
Sparse Multisensor Signal Reconstruction

Dmitry Model, Michael Zibulevsky

February 4, 2004

1 Abstract

We propose a technique of multisensor signal reconstruction based on the
assumption, that source signals are spatially sparse, as well as have sparse
[wavelet-type] representation in time domain. This leads to a large scale
convex optimization problem, which involves l1 norm minimization. The op-
timization is carried by the Truncated Newton method, using preconditioned
Conjugate Gradients in inner iterations. The byproduct of reconstruction is
the estimation of source locations.

2 Introduction

The solution of the ”Cocktail Party” problem is the active research field.
However none of the developed techniques provides an ideal solution. Yet
another active research area is source localization. In this paper we propose to
benefit from both fields in order to receive a more precise and stable solution.

Our technique is based on the assumption, that incoming signals can be
sparsely represented in an appropriate basis or frame (e.g., via the short time
Fourier transform, Wavelet transform, Wavelet Packets, etc.). This idea is
exploited, for example, in [1],[2]. We also assume that there are few station-
ary sources, and that they are sparsely located in space. The last assumption
is used in [3] and [4]. The combination of both assumptions can lead to an
improved performance, as demonstrated by our simulations. An additional
advantage of our method, is that it deals with the sensor array model in time
domain, and thus is applicable for both narrowband and wideband signals.

1

lesley
CCIT Report #467February 2004



The solution of our problem is the restored signals in each location. Only the
locations, from which the signals have actually arrived, will contain signals
with relatively large energy, others will contain only noise, suppressed by
our method and, hence, relatively low energy. Thus, the byproduct of our
solution is an estimate of the source locations.

3 Observation Model

Consider several source signals impinging upon an array of n sensors. Let
{θ1, . . . , θm} be a discrete grid of all source locations. The arriving signals
are sampled and represented in discrete time by T time samples. Hence, the
sources can be represented by an m×T matrix S, whose i-th row represents
the signal from the i-th direction. In the same manner, we can introduce the
sensor measurement matrix, Y .

Signal from different source position arrives to each sensor with different
delay and, possibly, different attenuation. This leads to the following obser-
vation model:

Y = AS + N (1)

where N stands for the measurement noise matrix; A denotes ’mixing op-
erator’, which shifts, attenuates and sums incoming signals modelling the
real environment. Note, that the operator A written in an explicit matrix
form will have the huge dimensions of n × mT , hence, for optimization, it
is more convenient to implement the product Y = AS by a series of shifts,
multiplications and sums actions:

yi =
m

∑

j=1

αjiU∆ji
(sj) (2)

where yi is the i-th row of the sensor measurement matrix, Y ; sj is the j-th
row of sources’ matrix S; αji represents attenuation of the j-th source toward
the i-th sensor; U∆ji

is a shifting operator and ∆ji is the delay of the j-th
source toward the i-th sensor.

In the same manner we can implement the application of the adjoint op-
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erator X = A∗Y by a series of shifts, multiplications and sums actions:

xj =
n

∑

i=1

αjiyi(1 + ∆ji : T + ∆ji) (3)

xj and yi refer to j-th and i-th rows of X and Y respectively. Matlab-like
yi(1 + ∆ji : T + ∆ji) stands for the T -length subvector of yi, starting at
1 + ∆ji position.

As mentioned above, we work with the discrete-time signals. Therefore,
a problem arises when ∆ji is not integer. A straightforward solution is to
replace the fractional delays with the rounded ones. However, this approach
significantly limits the spatial resolution. A better approach suggests upsam-
pling of signals prior to applying the A operator. The upsampling may be
produced using some interpolation kernel.

Let INup
denote upsampling by factor Nup operator, and if S is an m × T

matrix, then Sup = INup
S is m×TNup matrix. Note, that the 1 +Nup(i− 1)

-th column of Sup is equal to the i-the column of S (1 ≤ i ≤ T ). Other
columns should be calculated using interpolation.

Suppose, we want to calculate the j-th column, Sj
up, of the matrix Sup. This

column corresponds to the time point, laying between the samples k = ⌈ j

Nup
⌉

and k + 1 of the original signal (⌈ ⌉ is the ceiling operator). The distances
between the above time point and the closest samples of original signal are
d− = (j− (k−1)Nup−1)/Nup to the left sample and d+ = 1−d− to the right
sample (measured in sampling periods Ts). Finally, if h is the interpolation
kernel, Nio is an interpolation order and Sk is the k-th column of S, then:

Sj
up =

Nio
∑

l=−Nio+1

h(l − d−)Sk+l (4)

The adjoint operator I∗
Nup

translates an m × TNup matrix Sup into m × T
matrix Sr = I∗

Nup
Sup. Using the above notations, we can write the following

formula for the Sk
r - the k-th column of matrix Sr:

Sk
r =

Nio∗Nup
∑

l=−Nio∗Nup

h

(

l

Nup

)

SNup(k−1)+l
up (5)
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Now, in our model we will use the modified operators

Â = A · INup
Â∗ = I∗

Nup
· A∗ (6)

instead of A and A∗, but for simplicity, we will continue to denote the mod-
ified operators as A and A∗. Note, that after upsampling, we should adjust
∆ji to be ∆ji ∗ Nup. We will still need to round ∆ji ∗ Nup to the closest
integer, but now the rounding error is Nup times less. In our simulations we
used Nup = 10 and the ’sinc’ interpolation kernel.

4 Method Description

We assume that the sources S are sparsely representable in some basis or
overcomplete system of functions [5] (e.g. Gabor, wavelet, wavelet packet,
etc.). In other words, there exists some operator Φ, such that S = CΦ, and
the matrix of coefficients, C, is sparse. We use the objective function of the
following form:

F (C) = F1(C) + F2(C) + F3(C) (7)

where F1(C) is the l2-norm-based data fidelity term; F2(C) is the temporal
sparsity regularizing term, which is intended to prefer sparsely representable
signals; F3(C) is the spatial sparsity regularizing term, which is intended to
prefer solutions with the source signals concentrated in a small number of
locations. F2(C) is based on the l1-norm, which is proved to be effective in
forcing sparsity [5]. Then, the objective function can be written as:

F (C) =
1

2
‖Y −A(CΦ)‖2

F + µ1

∑

i,j

|cij| + µ2

m
∑

i=1

‖ci‖2 (8)

where ci denotes the i-th row of the matrix C (the i-th source’ coefficients),
and cij is the j-th element in ci. The scalars µ1 and µ2 are used to regulate

the weight of each term. And ‖X‖F =
√

∑

ij X2
ij denotes a Frobenius norm

of matrix X.

In order to minimize the objective (8) numerically, we use a smooth ap-
proximation of the l2-norm, having the following form:

ψ(x) =

√

∑

i

x2
i + ǫ ≈ ‖x‖2 (9)
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the approximation becomes more precise as ǫ → 0. It can be easily seen, that
if ψ is applied to a single element of x - it becomes the smooth approximation
of absolute value:

ψ(xi) =
√

x2
i + ǫ ≈ |x| (10)

Using (9) and (10), we obtain the following objective function:

F (C) =
1

2
‖Y −A(CΦ)‖2

F + µ1

∑

i,j

ψ(cij) + µ2

m
∑

i=1

ψ(ci) (11)

We can efficiently calculate both the AS and the A∗Y products, which en-
ables us to calculate the gradient matrix G and the product of the Hessian
operator H with an arbitrary matrix X (see appendix A). Hence, the objec-
tive (11) can be minimized by one of the numerical optimization methods,
for example the Quasi Newton method. A problem arises when the dimen-
sion of the problem growths. The memory consumption and iteration cost
grow as (mT )2. This circumstance leads us to the usage of the Truncated

Newton method [6],[7]. In the Truncated Newton method the Newton direc-
tion d is found by the approximate solution of the system of linear equations
Hd = −g. This is done by the linear Conjugate-Gradients method. We use
diagonal preconditioning in order to further speed up the optimization [8].
Note that in Truncated Newton method, the memory consumption growth
linearly with the number of variables. This enables us to solve large problems
with fair performance. See Appendix B for detailed description of Truncated

Newton and preconditioned Conjugate-Gradients algorithms.

5 Computational Experiments

Our simulations were restricted to 2D model, far field and sensors lined up
with constant distances. The delay of the j-th source location toward the
i-th sensor is easy to calculate, given the geometrical position of each sensor
and assuming that the source is far enough, so that signal arrives as a planar
wave (far field assumption). Note that it is straightforward to extend our
simulations to the general case. It only requires to recalculate the delay from
each location to each sensor.

The experiment setup is as following: 8 sensors are lined up with λmin

2
= 1

2
C

fmax

distance (we assume our signal to be band limited, and fmax denoting the
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Figure 1: DOA estimation, (no noise)
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Figure 2: Top: sources from 2 active directions, bottom: restored sources
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Figure 3: Top: sources from 2 active directions, bottom: restored sources

highest frequency). Signals are upcoming from 45 possible directions, and
they are 64 time samples-long. The environment is noisy, with SNR = 5dB.
There are only 2 active sources, located very close to each other - 10o. In
these conditions conventional methods, such as beamforming and MUSIC
fail to superresolve them (as shown in [3],[4]).

We have generated the sensors’ measurement matrix Y in the following way:
at first, we have generated the sparse coefficients matrix C. Next, the source
signals were created S = CΦ and finally Y = AS (A defined in (6) and
Nup = 10).

In the first experiment we have checked that our algorithm can reconstruct
signals in noise-free environment. The experiment was successful, and the
algorithm has correctly determined the source positions (Figure 1) and has
produced reconstruction with less than 5 ∗ 10−3 reconstruction error (Fig-

ure 2). The error was calculated according to
‖sinit−srec‖2

‖sinit‖2

.

In the second experiment, we have also added white Gaussian noise to the
matrix Y . The contaminated by the noise matrix Y was used as an input
to our algorithm. After successful optimization, we have checked the signals
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Figure 4: DOA estimation, (SNR=5 db)

(original vs. reconstructed) from the active directions. As one can see in
Figure 3 the active signals were restored rather accurately.

In addition, we have checked our method for DOA estimation, by com-
puting the energy of the restored signal at each direction. We have com-
pared our technique with the method based on spatial sparsity only, in spirit
of ([3],[4]), by setting µ1 = 0 in (11). It can be seen from Figure 4 that both
methods correctly identify the active directions, however sidelobes are about
5dB lower when temporal sparsity is enforced along with spatial sparsity.

6 Conclusions

We have presented a method for reconstruction of multiple source signals
from multi-sensor observations, based on temporal-spatial sparsity. We de-
rive the expressions for efficient computation of the gradient, multiplication
by Hessian and diagonal preconditioning, necessary for Truncated Newton

programming.

Computational experiments showed the feasibility of our method. The use
of temporal sparsity along with spatial sparsity further lowers the sidelobes.
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However, more simulations and comparison to other methods should be com-
pleted before we can judge the method’s performance.

We are planning to test our method in the case of near field sources. As
well we wish to further speed up the optimization.

7 Appendix A. Gradient and Hessian of the

objective function

In order to use the Truncated Newton method, we need to calculate the gra-
dient G of the objective (11), as well as to implement the product of the
Hessian H with an arbitrary matrix X. Note that H is a tensor, but if we
parse the matrix variable C into a long vector, then a Hessian will be repre-
sented by a matrix H. We will use these notations throughout this appendix.
We also derive multiplication by the diagonal of H, required for precondi-
tioned Conjugate-Gradients.

Let us start with the first term in (11). We will define a new operator B
in the following way:

BC = A(CΦ) B∗X = (A∗X)Φ∗ (12)

This enables us to write the first term in (11) as: F1 = 1
2
‖BC − Y ‖2

F . If

we introduce new variable U = BC − Y , then F1 = 1
2
‖U‖2

F = 1
2
Tr(UT U).

Hence, dF1 = 1
2

(

Tr(UT dU) + Tr(dUT U)
)

= Tr(UT dU). Substituting U
and dU = BdC yields dF1 = Tr

(

(BC − Y )TBdC
)

= 〈BC − Y,BdC〉 =
〈B∗(BC − Y ), dC〉. Recall that dF = 〈G, dC〉, and we get the gradient

G1(C) = B∗(BC − Y ) (13)

Now we can substitute the expressions for B and B∗ from (12) and we will
receive:

G1(C) = (A∗ (A (CΦ) − Y )) Φ∗ (14)

In order to calculate the multiplication of the Hessian operator H by an
arbitrary matrix X we need to recall that dG(C) = HdC. By (13) dG1(C) =
B∗(BdC), and thus for an arbitrary X

H1X = B∗(BX) (15)

9



which gives after substituting B and B∗ from (12):

H1X = (A∗ (A (XΦ))) Φ∗ (16)

Parentheses are used to ensure correct order of multiplications, AX and A∗X
are defined in (2),(3),(4),(5),(6).

In order to proceed with the second and the third terms in (11), we need
to use the gradient and Hessian of (9):

∇ψ(x) =
1

ψ(x)
x (17)

(

∇2ψ(x)
)

ii
= −

1

ψ3(x)
x2

i +
1

ψ(x)
(18)

(

∇2ψ(x)
)

ij
= −

1

ψ3(x)
xixj (i 6= j)

where (∇2ψ(x))ii and (∇2ψ(x))ij are diagonal and off diagonal elements el-
ements of ∇2ψ(x) respectively. Now, by straightforward calculations we can
write down the gradients of the second and the third term in (11):

(G2)ij = µ1
1

ψ(cij)
cij (19)

(G3)ij = µ2
1

ψ(ci)
cij (20)

note, that the gradient of (11) is a matrix, because our variable C is also a
matrix (hence G1,G2 and G3 are also matrices). It can be noticed in (19),
that all elements of G2 are independent, and thus the H2 matrix will be
diagonal. It is convenient to ’pack’ the diagonal of H2 into a matrix with the
same size as C row by row. Let us denote the packed matrix as H̃2:

H̃2ij
= µ1

(

−
1

ψ3(cij)
c2
ij +

1

ψ(cij)

)

(21)

it is obvious, that
H2X = H̃2 ⊙ X (22)
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where ⊙ is element-wise multiplication.

In order to define the multiplication H3X we need to rewrite the equa-
tion (18):

∇2ψ(cT
i ) =

1

ψ3(cT
i )

cT
i ci +

1

ψ(cT
i )

I (23)

where I represents the identity matrix. Now it is easy to define the i-th row
of H3X:

(H3X)i = µ2

(

−
1

ψ3(cT
i )

ci(cix
T
i ) +

1

ψ(cT
i )

xi

)

(24)

where xi is the i-th row of matrix X.

This calculus is sufficient for the Truncated Newton method. However, in
order to use Preconditioned Conjugate Gradients method for inner itera-
tions, we need to define the diagonal of the Hessian of (11).

We will calculate the elements in the diagonal of H1 in the following man-
ner: let E be a zero matrix with only one non-zero element equal to 1 at an
arbitrary location - i-th row and j-th column. Then:

(

H̃1

)

ij
= 〈E,H1E〉 (25)

where H̃1 is a diagonal of H1 packed in the same manner as a diagonal of H2

in (21).

It follows from (15) that 〈E,H1E〉 = 〈E,B∗(BE)〉 = 〈BE,BE〉 = ‖BE‖2
F ,

and if we substitute the expression for B from (12) we will receive
〈

ET ,H1E
〉

=

‖A(EΦ)‖2
F . The elements of EΦ will be all zeros, except for the i-th row

which will be equal to the j-th row of Φ. After applying the operator A
as described in (2),(3),(4),(5),(6), we will receive a shifted, attenuated and
upsampled copy of j-th row of Φ in each row of A(EΦ). And, finally, after
taking the norm and using (2) and (25), we will receive:

(

H̃1

)

ij
=

∥

∥

∥

(

INup
Φ

)

j

∥

∥

∥

2

2

n
∑

j=1

α2
ij (26)

where
(

INup
Φ

)

j
is the j-th row of upsampled Φ.
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The diagonal of H2 is already defined in (21). Finally, the diagonal of H3,
packed in the same manner as a diagonal of H2, is given by:

(H̃3)ij = µ2

(

−
1

ψ3(ci)
c2
ij +

1

ψ3(ci)

)

(27)

8 Appendix B. Truncated Newton method

In the algorithm description we will use the following notations: f(C) - the
objective function (11). G and H are the gradient and the Hessian of f(C),
respectively. The Truncated Newton method applied to the objective (11)
has the following iterative scheme:

1. Start with an initial estimate C0 of source coefficients

2. For k = 1, 2, ... until convergence

(a) Compute the current direction Dk by approximate solution of sys-
tem of linear equations HDk = −Gk

(b) Compute the step size αk by exact or inexact line search:
αk = arg minα f(Ck + αDk)

(c) Ck+1 = Ck + αkDk

3. End of loop

The step 2a is performed by the preconditioned linear Conjugate Gradients.
We use the diagonal operator W for preconditioning. W has the same size
and the diagonal as H - the Hessian of (11). Since W is diagonal, the
calculation of W−1 is straightforward. Moreover, the optimization algorithm
doesn’t differ much from the regular CG :

1. Start with D0, R0 = HD0 + Gk, β0 = 0, P0 = 0

2. For k = 1, 2, ...

(a) Pk = −W−1Rk + βk−1Pk−1

(b) γk =
〈Rk,W−1Rk〉

〈Pk,HPk〉

(c) Dk+1 = Dk + γkPk
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(d) Rk+1 = Rk + γkHPk

(e) βk =
〈Rk+1,W−1Rk+1〉

〈Rk,W−1Rk〉

3. End of loop

where 〈A,B〉 = Tr
(

AT B
)

=
∑

ij aijbij is an inner product of two matrices
A and B.

Note, that we are not looking for the exact solution of step 2a of Trun-

cated Newton algorithm. Hence, we should stop our CG algorithm when we
are close enough to the solution. One of the stop criteria may be a fixed

number of steps. Other possible criteria is when the
‖Rk‖2

‖R0‖2

is low enough -

say 10−3.
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