodes u and v, with 
the following probability, which depended on the dis-
tance between them, ( ), :u vδ  

( ) ( ),
, exp ,

2

u v
p u v

δ
α

β

 −
= ⋅  

⋅ 
 

using 1.8α =  and 0.05β = . The above approach resulted in 
200 nodes and approximately 1800 links per network 
topology.  

We turn to specify the way we generated power-law 
topologies. Our construction followed the lines of  [11]. 
First, we randomly assigned a certain number of out-
degree credits to each node, using the power-law distri-
bution ,x αβ −⋅  where 0.756α =  and 110β = . Then, we 
connected the nodes so that every node obtained the as-
signed out-degree. More specifically, we randomly 
picked a pair of nodes u and v, and assigned a directed 
link from u to v if u had some remaining out-degree 
credits and link u v→  had not been defined already. 
Whenever a link u v→  was placed between the corre-
sponding nodes, we also decremented the out-degree 
credit of node u. On the other hand, when the selected 
pair of nodes was not suitable for a link, we continued to 
pick pairs of nodes until finding one that was suitable. 
The above strategy resulted in 200 nodes and approxi-
mately 1200 links per network topology. 

We turn to present our results. First, we note that the 
value ( )1N  i.e., number of networks that admitted 1-

survivable connections, was in the range 4,000-7,000 
(out of 10,000), hence the samples were always signifi-
cant. In Figs. 8 and 9 we depict the bandwidth ratio 

( )B pρ  versus the level of survivability [ ]0.95,1p∈  for 1:1 

protection and 1+1 protection, respectively. In particular, 
for 1:1 protection (Fig. 8), we show that, with a reduc-
tion of 2% in the requirement of full survivability,1 the 
bandwidth is increased by 51% for Waxman networks 
and 100% for power law networks. When we consider 
the same reduction in survivability for 1+1 protection 
(Fig. 9), we see that the bandwidth is increased by 18% 

                                                           
1 We emphasize that these are 2% given the event of a network failure. Hence, 

the a-priory probability is much lower. 

Fig. 9: The average ratio between the bandwidths of widest p-
survivable connections and widest 1-survivable connections in the 1+1 
protection architecture.  
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Fig. 10: The ratio between the number of networks with at least one 
feasible p-survivable connection and the number of networks with at 
least one feasible 1-survivable connection.  
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Fig. 8: The average ratio between the bandwidths of widest p-
survivable connections and widest 1-survivable connections in the 1:1 
protection architecture.  
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for Waxman networks and by 41% for power-law net-
works. 

In Fig. 10, we depict the ratio between the number of 
networks that have at least one feasible p-survivable 
connection and the number of networks that have at least 
one feasible 1-survivable connection; to that end, we 
present the feasibility ratio ( )N pρ  versus the level of 

survivability [ ]0.95,1p∈ . Note that the feasibility ratio is 

independent of the employed protection architecture; 
therefore, the corresponding results hold for both protec-
tion architectures. Also, note that, with a reduction of 
2% in the requirement of full survivability, the feasibil-
ity ratio is increased by 54% for Waxman networks and 
by 127% for power law networks.  

VIII. CONCLUSIONS  

Standard survivability schemes enhance the ability to 
recover from network failures by establishing pairs of 
disjoint paths. However, in practice, this approach is too 
restrictive and often leads to the selection of poor rout-
ing paths (if any). In this work, we have proposed a 
novel quantitative approach for network survivability. 
The new approach allows to alleviate the rigid path dis-
jointedness requirement, which considers only full 
(100%) protection, into a weaker requirement, which can 
be tuned to accommodate any desired degree (0%-
100%) of survivability. Just as in the standard approach, 
we have shown that the new approach can also be ac-
commodated by efficient polynomial (optimal) schemes. 
However, as opposed to the original approach, the new 
approach allows a flexible choice of the desired degree 
of survivability, hence enabling to consider important 
tradeoffs. Moreover, since a 1-survivable connection is 
also p-survivable (for any value of p), our approach al-
ways offers a solution of at least (and usually a higher) 
quality than the traditional approach.  

We have characterized several properties of the new 
approach. In particular, we established that, under the 
single link failure model, there is no benefit in establish-
ing survivability schemes that employ more than two 
paths per connection. Since the single link failure as-
sumption is practically valid in many cases of interest, 
this finding suggests an important network design rule in 
terms of survivability. 

We evaluated the power of the new approach through 
comprehensive simulations. Our results clearly demon-
strate the advantages of tunable survivability over full 
survivability. In particular, all measurements have 
shown that, by alleviating the traditional requirement of 
full survivability by just 2%1, we obtained major im-

                                                           
1 and much less in terms of the a-priory probability. 

provements in the quality of the solutions. Effectively, 
this indicates that (traditional) full protection levies an 
excessive price. 

Finally, we have shown that the tunable survivability 
approach gives rise to a new protection architecture that 
poses several advantages over current architectures; 
moreover, the new architecture was shown to admit effi-
cient optimal schemes. 

The above notwithstanding, the practical deployment 
of the tunable survivability approach still posses several 
challenges. As mentioned, the hybrid protection archi-
tecture requires additional capabilities from transit 
nodes. The efficient implementation of these capabilities 
is an interesting issue for future work. More generally, 
although our algorithmic schemes are of polynomial 
complexity, in some cases simpler solutions might be 
called for. Therefore, it is of interest to investigate sim-
pler heuristic schemes, which would be based on the in-
sight provided by this study. Similarly, while our work 
focused on centralized algorithms, the employment of 
distributed schemes is often preferable, in particular in 
large scale networks. Therefore, the distributed imple-
mentation of our algorithmic schemes is yet another in-
teresting subject for future work. While much is still to 
be done towards the actual deployment of the tunable 
survivability approach, we believe that this study pro-
vides ample and firm evidence of its major benefits and 
potential practical feasibility. 

APPENDIX 

The Appendix contains the proofs of Properties 2 and 
3 of Section 3. Their proof immediately follows from the 
following theorem, which focuses on 1:1 protection 
(hence, also on Hybrid Protection). The corresponding 
proof for the 1+1 protection architecture goes along 
similar lines and is therefore omitted. 

Theorem 1 Given are a network ( ),G V E , a pair of  

nodes { },s t  and, for each e E∈ ,  a failure probability 

0ep ≥ . Let ( ) ( ) ( ) ( ), , ,
1 2, , , s t s t s t

k P P Pπ π π ∈ × × ×" "  be a p-

survivable connection with a bandwidth of B with re-
spect to the 1:1 protection architecture. There exists a p-

survivable connection ( ) ( ) ( ), ,
1 2, s t s tP Pπ π ∈ ×  that has a 

bandwidth of at least B with respect to the 1:1 protection 
architecture. 

Proof  Let l
1

k

i
i

E e e π
=

 
∈ 

 
� ∪  i.e., the collection of all 

links that are employed by the paths of the given surviv-
able connection ( )1 2, , , kπ π π" . We shall construct a sur-

vivable connection ( ) ( ) ( ), ,
1 2, s t s tP Pπ π ∈ ×  such that 
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l
1 2 Eπ π∪ ⊆ . Since by definition, the bandwidth of 

( )1 2, , , kπ π π"  with respect to the 1:1 protection architec-

ture is determined by the bandwidth of its bottleneck 
link namely, 

l
{ }min e

e E
b

∈
 (see remark 1), it follows that 

l
{ }min e

e E
b B

∈
= ; hence, since we shall construct the surviv-

able connection ( )1 2,π π  only from links in lE , it follows 

that the bandwidth of ( )1 2,π π  with respect to 1:1 protec-

tion is at least B i.e., { }
l
{ }

1 2

min mine e
e e E

b b B
π π∈ ∪ ∈

≥ = . 

We now construct a pair of paths ( ),
1 2, s tPπ π ∈  from 

links in lE  such that the probability that at least one path 
remains operational upon a link failure is not less than 
the probability that some path in ( )1 2, , , kπ π π"  is opera-

tional upon that failure. To that end, we first determine 
the probability of ( )1 2, , , kπ π π"  to remain operational 

upon a failure. 

Given a survivable connection ( )1 2, , , kπ π π" , denote 

by E  the set of all links that are common to the paths 

1 2, , , kπ π π"  i.e., 
1

k

i
i

E e e π
=

 
∈ 

 
� ∩ .  Since we assume the 

single link failure model, it follows that only a link e E∈  
i.e., a link that is common to all the paths of the given 
survivable connection ( )1 2, , , kπ π π" , can break the con-

nection upon a link failure. Thus, the probability that at 
least one path in ( )1 2, , , kπ π π"  remains operational un-

der the condition of a failure, equals to the probability 
that all of the common links are operational under that 
condition. Thus, since we assume independent failure 
probabilities, it holds that the probability that at least one 
of the connection's path remains operational under an 
event of a failure equals to ( )1 e

e E

p
∈

−∏ . Thus, the connec-

tion ( )1 2, , , kπ π π"  is  a ( )1 e
e E

p
∈

−∏ -survivable connec-

tion. 

Since ( )1 2, , , kπ π π"  is  a ( )1 e
e E

p
∈

−∏ -survivable con-

nection it follows that in order to establish the theorem 
we only need to show that there exists a pair of paths 

( ),
1 2, ,s tPπ π ∈  l

1 2 Eπ π∪ ⊆  such that the probability that 
at least one of them remains operational under an event 
of a failure is at least ( )1 e

e E

p
∈

−∏ . According to Property 

1 (Section 3), the probability that either 1π  or 2π  re-
mains operational upon a link failure is equal 
to ( )

1 2

1 e
e

p
π π∈ ∩

−∏ . Therefore, we have to show that 

( ) ( )
1 2

1 1e e
e e E

p p
π π∈ ∩ ∈

− ≥ −∏ ∏ . Thus, it is enough to show the 

existence of a pair of paths ( ),
1 2, s tPπ π ∈  that satisfies 

l
1 2 Eπ π∪ ⊆  and 1 2 Eπ π∩ ⊆ . 

Remove from the network all the links that are not 
used by the paths of ( )1 2, , , kπ π π"  i.e., all the links that 

are not in lE . We have to show that there exists a pair of 

paths ( ),
1 2, s tPπ π ∈  over l( ),G V E  such that 1 2 Eπ π∩ ⊆ . 

To that end, we employ the following construction that 

transforms l( ),G V E  into a flow network  [1]. Assign to 

each ,e E∈  two units of bandwidth, and assign to each 
l \e E E∈  one unit of bandwidth. We now prove that 

there exists a pair of paths ( ),
1 2, s tPπ π ∈  over l( ),G V E  

such that 1 2 Eπ π∩ ⊆  iff it is possible to define an inte-
gral link flow that transfers two flow units from s to t 

over l( ),G V E .  

:⇒  Assume that there exists a pair of paths 
( ),

1 2, s tPπ π ∈  over l( ),G V E  such that 1 2 Eπ π∩ ⊆ . Assign 

one unit of flow to each path. Obviously, if all link-
bandwidth constraints are satisfied (i.e., the flow on any 
link never exceed its bandwidth), the corresponding link 
flow is an integral link flow that transfers two flow units 

from s to t over l( ),G V E . It remains to be shown that 

such an assignment satisfies the link bandwidth con-
straints. To that end, observe that assigning one unit of 
flow to each path produces two units of flow over the 
links in 1 2π π∩  and one unit of flow over the links in 

( ) ( )1 2 1 2/π π π π∪ ∩ . Since 1 2 ,Eπ π∩ ⊆  it follows by 

construction that all the links in 1 2π π∩  are assigned 
with two units of bandwidth; hence, the link bandwidth 
constraints are satisfied for these links. Similarly, since  

( ) ( ) l
1 2 1 2/ ,Eπ π π π∪ ∩ ⊆  it follows that all the links in 

( ) ( )1 2 1 2/π π π π∪ ∩  are assigned with at least one unit of 

bandwidth; hence the capacity constraints are also satis-

fied for the links in ( ) ( )1 2 1 2/π π π π∪ ∩ . 

:⇐  Assume that it is possible to define an integral 
link flow that transfers two flow units from s to t over 

l( ),G V E . Hence, by the flow decomposition theorem  [1], 

it is possible to define a pair of paths such that each path 

transfers one flow unit from s to t over l( ),G V E . More-

over, the corresponding paths can intersect only on the 
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links that have two units of bandwidth; hence, by con-
struction, these paths intersect only on links that belong 
to E . Thus, there exists a pair of paths  ( ),

1 2, s tPπ π ∈  

over l( ),G V E  such that 1 2 Eπ π∩ ⊆ . 

Hence, in order to prove the theorem, it remains to be 
shown that it is possible to define an integral link flow 

that transfers two flow units from s to t over l( ),G V E . 

However, since all the links have an integral bandwidth, 
the maximum flow that can be transferred from s to t 
under the integrality restriction is equal to the maximum 
flow that can be transferred from s to t when the inte-
grality restriction is omitted [1]; hence, it is sufficient to 
show that it is possible to transfer two flow units from s 

to t over l( ),G V E .  

Suppose, by way of contradiction, that it is impossi-

ble to transfer two flow units from s to t over l( ),G V E . 

Thus, according to the max-flow min-cut theorem  [3], 
there exists a cut ( ),S T  with s S∈  and t T∈  such that 

( )
,

, 2x y
x S y T

B S T b →
∈ ∈

<∑�  (where x yb →  denotes the band-

width of link lx y E→ ∈ ). Therefore, since the bandwidth 

of all links is integral, it follows that ( ), 1B S T ≤ . Thus, 

since each link has at least one unit of bandwidth, it 

follows that at most one link lx y E→ ∈ , such that 

 and ,x S y T∈ ∈  crosses ( ),S T . However, since each path 

in ( )1 2, , , kπ π π"  is a path from s to t, it follows that there 

exists at least one link that connects some node in S to 
some node in T. Thus, it follows that exactly one link 

l ,x y E→ ∈   and ,x S y T∈ ∈  crosses the cut ( ),S T . 

Denote this link by e . Since ( ), 1,B S T ≤  it follows that 

1eb ≤ . Obviously, each path from s to t must traverse 
through the link e. In particular, all the paths of  
( )1 2, , , kπ π π"  must traverse the link e. Hence, by defini-

tion, it follows that e E∈ . Since 1,eb ≤  it follows that 

there is a link in l( ),G V E  that belongs to E  whose 

bandwidth is at most 1. However, this contradicts the 
fact that 2eb =  for each e E∈ .  Thus, it is possible to 

transfer two flow units from s to t over l( ),G V E .   ■ 
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