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Abstract

We present Araneofa a scalable reliable application-level multicast system for highly dynamic
wide-area environments. Araneola supports multi-point to multi-point reliable communication in a fully
distributed manner while incurring constant load on each node. For a tunable parameleAraneola
constructs and dynamically maintains an overlay structure in which each node’s degree i% either
k + 1, and roughly 90% of the nodes have degkedempirical evaluation shows that Araneola’s over-
lay structure achieves three important mathematical propertiesegular random graphs (i.e., random
graphs in which each node has exaétlyeighbors) withV nodes: (i) its diameter grows logarithmically
with V; (ii) it is generallyk-connected; and (iii) it remains highly connected following random removal
of linear-size subsets of edges or nodes. The overlay is constructed at a very low cost: each join, leave,
or failure is handled locally, and entails the sending of only aBéuhessages in total.

Given this overlay, Araneola disseminates multicast messages by gossiping over the overlay’s links.
We show that compared to a standard gossip-based multicast protocol, Araneola achieves substantial
improvements in load, reliability, and latency. Finally, we present an extension to Araneola in which the
basic overlay is enhanced with additional links chosen according to geographic proximity and available
bandwidth. We show that this approach reduces the number of physical hops messages traverse without
hurting the overlay’s robustness.

*Araneola means “little spider” in Latin.
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1 Introduction

Our goal is to provide a scalable multi-point to multi-point reliable multicast service for very large groups

in wide-area networks. A protocol deployed in such a setting must be able to withstand frequent node
failures as well as non-negligible message loss rates [21]. Moreover, studies have shown that users typically
frequently join and leave multicast sessions [1]; such behavior is called churn. A major design goal for
our work is therefore coping efficiently with churn. Specifically, we address the following challenges: (i)
providing high reliability despite considerable message loss and failure rates while incurring constant load
on each node; (ii) incorporating joining nodes and removing leaving (or failing) ones with eolwstant
overhead; and (iii) providing an undisrupted service to nodes that are up despite high churn rates.

We present Araneola, a scalable reliable application level multicast (ALM) system for dynamic wide-
area environments. Reliability is achieved by constructing a richly-connected overlay and disseminating
pertinent information on multiple paths in this overlay. The number of paths in the overlay can be tuned
according to the expected failure and loss rates. Araneola is designed to incur small constant load on each
node. To this end, it builds an overlay in which each node’s degree is bounded by a small constant. This
approach has three advantages: (i) all nodes, including low bandwidth ones, are capable of participating in
the overlay; (ii) the load on all nodes is similar, so no user is required to contribute more bandwidth than its
fair share; and (iii) nodes have ample remaining bandwidth for connecting to nearby nodes, as we explain
below.

Our search for a constant degree overlay leads us to corsidgyular random graphs. Infaregular
graph, each node’s degreekis A k-regular random graph with N nodes is a graph chosen uniformly at
random from the set of-regular graphs withV nodes. For: > 3, a k-regular random graph is almost
always a good expander [10], which implies that (i) its diameter grows logarithmicallyW[&6]; and (ii)
it remains connected after random failures of a linear subset of its nodes and/or edges [11]. In addition, such
a graph is generally-connected, i.e., at leabinodes need to be removed in order to cause a partitioR.[26]

We strive to construct and maintain an overlay that resembkesegular random graph: Araneola’s basic
overlay converges to a graph in which each node has a degree offeithér+ 1 and no two neighboring
nodes have a degree bft- 1. Empirically, we show that Araneola’s overlay achieves the desired properties
above, namely logarithmic diametérconnectivity, and high robustness.

We construct and maintain the overlay at a very low constant overhead; each join or leave (or failure)
incurs sending roughly abodk messages in &-degree overlay, regardless of the number of nodes. Re-
markably, in dynamic settings, the cost of handling a single join or leave opedsiogases as the churn
rate increases. This is in contrast to virtually all existing structured peer-to-peer overlays, with which the
overhead for handling joins grows logarithmically with

The low maintenance cost is achieved due to the facts that: (i) each join, leave, or failure is handled
locally; and (ii) the selection of random neighbors uses partial membership views maintained by a distributed
low cost membership service similar to the ones in [9, 24]. The overhead of the membership service is
independent of the number of nodes and of the churn rate.

Having built a basidi/k+1-degree overlay, we next extend it by adding links between geographically-
close nodes. The low degree of Araneola’s basic structure allows for allocating plenty of bandwidth for
communication with proximate nodes. We show that with this approach, the links in Araneola’s overlay tra-
verse substantially fewer physical hops on average. Moreover, the overlay’s robustness does not deteriorate.

Given Araneola’s overlay, multicast messages are disseminated through gossip between each pair of
neighbors. Gossiping in Araneola differs from a standard gossip protocol (e.g., [7, 9, 18]) in that with a
standard gossip protocol, each node choogéent random nodes to gossip with in each round, whereas
in Araneola, each node always gossips with its neighbors in the overlay. We show that this difference leads

2The probability that &-regular random graph is nétconnected is bounded y(N2~%).



to substantial improvements in load, reliability, and latency.
In summary, our contributions include:

¢ the first algorithm for constructing and maintaining a richly-connected low degree overlay structure
in which each join or leave operation incurs a constant overhead;

¢ the first overlay-based multicast system to provide an undisrupted multicast service in highly dynamic
settings while incurring constant load on each node;

e a complete implementation and a thorough evaluation of Araneola running 1{p @0 nodes on
up to 125 machines, in both LAN and WAN, including the first extensive evaluation of the impact of
churn on an ALM system; and

e an overlay that allocates ample bandwidth for each node for communication with proximate nodes.

This paper proceeds as follows: Section 2 discusses related work. In Section 3, we summarize our design
goals. Section 4 presents Araneola’s design and pseudo code, and Section 5 empirically evaluates Araneola.
Section 6 presents and evaluates the extension that exploits network proximity. Section 7 concludes.

2 Related Work

In recent years, two leading approaches for supporting scalable ALM in dynamic failure-prone networks
have emerged:. gossip-based (or epidemic) multicast protocols (e.g., [3, 9, 7]) and dynamic overlay net-
works (e.g., [12, 5, 24, 8]). With gossip-based protocols, each node periodically chooses other random
nodes to propagate the information to. Gossip-based multicast generally achieves good load balancing, high
reliability, and undisrupted service in the presence of message loss and node joins and leaves, but it also
induces a high load, as many duplicate messages are sent [9].

Overlay-based ALM systems usually disseminate messages on a tree structure [12, 5, 24, 8]. With tree-
based multicast, no duplicate messages are sent. However, in the presence of churn, the tree structure will
frequently become partitioned, causing a significant portion of the multicast messages to be lost. Therefore,
in order to achieve reliability, such protocols need to detect message loss and recover from it. This can cause
recovered messages to be significantly delayed; can induce substantial overhead, especially if failures are
frequent; and can inhibit scalability. A second problem with tree-based multicast is uneven load distribution:
as recently argued in [4], inner nodes in the tree carry the burden for the multicast, whereas leaf nodes do not
share the load. Two recent projects, SplitStream [4] and Bullet [16], address this issue and build a balanced
multicast infrastructure; however these two systems are intended for single-source multimedia transfer and
do not strive to provide multi-point to multi-point communication or full reliability of message delivery as
we do.

Recently, several peer-to-peer overlays with logarithmic diameters and a bounded node degrees have
been suggested, e.g., emulating the Butterfly [19], de Bruijn graphs [13], Small Worlds graphs [15], or
random expander graphs with degree$ [17]. However, none of these systems can guarantee, with high
probability, a lower cost tha®(log N) messages and time for handling joins, since a joining node must
search and locate its (random or hashed) joining location prior to joining the system. Chawathe et al. [6]
have argued that this logarithmic cost inhibits the scalability of such systems assuming the churn rates
measured in Gnutella and Napster [23].

Like our extension of Araneola, several overlay structures, e.g., [20, 24], reduce message delivery latency
and communication costs by incorporating links between nearby nodes in addition to the random links
required for achieving a good overlay. In comparison with [20, 24], Araneola achieves a smaller average
degree than [20, 24] and better load balancing than [24].
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3 Design Goals

The purpose of Araneola is to support scalable reliable multi-point to multi-point communication in dynamic
wide-area settings where nodes frequently join and leave (or fail). We have set the following requirements
for our service: (i) high reliability and graceful degradation in the face of increasing failure rates; (ii) low
latency; (iii) low constant load on each node; (iv) low constant cost for handling joins and failures; and (v)
quick failure recovery and prompt incorporation of joining nodes. Araneola is designed to achieve these
goals without using any infrastructure, servers, or any elaborate communication mechanism beyond point-
to-point UDP communication. We assume that every pair of nodes can communicate with each other.
Araneola thus strives to build an overlay structure with the following characteristics: (i) multiple disjoint
paths between every pair of nodes, where the number of paths is a configurable pakafiigtebustness
to random removal of a certain percentage of the nodes or edges; (iii) low diameter and average distance;
(iv) bounded degree (df + 1); and (v) support for local addition and removal of nodes at a constant cost.
These characteristics are naturally achieved:{rggular random graphs. Empirically, we show that these
desirable characteristics are also achieved by Araneola’s overlay structure.

4 Araneola’'sDesign

Araneola builds an overlay structure for each multicast group. Since each group is handled independently,
we present the protocol for a single group, and omit the group’s name. All Araneola nodes run the same code.
The code has two main components: one constructs and maintains the overlay, as described in Section 4.1,
and the second implements the multicast service, as described in Section 4.2.

When joining the overlay, a node randomly selects several other nodes to connect to. This requires each
node to know some other nodes’ identities. To this end, we implement a scalable randomized membership
protocol similar to [9, 24], where membership information is gossiped over the overlay’s links. Each node
maintains a small set of node identities, calleahembership view, which evolves over time. Periodically,
the membership protocol piggybacks a small amount of information on gossip messages. Views have been
shown to become uniformly distributed over time [9, 24]. Experimentally, we observe that it suffices to
piggyback membership information infrequently, e.g., once a minute. When a new node joins for the first
time, it can ask one other for its membership view, and use that as its initial view. We do not detail the
membership protocol in this paper; the interested reader is referred to [9].

Araneola’s data structures are presented in Fig. 1. Theegghbors holds the node’s current neighbors
in the overlay, with their respective degrees and heartbeats (for failure detection purposes). The degree of
a node is the size of its neighbors set, ijpejghbors|. The setmissing.msg holds identifiers of messages
that the node heard of but did not receive. A functi@ard_from maps each identifier in this set to nodes
from which it was heard.recent_mids holds identifiers of messages received in the latest gossip round.
last_connect_to_time records the latest time a CONNECTO message was handled, as explained below.
The parameter L determines the graph’s target degfeaiid H defines the maximum allowed node degree.

A number of timeout values are defined in order to control the frequency at which different events occur.

4.1 Building and Maintaining the Overlay

Three tasks participate in the construction and maintenance of the overlay: ¢ontieet task (see Fig. 2)
adds new connections when a node’s degree is below L; (iijlidmennect task (see Fig. 3) tries to reduce
the node’s degree if it is above L, without causing any node’s degree to drop below L; and (fa)lthe
detector (see Fig. 2) detects failures and recovers from them.



Data structures:

id — this node’s identifier. Constants:

neighbors — set of triples(id,degree, heartbeatinitially (. L —target number of neighbors.

messages — queue of messages tagged withid, initially . H — upper bound on the number of neighbors.
missing-msg — set of messages identifiers, initiafly MIN _HEARTBEAT - failure detection parameter.
heard_from:missingmsgs— list of nodes. Timeouts: connectimeout, failuredetectiontimeout,
recent_mids — set of messages identifiers, initiafly disconnectimeout, connecto_timeout,
last_connect_to_time — a time. gossiproundtimeout.

Figure 1. Araneola’s data structures and constant definitions.

When a node’s degree is below L, the connect task periodically attempts to set up as many new connec-
tions as it is missing to randomly chosen nodes (lines 1-7). The target nodes are chosen at random from the
local membership view. For each attempted connection, the node sends a CONNECT request (line 5). At
bootstrap time, the node issues CONNECT requests to L nodes, and then slezsdottimeout. It is
expected that during this period enough new connections will be formed, although since some of the chosen
nodes may be faulty or overloaded, there may be a need to attempt more connections after the timer expires.
The connect task can be awaken by other tasks before the timer expires (line 36).

A node that receives a CONNECT request (line&gptsit, by calling addconnection, provided that its
degree is smaller than H, and otherwiseettirects the request, as will be explained shortly. adthnection
adds the sender to neighbors (line 30) and responds with a CONNBCTUpon receiving the CON-
NECT_OK (line 15), the requester registers the new connection, unless its degree has already reached H, in
which case it sends a LEAVE message (line 19). A LEAVE message causes its receiver to remove its con-
nection with the sender. Redirecting is done by sending a REDIRECT message to the requester, naming the
sender’s lowest degree neighbor (line 12). This causes the requester to send a new CONNECT request to the
named neighbor (line 14). CONNECT and CONNEOK messages carry the sender’s current degree for
initializing the degree in the neighbors data structure. In addition, every node periodically sends its degree
to its neighbors (this is not shown in the code).

A node that voluntarily leaves the system sends a LEAVE message to all its neighbors. In case a node
fails, the failure detector task (Fig. 2, lines 22—-29) eventually detects the failure. Every node keeps a heart-
beat counter for each one of its neighbors. If a node receives less thatHAMRTBEAT messages from a
neighbom during an interval of length failureetectiontimeout, it removes and sends a LEAVE message
to it. The heartbeat counter afis increased whenever a message from it is received (this not shown in the
code).

There are two rules for removing connectioriRule 1 and Rule 2. Rule 1 removes the connection
between a pair nodes that both have degrees higher than L. Specifically, if anisodegree isL + 4,
thenn attempts to remove of its neighbors. The neighbors with the highest degrees are candidates for
removal; they are inserted into the sahds (line 5). Nodes with degreesL are then deleted frornands
(line 8). If n has a higher id than a noden cands, thenn sends a DISCONNECT messagectfline 10).

Upon receiving this message (line 16)¢'8 degree is still higher than L, it removes the connection with
and sends a DISCONNECODK message. Upon receipt of a DISCONNEOK (line 20),n removes the
connection withe. Note that Rule 1 never reduces a node’s degree to be below L.

With Rule 1, it is still possible for a node to have degree H while all of its neighbors have degree
L. Rule 2 is only invoked at a node when all ofn’s neighbors’ degrees aréL. With Rule 2, noden
chooses its two neighbors with the highest and lowest degheasd!, resp. (lines 12—-13). l&'s degree
is at leastl.degree + 2, thenn tries to cause: to shift one of its connections from to [. But before
removingh’s connection withn, we ensure thatis willing to accepth’s connection. Therefore, contacts
[ (rather thanh) and asks it to try to connect to, and to askh to remove its connection with. To this



Connect task:
Failure detector task:
1. loop forever

2. gap — L — |neighbors| 22. loop forever
3. whilegap >0 23.  sleep (failuredetectiontimeout)
4. n «+— random node 24. foreach n € neighbors
5. send(CONNECT, |neighbors|) ton 25. if n.heartbeat < MIN_HEARTBEAT then
6 gap «— gap — 1 26. send LEAVE ton
7 sleep (connectimeout) 27. removeconnectiong)
28. else
Event handles: 29. n.heartbeat «— 0
8. upon receive(CONNECT, d) from n do
9.  if |neighbors| < Hthen Procedures:
10. add.connection 4, d,true) Procedure add.connection (noded n, int d, booleamck)
11. else 30. neighbors < neighbors ] {n,d,MIN_HEARTBEAT}
12. send(REDIRECT,lowest degree neightdo n 31 if ack = truethen

32. send(CONNECT.OK, |neighbors|) ton
13. upon receive(REDIRECT,n’) from n do

14. send(CONNECT, |neighbors|) ton’ Procedure removeconnection (node)
33. removen from neighbors

15. upon receive(CONNECT.OK, d) fromn do 34. removen from all heard_from lists

16. if [neighbors| < H then 35. if |[neighbors| < L then

17. addconnection 4, d,false) 36. wake up connect task

18. edse

19. send(LEAVE) ton

20. upon receive(LEAVE) from n do
21. removeconnectiong)

Figure 2: Overlay construction: connect and failure detector tasks.

end,n sends  CONNECT.TO,h) message td. If upon receiving this messadé&s degree is still<L,
and!/ has not handled another CONNEQD request in the last connetd timeout (lines 23-24), then
[ sends a CHANGECONNECTION message th. The recipienth, connects td (line 29) and sends a
DISCONNECT message to (line 30). This can increadés degree, but not to become higher thar 1,
sincel handles at most one CONNECIIO request at a time, and only if its degrde Moreover, note that

if I's degree will become higher than L, ant degree will remain above L, then Rule 1 will eventually
reducel’s degree back to L.

Proposition 1. If from some point onward no nodes join, leave, or are detected as faulty, then each node's
degreeis eventually either L or L+1, and at most 50% of the nodes have degree L-+1.

Proof (sketch): The connect task ensures that eventually, each node’s degree is between L and H. Rule 1
removes the connection between every two neighbors with degke@gthout reducing any node’s degree
below L. Thus, barring additional joins, leaves or detected failures, Rule 1 ensures that the overlay converges
to a state in which each node’s degree is between L and H and no two neighboring nodes havesd_degree
This implies that at least 50% of the nodes have a degree of L. However, with Rule 1, it is still possible for a
noden to have a degreel +1 when all ofn’s neighbors have a degree of L. In this case, Rule 2 is invoked at
noden, reducingn’s degree by one and increasing the degreeofowest degree neighbéby one without
changing the rest af’s neighbors’ degrees. Nows degree becomes-t1l and Rule 1 becomes enabled
again, removing the connection betweeandi. Thus, after activating Rule 2 and Rule 1 consecutively,

degree is reduced Bwhile the degrees of the rest afs neighbors remain L. Ifh's degree is still above

L+1, subsequent activations of the two reduction rules continue to redsidegree until it becomes either
LorL+1.



Disconnect task:

1. loop forever

2 sleep (disconnedimeout)
3. i« |neighbors|—L

4 if ¢ > 0 then

/* Rule1*/
cands « set ofi neighbors with highest degrees
foreach ¢ € cands
if c.degree < L then
cands — cands\ {c}
elseif c.id < id then
send(DISCONNECT) to ¢
/* Rule2*/
if cands = () then
h < neighbor with highest degree
| — neighbor with lowest degree
if |neighbors| > l.degree + 2 then
send(CONNECT.TO,h) to

Event handlers:
upon receive(DISCONNECT) from n do
if [neighbors| > L then

16.
17.
18.
19.

20.
21.

22.
23.
24.
25.
26.

27.
28.
29.
30.

send(DISCONNECT.OK) ton
removeconnectiont)

upon receive(DISCONNECT.OK) from n do
removeconnectiont)

upon receive{(CONNECT.TO, n’) from n do
if Ineighbors| <L A

clock — last_connect_to_time > connectto_timeoutthen
send(CHANGE_CONNECTION|neighbors|, n) ton’
last_connect_to_time«—clock

upon receive{(CHANGE_CONNECTIONd, n’) from n do
if |neighbors| < H then

add.connection 4, d,true)
send(DISCONNECT) to n’

Figure 3: Reducing node degrees.

4.2 Gossip-Based Multicast

Gossip task:

1. loop forever

N

sleep (gossipoundtimeout)
/* Send gossip messages to neighbors */
foreach n € neighbors
create new gossip message with newm.id
m.degree «— |neighbors|
m.ids «— {recent_mids|source # n}
m.reqs < ()
foreach mid € missing_msgs
if heard-from(mid).first = n then
m.reqs <— reqs U {mid}
send(GOSSIPn) ton
[* Update data structures */
move 1st element of eadteard_from(mid) list to end
recent_mids < (

Event handlers:

14.
15.
16.
17.

18.
19.

20.
21.
22.
23.

upon receive(GOSSIPn) fromn do
foreach id € m.ids A id ¢ messages
missing-msgs «— missing-msgs U{id}
appendn to heard_from(id)
/* Send requested messagesto n */
foreach r € regs
send(DATA,message with identifier z.id) ton

upon receive(DATA, m) from n do
messages.enqueue(m)
missing-msgs.remove(m.id)
recent_mids < recent_mids U{m.id}

Figure 4: Gossip-based multicast.

Each Araneola node gossips about recent messages identifiers with its neighbors and requests missing
messages from them. Thyessip task is presented in Fig. 4. Every gossipundtimeout, a node sends a
gossip message to each of its neighbors. A gossip messaget by a node to its heighbom is identified
by a message identifier.id, which includes:’s identifier (e.g., IP address and port) and a one byte serial
number (cyclic counter). The fielth.degree holdsa’s current degree (line 5). The set.ids includes
message identifiers thathas received in the last gossip round and has not heard about:fidine 6).
Finally, m.reqs are message identifiers thats requesting fromm. After sending the gossip messages, the
first element in eacheard_fromlist is moved to the end of that list (line 12), in order to vary the node from
which the message is requested.
When a node: receives a gossip messagefrom neighborn, for eachid in m.ids that is not in the



messages buffer, id is inserted intamissing_ msgs (line 16) andn is appended tteard _from(id) (line 17).
Then,a sends tan all the messages requestedninreqs. When a data message arrives, it is enqueued in
messages, removed frommissing_msgs, and its identifier is inserted inteecent_mids (lines 21-23). Peri-
odically, old messages are purged framessages andmissing_msgs. This garbage collection mechanism is
straightforward, and is omitted from the pseudo code.

4.2.1 Eliminating partitions

The probability that the overlay will become partitioned is negligible; in our dozens of experiments with
thousands of nodes, the overlay never became partitioned. Nevertheless, should a partition occur, we imple-
ment a simple mechanism for detecting this situation and recover from it. This mechanism is not included
in the pseudo code. It works as follows: at the end of each multicast session, every segks its local

view to a log file. Occasionally, during a multicast sessionhooses a random non-neighbor nedieom

its log file and sends a gossip message. Upon receiving a message not from a neighbowaits a

number of rounds that is larger than the maximum hop-count with which it receives multicast messages (the
hop-count is piggybacked on every multicast message), and then checks if it has received the identifiers in
m.ids from one of its neighbors. It did not receive any of these identifiers, then it deduces that the overlay

is partitioned. In this case, connects ta in order to merge the two connected components.

5 Evaluation

We have implemented Araneola in Java using UDP/IP. In this section, we evaluate Araneola on a single
LAN in Netbed [25]. In the next section, where we consider exploiting network proximity, we will evaluate
Araneola also on a WAN. We run multiple Araneola nodes per machine, and therefore need to space the
gossip rounds sufficiently as to allow all the nodes running on the same machine to complete their gossip
operation during a round. Thus, we chose a fairly large round duratidsetonds. Thdisconnect_timeout

is set to30 seconds, and thennect_timeout is 20 seconds. We begin our study, in Section 5.1, by evaluating
Araneola’s scalability and performance in a static setting. In Section 5.2 we study Araneola’s fault-tolerance.
In Section 5.3, we consider high churn.

5.1 Static Evaluation

In our static evaluation, all the nodes are created simultaneously, and remain up throughout the experiment.
In each round, a single data message is injected into the system, each time from a different machine. A
total of 200 data messages are sent in each experiment. Each experiment (with a given number of nodes and
choice of parameter settings) was run at lda#mnes, for a total of several dozens.

5.1.1 Theimpact of L

Araneola’s parameter L is very significant: it affects Araneola’s load, latency, and robustness. Fig. 5 shows
the impact of this parameter on message propagation rates in run80fitmodes (onl00 Netbed ma-
chines) and values of L ranging frohto 10. Each curve in the figure depicts the CDF of the average
number of nodes that receive a message by each hop count for a given value of L. As expected, the message
latency decreases as L increases.

In most of the experiments below, we set LstdMe chose this value because it provides a good balance
between the desired properties: each node sends a given message identifidiroaely and the latency to
reach all nodes is reasonabfarounds with1000 nodes an@ with 10, 000. Moreover, as we shall see below,



it yields a highly robust overlay and achieves 100% reliability at churn rates exceeding those measured on
the MBone [1]. We choose H to bel5 because we have observed that this choice achieves low overhead.
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5.1.2 Overlay propertiesand scalability

In order to understand Araneola’s scalability, we vafy the group size, fron500 nodes (onl0 Netbed
machines) tal0, 000 nodes (onl25 Netbed machines). L and H are setst@and 10, resp. At the end of
each experiment, we take a snapshot of the overlay structure, and then analyze its properties offline. We
measure node degrees as well as the overlay’s diameter, average distance, and connectivity. The results are
summarized in Table &. The first column shows the percentage of nodes whose degree is E)i.€he
remaining nodes’ degrees are-LL. In all of our experiments, Araneola converges to a state in which over
90% of the nodes have degree L. The exact percentage of nodes with degree L does not seem related to
N. The next column presents the smallest and largest measured diameters for every yalua ohses
where the same diameter was measured in all experiments, we present only one value. The diameter gives
a measure for thevorst case latency (in the absence of failures and message loss), whereas the average
latency depends on the average distance between two nodes in the overlay. This average is presented in the
following column, and itincreases gradually with Finally, we measure the overlay’s connectivity. In over
90% of our experiments, the overlayfisconnected, i.e., there are at leadisjoint paths between every
pair of nodes. In the few cases where the connectivity was lesssththere were at most nodes with a
connectivity of4, whereas the rest of the nodes had a connectivity he average number of node-disjoint
paths between every pair of nodes is presented in the last column. It does not valy.with

Fig. 7 depicts the message propagation rates measured for valtyesaafjing from500 to 10, 000. As
N increases, messages take longer to propagate, but the slow-down is gradual. The average hop-count in
each experiment is very close to the average distance in that experiment’s overlay (see Table 6, 3rd column).

5.1.3 Comparison with gossip protocol

We now compare Araneola to a standard gossip protocol [18] implemented using Araneola’s gossip-based
multicast module. The gossip protocol takes a paramgtats fan-out. Where an Araneola node sends
gossip messages to its neighbors, the gossip protocol sends gossip messagasimmly selected nodes

from its membership view. Whereas Araneola sends each message identifier downstream only, the gossip

3We did not analyze the average distance and connectivity for the experiments with0, 000.
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protocol sends all itsecent_mids to all the chosen targets. Thus, gossip protocol instantiated with a fan-out
of I’ sends information as many times as Araneola withE + 1.

We experiment withl 000 nodes or20 Netbed machines. In each experimettl) messages are sent.
Fig. 8 compares the average message propagation rates of Araneola=witand6 to those of the gossip
protocol with the corresponding fan-outs= 4 and5. Evidently, Araneola propagates information much
more effectively than the gossip protocol. Initially, the propagation rates are similar, but afte6abonds,
Araneola continues to effectively propagate the message, while the gossip protocol tapers off. Araneola
succeeds in disseminating all the messages to 100% of the no@desunds with = 5, and in6 rounds
with L= 6. In contrast, the gossip protocol only reaches 95.91% of the nodes on average with and
97.69% with 7 = 5. Indeed, according to previous studies [14], a fan-out4fs required for a gossip
protocol with1000 nodes. This is due to the fact that with a gossip protocol only the out-degree (fan-out) is
balanced, while the in-degree (fan-in) may be highly unbalanced. In contrast, Araneola’s in-degrees and out-
degrees are balanced as all links in the overlay are bi-directional. As more nodes have a given message, the
gossip protocol is more likely to “waste” its gossip on nodes that already have the message than Araneola,
and therefore is less effective at spreading the information to additional nodes.

5.2 Fault-tolerance and graceful degradation

We now study the fault-tolerance and robustness of the Araneola overlay. We consider two kinds of failures:
communication link failures and node failures. We study the overlay’s robustness with an offline analy-
sis of the overlay snapshot obtained at the end of static experimentd®ithand2000 nodes. To study
communication failures, we remove random subsets of edges from the overlay graph and analyze the re-
sulting graphs. This allows us to predict Araneola’s reliability and latency in the presence of message loss.
Similarly, we study Araneola’s resistance to node failures by removing random subsets of nodes.

We model node and edge failuresiadependent and identically distributed (11D). For node failures the
IID assumption has no significance since the overlay structure is random. Moreover, Bhagwan et al. have
found that host failures are indeed independent [2]. For edge failures, the IID assumption fails to capture a
situation in which some nodes have poorer links than others. The analysis of non-11D edge failure patterns
is an interesting subject for future work.

We first analyze the impact of edge removals on the overlay wittsland N = 1000. This overlay has
2547 edges. For each percentggec 50 of the edges, we removi different random subsets consisting
of p% of the edges from the overlay graph. The overlay becomes partitioned for the first time in one of the
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Figure 9: Resilience and graceful degradation of Araneola’s overlay.

ten experiments removing 11%80) of the edges, and then in one of the experiments remaifg(380).

In both cases, a single hode became disconnected from the rest. Fig. 9(a) shows how the removal of up to
19% of the edges affects the overlay’s characteristics. For gatlhhis range, the overlay is partitioned

in at most one out of ten experiments in whig¥h of the edges are removed. We observe that the average
diameter increases frofnto about8 when5-10% of the edges are removed, anddtevhen 15% of the

edges are removed. The average distance increases more gradually, suggesting that message loss has a ver
moderate effect on the average latency. The average number of disjoint paths also decreases gradually with
the failure rate. The bottom curve illustrates the average connectivity. The bars around each data point show
the maximum and minimum connectivity observed in experiments withpthighen the minimum goes does

to 0, there was a partition in one of th@ experiments. We next experiment witk-l4 and N = 1000. The

overlay is less robust in this case— it partitions in more than 10% of the cases whgneudgs. Fig. 9(b)

shows the overlay’s degradation when up to 11% of the edges are removed.

We next examine how many of the nodes are still connected to each other, i.e., what is the size of
the largest connected component in the graph. Fig. 9(c) depicts the average size of the largest connected
component after random edge removals fer L/5/6 with N = 1000 and for L= 5 with N = 2000. We
can clearly see that the overlay’s resilience to the removal of a given percentage of its enbyad ately
independent of N, as is expected ik-regular random graphs [11]: the curves f§r = 2000 and N =
1000 (both with L= 5) are barely distinguishable. As expected, the value of L does impact the overlay’s
robustness, but the difference betweer land L=6 is negligible. Remarkably, for£ 5, after the removal
of up to 38% of the edges, 99% of the nodes are still connected to each other, and only 1% of the nodes are
partitioned from the rest.
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We now turn our attention to node failures. Fig. 9(d) shows how node removals affect the properties of
an overlay with1000 nodes and & 5 when up tol5% of the nodes are removed. None of the experiments
with up to 15% removed nodes resulted in partitions. The overlay becomes partitioned in two of the ten
experiments in which 16%l60) of the nodes are removed. This suggests that even if 15% of the nodes
running Araneola fail during the brief time interval that it takes to detect and recover from failures (e.g., one
minute), Araneola can continue to deliver messages reliably to surviving nodes. As with edge removals, the
overlay exhibits graceful degradation: the diameter and average path length increase very moderately, while
the average number of disjoint paths moderately decreases. Whénthe overlay is half as robust to node
failures as with I= 5. It becomes partitioned in two of the ten runs with 8% of the nodes removed. Fig. 9(e)
shows the overlay’'s degradation when upy %6 nodes are removed.

Infig. 9(f), we examine the size of the largest connected component that survives following node failures,
forL=4/5/6 with N = 1000 and for L= 5 with N = 2000. Again, the overlay’s resilience shows exactly
the same trend witt' = 1000 as it does withV' = 2000. This suggests that Araneola’s resilience to
simultaneous failures of a certain percentage of its nodes is also independént\ifen L= 5, the largest
component still includes 99% of the nodes following the failure of up to 38% of the nodes. When L
99% of the nodes are still connected following the failure of 28% of the nodes. When 50% of the nodes fail,
the largest component with=t 5 still includes over 95% of the nodes, (giving 90% reliability), and with
L= 4, it includes 87% (76% reliability). As with edge removals, increasing L ffoio 6 achieves only
slightly better robustness to node removals when there is an unrealistically high failure percentage.

5.3 Dynamic Evaluation
5.3.1 Methodology

Our model for this evaluation is based on studies of user behavior in multicast groups on the MBone [1],
and in file sharing applications [23]. Both of these studies model the join and leave rates of most of the
nodes using an exponential distribution. Moreover, both studies observe that a small portion of the nodes
have substantially longer life times than others. However, these studies greatly differ in the mean life times
they measure: the mean life time measured on the MBone is generally very shoftpgirgutes in a typical
multicast session, whereas the average measured life time in a file sharing application is roughly one hour.
We designate a small subset (roughly 7%) of the nodgeraesverant. Perseverant nodes created at the
beginning of the experiment and remain active throughout the experiment. Subsequently, everya@inute,
additional (non-perseverant) nodes are awaken, until all nddes 6r 2000) are up. Each non-perseverant
awaken node join the multicast group (becoraetsve) with probability 0.5. Otherwise, the node remains
inactive. This gradual joining is modeled after the Berkeley session in [1]. Throughout the experiment, each
non-perseverant node once a minute flips a coin with probabilityorder to decide whether to change its
state from active to inactive and vice versa. We experiment with valuasrafging from0.01 (yielding
a mean life time ofl00 minutes) t00.15 (giving a mean life time o6.7 minutes). As a baseline, we also
experiment with\ = 0, in which case nodes do not change their states. There are roiggiiiynodes alive
at the end of each experiment with = 2000, (and resp.500 when N = 1000), regardless oA, since the
join rate is equal to the leave rate.

5.3.2 Join/L eave over head

We now measure the cost of constructing and maintaining the overlay in terms of the average number of

control messages received by each node, where a control message is any message other than DATA or
GOSSIP. In the appendix, we also analyze the expected number of control messages incurred by a single
join or leave operation when the system is stable. Fig. 10 shows the overhead measured for different values
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of A with N = 1000 and N = 2000. Remarkably, the overheattcreases as the rate of such events
increases, the only exception occurring wheimcreases frond to 0.01. Note that whem\ = 0, no leave

events occur. The measured average cost per join operation in this ddse, is’hich is very similar to

the expected overhead calculated at the appendix. The overhead decreases as the churn rate rises becaus
when many join and leave events occur concurrently, their costs can be amortized. E.g., a join event may
increase a node’s degree while a leave event is reducing it, eliminating the need for correcting the overlay.
Furthermore, we observe that the overhead does not increasévwitthis is especially impressive given

that the overhead for handling joins in structured overlays based on DHTSs increases logarithmically with the
number of nodes.
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5.3.3 Undisrupted service

The second challenge we address is providing an undisrupted service in the presence of churn. For each
messagen, we definenodes that are up during m’s transmission to be nodes that have joined at le&st

rounds beforen’s transmission, and did not leave at le@3trounds after the transmission. We chdge

as a very gross over-estimate. In fact, nodes can normally begin to receive messages reliably immediately
upon requesting to join. In all of our dynamic experiments, each message is received by 100% of the nodes
that were up during its transmission. Moreover, messages are deliveretheviime latency as in static

runs. We illustrate this in Fig. 11 folV = 1000; similar results were obtained witN = 2000.

6 Exploiting Network Proximity

We now preset an extension to Araneola that exploits network proximity by incorporating additional links
between nearby nodes. This extension runs in parallel with and independently of the basic overlay con-
struction and maintenance code presented in Section 4.1. The extension code has two components: (i) a
mechanism for locating nearby nodes; and (ii) a conmectrby task. The first component discovers nearby
nodes and stores them in a set namedrby_cand. The second component uses this set.

Generally speaking, Araneola can use a variety of mechanisms for locating nearby nodes. Our imple-
mentation does this as follows: at bootstrap time, each noeheasures the network-level hop-count dis-
tances to the nodes in its local view using the UNIX tracepath utility, and inserts themsedhl;_cand
set in an ascending order of their network-level hop-count distancesifrom

The connechearby task closely resembles the connect task presented in Section 4.1, except that no
reduction rules are applied and no REDIRECT messages are sent. Specifically, there are three control
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messages: CONNECNEARBY, CONNECTOK_NEARBY, and LEAVENEARBY, which correspond

to CONNECT, CONNECTOK, and LEAVE. In addition, both L and H are replaced by the parameter
NB, which is the maximum number of nearby neighbors the node is willing to be connected to, and the
neighbors set is replaced by theearby set, which holds the node’s current nearby neighbors. Note that
every node can set its own NB parameter to reflect its available bandwidth. Each CONNIEARBY
request is issued to the closest nodednrby_cand, rather than to a random node from the local view.

We evaluate this mechanism over the Internet, runmio@ nodes over25 Planet Lab [22] physical
machines, with no two machines at the same site. In all the experiments presented in this section, all the
nodes are created simultaneously, and remain up throughout the experiment. Although in principal, each
node can choose its own NB parameter, in our experiments, we use the same value of NB for all nodes.
We denote an experiment in which each node chooses L random neighbors and NB nearby neighbors as
<L,NB>.

It is known that in order to achieve the good propertieg-@égular graphs, each node should choose
at least three random neighbor [26]. Thus, we run experiments in which each node chooses three random
neighbors and three nearby neighbaet8(3>). We contrast these experiments against experiments in which
each node chooses six random neighbei®,(0>), and against experiments in which each node chooses six
nearby neighbors<{0,6>). In addition, we run experiments in which the each node’s degree is roughly
eight (<3,5>, and<5,3>). Note that all the overlays we experiment with have a low degree compared to
those used in previous systems [4, 16, 24]. For each selectieth B>, we run three experiments. In
all our experiments, more th&71% of the nodes end up with NB nearby neighbors, and more 9hghof
the nodes have exactly L random neighbors; the overall average node degrees in experimends3uith
<6,0>, and<0,6> are almost identical as are those of experiments witb> and<5,3>.

We quantify the effectiveness of our approach by measuring the average number of physical hops that
links in the extended overlay traverse. This metric is significant because a smaller hop-count distance implies
reduced communication latencies as well as less stress on physical links. The results are summarized in
Table 12. The first column shows the percentage of links between two nodes running on the same machine.
The second column shows the percentage of short links with a hop-count distahcehefe are Internet2
links between machines deployed at different sites belonging to the same enterprise. Finally, the third
column shows the average hop-count in the overlay. Clearly, as NB is increased at the expense of L, there
are more local and short links and the average number of physical hops that each link traverses is reduced.

<L,NB> || % of links on the same machine% of short links| average hop count
<3,3> 34.43 15.27 5.21
<6,0> 4.97 6.93 8.69
<0,6> 74.23 3.4 1.88
<3,5> 51.18 12.25 3.82
<5,3> 35.6 10.46 5.54

Figure 12: Hop-count statistics with different selectionscafNB>.

Having verified that the mechanism achieves its goal, we next check its impact on the overlay’s robust-
ness. We repeat the experiments of Section 5.2, i.e., we remove random subsets of edges and nodes from the
overlay graphs and measure the sizes of the largest remaining components. The top two curves in Fig. 13(a)
and Fig. 13(b) are for experiments withs,3> and <3,5>. These curves are indistinguishable. Slightly
below these are the curves for experiments with0> and <3,3>, which are also conjoined. The bottom
curve in both figures is for experiments witt0,6>. Remarkably, the robustness of an overlay with, 3>
is almost identical to that witk:3,5>, and the robustness of an overlay witls,0> is virtually identical to
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Figure 13: Graceful degradation with different selectiorcafNB>.

that with <3,3>. We believe that this stems from the fact that there is sufficient randomness in the choice
of links since: (i) the nodes inearb_cand are chosen from the randomized local view; and (ii) each node
is connected to at lea8trandom neighbors.

The curves for experiments with0,6> show why it is important to choose random nodes as neighbors:
in all these experiments, the overlay is partitioned even before we remove any edge or node. Moreover, as
the percentage of removed edges or nodes increases, the robustness of the overlay deteriorates much quicker
than when random edges are used.

We conclude from the experiments in this section that it is preferable for each node to have three random
neighbors, and to allocate the rest of its available bandwidth for communication with nearby nodes.

7 Conclusions

We have presented Araneola, a scalable reliable multi-point to multi-point application-level multicast system
for dynamic environments. We have evaluated Araneola over both a LAN and a WAN, and have shown that
Araneola is highly scalable. The only aspect of Araneola that varies with the number of nodes is message
latency, which increases logarithmically with the group size, whereas Araneola’s load, reliability, resilience

to message loss, resilience to simultaneous node failures, and overhead for handling join and leave events
are all independent of the group size. Araneola can deliver messages with high reliability and bounded
latency in the presence of sizable message loss rates, simultaneous failures of a certain percentage of the
nodes, and high churn. The failure rates that Araneola can withstand depend on a tunable parameter. As the
failure rate increases beyond its expectation, Araneola’s reliability degrades gracefully. We have also shown
how to extend Araneola to exploit available bandwidth for communication with nearby nodes. Such an
approach substantially reduces the communication costs and message latency without hurting the overlay’s
robustness.
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A Analyzing the Join/L eave Over head

We calculate the overhead for the simple case where a single join or leave occurs when the system is stable,
i.e., each node’s degree is either L or L, and no two neighboring nodes have a degreejof LWe assume
that the probability that a node has a degree ofk, isnd the probability that a node has a degree-pf lis

1-p=g.

A.1 Theoverhead for join

We begin by calculating the expected overhead for a single CONNECT request. Assume thateods a
CONNECT request to node There are three possible casest fips a degree of L and all 6§ neighbors
also have a degree of L; (if)has a degree of L and at least one of its neighbors has a degreel pbt (iii)
t has a degree of-k1. In the latter case, all afs neighbors have a degree of L. The probability for case (i)
is pi*+1, the probability for case (ii) ip(1 — p), and for case (jii) it isl — p.

In case (i),c sends one CONNECT messagettand in returnt sends one CONNECDK message
to ¢, total of two messages. In case (it)first sends one CONNECT message tandt responds with a
CONNECT.OK. In addition, two messages (DISCONNECT and DISCONNEGTK) are sent in order to
reduce the degree ofand one of its neighbora, from L+1 to L. Thus, a total of four control messages are
sent. In case (iii)¢ again first sends one CONNECT messageand in returnt sends one CONNECDK
to c. Now, t's degree becomes+2 while the rest ot’s neighbors have a degree of L. Thusgctivates the
second reduction rule (see Section 4.1). Firsends to one of its neighbors, a CONNECTTO message
with the identity of another neighbaou,”. Then,n’ sends a CHANGECONNECTION message t” with
the identity of nodé. In return,n” sends a CONNECT messagertoand a DISCONNECT messagetto
Finally, n’ sends a CONNECDK message ta” andt sends a DISCONNECDK message ta”. Now,
the degrees afandn’ are L+1 and the degree of” remains L. In the next iteration of the reduce algorithm,
eithert or n’ sends a DISCONNECT message to the other and the other replies with a DISCONNECT
The total number of messages sent in this case is ten. The expected number of control messages sent for a
single CONNECT request is therefo@™+! + 4p(1 — p*) 4+ 10q = 4p+ 10qg — 2p"*1. Thus, the expected
overhead associated with a single join operation during a stable peribiis:- 10q — 2p~*+1). Recall that
when the system is stable, roughl3” of nodes have a degree of L (when L is set to 5), and the rest of the
nodes have a degree oftll. Substitutings for L, 0.92 for p, and0.08 for ¢, we get an overhead of roughly
16.326 messages.

A.2 Theoverhead for leave

Assume that nodesends a LEAVE message to nadé& here are two possible cases:t(fjas a degree of L;

or (ii) t has a degree of-k1. The probability of case (i) i, and the probability of case (ii) ig In the first
case,l sends a LEAVE message to Subsequentlyt sends a CONNECT request to a random new node.
We showed above that the expected overhead for sending a CONNECT redigestli8q — 2p~*!1. Thus,

the expected number of messages sent in the first casedp + 10g — 2p“*1. In the second casésends a
LEAVE message te. However, in this case,does not send any messages as its degree is L. Thus, the total
expected overhead for sending a LEAVE messagg(is:+ 4p + 10q — 2p~*1) + ¢. The expected number

of LEAVE messages sent upon a node leaving the systeplis: ¢(L + 1) = L + ¢. Thus, the expected
number of messages sent upon a node leaving the systeh is:q) * [p(1 + 4p + 10g — 2p**1) + ¢].
Substitutings for L, 0.92 for p, and0.08 for ¢, we get an overhead of roughty.35 messages.
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A.3 Theory versuspractice

As we have shown, the overhead for a leave operation is inherently larger than the overhead for a join
operation. Recall that experiments in Section 5.3.2 shows that the average overhead for a single join or
leave operation is roughly betweeR.1 and18.2 control messages when= 0.01. Such experiments are

very similar to a stable system, as the churn rate is low. We observe that the measured overhead is closer to
the overhead for a join operation than to the overhead for a leave operation. This is due to the fact that in
a dynamic experiment there are more joins than leaves, since each dynamic experiment starts with no live
nodes and ends with several alive nodes. E.g., in a dynamic experimer0@itmodes and\ = 0.01 there

were 1411 joins and387 leaves. Thus, according to the formula above, the expected overhead for a join

or leave operation is1411 = 16.326 + 387 = 20.35)/1798 = 17.19. The difference between this expected
overhead and the measured overhead in Section 5.3.2 stems from the fact that the system is not fully stable,
and hence some CONNECT messages are redirected to other nodes when a node with a degree of H receives
a CONNECT message.
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