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Abstract

Abstract—A lower bound on the reliability exponent of the memoryless exponential
server timing channel with noiseless feedback is provided. The lower bound depends on
whether fixed or random transmission-time, as well as on whether fixed block-length or
variable block-length, codes are considered (with block-length denoting the number of
recorded departures). On the other hand we show that Arikan’s one-way sphere-packing
bound for fixed transmission-time codes [8] applies as well to fixed transmission-time

codes for the case at hand.

Index Terms — Point process channel, reliability exponent, noiseless feedback, tim-

ing channel, telephone signaling channel.
I. INTRODUCTION

The exponential-server timing channel is a model for a single-server queue with a first-in
first-out service discipline wherein the server’s service times are independent and exponen-
tially distributed with mean 1/p (see [1]-[7] and references therein). Transmission begins at
time 0 with the queue containing a possibly non-zero amount u, of unfinished work. The
model allows ug to be a random variable except that it must be independent of the message
transmitted. The message to be transmitted is encoded via a codeword & = (%1, T, ..., Ty)
which consists of n nonnegative components that determine the interarrival times of packets
to the queue. The receiver observes the interdeparture times y = (y1,ys,. .., y,) of packets

from the queue and makes its decision based on this.
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Given the interarrival vector @, and the initial unfinished work ug, the conditional prob-

ability density of observing y, and thereafter the interdeparture vector y is

p(ya y0|:E, Uo) = 5(y0 - Uo) Heu(yk - wk)
k=1

k k—1
we = max{o, z@—zw} 0
/=1 =0

Here e, (t) = pe **,t > 0 denotes the exponential density with mean 1/p, wy is the amount
of time for which the server is idle between the (k — 1)st departure and the kth arrival, and
d(+) is the delta function.

Two definitions of a block code for the timing channel have been considered in [2], de-

pending, respectively, on whether it is a random or a fixed transmission-time scheme.

Definition 1: An (n, M,T, P.)-code consists of a codebook of M codewords and a de-
coder. Each codeword is a vector of n nonnegative interarrival times &. The decoder, after
observing the n departures, selects the correct codeword with probability greater than 1 — P,,
under equiprobable codewords and p(y|x). The nth departure occurs on the average (under

equiprobable codewords and p(y|Z)) no later than T.

Definition 2: An (n, M, T, P,)-window-code consists of a codebook of M codewords and
a decoder. Each codeword is a vector of n nonnegative interarrival times &. The nth arrival
of every codeword occurs before time 7. The decoder, after observing the departures in
[0, T, selects the correct codeword with probability greater than 1 — P,, under equiprobable
codewords and p(y|z).

Thus the term “window-code” refers to a code whose decoder observes only those depar-
tures that occur in the window [0, 7], and the cost of transmission for the window-code is T

seconds.

We shall use the average probability of error criterion assuming that the message D is
drawn according to a uniform distribution over {1,..., M}. Consequently, the error proba-
bility for the code is defined as

Po=Pr{D#0(¥)} = - S Pr{u(¥) £ m|D =m} |

where 1) is the decoding function.
The rate R is achievable if, for every v > 0, there exists a sequence of (n, M™ T Pe(”))—
codes/window-codes that satisfies (In M™)/T™ > R — ~ for all sufficiently large n, and

lim,, ., P = 0.



By [1, Thm. 4, Thm. 6] and [2, Thm. 2] any rate not larger than
O(wA) = A, 0<A<u, 2)

is achievable with departure-rate A codes/window-codes on the continuous-time exponential-
server timing channel. Thus the rate R = p/e nats per second is achievable with departure-

rate A\ = u/e packets per second.

The coding theorem of Anantharam-Verdid shows that an arbitrarily small average error
probability is possible for any rate smaller than C'(A, ), but it does not tell us how large
the coding duration 7" must be in order to achieve a specified error probability. A partial

answer to this question is provided by examining the error exponent of the channel.

Definition 3: A number E > 0 is called an achievable error exponent at rate R > 0 for
the exponential timing channel if, for every 6 > 0 and sufficiently large 7', there exists a code
with coding duration 7" such that M > exp{T(R —0)} and P, < exp{—-T(E —9)}.

The fixed (resp. random) transmission-time reliability exponent at rate R > 0, referred
as F(R), is the largest achievable error exponent at that rate, and formally it is defined as
follows.

E(R) = limsup—W ,
T—o0 T
where P,(R,T) is the minimum value of the Maximum-Likelihood (ML) decoding error P,
over all (n, M,T) fixed (resp. random) transmission-time codes for the given channel such
that M = [ef"] and n > 1 is arbitrary. The zero-rate reliability exponent is defined as
E(0) =sup E(R) .
R>0
With regard to the performance of (n, M, T, P.) window-codes for the exponential timing

channel, Arikan established in [8] the following result.

Proposition 1 [8]: Let Es,(R) for 0 < R < C = p/e be defined parametrically by

FalR) = sl — loe(l+7)
R = L log(l+ )" (3)

(1 + p)(1+p)/p
as p ranges over (0,00), and let Eg,(0) = p.
For R, = (pn/4)log2 < R < C, let E,(R) = Eg(R), while for 0 < R < R,, let E.(R) =
p/4 — R. Then the reliability exponent of the exponential-server timing channel with mean

service time 1/ satisfies

E(R) < E(R) < Eg(R)
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forall0 < R < C.

Thus, for rates below the critical rate R,., the one-way fixed transmission-time reliability
exponent is yet unknown, and in particular this result establishes the bound p/4 < E(0) < p.
Recently Wagner and Anantharam [9] improved this estimate by showing that E(0) > p/2.

The Telephone Signaling Channel (TSC) is a memoryless variant of the timing channel
that incorporates noiseless feedback and is formally defined as follows. The queue starts with
up = 0. Upon placing the kth customer (k > 1), the transmitter waits (for s; seconds) until
the corresponding kth departure, and then after a period of time zy; which depends on the
message being sent (and possibly on previous departure times), places the (k+1)st customer.
The times sq, s9, ... are independent and identically distributed. While the capacity of the
exponential TSC (i.e. an exponential timing channel with noiseless feedback) has been shown
in [1]-[2] to be the same as that of the one-way exponential timing channel, the reliability
exponent for this model is yet unknown. It should be mentioned in this connection that, for
the ideal Poisson channel with noiseless feedback — a model that is equivalent to the TSC
with customer recall [1] — Lapidoth presented in [11] a code construction that attains the
reliability exponent, in the case of a capacity reducing average-power constraint.

In this work we investigate the reliability exponent of the exponential TSC under various
coding strategies. The main contribution of this paper is a pair of achievable exponents
the former with fixed transmission-time schemes and the latter with random transmission-
time schemes. All results establish tighter lower bounds than E,.(R) over some rate intervals.
This demonstrates that, akin to the ideal Poisson channel [10, 11], whereas all variants of the
timing channel exhibit the same capacity [1, 2, 4] the reliability exponent of these channels

is not necessarily the same.

The paper is organized as follows. Section II presents definitions of the families of codes
considered herein and the corresponding achievable exponents with each of these ensembles.
The section concludes with a discussion of the coding implications of some of the main
results. Section III.A is devoted to the performance analysis of some fixed block-length
code ensembles either in a fixed transmission-time or a random transmission-time scheme,
while Section IIL.B considers, respectively, the performance of some variable-length code
ensembles. In section III.C we argue the applicability of Arikan’s one-way sphere-packing

bound to fixed transmisson-time codes for our channel.

II. DEFINITIONS AND MAIN RESULTS

Notation



As feedback allows for encoding schemes which constitute of either transmission with
variable block-length or transmission with fixed block-length, we shall henceforth adopt the
following notation. Random variables will be denoted by capital letters, while their real-
izations will be denoted by the respective lower case letters. Whenever the dimension of a
random vector is clear from the context the random vector will be denoted by a bold face
letter, that is, X denotes the random vector (X1, X,...,X,,), and © = (21,29, ..., 2,) will
designate a specific sample value of X. However, when we consider transmission schemes
wherein the block-length is a random variable and therefore we’d find it important to em-
phasize explicitly the dimension of a random vector — X' shall denote the random vector
(X110, X2y, X10y), and 7 = (211,219, ..., T1,,) Will designate a specific sample value
of X{".

A. Fixed Transmission-Time

In a TSC (as observed in [1]-[2]) the encoder, who knows precisely when a customer
departs from the server, can make use of this information in order to avoid queuing altogether.

In that case the channel model boils down to the memoryless additive noise channel

YVi=X;4+S8, j=12...

This observation suggests that an (M, T, P,)-feedback window-code code may be defined

as follows:

1. A codebook of M encoding functions
fio{lL,. . M}xR™7" =Ry, j=1,2,...k

where f;(m,y’~") is the waiting time chosen by the encoder before loading the jth
customer into the queue when attempting to convey message m to the receiver after
obtaining the previous j — 1 customer interdepartures y/ ' = (yi,...,y;_1). Here each
transmitted codeword is a variable length sequence of nonnegative real numbers x*

(where k£ is a random variable), and transmission is terminated by the time 7.

2. A decoding function v : Rﬁ — {1,..., M} such that given the channel output y during
[0, T it produces the correct message with probability greater than 1 — P,. Here k is
the number of the recorded departures during [0, 7.

In this definition of a code feedback is used not only to avoid queuing as rather it allows the
encoder to choose the jth waiting time as a function of the message m as well as the past

j — 1 interdeparture times.



First we argue that the attainable exponent with the feedback code defined above is not
smaller than the attainable exponent with the one-way window-code over the channel (1). To
see that, notice that if given a codeword &(m), intended for one-way transmission, and any
corresponding realization y of the departure process for the channel (1) a “corresponding
codeword” x(m) for the TSC is obtained by setting z;(m) = w;. Here a corresponding
codeword is in the sense that had the vector of service times been identical in both cases
the same interarrival and departure vectors would have been observed for both channels.
Therefore, any lower bound on the achievable exponent for the one-way channel (1) is also
achievable on the feedback channel (e.g. E,(R), E(0) > p/2).

The codes we use to calculate the various lower bounds for the reliability function of the
memoryless feedback channel are somewhat “degenerate” in the sense that they don’t exploit
all degrees of freedom provided by feedback. The encoder makes use of feedback to avoid
queuing and to control completely the idling times of the server. Feedback, however, is not
used to choose the waiting times. Nevertheless we show, the non-obvious fact, that Arikan’s
lower bound is still achievable with this family of codes and during a fixed transmission
interval. On the other hand we show that Arikan’s one-way sphere-packing bound for fixed
transmission-time codes applies as well for the TSC even if feedback is used to choose the

waiting times.

Formally, the family of fixed transmission-time variable block-length codes considered

henceforth is defined as follows.

Definition 4: An (M, T, P,)-feedback window-code consists of a codebook of M codewords
and a decoder. Each transmitted codeword is a variable length sequence of nonnegative real
numbers 2 (where k is a random variable). Transmitting the codeword z*(m) means that
the first arrival occurs at ¢ = z1(m). The jth component, z;(m), is the amount of time
the encoder will wait after the (j — 1)st departure, before loading the jth customer into
the queue, j = 2,...,k. The transmission is terminated by the time 7. The decoder, after
observing departures in [0, 7], selects the correct codeword with probability greater than

1 — P,, under equiprobable codewords and p(y|z).

Thus, the code in Definition 4 allows for the exchange of a message based on the trans-
mission of a variable block-length codeword (i.e. a codeword consisting of a random number
of packets) during a fixed transmission-time 7. The number k of recorded departures during

[0, 7] will admit either the value k = k or k = k — 1, depending on the kth service time sj.

An explicit decoder the performance of which will be considered herein is similar to

the one suggested in [2, Section II.C]— it chooses the codeword that explains the received



sequence of departures with the minimum sum of service times. For a candidate codeword,

x, let
max {0, T —x,}, k=0
d@,y) 9 kg T 5 ~ i (4)
>t (y; — ;) + max {0, T — D=1 ¥~ Tpprps k>0
where
N ifr>0
d(r)_{—i—oo, ifr <0

,x(M)}, the decoder 14 maps y to

Given the codebook {x(1), z(2),...
a |4, ifd(x(i),y) <min, d(x()),y)

ba(y) = { 0, if no such 7 exists

where an output 0 is interpreted as a decoding error.
Proposition 2: The fized transmission-time variable block-length reliability exponent
Ef(R) of the exponential TSC with service rate p is lower bounded, for every 0 < R < C, as
follows
Ey(R) > max { EV(R) , ED(R)} . (6)

E.(R), is identical Arikan’s exponent

Here the first component on the r.h.s. of (6), EY) (R)
for the one-way exponential timing channel as given by (3). The second component on the

r.h.s. of (6) is defined by
ED(R) = sup{pa(p)/2—pR} (7)
p>1

exr

where a(p) is the solution of
20" (2 —a)’t = 1. (8)

In particular Eé;{)(()) = /2 (see Appendiz I).
A sketch of the functions EA,gf)(R) and Eé;’;)(R) is given in Fig. 1.
Thus, as far as fixed transmission-time is considered, variable block-length feedback codes

attain at least the corresponding fixed-time one-way exponent even if queuing is avoided.

Next, we argue that the sphere-packing bound, obtained by Arikan in [8, Section III} for
the one-way exponential timing channel, is valid for fixed transmission-time codes over the

TSC.
Proposition 3: The reliability exponent of the fized transmission-time exponential TSC

with service rate p is bounded from above, for every 0 < R < C = /e, by
Ef(R) < ESp(R) .
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A sketch of the function E,(R) is given in Fig. 1.

Finally, we consider fixed block-length fixed transmission-time codes, that are defined as

follows.

Definition 5: An (n, M, T, P,)-feedback window-code consists of a codebook of M code-
words and a decoder. Each codeword is a vector of n nonnegative real numbers x. Trans-
mitting the codeword x(m) means that the first arrival occurs at ¢ = x1(m). The kth
component, xx(m), is the amount of time the encoder will wait after the (k — 1)st departure,
before loading the kth customer into the queue, £ = 2,...,n. The arrival of the nth customer
occurs before time 7. The decoder, after observing departures in [0, 7], selects the correct
codeword with probability greater than 1 — P,, under equiprobable codewords and p(y|z).

The number 7 of recorded departures during [0, 7] will admit either the value 7 = n or
n =n — 1. Nevertheless, without loss of optimality, we restrict the code to have n = n, thus
we assume that the departure of the nth customer occurs before time 7. Consequently, the

decoding rule is similar to (4)-(5) with the change

d(z,y) éZd’ (yj — @) - (9)

It is conceivable that the restriction to n-length codewords that match into a fixed time
interval would penalize the error exponent. The next result provides an achievable exponent

with this ensemble.

Proposition 4: The fized block-length fized transmission-time reliability exponent of the

exponential TSC with service rate p is lower bounded, for every 0 < R < C, as follows

Ey(R) > max {E(R) , B (R)} | (10)

exr

where the first component on the r.h.s. of (10) is defined by

~7€f) (R) = sup sup mm{EﬁO)(R) ) Eﬁl)} (11)
0sazr 00 <T=ayiitp)
0<p<1

with
EO(R) =
[9 (1 ) 1] (14+p) 7%
ra +p) + ar e «\wri/iTe
7 . PR

M0+ (I —a)1+p)  Ya—0,(1—a)(l+p)



. ra[0,(1+4p) +1]
EM = M{l_r_a[eu(1+p)+1]+(1_a)(1+p)

o {a[@u(1+p)+1]+(1—a)(1—r)(1+p)]} (12)
ral0,(1+p)+1]
and the second component on the r.h.s. of (10) is defined by
EQD(R) = sup ming sup EQ(R), EJ) (13)
0<r<1 1<p
0<a<1 0<fp<1
0< By
with
e 205(1-a) [ﬁ +B (1—a03)2]
EO®R) = —po Bl S
Bu—i-(l—a) BM(1_93)+%
~ B B,+ (1—a)(1—r)
B0 — lope—2n gy | 2e . 14
s “{ "TB,+(l-a) rB, (14)

In particular Eé;{)(O) = 1/2 (see Appendiz I).
A sketch of the functions Eﬁf)(R) and Eép(R) is given in Fig. 2.

Our results indicate on the structure of good low-rate codes for the exponential-server
timing channel in the presence of feedback. It is our hope that this might reveal some insight

into the structure of good low-rate codes for the one-way model as well.
B. Random Transmission-Time

If unbounded random transmission-time codes with mean coding duration 7" are allowed,

a better error exponent can be achieved.

Definition 6: An (n, M, T, P,) -feedback-code consists of a codebook of M codewords and
a decoder. Each codeword is a vector of n nonnegative real numbers . Transmitting the
codeword @(m) means that the first arrival occurs at t = z1(m). The kth component, z\(m),
is the amount of time the encoder will wait after the (k — 1)st departure, before loading
the kth customer into the queue, £ = 2,...,n. The last customer exits on the average
(under equiprobable codewords and p(y|x)) no later than 7. The decoder, after observing
the n departures, selects the correct codeword with probability greater than 1 — P,, under

equiprobable codewords and p(y|x).

The code in Definition 6 has a decoder that observes all n departures; the cost of trans-
mission in that case is the expected time of the nth departure. The decoding rule is similar
to (4)-(5) with the change made in (9).



Proposition 5: The fixed block-length random transmission-time reliability exponent of

the exponential TSC with service rate p is lower bounded, for every 0 < R < C, as follows

Es(R) > max {EV)(R) , ED(R)} , (15)
where
EY(R) = sup sup E.(R)
Eiiéi 0§0“<(1—a51(1+p)
ED(R) = sup sup Eu(R), (16)
0<a<1 1<
0<By, 0<6p<1
and
_ 6u(1—a)(1+p)
E (R) a [gu(]_ —+ p) —+ ]_] l a(1+p)€ a(0u+1/(1+p)) R
r! - - n -
Pt A+p++0-a)(1+p Na-0,0-a+p( "
—205(1—a) | a® (1-abp)*
B,p € 2 TP,
E...(R) = —pu L In — pR . 17
(R) B,+(1—a) B,(1=0p) + & (17)

In particular Eéi)(o) = u (see Appendiz I).
A sketch of the functions Eﬁf)(R) and Eép(R) is given in Fig. 3.

Next, we consider variable block-length random transmission-time list-size L codes, that

are defined as follows.

Definition 7: An (M, T, P,)-list-size L feedback code consists of a codebook of M code-
words and a decoder. Each transmitted codeword is a variable length sequence of nonnegative
real numbers z¥ (where k is a random variable). Transmitting the codeword z*(m) means
that the first arrival occurs at ¢t = x;(m). The jth component, z;(m), is the amount of time
the encoder will wait after the (j — 1)st departure, before loading the jth customer into the
queue, 7 = 2,...,k. The transmission is terminated once the decoder can form a list of no
more than L (L > 1) most probable codewords such that the correct codeword is within this
list with probability greater than 1 — P, under equiprobable codewords and p(y|z). The kth
customer exits on the average no later than 7.

Thus, the code in Definition 7 allows for the exchange of a message based on the trans-
mission of a variable length codeword during a random transmission-time with expected
duration of 7. In the special case of L = 1 and P, = 0, the decoder selects the correct
codeword a.s. and the corresponding rate establishes a lower bound for %) — the random

transmission-time zero error capacity.
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Proposition 6: The random transmission-time zero error capacity of the exponential TSC

s lower bounded by
(0> wup _EMFO)]
T k@) E[Y]
where the supremum is taken over all laws fx (x) having nonnegative support, and the mean
is taken w.r.t. the law fy(y) defined by fy(y) = [} fx(x)e,(y — x)dz. In particular

(18)

C") > 0.1829, . (19)

It is not surprising that the random transmission-time exponent is superior to the fixed
transmission-time one, as Lapidoth already demonstrated in [11] that, if the expected trans-
mission time is the relevant quantity, zero error transmission is feasible for the ideal Poisson

channel with noiseless feedback whereas the fixed transmission-time exponent is finite.
C. Discussion of Results

We analyze the performance of various coding strategies for the memoryless exponential-
server timing channel with noiseless feedback under the restriction that feedback is used but
to aviod queuing.

For fixed transmission-time codes, the largest random coding exponent is obtained with
a variable block-length scheme. In that case the random coding exponent equals Arikan’s
one-way result, while at low rates a tighter estimate using expurgation is provided. It is an
open problem to see if the same expurgated exponent can be achieved with one-way codes;
as yet the Wagner-Anantharam result [9] and our result yield the same lower bound of /2
at R =0.

Since the one-way sphere-packing bound holds for the memoryless feedback channel, even
if feedback is exploited to define the transmitted codeword, it follows that the aforementioned
code ensemble attains the reliability exponent of the feedback channel at rates R, < R < C.

Let A.(R) and p.(R) be defined parametrically, for 0 < R < C, by

_ H 1/
B = g mmn nd+e)
N A
¢ (1 + p)(H‘P)/P
=
c 1"‘,0 )

as p ranges over (0,00). The function A. determines the departure rate for the critical

channel that achieves the sphere packing exponent when . is the server’s service rate. For
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0 < p <1, A(R) is also the departure rate that attains the one-way random coding exponent
8].

Similarly, for the memoryless feedback channel, when considering the subcode that
achieves the sphere packing exponent, \. determines the departure rate for the critical
channel when p. is the server’s service rate. On the other hand, the same subcode has
a departure rate denoted as A when p is the service rate. Recalling that the codewords’
components in our feedback code determine precisely the waiting times, we now choose a
codebook with codewords that their components have an average waiting time of 3. Conse-
quently, 3 + i = ﬁ Since the same codebook is used in both service rates, we also know
that 8 + u—lc = /\% Eliminating 3 we conclude that

B — H _
(1+ p)dtn/e —p
On the other hand, when feedback is used just to avoid queuing, our results show that
a random coding exponent, that coincides with the sphere-packing exponent at rates R, <
R < (), is achieved with a departure rate that is defined via the same parameter 0 < p < 1

as follows

1

Aot (1+p) )l —p

These results imply that for R, < R < C, A\, is the optimal departure rate. Any code
with different departure rate may exhibit an inferior error exponent. Thus, in this feedback
scheme the server is busy for a larger fraction of time except for rates approaching capacity in
which case A\, (C') = A.(C). It should be emphasized however that even when A, (R) > A.(R)
the waiting times are drawn according to the law (22) which is a mixture of a point mass at

zero and an exponential distribution with mean 1/A.(R).

The variable block-length scheme can be implemented as follows. Both the encoder and
decoder generate a priori a codebook the block-length of which equals some fixed integer
n. Then the loading of customers into the queue is terminated either when the coding
interval [0, 7] is completely consumed by k < n customer arrivals or when the full block-
length & = n is exhausted before the coding interval ends, while in both cases the decoder
observes departures in [0, 7]. Our analysis in sections IT11.B.2-111.B.3 shows that if the a priori
block-length is chosen properly as n > n,;, = a(R)T (where a(R) is defined subsequently)
the achievability of the claimed error exponent is guaranteed. Thus, the suggested variable
block-length scheme doesn’t require the availability of a common source of randomness at
the transmitter and receiver, as a deterministic fixed block-length codebook is sufficient for

this purpose.
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For rates R, < R < C', a(R) is defined parametrically via the above parameter 0 < p <1

as a(p) = (1+p)(1+rf)>l;pln(1+p)' For rates R, = 1In3 < R < R., a(R) = a(R.) and also

Aot (R) = A\yi(R.), while for rates 0 < R < R, , a(R) and A\,(R) are defined by the following

set of equations

R - _pa(2—a)[lna+1In(2 — a)]

2[a +2p(1 — a)]
pa
Mt = —2
: a+2p(1—a)
_ pa
~ 2plna’

as p ranges over (1,00), and a ranges over (%, 1), and both satiafy the relationship
1=2a"(2—a) "

A sketch of the functions a(R) , A, (R) and A\.(R) is given in Fig. 4. As expected,
a(R) > Au(R) > Ac(R).

In section II1.A.2, a specific decoding scheme is suggested, analyzing it in the context
of fixed transmission-time fixed block-length codes, gives rise to some upper bounds on the
probability of error which coincide with the various upper bounds obtained via Gallager’s
random coding and expurgation expressions. This decoder can be analyzed in the context
of variable block-length codes as well, again resulting with the same exponents obtained via

Gallager’s approaches.

Next we wish to discuss our results as well as those of [8, 9] with regard to the analogy,
first mentioned in [1], between the exponential timing channel (ETC) and the ideal Poisson
channel (IPC) (also known as the direct detection photon channel, point process channel,
etc.). The input to the IPC is a waveform A(¢) that determines the rate of a corresponding
Poisson process which the receiver observes. We consider henceforth the special case of
an IPC and an input peak constraint 0 < A(¢) < p. As observed in [8], the capacity of
both the ETC and the IPC is given by p/e. The capacity of the IPC is achieved by using
waveforms with average power u/e while the capacity-achieving departure rate for the ETC
is A = p/e. Furthermore, this analogy extends further to the random coding exponent E,(R)
that coincides for both channels as well as to the sphere-packing exponent FE,(R) which is
the same for both models.

By showing that the zero-rate error exponent of the ETC is at least /2 Wagner and
Anantharam conclude in [9] that the ETC is strictly more reliable than the IPC. The reason
for this can be explained as follows. In the IPC the receiver observes a doubly-stochastic

point process in which case, by activating A(¢) = u for a period of A, the encoder controls
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just the expected number of arrivals during that period of time, namely E[NA] = pA, while
it is incapable of generating a precise predetermined number of arrivals as the timing channel
encoder does. On the other hand, by setting A\(¢) = 0, the Poisson channel encoder is capable
of terminating the arrival process at any given time, while the timing channel encoder once
placing customers into the queue it cannot recall them any further. Since at low rates optimal
timing channel codes, in the sense of the reliability exponent, exhibit vanishing departure
rates the latter disadvantage of the timing channel encoder becomes insignificant while the
ability to place a single customer that generates just a single departure (the departure time
of which is drawn Exponential(u) following the arrival time) becomes crucial. Therefore, the
ETC is more reliable than the IPC at low rates.

The situation is completely different, however, in the presence of noiseless feedback. Here,
as demonstrated by Lapidoth in [11], the IPC encoder is capable of synthesizing single arrivals
the arrival time of which is drawn Exponential () once the encoder sets A(t) = p, while it also
preserves the ability of recalling such an ongoing arrival process at any time. Consequently,
any exponent that is achievable for the exponential telephone signaling channel (ETSC) is
achievable for the IPC with noiseless feedback. In fact, the last argument establishes that the
sphere-packing exponent E,,(R) obtained by Lapidoth for the IPC with noiseless feedback
(when the average-power is constrained to be < p/e) is also the sphere-packing exponent for
the ETSC, although our proof for Proposition 3 (in section II1.C) follows different arguments.

Thus, as stated in [1], the IPC and the ETC are fundamentally different and caution
must be excercised when drawing conclusions regarding the respective relaibility of variants

of these two models.

Finally, for random transmission-time codes, our lower bound with fixed length codes is
better than all lower bounds we obtained with the aforementioned fixed transmission-time
codes, and in particular E¢(0) > p. More importantly, with variable block-length codes,
a lower bound on the random transmission-time zero error capacity is established. The
determination of the exact value of the random transmission-time zero error capacity is an

open problem.

III. PROOFS

A. Fixed Block-Length Schemes

This section considers the performance of a family of n-length block codes, as per Defi-
nitions 5 and 6, on the TSC. Specifically, we consider first Gallager’s ML decoding random

coding exponent for these codes. Then we evaluate an attainable exponent with the decoding
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rule (4)-(5) and the change in (9), and finally we compute the expurgated exponent for these
codes. In all cases a distinction is made depending on whether it is a fixed or a random
transmission-time code.

To this end consider an ensemble of codes, wherein a code in the ensemble with codewords
x(1),...,x(M) is assigned the probability [T\, ¢ (@(m)), where

q(z) =a "¢ (@) [ fx(w) (20)

with i
¢($):{ L, fn—yn<),_jzp,<fn++n (21)

0, otherwise
The density fx () is chosen to be a mixture of a mass point at the origin and an exponential

density with parameter B, that is
fx(@)=ad(z)+ (1 —a)Be™* , 0<a<1l, >0, (22)

and (3 in (21) is chosen as § = (1 — a)/B.

The term « is the normalizing factor and it equals the probability that a codeword
chosen at random based on the law [];_, fx(z)) satisfies the “shell constraint” ¢(x) = 1. A
straightforward application of the central limit theorem shows that o = e=%»() (Henceforth
we write 0,(1) to denote an unspecified positive-valued function that goes to zero as n goes
to infinity. Furthermore, we write o(n) to denote a function such that o(n)/n = 0,(1)).
Since our final goal is to obtain an achievable exponent with n-length codes (for the TSC)
either via fixed transmission-time or random transmission-time strategies, we shall consider
throughout an ensemble of n-length codes the components of which meet a “strict” fixed

transmission-time “shell constraint”.
A.1. Random coding error exponent

This section is based on Gallager’s result on computing the reliability exponent for con-
tinuous input/output channels [12, Chapter 7]. Gallager’s bound on the ensemble average

of the probability of ML decoding error, when the mth codeword is transmitted, is given by

P < M / dy [ / dwq(w)p(ymlip] o (23)

with p chosen arbitrarily within the interval 0 < p < 1.
Since our feedback code renders the components of the random vector Y independent

of each other we may write

p(yle) = [ [ enlyr — zi) - (24)
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Next, we note that for any € > 0
glz) < aqea(ZZzl T —Bn+y/n) H Fx (@) - (25)
k=1

Thus, the inner integral in (23) may be evaluated to yield

[asi@misle) < a T {e? [ peten) o - o] o}
k=1
n 1
—HYE )1+
eo(n)He—Hﬁ (:U’e ) g
e (04 - B)

: [(1 —a)Be"tii B 4 <9 + %) —~ B] :

Substituting the last expression into (23), we obtain

e —n0B(1+p)

?er’ < Mpeo(n)

T+p

: {,u/e_“y {(1 — a)Bel"tT B 4 g (9 + ﬁ) - B} v dy}n : (26)

where 0 < 0 < B.

As it is difficult to obtain a closed form expression for the integral in (26), we consider

n(1+4p)
o)™

the upper bound resulting from the particular choice (which is the optimal when p = 1)

B:a(9+L> , (27)

1+p

while it is further assumed that 0 < 6 < ap/[(1 —a)(1 + p)].
With this choice the upper bound (26) yields

n(1+p)
- ~9B(1 — "
Py < e (- B0Z0) a)> <u / e<39><1+ﬂ>ydy>

0+, —B

B _0(1—a)(1+p) n
a1+plu,e a(9+1ﬂTﬂ)
ap—0(1 —a)(1+ p)

The next step is to convert this bound on an ensemble average to a bound that applies to
a specific code. For this, one considers an ensemble of codes with 2M codewords and uses

expurgation (see, e.g., [12, Section 5.6]). The final result is

() e(u(l—axup)) n

P a(Op+1/(1+p) 0

P <etmpye | L0 T ;0= (28)
a—0,(1—a)(l+p) T
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for any message m € {1..., M}.
A.2. An achievable exponent with a specific decoder

In this section we analyze the performance of a decoder that follows the decoding rule
(4)-(5) when k = n. Although this decoding rule is the Maximum Likelihood decoding rule
[1], following the reasoning of Wyner in [10], we do not exploit this fact here. Our analysis
gives rise to an upper bound on the average probability of error and this bound is shown to

coincide with the upper bound obtained via Gallager’s random coding expression (23).

Suppose that the codeword (1) from a given codebook {x(1),...,x(M)} is transmitted
and as result the decoder receives the sequence of interdeparture times y. A decoder that

implements the above decoding rule may be split into the following two stages:

Reduction stage: To each recorded interdeparture we assign a “survivors set” — a subset
of {1,..., M} denoted as S®¥, of cardinality s®*). In this stage the survivors set is defined
inductively with respect to the index k, of the recorded interdeparture 1, as follows. Set

O ={1,...,M}, and s = |S®| = M. Assume that the set S*~! has already been
defined. Upon receiving the kth interdeparture g, set

={ie SE=1 2 () < Uk} -

Consequently, after observing the nth interdeparture, the decoder forms the set S™, defined

as

Nearest Neighbor Decoding Stage: The decoder, having formed S™), chooses the message

i € S™ that minimizes the sum of service times, that is

Wy (y) = arg ZIEIEI(IT}) Z yr — (i) . (29)
In fact, the decoder may implement just the nearest neighbor decoding stage (29) as it
subsumes the reduction stage. Nevertheless, since the reduction stage may be implemented
successively per each interdeparture this defines the exact list of ambiguous messages the
decoder has upon observing the sequence y*~'. The encoder is thus permitted to choose the
next interarrival x; based on (xk_l, yk_l) — i.e., depending on the current list of survivors
and the past sequence of interdepartures. In that case, the code would exploit all available

degrees of freedom analogously to the code used by Lapidoth in [11] in order to derive
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the reliability function of the ideal Poisson channel with noiseless feedback. It should be
emphasized, however, that as opposed to the code in [11] which exhibits a deterministic
reduction factor in the survivors set per each photon arrival, our code exhibits a random
reduction factor in the survivors set per each observed interdepature. The following analysis

of the error exponent takes into account this fact.

Let P,(y) be the conditional probability that the codeword x(m), m # 1 belongs to S™

given the received sequence y, i.e.

Py(y) =Pr{xz(m) € S £ ly} .

Since the codewords are drawn with the same law ¢(x) and independently of each other,
P;(y) is not identified with a specific index m. Furthermore, the conditional probability,
Ps(l) (y), that S contains, apart from the transmitted codeword (which a.s. appears in
5’(")), exactly [,0 <1 < M — 1 more codewords, is

M -1

PO (y) = Pr{‘S(”)‘ =1+1ly} = < ;

)Pz(m 1- P (30

Next, let P\™(z(1),y) be defined as

n

Pi™ (2(1),y) = Pr ({Zxk(m) > Zxk(l)} | @(m) € 5("),w(1),y> ,

k=1

that is, P™ (z(1),y) is the conditional probability that a surviving codeword x(m) won’t
be “farther” than x(1) from y.
Thus, the conditional probability of error, given s =1+ 1 and y, is

P.(l,x(1),y)=1-— (1 — Pe(m)(a:(l),y))

(30) with (31) it follows that

l (31)

Combinin

o3

PO(y)P.(l,2(1),y) =1~ [1 - Py(y) P (z(1), y)]
= Pr (U {xk(m) <y, 1 <k< n} N {Zxk(m) > Zxk(l)}> .

We may now express the average decoding error probability when using this scheme as

P = [ deata) [ dyplyla)
-Pr (LAj {xk(m) <y, 1 < k< n} N {zn::vk(m) > i:ﬁm&l)})

m=2 k=1
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The union of events bound then yields for any 0 < p <1

P < [ deae) [dyptule) (4~ DR P (1), )]
< W [ dag(e) [ dyplyle) (PP (1).)]" (32)
In order to evaluate Pe(m)(a:(l), y) observe that the reduction stage picks a code
{z(1),2(2),...,2(M)} from the original ensemble and returns a subcode
{x(1),2(j2), ..., 2(jm)} having s™ codewords. Let us denote this codebook as
{2(1),2(2),...,2(jsm)}. Thus, the probability ¢ (x(m)) that has been originally associated

with &(m) is modified to ,
Mﬂzfﬂwﬂ%wdd, (33)

with

7 _J L <y, 1<k<n
d(z.y) = { 0, otherwise

L

Next, consider the conditional probability P{™ (x(1),y) that a surviving codeword x(m)

will be “closer”, to the received interdeparture sequence y, than the correct sequence x(1).

By Markov’s inequality, we have for any s > 0
= Pr {exp s (sz — ZXk>] > 1}
k=1 k=1

o n_ noz
< e Szk—lmk . E (eszk_l k) ,

where E is the expectation operator.
Using (33) we obtain

P (1),y) < e B y) [ ded(z yha(e)e S 34
Substituting (34) into (32), we obtain
Pur <0 [daae oin [ayptule) | [tz pu@e 0] @
By (25) we get for any 6 > 0,
/ dz9(z.ya(2)e Tt = ot ] [e"ﬂ / ew“me(zk)dzk]
k=1 k=

1 —a)Belf+s=Bli 4 ¢ () + s) — B]
(0 +s— B) '

VD - 008 [(
11
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Substituting (24)-(25), and the last expression into (35) we obtain

B b ool )ﬁ D 0o f ()
Ped’ S MPeo™ —/ e\’ PITk X Tk dxk

/ Me‘ﬂ(yk—xk) [(1 _ a)Be(0+5_B)yk +a (9 + S) _ B]p dyk
Y =%
Mp ( )ﬁ 6—9/3(14-/)) /OO Ly |:(1 )B (9+ B)y (9 ) B]pd
= e’ —— pe MR (1 —a)Be" Y 4 a (0 + 5) — Yk
- (0+s—DB) J, o

Yk
- / (OO f (0 ) (36)
CEkZO

The inner integral in (36) evaluates to

n
Fx ()P rimso)vh gy, =
.’tk:O

[(1— a)Bel0Tr=sr=B)k 4 o (6 + 1 — sp) — B]

(0 +p—sp—B) (37)

Choosing s = i- in (37) and substituting this expression into (36) we obtain exactly the

same bound as that obtained via Gallager’s random coding argument in (26).

A.3. Expurgated error exponent

This section is based on Gallager’s result on computing the expurgated exponent for
continuous input/output channels [12, Chapter 7]. Using expurgation on an ensemble of
codebooks each with M’ = 2M — 1 codewords, one may infer that there exists a size M code

the error probability of which, when the mth codeword is transmitted, is bounded as follows.

Po < M [ [dwaatone ( [ MW)] 39

with p chosen arbitrarily subject to the constraint p > 1.
First observe that using (24)

/dy\/p(yl-’ﬂ)p(ylm’) = ﬁ/\/eu (e — m)en(yr — o) dys

_ ﬁ R s (39)

Thus, substituting (39) and (25) into (38), we obtain

n / pP

, pleg—zp |
Py < CMpH {/ 60xkfx(l"k)d$k/eaxk6 w fx(@p)day| (40)

k=1
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where ¢ = a—2Pe200Vn =208 — o(n) o—2pn05
Defining fp = ¢/B and B, £ B/u the bracketed integrals in (40) may be evaluated to

obtain

np
o~25(1-a) [a2 | p (1=afp)

2p B 1-0p
B,(1—0p) + 5, ’

0<0p<1. (41)

A.4. Random transmission-time exponents

In order to obtain an achievable random transmission-time exponent with n-length codes
recall that the code {x(m)}_, is selected such that each codeword satisfies the shell con-
straint (21), that is

zn:xk(m)<n<ﬁ+%> , 1<m< M,
k=1

while the average service time for n customers is n/ .

Let us choose T = n (1/A+1/y/n), where = i + (. Using the fact that o(n) = o(T)
and # = (1 — a)/B we conclude that the expurgated upper bound on the error probability,

for a code with average transmission-time 7', can be expressed as

Pex’ < e_TEem’ (R)+o(T)

— Y

where E.,/(R) is given in (17) and A = %.

Similarly, the random coding upper bound on the error probability, for n-length codes

with average transmission-time 7', can be expressed as

Per’ S G*TET/(R)%*O(T) ,

where E,.(R) is given in (17) and here the choice (27) implies that A = a[au(lﬂ%iﬁﬁi]&lﬂ).

A.5. Fixed transmission-time exponents

In order to obtain an achievable fixed transmission-time exponent with n-length codes

let P,; denote the probability that the nth departure occurs beyond time 7', that is

Pet:Pr{zn:Yk >T} .

k=1
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Using this definition, the probability of error is

P, =Px ({Dw(m,n,...,yn)}ﬂ{in ST}> T+ Py

Using the union of events bound, the probability of error can be upper bounded by
P. <Pr{D #¢y(Y1,Ys,....Y,)} + Py . (42)

Since each codeword satisfies (21) we may express P, by

P, = Pr{zn:Xk—an:Sk > T}
k=1 k=1

Pr{zn:Sk>T—ﬁn—\/ﬁ} , (43)

IN

with sp = y, — x; denoting the service time of the kth customer.

The components of the random vector (Si,Ss,...,S,) are independent exponentially
distributed (with parameter p) random variables. Thus, the Chernoff bound can be used to

upper bound the probability that their sum deviates from a specified value T, as follows

Pr{ZSk>Td}§ (%) et
1 H—="

where v is some nonnegative number, and v < p.
Setting Ty = T — (3n — /n we can upper bound the r.h.s of (43) by

P, < e?Me=(T=8n) <L> ) (44)
="
Assuming o > n/(T — fn), and substituting v = p —n/(T — fn) in (44) while ignoring

the o(n) term we obtain

P,, < e #Ten(140m) [7“@ — ﬂn)} , n< Hr

n 14+ 6u
For our convenience, we introduce the parameter 0 < r < 1 and define n = B:iﬁtfa)’ to
obtain
rBy-pT
P, < o HTnT {Bu +(1—a)(l- r)] Bat(i-a) & TEY | (45)
rB,

where E% is defined in (14).
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Similarly, substituting the expression for n into (41) we obtain
P < e TEZ®R) (46)

where B (R) is defined in (14). The combination of (42), (45) and (46) then yields the
exponent E~§£)(R) in (13).

For the random coding exponent we use the relation (27) to get n = ralfu(1+p) HuT

0, (14p)+1]+(1—a)(1+p)

and obtain

ra[f (1+p)+1]uT

alf,(1+p) +1]+(1—a)(l—7)(1+p) }a[eu(1+p)+1}+(1—a)(1+p)
ral0,(1+ p) +1]

N e_TEg) , (47)
where £ is defined in (12).

Similarly, substituting the expression for n into (28) we obtain

P, < e”Te’"“T{

Po < e TEO) (18)

where E~,§0)(R) is defined in (12). The combination of (42), (47) and (48) then yields the
exponent E~7(=f)(R) in (11).

B. Variable Block-Length Schemes

This section considers the performance of both fixed and random transmission-time block
codes, as per Definitions 4 and 7, on the TSC. First we define explicitly the conditional
channel law for the variable block-length fixed transmission-time code. Then using this
expression, we compute both Gallager’s ML decoding random coding exponent, and the
expurgated exponent for these codes. Finally, we analyze the case of the random transmission

time with random block-length.
B.1. Fixed transmission-time channel

Since the encoder observes only those departures that occur during the interval [0, T, the
length k& of Y* is a random variable. Fix some n and let us be given an n-length codebook
a™(1),2™(2),...,2"(M). In what follows we shall consider the performance of such a code
taking into account that only a partial length £ < n of a codeword has been transmitted
over the TSC.

Given a partial sequence of interarrivals 1,k = 0,...,n —1 the conditional probability

density of observing the interdeparture sequence 3/* is

k| ket Jz xO)p(yi|v1)dys, k=0
- 0 49
P { fT—z§:1 i X(K) T plyiled)dypsr, 1<k <n (49)
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while .

p(y"e") = x(n) [ [ plil:) - (50)

=1

Here the indicator x(-) is defined as

k k+1

Ty < : :

x(k) = L {EFIK—T}Q{ l:1Yl>T} 0<k<n
0, otherwise

_ L {n>T} _
x(0) = {0, otherwise k=0

= {p G e

, otherwise

and one can verify that
n

3 { / p () dyk] 1

k=0

Next, using the traditional bound, one has for any 6, > 0,

—0(T-Siw) < <
B o< {° hen
x(k) < { 1 k=n

The conditional law in (49) may be bounded as follows

[oe]
/ . p(yk+1|$k+1)€0’“yk+ldyk+1 , O0<k<n
T

k
p(yFl") < e [Hp(yilxi)e(’k”i
*Ei:ﬂﬁ

i=1

Recalling that the service time Sgi1 = yg+1 — T41 1S exponentially distributed with mean

1/p, p (y*]2"*") may be further upper bounded when 0 < ), < p by

ﬁefeoTeeoml, k — 0
P (yk|xk+1) < u_”—%(f"’cT(a‘9’“"“”“+1 [Hle p(yi|x,~)e‘9kyi] , 0<k<n (51)
[Tz, p(yilw), k=n

thus 6,, = 0.
B.2. Random coding error exponent

In this section we apply Gallager’s result on computing the reliability exponent for contin-

uous input/output channels [12, Chapter 7] to the conditional channel law defined previously.
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Gallager’s bound on the ensemble average of the probability of ML decoding error, when the

mth codeword is transmitted, is given by
—(vl) = N Rl
P,/ < M”Z/dy'“ U dz* () (y’“lx’““)“”] , 0<p<1l.  (52)
k=0

Choosing 0, = p — 7 for k = 0, makes both the bound for p (y°|z') given by (51), and the

expression for k = 0 in the sum on the r.h.s. of (52), in the order of e #+o(T),

Next choosing n such that n = e°™) | (52) becomes

1 I+p
ng) < "D MP max {/dyk [/ dkarlq(karl)p (yk|xk+1)l+p:| } ) (53)

0<k<n

With the choice of the input law

k) = H Fx(ai) (54)

and together with the bound on the conditional channel law given by (51), one may verify
that

[/ dkarlq (xk+1)p (yk|xk+1)lip]l+9 - ; /Le efekT

P 1+p k 1+p
kETk+1 # gk
Ix(@pgr)e” o dagys H/w [x(zi)e — x;)d; .

When choosing B — %’“ﬂ > 0, the left square brackets on the r.h.s. of the last inequality are

in the order of ™). Thus, similarly to section A.1 we obtain

k41 (o k+1 k| k+1\ 55 e
g () p (yF|2*T) <

1+p
i — 1L_B Yi ap
60(T)L6—0kTH —(u—03)y; (1 G)Be( +o ) + o B
e
p— B o N
The substitution of £ =7rn, 0 <r <1 in the last expression yields for (53)
(v X
PY < M sup 0T
o<r<1 b — 0 W g rn(1+p)
i+p
(u—0y) ( w B) ap 1+p rn
. e WY (1 —q)Be\lito ")V 4+ L _ B d 55
et li-a o a) |
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Since the expression in (55) is difficult to calculate, we consider now the upper bound result-

ing from the particular choice B = ayu/(1 + p), while 6, is restricted such that 55 < o7

(In the case p = 1, the calculation of (55) is easily done and the above choice of B is found

to be optimum). With this choice, the last upper bound reduces to

B(1 ) rn(1+p) "
— —a
Pirf) < DM sup e T (7> <M/6[B(1+ﬂ)9r}ydy)

o
0<r<1 i, — B

1+p
_ a
0<r<1

—0,>0.
aﬂ_er] o

Again, to convert this bound on an ensemble average to a bound that applies to a specific
code, one considers an ensemble of codes with 20 codewords and uses expurgation (see,
e.g., [12, Section 5.6]). The final result is

1+ rn

P < oD ppe sup e OurT [L( p)} 0, = 0
er’ — ) o )

0<r<1 a—10, w

for any message m € {1..., M}.
: (ul) W) _ B9 (R). N A .
Expressing P\" as P, < e~ (B)T+o(1) and substituting n, = ~7 we obtain
A1) - : a N pn
YNR) = min 0<Tg1<fﬂ% pl, — pR — nypuln <a — 9#) _— In(a) — pR (56)

since in (51) 6,, = 0 and therefore when r = 1, §, = 0. In order to avoid the direct dependence

of the Lh.s of (56) on n, — the fraction of samples based on which the ML decoder makes
a(1+p)
a—0,

its decision, we choose ¢, so that ln( ) = 0 which in turn implies that the relation
6, = a(1 — a”) must hold.
As a result of that

ED(R) = min {ueﬂ — PR, —% In(a) — pR} : (57)

We are now free to choose the parameter a in order to maximize the Lh.s of (57). Indeed,
EY)(R) is maximized when a = (1 + p)_% and then

In(1
pl _pR],w_pR}'

(f) — i I o
o (F) = min {0221 {(1 + p)itele

Remark : The average waiting time dictated by the codewords’ components in this coding

scheme, denoted as 3, equals (1 — a)/B. Consequently, 1/\,; = 5+ 1/p, with A,; denoting

the average departure rate. Thus, we obtain

Ay = H _ H
T+ p/a—p (L+p)trale—p-
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Choosing n large enough and particularly n > «,.(p)- T, a,.(p) = ) where

(1+p)(1+f)l;f’ In(1+p
ar(p) < lim, o, (p) = C, we obtain

S (R) — e
" (R) ool | (T + p) /e

— pR
The last expression is identical to that obtained by Arikan in [8, equation 52] for the one-way
window-code used over the exponential-server timing channel.

In fact, the same conclusion holds, even if n is chosen to be larger than ™) from (53)
and on, this can be shown via the foregoing analysis in section B.4.

In addition to demonstrating that, at least E,.(R) is achievable via variable block-length
codes even when queuing is avoided, this result demonstrates that shell constraint is super-
fluous as long as variable block-length codes are considered. Indeed, if the preceding analysis
is carried out with a choice of an input law which takes into account a shell constraint that

is applied sub-blockwise to z"(m) the same exponent (57) is obtained.
B.3. Expurgated error exponent

As in section A.3, this section is based on Gallager’s result regarding the expurgated
exponent for continuous input/output channels [12, Chapter 7]. Using expurgation on an
ensemble of codebooks each with M’ = 2M — 1 codewords, one may infer that there exists
a size M code the error probability of which, when the mth codeword is transmitted, is

bounded as follows.
17

n »
Py < M / da"datq («") g («7) (Z / dywp(ywmp(ykm'f“)) ,
k=0

with p chosen arbitrarily subject to the constraint p > 1.
Since (Y, ;) < 32, ) for all nonnegative z; and 0 < A < 1, it follows that

" 170
Pe(;,l) < M? [Z/dkarldx’lqu (xkﬂ) q(xlchrl) (/ dyk\/p (yk|xk+1)p(yk|xllc+1)>ﬂl
k=0

Consequently, following similar steps as in B.2

P <

ex’
1P

e?DMP max [/ da* T dah g (ka) q (x]f+1) (/ dy'“\/p (y*|zh+1) p (yk|$lf+1)) P] (58)

0<k<n

Using (51) we may write

/dy’“\/p (y*|a*+1) p (yHah ") <
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eok(ack+1:w1,k+1) ( 1 >k+1 eekTﬁeek(zi;—m,i)6—(u—ek)lzi—z1,i| ‘ (59)

Substituting (59) into (58) we obtain

Ok (Ek+1+$1,k+1)

p
Pe(;},l) S eO(T)Mp max [/ fX (l‘k+1) fX (xl,k-i-l) e 2p dxk+1dx1,k+1] .

0<k<n

k41 k 0y (mierl,i) —(u=0p)|zi—21; ’
( a ) e T [H/fx (zi) fx (xrg)e 2> e 2 dx,-d:rl,i] (60)
i=1

= O

When choosing B — g—’; > 0, the left square brackets are in the order of €™, then similarly

to section A.3 we obtain

Py <
k
S 2 Gl 10
k 2p B_Yk
e?TMP max ( ) e T — = , 050, <.
0<k<n \ p — O Mg—pk + B

Substituting £ =rn , 0 < r < 1 in the last expression, we consider now the upper bound

resulting from the particular choice B = au/(2p). With this choice, the last upper bound

becomes
Py <
a2 — 6 rnp
e?DIMP sup e 0T o @“(p=6) , 050, <ap .
0<r<1 =0, ap — Or
Expressing P as PV < e~ BB T+oT) and substituting n, 2 o7, and 0, = % one
obtains
. 1 2(1 -9
EY(R) = min {0@215& pl, — pR —n,p [ln (71 — 9u> +pln (a ((L . 9;))] ’
—%ln(a) —pR} . (61)

In order to avoid the direct dependence of the L.h.s of (61) on n,, we choose 6, so that
In (ﬁ) + pln (‘12(17_5“» =0, and we also let % = 0 which in turn implies that 0, = a/2

a—

must hold. As a result we obtain

A

EY)(R) = min {Sup [pa/2 — pR], —% In(a) — pR} : (62)

exr
p>1
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where a is the solution of 2a”(2 — a)”*1 = 1. Choosing n > aez(p,a) T, aes(p, a) = =i

where qe.(p, a) < ae.(1,1/2) = ( ; we obtain the final result presented in (7) and (8).

B.4. Random transmission-time with zero error probability

In this section we consider a variable block-length code that consumes a random trans-
mission time. Specifically, we consider a decoder which performs just the reduction process
described in section A.2 and stops once it is left with a single survivor. Since the surviving
message is a.s. the correct one, zero error is established with a transmission rate depending
on the mean transmission time, and C% > In M / (E[T.e]).

Let p(k|y) be the probability that a single survivor is left after the departure of exactly
k customers, then (with s() denoting the cardinality of the survivors set after k departures)

B P(<>:1 st >1ly), k>1
p(’“|y)_{ P (s =1ly), k=1.
A

T, is

Tzez/ (y Z( (kly) Z%) dy = Z/( p(k[y"*) Z%) dy* . (63)

We choose a critical k. > 1 the value of which shall be determined later on, and divide

The mean transmission time E[7,]

the sum into two parts; upper bounding them differently as follows

. < Z/( e p(klytet) Z%) dy’“C‘lJrZ/( p(kly") Z%) dy* . (64)

k=kc

Next, using (30), we upper bound p(k|y*) as follows

p(kly*) < [1—=P(s®D =1yF1)])" = 1—<1—1:[FX(?JJ')>

k—1
< MP[[F{(y), k>1,0<p<1.
7j=1

Using this inequality (64) becomes

ke—1 ke—1
TZ@ S / (Z p(k|ykc—1)> p(ykc_l) Z yl dykc—l
i=1

k=1
k—1 k
+M”Z/( k) F,@(yj)Zyi) dy*
k=ke j=1 =1
ko1 ok k—1
< [rrnSnar o S [ (o T o) o
k=kc i=1 Jj=1
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Since the random variables Y; , ¢ = 1,2,... are IID, let Y be a random variable having the

same law as Y, namely fy(y) = [ fx(z)e,(y — z)dz. Using this notation one may verify
that

— ke —1

[ o Yt = (- EY] =

/(Mﬁ)ﬁﬂ?(w)w) dy* <

where the expectation is taken w.r.t. the law of Y. Thus, we conclude that

(EFRYD" 7 .

> =

o0

TwserMMWZ§@%ﬂ“
< o/ N+ ki MP (W) "
= ke/XA+ vkeexp {—pkc [—% In (W) - lnk]CW} } , (65)

1 < 1
MFEW)) (1-FE(7))” — p2A(Fx ()’ (1-Fx (V)

We now choose —%ln (F/@(Y)) — II}CM = €/, where, for example, ¢ = l/ké/3 can be

where v =

5> is independent of k..

chosen. As a result we obtain

— In M phee
T, < kc/>\ +€ér = = +eér, €r> f)/kce_ Ic)‘
—% In (FQ(Y)) —¢€

s )] (3.

ze

Taking p — 0, for example p = 1/ki/3, and since € — 0 and ep can be as close to zero as we
want by choosing k. sufficiently large, we finally obtain (18) using L’Hopital’s rule.

For the rest of the proof we choose the specific law fx () as per (22), in which case

Fx(t) = [: fx(@)dzr=1— (1 —a)e B
) = /oy fx(@)eu(y — v)dw = M—LB [(ajp — B)e ™ + (1 —a)Be P¥] . (67)
Consequently,

In (Fx(Y)) = / ) o= B+ (1 = ) B n [1 = (1= o)) dy

The substitution u = 1 — (1 — a)e™P¥ yields
mEE =] B [ B gy (1—atalna)l /(1 B,)
" B, (1 —a)t/B J, e
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The last integral can be expressed via the Hypergeometric function. Using the relation
A= B,/(B,+1—a) we obtain

pB,,
CZe >
~ (1=By,)(B,+1-a)
(1—a)(a— B,)B, ( 1 1 )]
R |1+ —=—,1;24+—=—;1—a ,
(t+B,) "' B, B,
and the maximum is obtained when B, & 0.8192 and a & 0.1230, thus the lower bound (19)

follows.

“|1—a+ B,lna —

C. Fixed transmission-time Sphere-Packing Bound

In this section we argue that the sphere-packing bound, obtained by Arikan in [8, Section
ITI] for the one way exponential timing channel, is valid for fixed transmission-time codes

over the TSC. To establish such a claim we begin with the following

Lemma 1: The coding capacity of the fixed transmission-time exponential TSC with

service rate pu and departure rate A is given by

Clu, A) = Aln(u/A), 0<A<p. (68)

Proof-Converse: A converse theorem, stating that no rate larger than C(u, \) can be
achieved with departure rate A\ fixed block-length random transmission-time codes with
average transmission-time of 7', is given in [1, Theorem 8|. The interpretation of this theorem
is as follows. Ve > 0 and R > C'(u, A) + ¢, the ML decoding error is bounded away from zero
by a function g(e, u, A) which is independent of 7. We shall prove by way of contradiction
that this result is valid for fixed transmission-time variable block-length codes with the same
departure rate A. This, of course, would imply that the same is true for fixed transmission-
time fixed block-length codes.

Consider a fixed transmission-time 7" departure rate A variable block-length code with
rate R = C'(u, \) + ¢ and suppose that 3¢ > 0 such that limy_,,, P. = 0. For such a code
the number of departures k, observed during [0,77], is a random variable with E[k] = AT
Fix T =T + /T, and 7 = AT. Now, consider a modified genie-aided feedback transmission
scheme which attempts to send each message via a fixed block-length codeword as follows.

A message is drawn uniformly over {1,...,efT} and sent as a variable block-length k
codeword during a fixed transmission-time 7" over TSC number 1. In parallel, the same
message is sent as a fixed block-length n codeword over TSC number 2 having the same
average service time and in which the first k£ service times per each transmitted message are
identical to those of TSC 1 conditioned on £ < n.
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e [f k£ < n, TSC number 2 transmits the same message as TSC number 1, with the same
departures realization until time 7". However, the TSC 2 encoder continues to transmit
customers beyond time 7', until the decoder observes exactly n departures, and then
makes its decision. Therefore, the error probability of the TSC 2 decoder is not larger
than that of the TSC 1 decoder that makes its decision based on the first & departures.

e If & > n (because Z?:l y; < T) a genie, that observes both departure processes
and finds out that for transmitting the current message TSC 1 consumed at least n

departures, indicates to the TSC 2 decoder to declare an error in the current message.

Clearly,

T—o00

im P, < li i <Ty .
lim Pe_Th_)r{.loPe—i—Tl’l_I)roloPr{z;yz_T}

On the other hand, it can be shown, using an application of the central limit theorem,

that )
lim Pr{ 2_1 Yi T} 0,

and therefore this modified transmission scheme satisfies lim;._, P, = 0.

However, the performance of this genie-aided transmission scheme is not better than the
performance of a regular departure rate A fixed block-length random transmission-time with
mean 7' code, as per [1, Definition 4]. Therefore, by [1, Theorem 8] the error probability P,
must be bounded away from zero by at least g(e, i, A) which is independent of T".

Achievability: To show the achievability of the rate R = A1n(u/A) — €, we consider one
of our lower bounds on the attainable error exponent with fixed transmission-time codes —
the variable length random coding exponent. From (57) we know that as the block-length
n gets sufficiently large E,gf)(R) = pa (1 —a”) — pR. Taking p — 0 and using the fact that

1—a” — pln(1/a) and A = 28— =

ap .
Bru(l—a) — Ttp—ap> V€ obtain

a — Ap
SD(R) = plapn(l/a) — R) = p(Mn(p/A) = R)

Thus, (68) is proved.

The claim in Proposition 3 may be established as follows.

Following Arikan’s proof in [8, Section III] for the one way channel, we observe that
based on the converse coding theorem obtained in Lemma 1, the proof is also valid for fixed
transmission-time codes over the TSC. In Arikan’s proof, the channel is described by (1).
Nevertheless, even if we put w, = f (m,ykil), where fy : {1,..., M} x RE"! - R, is an
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arbitrary mapping, the proof still holds because it does not depend on the particular way
based on which wy is determined. In the TSC case w, = xj, and the presence of feedback

implies that x;, might be a function of y*~! which is known to the decoder as well.
APPENDIX |

We calculate the various expurgation exponents when R — 0, and we show that random

coding achieves R — C.

For the fixed transmission-time variable block-length code, the optimum for R — 0 is
achieved when p — oo in which case the solution of (8) is @ = 1, and we obtain E)(0) = 5.
For the fixed transmission-time fixed block-length code, the optimal result is obtained

when 05 = 0 and p — oo, (14) becomes

r(1 — a?)
2By +(1—a)]

ERQ(R—0)=p (69)

If we take (IB_—“Q) — 0 and @ — 1 we get from (69) and from (14) the following

Eég)(R —0) = pr
EY = pu(l—r)
where the choice r = 1/2 yields that E(0) = 11/2.
When we examine the random transmission-time fixed block-length code, we see that

Eéi)(R — 0) is also optimized when 65 = 0 and p — oo, and (17) becomes

(1-a?)

Bea B 0) =g, T —a)]

(70)

If we once again, take (IB_—“Q) — 0 and @ — 1 we obtain in (70) Eé;{)(()) = /.
As for R — C', in the fixed transmission-time fixed block-length code, the optimal result

is obtained when 6, = 0, and the first exponent in (12) becomes

ra

SO(R— C) =p {—um

lna— R] . (71)

Under these conditions the second exponent in (12) becomes

~£I):M{(1_T)_ e [1+ (1—T)[1+p(1—a)]]}

1+ p(1—a) ra
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Since In(1+2z) <z, Yz > 0, we obtain E™Y > 0. Substituting r — 1 and a = e~ into (71)
we obtain

671

e A

EOR—-C)—p {

which means that by taking p — 0, R can come as close as we want to ge~" while EY (R) > 0.

For the random transmission-time fixed block-length case £ (R — C) is also optimized

when 0, = 0, and (17) becomes

E,«:(R—>C’):p{—u lna—R} :

a
14+ p(1—a)

1

Choosing a = e~ we obtain

pe”!

e A

E,J(R — C) =p |:
which means that by taking p — 0, R can come as close as we want to ge* while EY (R) > 0.
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Figure 1: Achievable error exponents for fixed transmission-time variable block-length feed-
back codes. (a) ES(R)/u , ED(0)/u = 1/2. (b) EY(R)/1 = E.(R)/u. Sphere-packing
exponent for fixed transmission-time feedback codes. (c) EA,S{:)(R)/M = E,,(R)/ 1.
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Figure 2: Achievable error exponents for fixed transmission-time, fixed & variable block-
length feedback codes. EXD(0)/p = ELD(0)/u=1/2, EV(R) /> EX(R)/p.
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Figure 3: Achievable error exponents for random transmission-time fixed block-length feed-
back codes. (a) ESL(R)/p, EL(0)/u=1. (b) EY(R)/p.
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