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On the Use of Spatial-Temporal Information in

Speaker Localization Applications

Tsvi Gregory Dvorkind and Sharon Gannot

Abstract

Speaker localization based on a microphone array and using a dual step approach is addressed. The first stage,

which is not the main concern of this paper, is comprised of estimating the time difference of arrival between the speech

signal received by each microphones pairs. These readings are then used by the second stage for the actual localization.

The speaker’s smooth trajectory is used for improving the current position estimate. Two localization schemes, which

exploit the temporal information, are presented. The first is the Extended Kalman filter. The second is a recursive form

of the Gauss method. Experimental study as well as approximate analytical evaluation supports the potential of the

proposed methods.
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I. Introduction and Problem Formulation

Determining the spatial position of a speaker finds a growing interest in video conference scenario where

automated camera steering and tracking are required. In this work we address approaches for determining

speaker position which are comprised of two stages. In the first stage, the TDOA is estimated using spatially

separated microphone pairs (e.g. [1],[2], [3], and [4]). In the second stage, these readings are used for the

actual localization (e.g. [5], [6] and [7]). These methods exploit the spatial information obtained by different

microphone pairs, but do not exploit the temporal information available from adjoint speaker position esti-

mates. This information is relevant for the current position estimate, due to the speaker smooth trajectory.

A shorter preliminary conference version of these ideas has been published in [8].

Consider an array of M + 1 microphones, placed at the Cartesian coordinates mi , [xi, yi, zi]
T ; i =

0, . . . , M where m0 = [0, 0, 0]T is the reference microphone, placed at the axes origin and (·)T stands for the

transpose operation. Define the source coordinate at time instance t by s(t) , [xs(t), ys(t), zs(t)]
T . Each of

the M microphones, combined with the reference microphone, is used at time instance t to produce a TDOA

measurement τi(t); i = 1 . . . M . Denote the i-th range difference measurement by ri(t) = cτi(t), where c
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is the sound propagation speed (approximately 340[m/s] in air). The non-linear equations for estimating the

source location parameters s(t) are (see for example [7]):

A(t)f(s(t)) ≈ d(t) (1)

where fT (s(t)) ,

[

sT (t), ‖s(t)‖
]

and

A(t) ,











mT
1 , r1(t)

...

mT
M , rM (t)











, d(t) ,
1

2











‖m1‖
2 − r2

1(t)
...

‖mM‖2 − r2
M (t)











.

Note, that only approximate equality holds in (1), since the range difference measurements are noisy. Our

goal is to estimate the source position s(t) from the noisy measurements.

The organization of the rest of the paper is as follows. In Section II we derive Gauss and recursive Gauss

(RG) solutions for the localization problem. A Baysian approach, namely the extended Kalman filter (EKF),

is presented in Section III. The equivalence of RG and EKF approaches is discussed in Section IV. Test cases

are presented in Section V.

II. Gauss and Recursive Gauss Algorithms

Huang et al. [7] addressed the non-linear set in (1) and solved it by using Lagrange multiplier. Since a

polynomial of degree six is involved in the proposed method (denoted linear-correction least-squares (LCLS)),

no closed-form solution exists. Thus, the iterative secant method is used for the root search.

A. Gauss Solution

The solution of (1) presented by [7] involves iterations. We suggest to mitigate the non-linearity by an

alternative method, i.e the Gauss method. Note, that Eq. (1) becomes a (non-linear) Least Squares (LS)

problem if the number of microphone pairs fulfills M > 3, i.e there are more equations than unknowns. The

resulting non-linear LS problem can be solved by applying the Gauss method. Define s(l)(t), the estimate

of s(t) at the l-th iteration. Define also ht(s
(l)(t)) , A(t)f(s(l)(t)), and the associated gradient matrix by

Ht(s
(l)(t)) = ∇sht(s

(l)(t)). By applying first-order approximation to ht(s(t)), the Gauss iterations take the

well known form

s(l+1)(t) = s(l)(t) +
(

Ht(s
(l)(t))

T
Ht(s

(l)(t))
)−1

Ht(s
(l)(t))

T
(

d(t) − ht(s
(l)(t))

)

.

This solution exploits only the spatial information obtained by the separated microphone pairs at a specific

time instance, but does not consider the temporal information.
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B. Recursive Gauss (RG) Procedure

To exploit the temporal information, a recursive solution the Gauss method must be obtained. We begin

by evaluating Eq. (1) at all measurements from t = 1 till t = N :

A(t = 1)f(s(1)) ≈ d(1), . . . , A(t = N)f(s(N)) ≈ d(N). (2)

Note that this is still a nonlinear equation set in the unknown positions s(t); t = 1, . . . , N , due to the

nonlinearity introduced by f . By assuming that s(t) is slowly varying with time, a recursive solution can be

derived.

The proposed method starts by resolving the nonlinearities using first-order approximation (as with the

original Gauss method), and then continues by deriving a recursion (applying further approximation). This

solution will be referred to as Recursive Gauss (RG).

Consider a nonlinear equation set for the unknown p × 1 parameter vector θ ∈ Cp:

h1:N (θ) = d1:N

where hT
1:N (θ) ,

[

hT
1 (θ)· · ·hT

N (θ)
]

and dT
1:N ,

[

dT
1 · · ·d

T
N

]

. ht and dt are K nonlinear equations and K

measurements, available at time instance t, respectively. Applying first-order approximation around an initial

guess θ(0) (as with the Gauss method) we obtain:

h1:N (θ(0)) + H1:N (θ(0))
(

θ − θ(0)
)

≈ d1:N (3)

where H1:N is the NK × p gradient matrix:

HT
1:N (θ) ,

[

HT
1 (θ)· · ·HT

N (θ)
]

.

Ht(θ) = ∇θht(θ) is the K × p gradient matrix of ht(θ). According to the Gauss method, the iterative LS

solution to the linearized set (3) is:

θ(l+1) = arg min
θ

∥

∥

∥
d1:N −

(

h1:N (θ(l)) + H1:N (θ(l))
(

θ − θ(l)
))

∥

∥

∥

where the superscript denotes the iteration number. Consider the next measurements hN+1(θ) = dN+1 avail-

able at time instance N +1. In order to estimate θ we will use all the available measurements simultaneously.

Though we could evaluate all (N + 1)K equations at the current estimate θ(l+1), we will do so only for the

new equations. Namely, instead of minimizing in the LS sense the following residual norm

min
θ

∥

∥

∥
d1:N+1 −

(

h1:N+1(θ
(l+1)) + H1:N+1(θ

(l+1))
(

θ − θ(l+1)
))

∥

∥

∥

we will minimize a modified LS problem

min
θ

∥

∥

∥

∥

∥

∥

d1:N −
(

h1:N (θ(l)) + H1:N (θ(l))
(

θ − θ(l)
))

dN+1 −
(

hN+1(θ
(l+1)) + HN+1(θ

(l+1))
(

θ − θ(l+1)
))

∥

∥

∥

∥

∥

∥

.
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The reason for this approximation is to keep past solutions intact, thus enabling a recursive solution to be

derived. Now, using stochastic approximation, i.e. replacing the iteration index by the time index, a sequential

algorithm is obtained. To summarize the procedure, an estimate for θ at the current time instance t (denoted

by θ̂(t)) is obtained by solving the following LS problem sequentially using the recursive LS (RLS) procedure:

θ̂(t) = arg min
θ

∥

∥

∥

∥

∥

∥

∥

∥

∥











H1(θ̂(0))
...

Ht(θ̂(t − 1))











θ − y
1:t

∥

∥

∥

∥

∥

∥

∥

∥

∥

(4)

where

y
1:t

=











y
1
...

y
t











,











d1 − h1(θ̂(0)) + H1(θ̂(0))θ̂(0)
...

dt − ht(θ̂(t − 1)) + Ht(θ̂(t − 1))θ̂(t − 1)











with θ̂(0) the initial estimate for the parameter set. We note that in many practical situations the parameter

set θ might slowly vary with time. In these cases a common practice is to apply the RLS algorithm with a

diagonal weight matrix that uses a forgetting factor 0 < α ≤ 1 to weight past equations.

Another practical issue concerns the computational burden. At each time instance new K equations become

available, resulting a K × K matrix inversion at each RLS iteration. However, by properly varying the

forgetting factor α the computational complexity can be further reduced. This procedure is described in

Appendix A.

C. Recursive Gauss (RG) Application

Denote the parameter set by θ = s. Calculating the gradient matrix of the left hand side of (1) and the

vector y
t
as defined in (4) we obtain:

Ht(s) =











mT
1 + r1(t)

‖s‖ sT

...

mT
M + rM (t)

‖s‖ sT











, y
t
= dt = 1

2











‖m1‖
2 − r2

1(t)
...

‖mM‖2 − r2
M (t)











where we have used the fact that for the problem at hand Ht(θ)θ = ht(θ). Then ŝ(t) is evaluated by solving

(4) with RLS and a forgetting factor α < 1.

III. Extended Kalman Filter (EKF)

The non-linear set in Eq. (1) can be also solved in the Bayesian framework. The optimal minimum mean

square error (MMSE) solution becomes complicated in this non-linear case, and sub-optimal solutions are

called upon. Such a solution is the extended Kalman filter (EKF). As the actual movement model is not
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known in advance, we use a random walk model instead






s(t + 1) = s(t) + w(t)

r(t) = h(s(t)) + v(t)
(5)

where w(t) is the state driving noise and v(t) is the measurement noise. h represents the nonlinear range

difference measurement equations, given by:

h(s) ,











‖m1 − s‖ − ‖s‖
...

‖mM − s‖ − ‖s‖











. (6)

We note that the same approach was taken in [9], but in a different context.

IV. Equivalence of RG and EKF

It is well known that the RLS algorithm can be viewed as a special case of the Kalman filter. We show now

that the same equivalence holds for the recursive Gauss algorithm, derived in Section II-B, and the extended

Kalman filter. Using a diagonal weight matrix and setting the forgetting factor to α, the RG algorithm

coincide with the EKF formulation for the following state-space model,






θ(t + 1) = θ(t)

dt = ht(θ(t)) + v(t)

The equivalence holds when R(t) , Cov(v(t)) = αI (where I stands for the identity matrix) and with the

initial condition P0|−1 , Cov(θ(0)) = 1
α
P(0). Moreover, this formulation is exactly the same as the one

relating the RLS algorithm and (linear) Kalman filter.

V. Experimental Study

In this section we perform simulative comparison of several localization methods. To gain some insight on

the obtainable performance of a microphone array with a small inter-element spread relative to the source

position, calculation of the CRLB for a specific scenario is performed. This calculation leads us to a conclusion

that the meaningful information lies in the azimuth and elevation angles estimates. We proceed by assessing

four localization methods. Two of them are non-temporal (LCLS and Gauss iterations), and the other two

(RG and EKF) exploit the temporal information.

A. Test Scenario

A set of 6 microphone pairs is placed on a sphere of radius 0.3[m] around a reference microphone placed at

the origin, m0 = [0, 0, 0]T , at the following positions:

mT
1 =

[

0.3, 0, 0
]

, mT
2 =

[

−0.3, 0, 0
]

, mT
3 =

[

0, 0.3, 0
]

mT
4 =

[

0, −0.3, 0
]

, mT
5 =

[

0, 0, 0.3
]

, mT
6 =

[

0, 0, −0.3
]

.
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Fig. 1. Speaker trajectory

The speaker trajectory is set to be an helix with radius R = 1.5[m] around the reference microphone. The

speaker movement speed is set to 0.5[m/s] and the total duration of the movement is T = 30[sec]. In Cartesian

coordinates, the position of the speaker (in m0 coordinate system) as a function of time in the interval t ∈ [0, T ]

is given by:

x(t) = R cos(2πft), y(t) = R sin(2πft), z(t) = t
T
− 0.375

with f = 0.0529[Hz]. Along this trajectory, the overall change of the azimuth angle is within θ ∈ [0◦, 570◦]

and of the elevation angle is within γ ∈ [−14◦, 22.5◦]. The entire scenario is depicted in Fig. 1.

B. The Cramér-Rao Lower Bound

We calculate now the CRLB for the tested scenario. We assume that the true range difference (or, equiv-

alently, the TDOA) readings are contaminated by Gaussian distributed noise with zero-mean and standard

deviation (STD) of σ = 0.0425[m]. This STD is equivalent to 1[sample] at a sample rate of Fs = 8000[Hz]. The

existence of directional interferences and reverberation phenomenon might cause high level of noise correlation

between microphone pairs and across time. Moreover, in high noise level the TDOA estimation algorithm

might produce readings related to the directional noise source, causing multi-modal noise distribution. Nev-

ertheless, for simplicity, we start by assuming (like Huang et al. [7]) that the noise is uni-modal (Gaussian)

distributed spatially and temporally white. Under these conditions, the CRLB is calculated for both Cartesian

and polar coordinates. The resulting bound (in meters, for the Cartesian coordinates and the radius, and

in degrees for the azimuth and elevation angles) is depicted in Fig. 2. Note, that the Cartesian coordinates,

as well as the radius, can not be accurately estimated in this scenario. This conclusion corresponds with

the results presented in [7]. However the azimuth and elevation angles might be estimated in high accuracy.

Fortunately, for camera steering applications, estimation of the azimuth and elevation angles suffices. Note
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Fig. 2. CRLB results. Left: Cartesian coordinates and radius. Right: Azimuth (θ) and elevation (γ) angles.

also that the presented CRLB serves as a bound to the non-temporal methods alone, since past measurements

are disregarded at each time instance.

C. Simulation Results

The previously presented setup is evaluated by four localization methods. The first is the Linear Correction

Least Squares (LCLS) method, presented by Huang et al. [7]. The second is the Gauss method (denoted G)

with 3 iterations at each time instance. The third is the recursive Gauss (RG) with forgetting factor α = 0.85.

The fourth is the EKF method evaluated with random-walk model and driving noise STD of 0.1[m] at each

axis. The measurements covariance matrix is overestimated to 10σ2I. 1000 Monte-Carlo trials are performed.

The Root Mean Square Error (RMSE) of the angles estimate is presented in Fig. 3. As can be seen, the Gauss
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Fig. 3. RMSE results with white Gaussian noise. Left: RMSE for azimuth angle (θ). Right: RMSE for elevation angle

(γ)

iterations and the LCLS method have comparable performance. However the RG and the EKF methods

remarkably outperform them.
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D. Switching Scenario

We proceed by testing a more realistic scenario. Consider the following simulation which is typical for a

video conference scenario. Two speakers, located at two different and fixed locations alternately speak. The

camera should be able to maneuver from one person to the other. For this scenario, using the same microphone

positions as in the previous experiment, simulation is conducted with one speaker located at the polar position

[θ = π
4 [rad], γ = π

4 [rad], R = 1.5[m]] and the other at [θ = 3π
4 [rad], γ = π

3 [rad], R = 1.5[m]]. A directional

interference is placed at the position [θ = π
2 [rad], γ = π

4 [rad], R = 1[m]]. Simulating reverberant conditions

(reverberation time of Tr = 0.25[sec]) and mean SNR level of 10[dB]. Any method for TDOA extraction can

be used in conjunction with our localization algorithm. However, to give specific simulations, we used TDOA

readings, extracted from the noisy microphone data, by the RS1 algorithm described in [2], [3]. This method

exploits the non-stationarity of the speech signal to estimate the ratio of the ATF-s relating he source signal

and a pair of microphones. These noisy readings are then used by the localization methods to derive the angle

estimate of the speakers. The same setup for the localization methods is applied here as well. Namely, the

EKF localizer still uses the random walk model, though a better choice might have been asserted.

Figure 4 presents the azimuth angle estimates by the four methods. Figure 5 presents the elevation angle

estimates. For this experiment, an angle estimate which diverts by more than 10◦ from its true trajectory is

considered to be an anomaly and is not considered for the RMSE estimate. As can be seen from the plots,

the temporal methods, especially the EKF algorithm, clearly outperforms the other methods. This is despite

of the fact that the EKF is not using a valid state-space model. Note that the use of the random walk model

in the EKF formulation explains the divergence from the RG method and is more appropriate for the tracking

problem.

VI. Conclusions

We presented both non-temporal and temporal algorithms for talker localization and tracking. The Gauss

method was shown to have comparable performance to the LCLS method. Two temporal methods were

derived. One is within a non-Bayesian framework (RG algorithm) and the other is within the Baysian

framework (EKF). The RG method is shown to be a degenerate case of the EKF. Evaluation of the CRLB

showed that for a microphone array with a small inter-element spread relative to the source position, angle

estimation might be obtained reliably (as opposed to the Cartesian coordinates estimates). Empirical results

demonstrate the effectiveness of the use of the temporal information.
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Fig. 4. Azimuth angle estimation results. Dotted line: True angle of the active speaker. Solid line: Estimation results.

The method’s name, anomaly percentage and RMSE of non-anomalous results are presented in the title of each

plot.

Appendix

I. Recursive Least Squares for Multiple Readings

Assume a scenario in which for each time instance we have K scalar measurements zt ∈ C
K related to an

unknown p × 1 parameter vector θ ∈ C
p by a linear K × p transformation Ht

zt ≈ Htθ.

The approximation is due to the fact that the measurements are noisy, or due to slight modelling errors. N

time instances can be augmented to a matrix form z1:N ≈ H1:Nθ where

z1:N ,











z1

...

zN











; H1:N ,











H1

...

HN











.

The weighted LS (WLS) solution for θ, using nonnegative weight matrix W1:N (of size KN × KN) is:

θ̂ =
(

H1:N
†W1:NH1:N

)−1
H1:N

†W1:Nz1:N (7)
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Fig. 5. Elevation angle estimation results. Dotted line: True angle of the active speaker. Solid line: Estimation results.

The method’s name, anomaly percentage and RMSE of non-anomalous results are presented in the title of each

plot.

Our goal is to evaluate (7) recursively. If the parameters slowly change, a common approach is to apply a

diagonal weight matrix W1:N with powers of a forgetting factor 0 < α ≤ 1 along its diagonal. Note, that for

measurements associated with the same time instance, we wish to apply the same factor, since equations of

the same time instance have equal importance. Such weight matrix can be represented recursively as:

W1:N =





αW1:N−1 0

0† I



 ; W1:1 = I

where I and 0 stand for the identity and zero matrices of sizes K×K and (N −1)K×K respectively. Though

it might seem that in order to derive a recursive solution for (7) a K ×K matrix inversion should be made in

each RLS iteration, in practice the complexity can be further reduced. This is obtained by applying the well

known RLS algorithm with a minor twist. Consider a single equation which is updated into the recursion. We

must check if this new equation belongs to the next time instance. If so, a memory factor α ≤ 1 is applied.

If this is not the case and we are evaluating one of the K equations of the current time instance, a memory

factor of 1 is used. Thus, in order to derive a recursion, where the update stage considers a single equation,
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the forgetting factor should vary. Notating the time instance by n and the sequential number of the equation

by nK + k (where k ∈ {1, . . . ,K}) the forgetting factor becomes

forgetting factor =











α ; k = 1,

1 ; otherwise.
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