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Abstract

We consider the problem of optimum joint information embedding and lossy com-
pression with respect to a fidelity criterion. The decompressed composite sequence
(stegotext) is distorted by a stationary memoryless attack, resulting in a forgery which
in turn is fed into the decoder, whose task is to retrieve the embedded information.
The goal of this paper is to characterize the maximum achievable embedding rate Re

(the embedding capacity Ce) as a function of the compression (composite) rate Rc and
the allowed average distortion level ∆, such that the average probability of error in
decoding of the embedded message can be made arbitrarily small for sufficiently large
block length. We characterize the embedding capacity and demonstrate how it can
be approached in principle. We also provide a single-letter expression of the minimum
achievable composite rate as a function of Re and ∆, below which there exists no reliable
embedding scheme.

1 Introduction

The subject of watermarking and information embedding has been attracting a vast amount

of attention of both the academic world and the industry, due to an increasing awareness

for the need of data protection in its various forms: ownership identification, data forgery

exposure, etc., as is extensively surveyed in e.g., [1]-[4] as well as in many other publi-

cations. Generally speaking, a good watermarking code should satisfy several conflicting

requirements: One the one hand, the watermark should be perceptually transparent, that is,

∗This work is part of A. Maor’s M.Sc. dissertation.
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invisible to the naked eye, or, when audio signals are concerned, inaudible to the innocent

listener, while on the other hand, the watermark must also be robust to both conventional

data processing (e.g., lossy compression, up/down-scaling, filtering, halftoning) and to po-

tential malicious attacks by a party who may wish to invalidate the watermark by creating

a forgery.

While most of the existing practical watermarking applications were designed and tested

empirically (see, e.g., [1]-[5]), the information-theoretic research activity in the problem area

of watermarking is relatively new, and it focuses primarily on issues of system modelling,

performance criteria, watermarking code design, and theoretical performance bounds. From

the information-theoretic point of view, the watermarking problem is usually regarded [6]

as an instance of channel coding with side information [19]-[21], where the role of the side

information is played by the covertext. The case where the side information is available to

the encoder only is referred to as public watermarking, whereas the case where it is available

to the decoder as well is termed private watermarking. In a variety of works (see, e.g., [7]-

[10]) the watermarking problem is modelled as a game between the information hider and

the attacker, where the former wishes to maximize a certain objective function, like the

capacity or error exponent, while the latter strives to minimize this objective function.

Another aspect of the watermarking problem is that of joint information embedding

and lossy compression, where quantization and entropy coding of the stegotext is carried

out as an integral part of the watermarking scheme. The problem is as follows: There is

a set of messages to be embedded in the covertext subject to some distortion constraint.

The composite sequence resulting from this embedding is compressed losslessly and the

embedded message must be reliably decodable with or without access to the original host

data, either directly from the stegotext or from its forgery. Although the compression of

the composite sequence is lossless, the entire process is lossy since the reconstruction of

the covertext from stegotext cannot be perfect after the watermark embedding. Karakos

and Papamarcou [11, 12, 13], Willems and Kalker [14], and Merhav and Maor [22], study

the tradeoffs between the distortion, the embedding rate and the composite rate, that is,

the rate of lossless compression of the stegotext. In [11] and [12], the private watermarking

(fingerprinting) problem is treated for the attack-free case and in the presence of the attack,

respectively, assuming a Gaussian-quadratic model. In [11], the watermark is retrieved di-

rectly from the stegotext, while in [12] the stegotext is subjected to an additive Gaussian
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attack resulting in a forgery from which the watermark is retrieved. For both cases, the

achievable rate region is established in terms of the relations between the composite rate,

the embedding rate and the prescribed distortion constraint. In [13], along with an extended

analysis of the results of [11, 12], the achievable region is established for the finite alphabet

case of private watermarking, and a general memoryless attack on the stegotext. Willems

and Kalker [14] study the attack-free case of the public joint watermarking-compression

problem for a finite alphabet covertext. The model in [14] assumes that the composite

sequence is losslessly compressed symbol-by-symbol, the watermark is retrieved from re-

constructed stegotext and, in addition, the covertext is estimated from the stegotext. The

achievable region of composite rates, embedding rates, and distortion levels is characterized

and a random binning argument is proposed for achieving any given point in the achievable

region. In [22], the attack-free public version of the problem is treated, both for the finite

alphabet and the continuous alphabet cases. As in [11] and [14], the data hiding and com-

pression are cooperative and therefore are optimized jointly, but unlike in [14], the lossless

compression is performed per block rather than symbol-by-symbol. The main result of [22]

is a single-letter expression of the minimum achievable composite rate as a function of the

embedding rate and the allowable average distortion.

In this paper, we extend the model of [22] to include a stationary memoryless attack

channel operating on the composite sequence. As in [22], the goal of this paper is to

characterize the best achievable tradeoffs between the embedding rate Re, the allowable

average distortion ∆, and the composite rateRc. The main result is a single-letter expression

of the maximum achievable embedding rate Re (embedding capacity Ce) as a function of

Rc and ∆. We further argue that the achievable rate region of the continuous case is given

by the same expression as in the finite-alphabet case.

The results of [22] are, of course, obtained as a special case for which the attack channel

is the identity channel (i.e., no attack), but then (as in [22]), there is no longer need for the

(Gel‘fand-Pinsker) auxiliary random variable U since it simply coincides with the single-

letter random variable Y that represents the stegotext. Indeed, the proof of achievability

part in [22] is conceptually simpler and does not have the binning structure of the more

general coding scheme presented here, which is in the spirit of the one of Gel‘fand and

Pinsker. In the presence of an attack, the choice of U = Y is, in general, no longer optimal.

This is in contrast to private watermarking [13], where the choice U = Y is optimal for
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all achievable embedding rates. It should be pointed out that for the continuous case, in

the absence of the attack, the Gel‘fand-Pinsker upper-bound on Re can be safely omitted

[22], due to the fact that not only is the watermark reliably recoverable from the composite

sequence (there is a one-to-one mapping), but also, there is no limitation on the number of

composite sequences (in contrast to the finite-alphabet case), except for the one imposed

by the compressibility requirement.

The paper is organized as follows: In Section 2, we establish notation conventions used

throughout the paper. Section 3 contains the system description and the problem definition.

The coding theorem is presented in Section 4, and Sections 5 and 6 contain the proofs of

the converse and the direct parts, respectively.

2 Notation Conventions and Preliminaries

Throughout the paper, scalar random variables will be denoted by capital letters, spe-

cific values they may take will be denoted by the corresponding lower case letters, and

their alphabets, as well as most of the other sets, will be denoted by calligraphic let-

ters. Similarly, random vectors, their realizations, and their alphabets will be denoted,

respectively, by boldface capital letters, the corresponding boldface lower case letters, and

calligraphic letters, superscripted by the dimensions. The notations xji and Xj
i , where i

and j are integers and i ≤ j, will designate segments (xi, ..., xj) and (Xi, ..., Xj), respec-

tively, where for i = 1, the the subscript will be omitted. For example, the random vector

X = XN = XN
1 = (X1, ..., XN ), (N -positive integer) may take a specific vector value

x = xN = xN1 = (x1, ..., xN ) in XN , the Nth order Cartesian power of X , which is the

alphabet of each component of this vector. The cardinality of a finite set X will be denoted

by |X |. For i > j, xji (or X
j
i ) will be understood as the null string.

Sources and channels will be denoted generically by the letter P subscripted by the name

of the random variable and its conditioning, if applicable, e.g., PX(x) is the probability

of X = x, PY |X(y|x) is the conditional probability of Y = y given X = x, and so on.

Whenever clear from the context, these subscripts will be omitted. The class of all discrete

memoryless sources (DMSs) with a finite alphabet X will be denoted by P(X ), with PX

denoting a particular DMS in P(X ), i.e.,

P(X ) = {PX :
∑

x∈X

PX(x) = 1, ∀x ∈ X , PX(x) ≥ 0}. (1)
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For a given positive integer N , the probability of any N -vector x = (x1, ..., xN ) drawn from

a DMS PX , is given by

Pr{Xi = xi, i = 1, ..., N} =
N∏

i=1

PX(xi)
4
= PX(x). (2)

Information-theoretic quantities will be denoted using the conventional notations [15,

16, 17]: For a pair of discrete random variables (X,Y ) with a joint distribution PXY (x, y) =

PX(x)PY |X(y|x), the entropy ofX will be denoted byH(X), the joint entropy - byH(X,Y ),

the conditional entropy of Y given X - by H(Y |X), and the mutual information by I(X;Y ),

where logarithms are defined to the base 2. When we wish to emphasize the dependence of

an information-theoretic quantity on the underlying distribution, we will use the latter as

a subscript, for example, the entropy of X, induced by the source PX , will be denoted by

HPX (X). The binary entropy function will be denoted by

h(α)
4
= −α logα− (1− α) log(1− α), 0 ≤ α ≤ 1. (3)

A distortion measure (or distortion function) is a mapping from X × Y into the set of

non-negative reals:

d : X × Y → R+. (4)

The distortion functions considered in the paper, are bounded, i.e.,

dmax
4
= max

(x,y)∈X×Y
d(x, y) <∞. (5)

The additive distortion d(x,y) between two vectors x ∈ XN and y ∈ YN is given by:

d(x,y) =
1

N

N∑

i=1

d(xi, yi). (6)

We next describe the generic notation related to the method of types, which is widely

used throughout this paper. For a given generic random variable (RV) A ∈ A (or a vector of

RV’s taking on values in A), and a vector a ∈ AN , the empirical probability mass function

(EPMF) is a vector Pa = {Pa(a), a ∈ A}, where Pa(a) is the relative frequency of the letter

a ∈ A in the vector a. For a scalar δ > 0, the set T δ
PA

of all δ-typical sequences is the set

of the sequences a ∈ AN such that

(1− δ)PA(a) ≤ Pa(a) ≤ (1 + δ)PA(a) (7)
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for every a ∈ A. The size of T δ
PA

is bounded [16] by :

2N [(1−δ)2H(A)−δ] ≤ |T δPA | ≤ 2N [(1+δ)2H(A)]. (8)

It is also well-known (by the weak law of large numbers) that:

Pr
{
A /∈ T δPA

}
≤ δ (9)

for all N sufficiently large.

For a given generic channel PB|A(b|a) and for each a ∈ T δ
PA

, the set T δ
PB|A

(a) of all

sequences b that are jointly δ-typical with a, is the set of all b such that:

(1− δ)Pa(a)PB|A(b|a) ≤ Pab(a, b) ≤ (1 + δ)Pa(a)PB|A(b|a), (10)

for all a ∈ A, b ∈ B, where Pab(a, b) denotes the fraction of occurrences of the pair (a, b)

in (a, b). Similarly as in eq. (7) [16], for all a ∈ T δ
PA

, the size of T δ
PB|A

(a) is bounded as

follows:

2N [(1−δ)2H(B|A)−δ] ≤ |T δPB|A
(a)| ≤ 2N [(1+δ)2H(B|A)]. (11)

Finally, observe that for all x ∈ T δ
PX

and y ∈ T δ
PY |X

(x), d(x,y) is upper bounded by:

d(x,y) ≤ (1 + δ)2
∑

x,y

PXPY |X(y|x)d(x, y)
4
= (1 + δ)2Ed(X,Y ). (12)

3 System Description and Problem Definition

Consider a general block coding scheme for joint watermark embedding and compression

depicted in Fig. 1: A DMS PX produces a sequence X = (X1, ..., XN ) according to (2). This

sequence will be referred to as the covertext sequence. One of M possible watermarking

messages, v ∈ {0, 1, ...,M − 1}, is embedded into the covertext X. It is assumed that the

message v is uniformly distributed across {0, 1, ...,M − 1}, independently of X, i.e.,

Pr{V = v} =
1

M
for all v ∈ {0, 1, ...,M − 1}. (13)

The embedding rate of the scheme, Re is defined by

Re
4
=

1

N
logM. (14)

The encoder (embedder) maps each pair (x, v) into a composite sequence, henceforth

denoted as y = (y1, y2, ..., yN ), whose components take on values in a finite alphabet Y.
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Figure 1: Block diagram of the system.

The encoder is defined by the embedding function φN (·, ·):

y = φN (x, v)
4
=
(
φ1(x, v), φ2(x, v), ..., φN (x, v)

)
(15)

where φn(·, ·), n = {1, ..., N} is the projection of φN (·, ·), corresponding to the n-th coor-

dinate. In order to maintain reasonable quality of the composite sequence, the following

constraint is imposed: The expected distortion between the composite sequence y and the

source sequence x, defined by

Ed(X,Y)
4
= Ed(X, φN (X, V )) =

∑

x

∑

v

1

M
PX(x)

1

N

N∑

n=1

d(xn, φn(x, v)) (16)

should not exceed a prescribed level ∆.

The composite sequence y is entropy-coded, and the corresponding composite rate is

defined by

H
(
φN (X, V )

)

N
, (17)

and should not exceed a prescribed value, Rc.

The compressed composite sequence is sent to the decoder. After the decompression

and before the watermarking decoding, y is distorted by an attacker modelled as a discrete

stationary memoryless channel PZ|Y (z|y), which produces a forgery z = (z1, z2, ..., zN ),

whose components take on values in a finite alphabet Z. The decoder, that estimates the

embedded message from z, is given by:

v̂ = ϕN (z), (18)
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where

ϕN : ZN → {0, 1, ...,M − 1}. (19)

The quality of the estimation of V is judged according to the average probability of error,

Pe, defined by:

Pe
4
= Pr{ϕN (Z) 6= V }. (20)

An achievable embedding rate Re for a pair (Rc,∆) is an embedding rate, defined as

in (14), such that for every ε > 0, there exists a sufficient large N , an encoder φN and a

decoder ϕN , that satisfy Pe ≤ ε, Ed(X,Y) ≤ ∆ and
H
(
φN (X,V )

)
N

≤ Rc. Our goal, in this

paper, is to characterize the best achievable tradeoffs among ∆, Rc and Re that maintain

reliable estimation of V . In particular, we will be interested in the embedding capacity,

Ce(Rc,∆), which is the supremum of all achievable embedding rates for (Rc,∆).

4 Main Result

Let A denote the set of all triples (U,X, Y ) of random variables taking values in finite sets

U , X , Y, where X is the alphabet of the covertext, Y is the alphabet of the stegotext,

and U is an arbitrary finite alphabet of size |U| ≤ |X | · |Y| + 1, and the joint probability

distribution of (U,X, Y ), PUXY (u, x, y), is such that the marginal distribution of X is PX ,

and Ed(X,Y ) ≤ ∆. For any triple (U,X, Y ), there exists a related quadruple (U,X, Y, Z),

with Z taking values in Z, such that

PU,X,Y,Z(u, x, y, z) = PU,X,Y (u, x, y)PZ|Y (z|y), (21)

where PZ|Y (z|y) is a transition probability of the discrete stationary memoryless attack

channel.

We now present the main result of this paper, which is a single-letter characterization

of the achievable region of (Rc, Re,∆).

Theorem 1. Given a DMS PX , an embedding rate Re is achievable for a pair (Rc,∆) if

and only if there exists a triple of random variables (U,X, Y ) ∈ A satisfying

Re ≤ min{I(U ;Z)− I(U ;X), Rc − I(X;U, Y )}. (22)
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The proof of the converse part of Theorem 1 is given in Section 5, and the proof of the

direct part is provided in Section 6.

Obviously, the maximum achievable embedding rate Ce(Rc,∆) is obtained by taking

maximum among all the triples (U,X, Y ) ∈ A maintaining the conditions of Theorem 1.

Corollary 1. The embedding capacity Ce(Rc,∆) for a DMS Q is given by:

Ce(Rc,∆) = max
(U,X,Y )∈A

min{I(U ;Z)− I(U ;X), Rc − I(X;U, Y )}. (23)

Discussion:

The embedding capacity of the public watermarking scheme is, of course, smaller than

or equal to the one obtained in private watermarking [13]. It should be pointed out that

(22) and (23) are not obtained by a straightforward extension of the well-known analysis

of Gel’fand and Pinsker [20], where the maximum achievable embedding rate was found

without constraining the allowable distortion of the covertext and without requirements on

the compressibility of the codewords. Neither the direct scheme proposed in [20] nor the

proof of the converse part of [20] lend themselves to characterizing tradeoffs between the

embedding rate and the composite rate. Here, an alternative coding scheme is proposed,

which not only achieves the embedding capacity of [20], but also allows a characterization

of a tradeoff between the embedding and the composite rates. The two schemes differ in

their ways of creating of composite sequences. In [20], after choosing an auxiliary codeword

U = (U1, ..., UN ) for a pair (X, V ), a composite sequence Y = (Y1, ..., YN ) is created by Yi =

f(Ui, Xi), for some function f , and the only quantitative characterization on the possible

compression rate is that it is upper-bounded by H(Y ). The mechanism of generating the

composite sequences, proposed in this paper, is different and more complex than that of

Gel’fand and Pinsker [20] (and these proposed in [7]-[10]) and this is in order to provide an

enumerable composite set and to maintain the distortion constraint.

The proof of the converse part is strongly based on that of [20]. It should be noted that

both the proposed coding scheme and the converse proof camouflage the fact that although

the schemes were originally planned to provide reliable retrieval of the watermark from the

distorted version of the composite sequence, reliable retrieval of the watermark is possible

also directly from the composite sequence.

Corollary 1 presents the result of Theorem 1 in terms of the maximum achievable em-

bedding rate - Ce(Rc,∆). Another way to present Theorem 1 is in terms of the minimum
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achievable composite rate:

Corollary 2. The minimum achievable composite rate R∗
c(Re,∆) is given by:

R∗
c(Re,∆) = Re +min I(X;U, Y ), (24)

where the minimum is over A
⋂
{(U,X, Y ) : Re ≤ I(U ;Z)− I(U ;X)}.

In an attack-free case [22], where Z = Y and the optimal choice of the auxiliary is U = Y ,

the result of (22) coincides with that of [22].

An extension of this work can be done for the case of continuous alphabets ([18], ch.

7), by considering the supremum of min{I(Ud;Zp)− I(Ud;Xp), Rc − I(Xp;Ud, Yp)} over all

finite-alphabet auxiliary variables Ud and all partitions Xd, Yd and Zd of the source, chan-

nel input and channel output alphabets, respectively. The achievability scheme can also

be presented directly, following the lines of the scheme provided in Section 6, where the

considered sequences should satisfy weak typicality (see, e.g., [16], pp. 225 − 227) rather

than strong typicality used for the finite-alphabets case. This scheme demonstrates well

a great difference between the continuous and the finite-alphabets cases: the number of

composite sequences is finite for the finite-alphabet case, while for the case of continu-

ous alphabets, there are infinitely many usable auxiliary and stegotext sequences. So, we

can generate arbitrarily many distinct auxiliary and composite codebooks, that differ from

each other only by arbitrarily small perturbations of one (representative) auxiliary and one

corresponding stegotext codebook, with each auxiliary codebook representing a different

watermarking message. The minimum sizes of these auxiliary and composite codes are dic-

tated by properties of typical sequences, and a variation of the Rate-Distortion Theorem

[17], respectively, establishing the first upper-bound to the embedding rate, in terms of the

composite rate allowed. Now, in the presence of the attack, the number of usable auxiliary

sequences is limited by the standard channel-coding argument, i.e., we cannot use more

auxiliary codewords than we can distinguish at the output of the attack channel, and as a

consequence, an additional upper-bound to Re is determined. But, in an attack-free case,

no channel coding is performed, the watermark is retrievable directly from the sent com-

posite sequence, and therefore, the upper-bound I(U ;Z) − I(U ;X) to Re can be omitted,

bringing us back to the result of [22], since the choice of U = Y provides us with the highest

achievable embedding rate for a given Rc.
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5 Proof of the Converse Part of Theorem 1

Let
(
φN , ϕN

)
be a given encoder-decoder pair for which Ed(X,Y) ≤ ∆, 1

N
H(φN (X, V )) ≤

Rc and Pe ≤ ε. We start with Fano’s inequality:

H(V |Z) ≤ h(Pe) + Pe log(M − 1) ≤ 1 + PeNRe, (25)

where h(·) is the binary entropy function. Since V → Y → Z is a Markov chain, (25)

implies:

H(V |Y) ≤ H(V |Z) ≤ 1 + PeNRe. (26)

The embedding rate can therefore be upper-bounded as follows:

NRe
(a)
= H(V ) (27)

= H(V |X)

= H(V |X,Y) + I(V ;Y|X)

= H(V |Y) + I(V ;Y|X)− I(V ;X|Y)
(b)

≤ 1 + PeNRe +H(Y|X)−H(Y|V,X)− I(V ;X|Y)

(c)
= 1 + PeNRe +H(Y)− I(X;Y)− I(V ;X|Y)

= 1 + PeNRe +H(Y)− I(X;V,Y)

≤ 1 + PeNRe +NRc − I(X;V,Y),

where:

(a) follows from the assumption V has a uniform distribution,

(b) from (26),

(c) from the fact that Y is a function of (X, V ).

Following [20], let us define N auxiliary random variables Ũ(1), ...Ũ(N):

Ũ(i) = (V,Zi−1
1 , XN

i+1). (28)

Then,

I(X;V,Y)
(a)
= I(X;V,Y,Z) (29)

=
N∑

i=1

I(Xi;V,Y,Z|XN
i+1)
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(b)
=

N∑

i=1

I(Xi;V,Y,Z|XN
i+1) +

N∑

i=1

I(Xi;X
N
i+1)

=
N∑

i=1

I(Xi;V,Y,Z, XN
i+1)

=

N∑

i=1

I(Xi;V,Z
i−1
1 , XN

i+1, Yi, Y
i−1
1 , Y N

i+1, Z
N
i )

(c)

≥
N∑

i=1

I(Xi; Ũ(i), Yi), (30)

where:

(a) follows from the Markov chain X→ (V,Y)→ Z. (31)

(b) from the fact that the covertext source is memoryless, and

(c) from the data processing theorem and (28).

On substituting (29) into (27), we obtain

NRe ≤ 1 + PeNRe +NRc −
N∑

i=1

I(Xi; Ũ(i), Yi). (32)

Also, from the proof of the converse part of [20], it is known that

NRe ≤ 1 + PeNRe +

N∑

i=1

[I(Ũ(i);Zi)− I(Ũ(i);Xi)]. (33)

Combining (32) with (33) and dividing the resulting inequality by N , gives:

Re(1− Pe)−
1

N
≤ min

{
1

N

N∑

i=1

[I(Ũ(i);Zi)− I(Ũ(i);Xi)], Rc −
1

N

N∑

i=1

I(Xi; Ũ(i), Yi)

}
.(34)

Now, consider a time-sharing random variable T distributed uniformly over {1, 2, ..., N},

independently of all other random variables in the system, and let us denote a quadruple

of random variables

(Ũ ,X, Y, Z)
4
= (ŨT , XT , YT , ZT ). (35)

The probability distribution of (Ũ ,X, Y, Z) is given by:

Pr{(Ũ ,X, Y, Z) = (ũ, x, y, z)} =
1

N

N∑

n=1

Pr{(Ũn, Xn, Yn, Zn) = (ũ, x, y, z)}. (36)

Therefore, by definition of T :

1

N

N∑

i=1

[I(Ũ(i);Zi)− I(Ũ(i);Xi)] = I(Ũ ;Z|T )− I(Ũ ;X|T ) (37)
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= I(Ũ , T ;Z)− I(Z;T )− I(Ũ , T ;X) + I(X;T )

≤ I(Ũ , T ;Z)− I(Ũ , T ;X),

where the last step is due to the fact that X is stationary and memoryless and hence,

I(X;T ) = 0, and the fact that I(Z;T ) is non-negative. Also,

1

N

N∑

i=1

I(Xi; Ũ(i), Yi) = I(X; Ũ , Y |T ) (38)

= I(X; Ũ , Y |T ) + I(X;T )

= I(X; Ũ , T, Y ),

where the second equality is again due to the fact that X is stationary and memoryless.

Let us define now a new random variable U
4
= (Ũ , T ). Exchanging variables in (37)

and (38) and substituting the obtained result into (34), provides us with the following

expression:

Re(1− Pe)−
1

N
≤ min

{
I(U ;Z)− I(U ;X), Rc − I(X;U, Y )

}
. (39)

By hypothesis, the given system satisfies Pe ≤ ε, and hence, by taking the limit ε → 0 as

N →∞ in (39), we obtain:

Re ≤ min
{
I(U ;Z)− I(U ;X), Rc − I(X;U, Y )

}
. (40)

Next, the expected distortion constraint is satisfied by the system, and so,

∆ ≥ Ed(X,Y) (41)

=
∑

x,y

Pr{(X,Y) = (x,y)}
1

N

N∑

i=1

d(xi, yi)

=
1

N

N∑

i=1

∑

x,y

Pr{(Xi, Yi) = (x, y)}d(x, y)

=
∑

x,y

Pr{(X,Y ) = (x, y)}d(x, y)

= Ed(X,Y ).

It remains to show that the alphabet of the random variable U can be limited by

|U | ≤ |X | · |Y|+1. To this end, we will use the support lemma (cf. [15]), which is based on

Carathéodory’s theorem, according to which, given J real valued continuous functionals fj ,

j = 1, ..., J on the set P(X ) of probability distributions over the alphabets X , and given any
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probability measure µ on the Borel σ-algebra of P(X ), there exist J elements Q1, ...QJ of

P(X ) and J non-negative reals, α1, ..., αJ , such that
∑J

j=1 αj = 1 and for every j = 1, ..., J

∫

P(X )
fj(Q)µ(dQ) =

J∑

i=1

αifj(Qi). (42)

Before we actually apply the support lemma, we first rewrite the relevant mutual informa-

tions of (40) in a more convenient form for the use of this lemma. As for the first upper

bound to Re, we have:

I(U ;Z)− I(U ;X) = H(Z)−H(Z|U)−H(X) +H(X|U), (43)

and for the second upper bound to Re, we have

Rc − I(X;U, Y ) = Rc − I(X;U)− I(X;Y |U) (44)

= Rc −H(X) +H(X|U)−H(X|U) +H(X|U, Y )

= Rc −H(X) +H(X|U, Y )

= Rc −H(X) +H(X,Y |U)−H(Y |U). (45)

For a given joint distribution of (X,Y, Z), H(Z) and H(X) are both given and unaffected by

U . Therefore, in order to preserve prescribed values of I(U ;Z)−I(U ;X) andRc−I(X;U, Y ),

it is sufficient the preserve the associated values H(X|U) − H(Z|U) and H(X,Y |U) −

H(Y |U).

Let us define the the following functionals of a generic distribution Q over X ×Y, where

X × Y is assumed, without loss of generality, to be {1, 2, ...,m}, m
4
= |X | · |Y|:

fi(Q) = Q(x, y), i
4
= (x, y) = 1, ...,m− 1 (46)

fm(Q) =
∑

x,y

Q(x, y)
∑

z

PZ|Y (z|y) log

∑
x,y Q(x, y)PZ|Y (z|y)∑
y,z Q(x, y)PZ|Y (z|y)

. (47)

Next define

fm+1(Q) =
∑

x,y

Q(x, y) log

∑
xQ(x, y)

Q(x, y)
. (48)

Applying now the support lemma, we find that there exists a random variable U (jointly

distributed with (X,Y )), whose alphabet size is |U | = m+ 1 = |X | · |Y|+ 1 and it satisfies

simultaneously:

∑

u

Pr{U = u}fi(P (·|u)) = PXY (x, y), i = 1, ...,m− 1, (49)
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∑

u

Pr{U = u}fm(P (·|u)) = H(X|U)−H(Z|U), (50)

and

∑

u

Pr{U = u}fm+1(P (·|u)) = H(X,Y |U)−H(Y |U). (51)

It should be pointed out that this random variable maintains the prescribed distortion level

Ed(X,Y) of the system, since the PXY (x, y) is preserved. This completes the proof of the

converse part.

6 Proof of the Direct Part of Theorem 1

In this section, we show that given a triple of random variables (U,X, Y ) ∈ A and positive

numbers Re, Rc and ∆ such that Re ≤ min{I(U ;Z) − I(U ;X), Rc − I(X;U, Y )} and

Ed(X,Y ) ≤ ∆, then for any ε > 0 and sufficiently large N , there exists a code of embedding

rate Re, for the attack channel PZ|Y , with composite rate below Rc, error probability Pe ≤ ε,

and Ed(X,Y) ≤ (1 + ε)∆.

Let us denote three functions of a scalar δ > 0, which will be used later on:

εb
4
= (δ2 − 2δ)H(U)− (δ2 + 2δ)H(U |X)− δ, (52)

εy
4
= (δ2 − 2δ)H(Y |U)− (δ2 + 2δ)H(Y |X,U)− δ, (53)

and

εu
4
= (δ2 − 2δ)H(Z)− (δ2 + 2δ)H(Z|U)− δ. (54)

We next describe the mechanisms of random code selection and the encoding and decoding

operations. Fix δ such that 2δ +max{2 · exp−2Nδ
+2−Nδ, δ2} ≤ ε.

Auxiliary Code Generation:

We first construct an auxiliary code capable of embedding 2NRe watermarks by a random

selection technique. First, 2NRu , Ru ≤ I(U ;Z) − εu − δ, sequences {Ui}, i ∈ [1, ..., 2NRu ],

are drawn independently from T δ
PU

. Let us denote the set of these sequences by C. The

elements of C are equally distributed between M
4
= 2NRe bins, each bin of size m = 2NR,

R ≥ I(X;U) + εb + δ. A different watermark index is attached to each bin, identifying a
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sub-code representing the watermark. We denote the codewords of bin v, v ∈ [1, 2, ...,M ],

by U(v, k), k ∈ [1, 2, ...,m].

Composite Sequence Generation:

For each auxiliary sequence U(v, k) = u, a set of my
4
= 2NRy , Ry ≥ I(X;Y |U) + εy + δ,

composite sequences {Yj}, j ∈ [1, ...,my], are independently drawn from T δ
PY |U

(u). We

denote this set by C(U(v, k)) and its elements by Y(v, C(U(v, k)), j). Note that the 2NRu

sets {C(U(v, k))} may not be all mutually exclusive.

Encoding/Embedding :

Upon receiving a pair (x, v), the encoder acts as follows:

1. If x ∈ T δ
PX

and bin number v contains a sequence U(v, k) = u such that (s.t.) the

pair (x,u) ∈ T δ
PXY

, the first Y(v, C(U(v, k)), j) = y found in C(U(v, k)), such that

(x,u,y) ∈ T δ
PXUY

, is chosen for transmission. If there exist more than one jointly

δ-typical with x sequences, the described above process is applied to the the first

matching U(v, k) found in a bin’s list.

2. If x /∈ T δ
PX

, or @U(v, k) = u s.t. (x,u,y) ∈ T δ
PXUY

, an arbitrary error message is

transmitted.

Decoding :

Upon receiving Z = z , the decoder finds all sequences {U(v, k) = u}, so that the pairs

(u, z) ∈ T δ
PUZ

. If all found {U(v, k)} belong to a single bin, the index of this bin is decoded

as the watermark ṽ. Otherwise (if @U(v, k) = u s.t. (u, z) ∈ T δ
PUZ

or there exist more than

one bin containing such a sequence), an error is declared.

We now turn to the analysis of the error probability, the distortion, and the compress-

ibility of the composite sequence. For each pair (v,x), a particular choice of a code C and

related choices of {C(U(v, k))}, the possible causes for incorrect watermark decoding are

the following:

1. x /∈ T δ
PX

. Let the probability of this event be defined as Pe1 .
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2. x ∈ T δPX , but in bin no. v @u s.t. (x,u) ∈ T δ
PXU

. Let the probability of this event be

defined as Pe2 .

3. x ∈ T δPX , and bin no. v contains U(v, k) = u s.t. (x,u) ∈ T δ
PXU

, but @y ∈ C(U(v, k))

s.t. (x,u,y) ∈ T δ
PXUY

. Let the probability of this event be defined as Pe3 .

4. x ∈ T δPX , and bin no. v contains u s.t. (x,u,y) ∈ T δ
PXUY

, but (u, z) /∈ T δ
PUZ

. Let the

probability of this event be defined as Pe4 .

5. x ∈ T δPX , in bin no. v ∃u s.t. (x,u,y) ∈ T δ
PXUY

and (u, z) ∈ T δ
PUZ

, but there exists

another bin no. ṽ that contains ũ s.t. (z, ũ) ∈ T δPUZ
. Let the probability of this event

be defined as Pe5 .

If none of those events occur, the message v is retrieved correctly from z, and the distortion

constraint between x and y is satisfied, as follows from (12).

The average probability of error Pe is bounded by

Pe ≤ Pe1 + Pe2 + Pe3 + Pe4 + Pe5 . (55)

The fact that Pe1 → 0 follows from (9). As for Pe2 , we have:

Pe2
4
=

m∏

k=1

Pr{(x,U(v, k)) /∈ T δ
PXU

}. (56)

Now, by (8), for every k:

Pr{(x,U(v, k)) /∈ T δ
PXU

} = 1− Pr{(x,U(v, k)) ∈ T δ
PXU

} (57)

= 1−
|T δPU|X

(x)|

|T δPU |

≤ 1−
2N [(1+δ)2H(U |X)]

2N [(1−δ)2H(U)−δ]

= 1− 2−N [I(X;U)+εb],

where εb is given by (52). Substitution of (57) into (56) provides us with the following

upper-bound:

Pe2 ≤
[
1− 2−N [I(X;U)+εb]

]m
≤ exp

{
− 2NR · 2−N [I(X;U)+εb]

}
→ 0, (58)

double-exponentially rapidly since R ≥ I(X;U) + εb + δ.
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To estimate Pe3 , we repeat the technique of the previous step:

Pe3
4
=

my∏

j=1

Pr{(x,Y(v, C(U(v, k)), j)) /∈ T δ
PXY

}. (59)

Again, by the property of the typical sequences, for every j:

Pr{(x,Y(v, C(U(v, k)), j)) /∈ T δ
PXY

} ≤ 1− 2−N [I(X;Y |U)+εy ], (60)

where εy is given by (53) and therefore, substitution of (60) into (59) gives

Pe3 ≤
[
1− 2−N [I(X;Y |U)+εy ]

]my

≤ exp

{
− 2NRy · 2−N [I(X;Y |U)+εy ]

}
→ 0, (61)

double-exponentially rapidly since Ry ≥ I(X;Y |U) + εy + δ.

The estimation of Pe4 is again based on property of typical sequences. Since Z is an out-

put of N successive uses of a memoryless attack channel PZ|Y with input Y(v, C(U(v, k)), j)

and by the assumption of this step (x,U(v, k),Y(v, C(U(v, k)), j)) ∈ T δ
PXUY

, from (9) we

obtain

Pe4 = Pr{(x,U(v, k),Y(v, C(U(v, k)), j),Z) /∈ T δ
PXUY Z

} ≤ δ, (62)

and similarly to Pe1 can be made as small as desired by an appropriate choice of δ.

Finally, we estimate Pe5 as follows:

Pe5 = Pr{∃ṽ 6= v : (U(ṽ, k),Z) ∈ T δ
PUZ

} (63)

≤
∑

ṽ 6=v,k∈[1,2,...,m]

Pr{(U(ṽ, k),Z) ∈ T δ
PUZ

}

≤ (2NRe − 1)2NR Pr{U(ṽ, k),Z ∈ T δ
PUZ

}

≤ 2NRu2−N [I(U ;Z)−εu], (64)

where εu is given by (54). Now, since Ru ≤ I(U ;Z)− εu − δ, Pe5 → 0.

Since Pei → 0 for i = 1,2,3,4,5, their sum tends to zero as well, implying that there

exist at least one choice of an auxiliary code C and related choices of sets {C(U(v, k))} that

give rise to the reliable watermark decoding.

The embedding rate of the above described scheme is determined by the maximum

possible number of auxiliary bins, i.e.,

Re =
1

N
log

(
Ru

m

)
(65)

≤ I(U ;Z)− I(U ;X)− εb − εu − 2δ.
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Now, let us denote by Nc the total number of composite sequences used in the described

above scheme:

Nc = M ·m ·my = 2N [Re+I(X;U,Y )+εb+εy ]. (66)

For sufficiently small values of δ, εb and εy vanish and can be neglected, giving Nc =

2N [Re+I(X;U,Y )]. Now, since the compression procedure applied to the composite sequences

is lossless, it satisfies

1

N
H(Y) ≤

1

N
log(Nc) = Re + I(X;U, Y ) ≤ Rc, (67)

which completes the proof of the direct part. Finally, since εb, εu and δ are arbitrarily small,

Re can be made as close as desired to min{I(U ;Z)− I(U ;X), Rc − I(X;U, Y )}.
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