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Abstract

In this paper, we consider the problem of determining a cyclic (or loopgdaler that allocates slots to flows as periodically
as possible. We use the second moment of the inter-allocation distaneadorflow as its periodicity metric. We establish the
optimality of a Weighted-Round Robin with spreadinyRRsp2) scheduler for a two-flow scenario.

We consider a class-based scheduling scenario where flows angedraocording to their relative bandwidth demands. We
propose &-class scheduler that recursively performs inter-class scheduing the correspondinG-1 class scheduler, prior to
intra-class scheduling. Optimality is achieved = 2 with the WRRsp2 as the inter-class scheduler.

Through numerical results, we show that the recursive schedulévas the best periodicity performance at the expense of
intra-class fairness, which is desirable for class-based scheduliegely, we expose a trade-off between periodicity and fairness
performance in the design of loop schedulers.

I. INTRODUCTION

Consider a system that comprises an indivisible resouroge{$lot) andn clients (or flows) share it by means of time
multiplexing: in any given time, a different flow may use tlesource. Many applications require that flows are servedraes
prescribed rate, and this rate should be as smooth as possih in small time windows. The allocation of time slots tov8
is governed by a scheduling algorithm. In other words, giaeset of requested shards;()}_, the goal of the scheduling
algorithm is to produce an assignment of time slots (or acudeg to flows, while trying to optimize two different measar

(a) Fairness a schedule is said to have good fairness if the fraction mmktslots allocated to each flow is close to its
requested share;

(b) Smoothnessa schedule is said to have good smoothness if the time dlotsated to each flow are as evenly spaced
as possible.

The best possible schedule is one where the allocated shares<actly the requested shares (perfect fairness) ancewhe
each flow is scheduled exactly evepytime slots (perfectly-periodic schedule). Although salled that offer fairness while
neglecting smoothness are available [1], it is NP-completelecide whether a set of requests admits a perfectly-gierio
schedule [2].

A. Perfectly Periodic Scheduling

Two approaches to the scheduling problem are considerdukifiterature. The first approach insists on maintainingptstr
smoothness while relaxing the fairness requirement. I(d8H references therein), each flowequests that it be scheduled
exactly everyr(® time slots, and the goal is to determine a scheduler thamigis the fairness measure under the perfect
periodicity constraint. Strict smoothness requiremeniply that the periods allocated to some flows will not matchirth
requests. A suitable metric to measure the deviation frorfepefairness for each flow is the fairness ratio, given by ttitio
of its requested period and its granted period. There eglgtdulers [4] that guarantee that the average fairness (rakiere
the weight of each flow is its requested bandwidth) is closepitimal. The maximum measure is studied in [5], where the
quality of the schedule is the worst-case fairness ratio alleflows.

B. Non-Periodic Scheduling

An alternative approach is to allow different gaps betweensecutive allocations to a flow, while insisting on perfect
fairness. This approach was considered in [6] (and refeetizerein), where the authors consideredaline variant of the
resource sharing problem. Given that the arrival procespagkets to each flow is independent and identically disteitbu
(i.i.d), the goal is to determine a scheduler that optimigese performance criteria under the perfect fairness @nst

In [7], the author deduced that for throughput optimality fe=2 and unit buffer size per queue, the schedule must be
open-loop(or de-centralized) andonflict-free This work was extended in [8] to the caserof2. It was also verified that
an optimal schedule always exists and is stationary ayudic (or loop), i.e., there exists aN such that for allt, the flow
allocated to slot- is also allocated to slot+N.
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This reduces the problem to affline one, where the objective is to determine a loop schedule z&f I8iin terms of
{7}, where {z(W}?_ is computed in terms of the arrival statistics. The authosppsed a Golden Ratio Scheduler
that achieves a nearly optimal throughput under online itiomd. In [6], the authors considered the case where théebuf
size per queue is unlimited. It is shown that the mean queaees (s equivalently the mean packet delay) is minimized with
a perfectly-periodic schedule, which is not always feasitllthough the golden ratio scheduler is not perfectly quig, it
performs extremely well compared to lower bounds for exgeqtacket delay.

C. Contribution of This Paper

Although other loop schedulers that ensure perfect appratkon have been proposed in the literature, we are not agfare
any work that analyzed and evaluated the extent of non-gherip in these schedulers. In this paper, we propose a gheiip
metric and compute the bounds for the metric over the cladsapf schedulers. By analyzing the periodicity propertiés o
various loop schedulers, we propose a recursive classtsaseeduler that performs inter-class scheduling followgdntra-
class scheduling for a class-based scheduling scenaricddé®nstrate the gain in periodicity performance achiewedhb
recursive scheduler over known loop schedulers.

The paper is organized as follows: We define our schedulimiplem and define a metric to evaluate the periodicity
characteristics of each scheduler in Section Il. Then, wserilee the mechanism and periodicity properties of sevey
schedulers in Section Ill. We consider the requirementsofiiimal per-flow periodicity in loop schedulers and esttblihe
lower bound for the periodicity metric in Section IV. In Sect V, we define a class-based scheduling scenario and isstabl
an optimal scheduler for two-class scheduling. Based ansitlieduler, we propose a recursive class-based schealhiandle
multiple classes. In Section VI, we compare the performarfoarious loop schedulers in terms of numerical resultsalfy,
some concluding remarks are given in Section VII.

Il. PROBLEM FORMULATION

Consider a slot allocation problem amonggtows, where each flowdemands a share of?”, whered"" x(i) 1. Letus
use the notatiory to denote the sefy()}7_ . We def|ne7r(N «) as the class ofi-flow loop schedulers that satisfy the perfect
fairness constraint over any interval Nfslots, whereN is the cycle length. This implies that (for any finitg, the elements
of x are rational. We can then defiféand N(*), 1< i < n, as follows:

N = LCD(z)
N®O — L@ON
where N () is the number of slots allocated to flawover any interval oN slots.

Let dY )( /) denote the duration between thg— 1) and j*" allocation to flowi under a scheduler € m(y 4. Sincer is
a loop scheduler, the following properties must be satidhed < i < n:

AN +5) = dP(j)

E+N® 1

> dVG) = N 1)
j=k

Hence, each schedulercan be uniquely characterized by the sequen@d&?,) (j) 1 (WhICh we denote b)d )) A suitable

metric to evaluate the periodicity of allocation with respto flow i is the variance ofl"), Var[d?] = E[dV])? - (E[d!)])2,
where

(i) i)/ \1m
S 42 ()]
NG
However, from Eqg. (1), we have the following:

SY D)
N®
= i independent ofr
N

Hence, the periodicity measure for any schedulewith respect to flowi can be evaluated in terms @[d'”]? instead of
Var[d"]: a smaller value of2[d(]? implies a more periodic slot aIIocat|on to flomand V|ce versa We note that since the
order of the elements id is unimportant for the evaluation af[d\”]2, we can consided” as a set ofN(?) elements
instead of an ordered sequence.

If we define the allocation vectof of length N such that thet*” element, f (t), denotes the flow that sldt (where
1<t < N) is allocated to under scheduler then our scheduling problem can ‘be formulated as follows:

EBldy) =

T



n-flow Scheduling Problem

Determine the allocation vectgf . such that for £ i <n
Eld]? = min BldY)?

TET(N,z)

IfE={f_ :m€mnny} then

N!

We note that a very large number pfc F are equivalent since they are identical under rotation. él@n even after eliminating
these, the resultant space is still non-tractable for latge

A dynamic programming approach to derive an optimal sctexdequires the definition of an additive objective function
i.e., one which is computed incrementally. However, thequicity metric is a cumulative quantity, which renders #proach
unsuitable. Therefore, our approach is to consider varkmsvn loop schedulers and evaluate their periodicity peréace
against a lower bound, which we shall derive.

[1l. DESCRIPTION OFN-FLOW LOOP SCHEDULERS

In this section, we will describe the mechanism as well agp#r@dicity characteristics of several loop schedulerght
loss of generality, we will assume that() < NU) for i<j and N() > 2. The case ofV()=1 is trivial sinced”) = N for
T € T(n,), I-€., perfect periodicity is always achieved for flawWe denote bwsgf’”(m) the cumulative number of slots
allocated to flowj up to them!" allocation to flowi by schedulerr.

A. n-flow Deficit Round Robin ScheduldpRR,,)

Fair queueing schedulers like Weighted-Fair Queueing (W&D)eve nearly perfect fairness, but they are usually esipen
to implement.DRR,, [9] is an online scheduler that is an approximation to faieuging which is simple to implement and
yet achieves good fairness and can also be implemented ap adbeduler. Within the scope of our scheduling problem, th
DRR, scheduler reduces to the Weighted Round Robin (WRR) polityctwsimply allocates a block aV (M) slots to flow
1 followed by a block ofN(?) slots to flow 2 and so on. Hence, each flovg allocated slots in blocks of siz& (9, with an
interval of N-N () slots between successive blocks. Therefore, we have thosviog:

dg)RRn = {l?alaN_N(l)_Fl}
B = N® (N - N®)2 4 2(N - NO) @)
~“DRR,, N(z)

The DRR,, scheduler possesses the following property:
Lemma 1:The DRR,, scheduler exhibits thevorst periodicity amongst the class of loop schedulergy ., i.e., for 1<
1 <n,
Bldpgg,]? = max EldV)
" TET(N,z)

Proof: Let us consider an arbitrary schedutee m(y .y with d\) given as follows:

N® 1
d¥ = {142,142, ,1+2y0_,N-ND +1- Z 2}
j=1
wherez; € Z+, 1< j < N-1. We note that for;=0, 1< j < N(-1, 7 = DRR,,.
Using Eq. (2),E[d{"]? can be expressed in terms B{d\}y,, ]* as follows:
N _1 N®_q - NW_1
X A+ X P -2AN-NO) ¥
j=1 j=1 j=1

EdY? = EldYag 2+ 3)

N
Sincedgf) correspond to inter-allocation intervals, we have theofeihg constraint:

N® 1
N-NO+4+1- > 2z > 1

J=1



In addition, according to the triangular inequality, we &av

N® 1 N® 1

2 2
> 4 < [ Al
j=1 j=1

Substituting into Eq. (3), we have the following:

N® _1 N® 1 N® 1
Zj:l 2]2 + [Zj:l z]? — 2[2;‘:1 z]?

E[dP? < Eldjps, I+

8 RRy, NG
N® _q N®_q
_ o pazim A )
- “DRR,, N(l)
< EBldpgg,’

B. n-flow Weighted Round Robin with WFQ-like spreading SdeedWRRsp,,)

The WRRsp,, scheduler [10] is a variant of the standard WRR scheduler,hiclwthe service order amongst the flows is
identical to WFQ. The algorithm for thé&/RRsp,, scheduler is described as follows:

n-flow WRR with WFQ-like spreading Scheduler (W RR — spy,)
Let the arrayA contain the sequence ﬁ,z >:jef{l,--- ,NW} 1<i<n
sorted in lexicographic order.
The vectoriWRR_sp is constructed as follows:
iWRR—spn(t) =iif An(t) =< .1 >

The WRRsp,, scheduler possesses the following property fgril< n-1:. _
Lemma 2: The m!" allocation of flowi always occurs between trfé"’}\ﬁ—fj)l th and [% - 1 " allocation of flowj,
wherej>i, 1< m< N, je.,

i mN @)
”SE/&QRﬂpn (m) = [W] -
Proof: According to the algorithm, the:*" allocation to flowi is characterized by the parametgf;. If k denotes the
cumulative number of slots allocated to flgvup to them!” allocation of flowi andi < j, thenk must satisfy the following

conditions:

S
SE

No < wyw and
k+1 m
NG 2 NG
Hence, we obtaimsg}gR_spn (m) =k = (’”ﬁ?] -1 u

C. n-flow Credit Round Robin SchedulérRR,,)

The motivation to design th€ RR,, scheduler [11] was to reduce the latency of D& R,, scheduler. As with thé RR,,
scheduler, the&” RR,, scheduler can be implemented as a loop scheduler, and thdgsede is given as follows:

n-flow Credit Round Robin Scheduler (CRR,,)

e . (i) .
Initialize CS; = X—~, 1< i<n

oy
Sett=1, SP=n, cé\(JntO
whilet < N
if count< n
if CSgp < 1SP=SP-1, count=count+ 1
eIseiORRn(t) =SSP CSsp =CSsp -1

SP=SP-1,t=t+1,count=0

elseCsS; = CS; + % Y 4, count= 0

The CRR,, scheduler possesses the following property faril< n-1:
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Fig. 1. lllustration of allocation to flown relative to allocation to flow with C RR,, scheduler

Lemma 3:The m" allocation of flowi always occurs between tHeY-—~ ’;{,\ﬁf)>] th and [";f,\ﬁi))] - 1 ** allocation of flown,

1< m< NGO, e,
(n)
nsiph (m) = (211
Proof: With the CRR,, scheduler, the first slot is always aI{Vcated to flowWWe can consider subsequent allocations in

blocks, where each block terminates with the next floadlocation, as illustrated in Fig. 1, whetg-1 is the number of flow
n allocations before thét" allocation to flowi.

According to the transmission heuristieg, has to satisfy the following conditions:

i N(©)
a]"fv(n) > k and
(aj, = HN® I
N()
Hence, we obtaims ipy (k) = aj-1 = [EN1] -1 u

D. n-flow Golden Ratio®R,,) Scheduler
The Golden Ratio Scheduler was proposed in [8] and is destrés follows:

n-flow Golden Ratio Scheduler GR,)

Let ¢~ = 0.6180339887 and let; = frac(j¢—') where frac(y) =y — |y|
Let the arrayAy contain the sequenaeg;, 0< j < N-1, sorted in increasing order.
The vectorf R, is constructed as follows:

Son (O =01 L N < An(6) <32, N0, 1< <n

It was established in [6] that iN is a Fibonacci number, thedf” comprises at most three values for eaclotherwise,
more values are generated.

E. n-flow Short-term Fair Schedule6TF},)

We can characterize thiairnessperformance of any loop scheduler in terms of thamulative service defigitsd(®(t),
which measures the discrepancy between the requested landtadl fractional bandwidth for flowup to slott, 1< ¢ < N.
If (¥ (t) denote the cumulative number of slots allocated to fiawp to and including slot, then we have the following:

dD() = o0 0
t

B N(“_a(”(t)
N t

A positive (negative) value ofd*)(t) implies that flowi has receivedess(more) than its fair share of bandwidth up to slot
t. Hence, we consider a scheduler that allocates each slbietéldw with maximum instantaneous service deficit so as to
achieve maximal fairness (Short-term FairSf F,, scheduler). Whenever there is a tie, priority for allocati®mgiven to the
flow with the highest index. The pseudo-code for $iEF;,, scheduler is given as follows:

n-flow Short-term Fair Scheduler (STF,,)

Initialize a(¥(0) = 0, 1< i < n

for t=1:N
a®(t) = a(t - 1),1I<i<n
sd<>(): NGO aB) %)<z§n
STF (t) = arg 1rgfl<xn sd(¢)

a(iSTFn (t))(t) — a(fSTF (t))(t)"'l
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Fig. 2. Evaluation of Prohﬁ% ND,, () =

This scheduler was first suggested in [8], where the auttwi®ctured, based on numerical calculations, that it issangsing
scheduler. However, no analysis of the scheduler was pedvid terms of periodicity properties.

F. n-flow RandomRN D,,) Scheduler

The loop schedulers considered so far @egerministicsince the allocation vectqf € E is fixed. In this section, we define
a randomscheduler,RN D,,, whose allocation vectorfRND is uniformly selected fromE. We note thatRND,, € m(y 4
because the selecte“q% is used for allocation in each foop.

Let us refer to an aIIocat|on sequence based onRNh&D,, scheduler, and consider a particular loop that begins viaigh t
(j — 1)t allocation to f|0WI as illustrated in Fig. 2. Sinca& (V) slots must be allocated to floin any loop, the total number

of ways the{mth}jn;l\jf. ? allocation to flowi can occur withirN-1 slots |s(N( y_ 1) However, the corresponding expression
that ensures that%}w (j) = qis given by (Y{7)). Hence, for X ¢ < N — N(+1,
(Nt %)
ProudRND ()=q = N1 (4)
(N<i>—1)
The periodicity metric for each flowis evaluated as follows:
i N(@2N - N® 41
O L ©

NO(NG 1)
By comparing Eq. (5) with Eqg. (2), we can show trﬂfrglgvDH]Q < E[dg)RR”P for 1< i < n.

IV. CONDITIONS FOROPTIMAL PER-FLOW PERIODICITY FORN-FLOW LOOP SCHEDULERS

In this section, we determine the conditions for optimabedition periodicity for flowi. This can be expressed as a
requirement on") in the following lemma:
Lemma 4:The following condition is satisfied:

EdY)P = min E@dY]
TK'ET((N'E)
if
N® | |+ND_N
; N N N N
(O S O [P I S BV P

NN L
Proof: We consider the following cases:
1) N= 0 (modN®): Perfect allocation perlod|C|ty is achleved for flovwhen the inter-allocation interval is constant, i.e.,
d(j) = d” (k). This is achieved if and only i\ (j) =
2) N=j (mod N®), 1< j < N®-1: In this case, a constant mter-allocatlon interval for flosannot be achieved. The
best one can achieve is the following fox 3 < N(:

d”() € {Q,Q+1}, wherel <Q < N — N@,

For 1< m < N®-1, let us assume the following:

: —
QIS:) = {Q77Q7Q+]—77Q+1}
~—— ———

NG —m



Then, sincerV:(;) d®(5) = N, we have the following:

m-Q+(NY —m)- (Q+1) = N
from which we have
m = NO.Q+NOD_N
However, since & m < N()-1, we have the following constraints @
N]\([) 1+ Nl() s@s N]\([) Nl(i) (7)
SmceLij 1< N(,) -1+ Nm and (Nm} > % — Nm’ the only integerQ that can satisfy Eq. (7) iQ = L 5], m

The corresponding value fCE[di )] can be used as lawer bound for allr € m(y ) and is given as follows:

N2z +1) - NDg(z + 1)
NG

E[de)F

V. A RECURSIVECLASS-BASED SCHEDULER

In this section, we consider @-class scheduling scenario [12] that can be specified ins@fthe vectorsV, = [N; N

- N¢] andnge = [ng ne -+ nel, where each class comprisese, flows, each with demand/.. Without loss of generality,
we assume thalv, < N, for a < b. In addition, if Gp. denotes the indices of flows that belong to clasthen we have the
following:

Gp. = [an—i—l,Zn]—&—Q Zn]
We propose a recursive class-based scheduler based & Bfe — sp,, scheduler that exhibits good periodicity.

A. Intra-class Fairness in Class-based Scheduling

In addition to optimizing the periodicity of individual flasy a desirable characteristic in class-based schedulithg isotion
of intra-class fairness, i.e., all flows from the same grdupusd possess the same periodicity characteristics. Henseheduler
T ensures intra-class fairessAfd\"]2 = E[dY)]? for anyij € Gp,.

A simple example of a scheduler that ensures intra-classefss is theD RR,, scheduler. This can be observed from Eq.
(2), where, for any flow € Gp,:

On the other hand, th& N D,, scheduler does not ensure intra-class fairness. As an éxam consider 2-class scheduling,
where N,=[2 3] andn,=[2 2]. If f —[3 1,2,1,3,2,4,4,3,4], then by evaIuaudﬁND , we observe that although flows 1

and 2 Gpy, they have different per|0d|C|ty characteristics.

B. Periodicity properties oV RR — sp,, for C-class Scheduling

Lemma 2 can be written for class-based scheduling as follows

Lemma 5:For theWRRsp,, scheduler, flows within each group are allocated in blocksere the order within group/p.
is S 41, 5 g +2, -+, 36 my, for 1< ¢ < C. In addition, them!” block of Gp, will reside between the
[ ]t and [mN*ﬂ 1*" block of Gpy,, whereb>a and < m < N,.

We note from Lemma 5 that flows within each group are alwaysstratted in blocks, where each flow from that group is
allocated exactly once and the order within each block isstzont. Hence, the periodicity characteristics for flowsohging
to the same group are identical, i.e., intra-class fairiesgsaintained.

1) Special Case: C=2:.Using Lemma SQ(VQRR_SPW can be evaluated as follows:

Ni[R2]1-N2
Ny
{n1 +n2LNlj SR 5] +n2LF?J’n1 +n2fﬁ] ceemg —&-nz(ﬁf]}, i € Gp;
AWrn s, = Na—([R21-1D)M; ©
Non—N
ny
{’I’LQ,"',TLQ,TI;,"',’I’L}, ZEGPQ
——
N—ngNgy

ny



For two-class scheduling, Eq. (6) can be written as follows:

Nl(n1+Ln]2v1¥2j)+N1—N

n2N2 TLQNQ TlQNQ 7’7,2N2 .
ot o m o hom A [ om [0 1) 0 € Gy
@ _ N—=Ni(ni+|"222 ) 1
d. Na(nat| ™5t )+ No—N (10)
n1N1 7’7,1N1 n1N1 7’7,1N1 R
{n2 + | N, I, ma 4| N, IRCEA] N, 1o na+ | N, 1}, i€ Gps

N—Nz(nz+[ 4t ])

Comparing Eq. (9) with Eq. (10), we note théf,,_,, # d\” for 1< i < n and hence, th&VRRsp, scheduler is not
optimal in terms of per-flow periodicity. However, we notattwhenn,=1 (n;=n-1), the WRRsp,, scheduler offers optimal
periodicity for flows in Gpy (Gp1). However, if Ny=1, then optimal (worst-case) periodicity is achieved fawl in Gp;
(Gp2).

The corresponding periodicity properties for tR&'F;,, and RN D,, schedulers for two-class scheduling can be found in
Appendix | and |l respectively.

2) Enhancement to WR#;, Scheduler: From Section V-B.1, we observe that tMéRRsp, scheduler results in worst-
case periodicity forGps flows whenn;=n-1 and N;=1. This is due to the default lexicographic ordering in tle@ezluling
mechanism, which can be circumvented by introducing a paramp, 1< p < n, to the WRRsp,, scheduler (denoteW/RR
spn(p))- With the WRRsp,,(p) scheduler, the ordering priority in the event of a tie in theneents{ 4 }N Jfori<i<n
is given by p,p+1,p+2,--,n,1,2;--,p-1]. We note that the scheduler reduces to the origli&Rsp,, scheduler whemp = 1.

C. A Recursive Approach to Class-based Scheduling

Instead of 'blindly’ applying any loop scheduler to a cldmsed scenario, we can defin€kss-basedcheduler that first
allocates slots to each classitér-classscheduling) and then distributes the allocated slots wittach class to each flow
(intra-classscheduling). We propose a recursive approach for classdbssheduling. LeREC*(I) be a recursive[|-class
recursive scheduler with inputse I, wherel C C = {1,2,--- ,C}. The mechanism oREC“(I) comprises two stages: The
first stage involves obtaining the allocation vectors fowfce {Gp] tviena andGp, respectively. The second stage combines
these allocation vectors to obtaff), . .. 0

The allocation vector for flows {Gp;}vjer . is obtained by evaluatingREcb(I o) for someb € I\a. Since the flows=
Gp, are homogeneous, a simple round robin allocation is optim&rms of periodicity, and the allocation vector is given a
follows:

iRR Ng = [1725"'7na>1727"'7naa"'7"'71727"'7na]
We note that the elements gﬁi;wcb( I\a) andf have to be updated accordingly to ensure that the correctifidizes
are assigned to flows in each group. Our approach in the sestagd is to insert the elements ﬁ;z into fREcb(l\a)

such that successive elementszq{

If
where M, = [7”“0”“\“)‘ 1.
RR

For eachl, there ard[| instances of recursive schedulefszC*(I), corresponding to each € I. Hence, for optimality,
we have to evaluate the allocation vector for each instaamoe compute the corresponding periodicity performanceoAting
to our algorithm, eaclR EC(I) in turn comprisesI|-1 instances of recursive scheduleREC?(1\a), corresponding to each
b € I\a. This continues until we are reduced to a two-class scheglgcenario.

are as uniformly separated as possrbleﬁgEC . This i ilfustrated in Fig. 3,

Ry, N,

D. Optimal Two-Class Scheduling based on the WiRRScheduler

From Section V-B.1, we observe that for the special case=@f sincen;=1 =n-1, the WRRsp, scheduler offers optimal
periodicity for all flows. Hence, if we define a two-class schedu@PT5, that employs thdV RR — sp, as an inter-class
scheduler, then it can be shown th_@)PT2 = c_iEf) as given in Eq. (10) for 4 i < n. Hence, theO P15 scheduler is optimal
for two-class scheduling, and the pseudo-code is givenwhedgsumingni N1 < nsNs (the corresponding scheduler for
n1 N1 > nyNo can be obtained by inter-changing the indices 1 and 2):



REC*(I\ a)

t

......... j j REC“(D

HRIE

Slots allocated to  flows in g S
Slot allocated to flow j of Gp, - s a OC;;_me(; by 0;\/\5 (;n groups

Fig. 3. lllustration of the mechanism of REC“(I) scheduler

Optimal Two-Class Scheduler O P13)

SetN =[ng - Ny ng-Naol, N=n; + ny
1 2 n1-Ni
Deﬁne@1 = [,1?27"' an1a1a27"' y MLy eyt 71727"' y 1
Define@2 =mi+Ln+2,-,nn+1n+2,- 0, ng+1n +2,---,n]

1 2 na-Na

Computef = WRRspa(N)

forc=1:2
index = find(iWRR_Sm::C)
(index) =Gp,

W RR—spa

io PT,

Based onO PT», we can use our recursive approach to find an optimal alloedtr class-based scheduling. Our approach
is tractable since the number of class€sjs small.

VI. NUMERICAL RESULTS
In this section, we shall compare the performance of varioop schedulers for multi-class scheduling in terms of arimet
that reflects the periodicity over the ensemble of all flowise Tnetric that we consider (denoted tyov,) is the weighted
covariance of{c_lﬁf)};;l achieved by the scheduler, which is defined as follows:
- 200 E[dV? - (E[d])?
(Eld))?

WCoV,; =
i=1

With perfect periodicity,wcov,=0 sinced,, = E[c_iﬁf)]. Hence, a value close to zero indicates that a schedulebiexigiood
periodicity properties.
We define the optimalW RR — sp,, scheduler (denotetV’ RR — sp’), whereW RR — sp! = WRRsp, (p*) such thatp*

= arglr<ni£1 weovyw Rr—sp, (p)- SiMilarly, we define the optimal recursive class-basedduter (denotedREC*(C)), where
spxn

REC*(C) = REC® (C) such thata* = argégé% WCOVRECa(C)-

Let us consider the following broadband applications witke torresponding typical bandwidth requirements in kbps
[13]: Streaming Video (Internet Quality) (128), Residahtvoice (300), Video Telephony (400), Interactive Game80[5
and Streaming video (Video-on-Demand Quality) (3700). Wéing variousC-class scheduling scenarios (where each class
comprises flows from a particular application) and compatev,. obtained for each scenario for each scheduler. For example,
if we consider Residual Voice, Video Telephony and IntévacGames, then we haw¥.=(300,400,500)%= (3,4,5).

Assuming uniform flow composition, i.en. = n¢ for 1 < ¢ < C, the results for various scenarios f6r= 3 are shown in
Fig. 4 and Fig. 5. The corresponding results @4 and 5 are shown in Fig. 8 and Fig. 7. Although not depictetthénfigures,
we note that theR N D,, scheduler performs significantly worse than the deterrinichedulers. In addition, the weighted
covariance for each scheduler is relatively invariant with for nc >1 for a givenN.. Hence, we consider the following
cases:

A nc >1

Amongst theWRRsp,,, WRRsp: and CRR,, schedulers, th€ RR,, performs theworst In addition, an enhancement of
the WRRsp,, always exists and the gain in terms of the weighted covaeiascignificant. Amongst th&EC*(C), STF,,
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andGR,, schedulers, the relative performances is always accotditige above order, with thBR EC*(C') scheduler achieving
the bestperformance amongst all the schedulers. In fact, the weighovariance achieved by t{'F,, and REC*(C) are

nearly optimal for scenarios whef€z >> N, 1< ¢ < C-1.

While the WRRsp,,, CRR,, and WRRsp}, schedulers ensure intra-class fairness for any schedstiegario, it is not
enforced by theSTF,, and REC*(C) schedulers for certain scenarios, and is never enforcethdg R,, scheduler for any
scenario. Hence, there is a trade-off between achievingl geoiodicity performance and ensuring intra-class faisnéf the
latter needs to be guaranteed for any class-schedulinguscethen theWRRsp}, scheduler should be used; otherwise, the
REC*(C) scheduler should be used.

B. n(;:].

For an easier comparison of the periodicity performancéefsthedulers, we plot the results for=1 in Fig. 8. TheSTF,,
andWRRsp;, schedulers offer the best overall periodicity performandeile the GR,, andCRR,, schedulers offer the worst
performance. We note that intra-class fairness is irreleirathis case.

VIl. CONCLUSIONS

In this paper, we consider the problem of finding a weightedetdivision multiplexed loop scheduler for flows that
minimizes the average packet delay. The optimization riaitieanslates to finding a loop scheduler that allocatets stoflows
as periodically as possible. We use the second moment ohtbeallocation distance for a flowas the periodicity metric of
the scheduler with respect to that flow. We derive the comatifor optimal per-flow periodicity for ang-flow loop scheduler.

We consider a class-based scheduling scenario where flowbecgrouped according to their relative bandwidth demands.

We analyze the periodicity properties of a weighted rourdrravith spreading\(VRRsp,,) scheduler for a two-class scenario.
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Based on these properties, we establish an optimal schetiateemploys thaVRRsp,, scheduler as an inter-class scheduler,
and also suggest an enhancement toWRsp,, scheduler. We then propose a recursive class-based seh&disked on the
two-class optimal scheduler.

We define a metric that reflects the periodicity performane the ensemble of all flows. We then compare the performance
of the above schedulers in terms of numerical results. Alginche recursive scheduler achieves the best periodieifgpnance,
it fails to guarantee intra-class fairness, which is dédérdor class-based scheduling. On the other hand, the eaH&RR
sp, scheduler gives the best periodicity performance amomgstet schedulers that maintain intra-class fairness. Henese
is a trade-off between periodicity and fairness performeaincthe design of loop schedulers.

APPENDIXI
PERIODICITY PROPERTIES ORST'F,, SCHEDULER FORTWO-CLASS SCHEDULING

The periodicity properties of th8T'F,, scheduler for two-class scheduling can be specified by thesMog Lemma:
Lemma 6:Flows in Gp, are always allocated in blocks, where the order within edobkbis n,n-1,n-2,- - - ,n-ny; Flows in
Gp; are always allocated in the order,n;-1, --,1 and the maximum number 6fp; flows allocated between two successive

Gpo blocks isn;.

A. Periodicity Properties foiGp; flows
We can deduce from Lemma 6 that fokl < Ny, d9(j) = ny + (n-ny)x;, wherez; > 1. SincerE1 d®(5)=N, we
have the following additional constraint ar}:

Ny
E Tj = N2
j=1

Based on numerical results, we can infer that far 1< Ny,
(J—1N2

JN2
Ty = fﬁl - (T]

Hence,dg)TFn can be written as follows:

Ni[R21-N2

N. N-
LS +n2LF2Jv”1 +n2fﬁﬁ TNy +n2[_]}
1 1

N2—([§21-1)M

i Ny
dire, = Am+nalgtl

E[c_lf;)T ,|° can be evaluated as follows:

Blhs, P = Ny 1321 = D= m)*Na + 2mNe — N —m)* 2211321 - 1) (12)

B. Periodicity Properties folGpy flows
Similarly, we can deduce from Lemma 6 that fo£ J < Na, n-ny; < d@(j) < n. Let us defined)(j) = n-ny+x;, where
0<z; <n. SinceZ;.V:'z1 d® (7)=N, we have the following additional constraint af:

E[c_i(si)TFnF can be computed in terms of; as follows:

N>
. 1
E[dg)TF,L]Q A Z(” —ny + ;)
j=1

5 2(n—m) L 1 2
= (n—m) +TZ%‘+EZ%‘
j=1 j=1

(n —n1)?Na +2(n — n1)n Ny + ij:'z1[93j]2
No
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We can evaluate the upper (lower) bound Bm(si)TFn]Q, denoted byF[Qg)TF"]Q (E[Q(Si)TFn]Q), by considering the following
constrained optimization problem, :

Maximize (Minimize) Y">, [x;]? such that for ¥ i < n
ZNZ Z; = n1N1

i=1
and 0<z; <my

1) Expression forF[c_lg}F"P: Using (a + b)? > a? + b? for a,b> 0, we can show thaE;.le[ij is maximized with the
following choice of {x;} 2,

Ny
—
{a:]};V:Ql = {nlv"'7n1707"'70}
——
No—N;

ThereforeE[df;)T |7 can be evaluated as follows:

— G n—mn1)2Ny + 2(n — ny)ni Ny + n2N

Bl p = et mnh e 12)
o (n — TL1)2N2 + (2n — ’I’Ll)ﬂlNl
= N,

2) Expression forﬂ[c_ig)”n]?: For mN; < No — Ny < (m + 1)Ny, where & m < n;-1, Z;le[mj]Q is minimized with
the following choice of{x;} %2,

Ny—(m~+1)Ny

{xj}jyjl = {m—(m+1), - ,ny—(m+1),n—m, - ,ng —m,1,--- 1}
——

(m+2)N17N2 No—N;y

Therefore,ﬂ[c_llg)TFn]2 can be evaluated as follows:

(n - n1)2N2 + 2(77, — n1)7'L1N1 + ’I’L%Nl - m(m + 1)N1 — 2(N2 — N1)(TL1 —m — 1)
Ny

Eldsrr,)” = (13)
C. Comparison of Periodicity Characteristics with WRR; Scheduler

Using Eq. (9), the periodicity metric for th&/RRsp,, scheduler for two-class scheduling can be evaluated andés @s
follows:

niN1 + (2[§#] = 1)(n —n1)*No+

_' _ = niNy — Ni(n —n)* | @271 — 1), ¢ p1;
By, ” = | 2Ne— im0’ IR -1, €6 oo
Na(n—n1) tvf\zflnl(%—"l)’ i € Gps.

Comparing Eqg. (11), Eq. (12) and Eqg. (13) with Eq. (14), weehthe following result, where <0 m < n;-1 andmN; <
N2 — N1 < (m + 1)N1:

E[C_lg)TFnP = E[dg/)RR—spn]27 i € Gp1
7 m(m+1)N1+2(No—N1)(ni—m—1 7 7 .
E[C—lg/[)RR—spn]Q — it DNit (1\?2 2)m ) < E[dg%“FnP < E[QE/V)RR—SMJQ’ i € Gp2

In general, for two-class scheduling, while maintainingarclass fairness, the periodicity characteristics ef4f"F;, scheduler
is at least equal or better than that of W&RRsp,, scheduler.

APPENDIXII
PERIODICITY PROPERTIES OFRN D,, SCHEDULER FORTWO-CLASS SCHEDULING

For two-class scheduling, according to Eq. (4), we have dfewing:
N—g—1

) ((1\1(,1:12))7 1<¢g<N-Ni+1, i€eGpy;
Proddg\,Dn =q) = (NN_lgjl) (15)

(J,Vv?:f), 1<g<N-Ny+1, icGps.

Ng—1
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From Eq. (5), the per-flow periodicity metric is given as ¢ols:

N@N—Ni+1) . )
Eldiip, > = {—Nl(Nﬁll) o (16)
4RND,, N(2N—N>+1) =Ne.
Na(Natl) 1 € Gpa.

Since@%}v p,, takes on more than two values in general, we expecftNeD,, scheduler to be sub-optimal in terms of per-flow
periodicity. Intuitively, we also expect it to perform wershan the deterministic schedulers. We examine these hgpes by
considering two cases: (aF2 and (b)n>2.

A. n=2
According to Eq. (15), we have the following:

QFey

PrOt(dg%lJ)VDz =q) = W, 1<g<Ny+1
Ni—1
(3
Proddgj)\rpz =q) = %, 1<g¢g< N +1
No—1

Comparing with Eq. (6), we note that fo¥; >1, dy7y . # d'” in general and hence,
Bldinp,)” > Bl rp_p,)” = Eldsrp,)’

However, forN;=1, d%}VDZ:N and E[c_lgj)\m?]2 is always optimal. In addition, the pdf @_J(RQJ)\,DQ is given as follows:

(2) e oa=1
Prold;np, =q) = { e _y
N 4=2
In other Words@g}w2 ={1---,1,2} = c_lff). Hence, forN = (1, N>), we have the following:

EM%%VDQF = E[‘_ig/)RRfsng = E[‘_ig)TFQ]Q

B. n>2

Here, we consider several cases with counter-intuitiveesiagions:

1) n1=n-1,N;=1: In this case, we only need to evaluate the periodicity charatics forGp, flows. From Eq. (16), the
periodicity metric for theRN D,, scheduler is given as follows:

@ 2 R 2(N2 + (n—1))
Eldgnp,]” = 1+ i (n—1)(1+ Nyt 1 )
From Eq. (14), the corresponding metric for tARRsp,, scheduler is given as follows:
i 1
Bldpn-p, ] = 145 (=1(1+0)
Sincen > Mi\fiw for n>2, we have the following result:
2

E‘[QS%)NDH}2 < E[dg/;/)RR—spnP
2) n1=n-1,N,=2: From Appendix | Section I-CI«J[QS;A)TEL]2 = E[c_l(vﬁ,)RR_spnP, and hence, we have the following result:
E [dgg\fD" P < E [‘_lgng )2

Therefore, for two-class scheduling wheng=n-1 and (Vi,N>) = (1,2), the random scheduler exhibits better periodicity
properties than the deterministic schedulers.
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