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Abstract— We describe an approach for retrieving three-
dimensional objects similar to a given one from a database. The
key idea of our technique is to decompose each object into its
meaningful components, and fit each component to a basic shape.
This decomposition is represented as an attributed graph, which
is considered the signature of the object. Our signature leverages
human vision theories such as Marr’s and Biederman’s. We show
that this signature gives rise to a retrieval algorithm which is
invariant to non-rigid transformations. Finally, a system which
realizes our technique was built and tested on a database of
about 400 objects. The paper presents the retrieval results and
conclusions are being drawn.

I. INTRODUCTION

Given a database of objects and a specific object, our
goal is to retrieve from the database objects similar in shape
to the specific one. We assume that the objects are given
as polygonal meshes, the most common representation in
computer graphics applications. Though the problem has been
extensively investigated in the context of images [27], [1] and
polygonal curves [2], [13], [3] it is a relatively new research
topic for meshes [11], [23], [12], [24], [29].

A common practice is to represent each object by a few
properties – a signature – and base the retrieval on the
similarity of the signatures. Various signatures have been
proposed in the literature. Some signatures consist of local
properties of the shapes, but not their global structures. For
instance, in [24], histograms of properties such as colors and
normals are considered while probability shape distributions
are discussed in [23]. Another alternative is to voxelize the
given mesh and use a spherical harmonic representation [15].

Other papers consider global properties, such as a shape
moments signature [11] or a sphere projection signature
which computes the amount of “energy” required to deform
an object into a sphere[18]. In these cases the objects need to
be normalized ahead of time.

Our goal is to compare the global structures of the meshes.
In [12], it is proposed to use a multiresolutional Reeb graph
(MRG) as a signature. In general, the Reeb graph is a skeleton
determined using a scalar function. In particular – geodesic
distances are used in [12]. We too, propose to represent an
object by a graph. However, our graph follows the footsteps
of human visual perception theories such as Marr’s [21] and
Biederman’s [6]. Practically, these approaches lead to very
small graphs which are advantageous both computationally
and storage-wise.

Marr [21] claims that the human brain constructs a three-
dimensional viewpoint-independent model of the image seen.

This model consists of objects and spatial inter-relations
between them. Every three-dimensional object is segmented
into primitives, which can be well approximated by a few sim-
ple shapes. Biederman’s Recognition-By-Components (RBC)
theory [4], [5] claims that the human visual system tends
to segment complex objects at regions of deep concavities
into simple basic shapes, geons. The simple attributed shapes
along with the relations between them form a stable three-
dimensional mental representation of an objects.

Our approach attempts to succeed these theories. The
key idea is to decompose each object into its meaningful
component and to match each component to a basic shape.
After determining the relations between these components, an
attributed graph representing the decomposition is constructed
and considered the object’s signature. Given a database of sig-
natures and one specific signature, this signature is compared
to other signatures in the database, and the most similar objects
are retrieved.

Computationally, constructing this signature for a mesh
in three dimensions should be easier than doing so for its
projection into an image. After all, the whole object can be
“seen”, and problems like occlusion, self-occlusion, lighting
effects and reflections, are avoided. Thus both segmentation
and basic shape matching are facilitated.

Another important benefit of the proposed signature is its
invariance to non-rigid-transformations. For instance, given
a human object, we expect its signature to be similar to
signatures of other human objects whether they bend, fold
their legs or point forward. Figure 1 illustrates this as well as
the results of our experiments. In this figure, the most similar
objects to the human test object at the upper left corner were
retrieved. All the 19 humans in a database consisting of 388
objects, were ranked among the top 21 objects, and 17 among
the top 17. Invariance to non-rigid-transformations is hard to
achieve when only the geometry of an object is considered.

An additional advantage of the proposed signature is being
compact. Thus, signatures can be easily stored even for large
databases and transfered between databases.

The remaining of the paper is structured as follows. Sec-
tion II outlines our approach. Sections III– IV address the main
issues involved in the construction of a signatures. In particu-
lar, Section III discusses mesh decomposition into meaningful
components while Section IV describes the determination of
basic shapes. Section V presents our experimental results.
Section VI concludes and discusses future research directions.
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Fig. 1. Retrieval of top 20 objects similar to to the top left-most human figure

II. SYSTEM OVERVIEW

Given a database of meshes in a standard representation
consisting of vertices and faces (e.g., VRML), and one specific
object O, the goal is to retrieve from the database objects
similar to O. This section outlines our technique.

We start with a couple of definitions. Let S be an orientable
mesh. It need neither be triangulated nor closed or a 2-
manifold.

Definition 2.1: Decomposition: S1, S2, . . . Sk is a decom-
position of S iff (i) ∀i, 1 ≤ i ≤ k, Si ⊆ S, (ii) ∀i, Si is
connected, (iii) ∀i 6= j, 1 ≤ i, j ≤ k, Si and Sj are face-wise
disjoint and (iv) ∪k

i=1Si = S.
Definition 2.2: Decomposition graph: Given a decompo-

sition S1, S2, · · ·Sk of a mesh S, a graph G(V, E) is its
corresponding decomposition graph iff each component Si is
represented by a node vi ∈ V and there is an arc between
two nodes in the graph iff the two corresponding components
share an edge in S.

In an off-line stage, signatures are computed for each
object in the database and stored. This is done in three
steps. First, the object is decomposed into a small number of
meaningful components. Next, each component is classified as
a basic shape: a spherical surface, a cylindrical surface, a cone
surface or a planar surface. Finally, a signature – an attributed
decomposition graph – is constructed, such that the attributes
were chosen according to [4], [5]. Each node is associated with
an attribute – the basic shape of the corresponding component.

Moreover, each arc is attributed by the relative surface area
of its endpoint components (i.e., greater, smaller, equal). We
elaborate on mesh decomposition and shape determination in
the next sections.

In an online interactive step, the user specifies an object
(which might or might not belong to the database), and the
system retrieved from the database the most similar objects to
this object. This step requires the comparison of graphs.

Graph matching and subgraph isomorphism has been ap-
plied to many problems in computer vision and pattern recog-
nition e.g., [19], [26], [32], [17], [25], [9], [33]. In our work
we use the work presented in [22] which uses error-correcting
subgraph isomorphism. However, any other existing system
for sub-graph isomorphism can be used as well.

The key idea is to define a graph edit operation for each
possible error type. Possible operations are deletion, insertion
and substitution of nodes and arcs (i.e., changing attributes).
Application–dependent cost functions are associated with each
edit operation. Given a couple graphs, a sequence of edit
operations with minimal cost is sought, such that applying
the sequence to one of the graphs results in a subgraph
isomorphism with the other.

Formally, we are given two graphs, G = (V, E, µ, ν) and
G′ = (V ′, E′, µ′, ν′), where V (V ′) is the set of nodes of G
(G′), E (E′) is its set of arcs, µ (µ′) is a function which
assigns attributes to nodes and ν (ν ′) is a function which
assigns attributes to arcs. We are also given a set of graph edit



operations and their corresponding cost functions. The goal
is to find the optimal error-correcting subgraph isomorphism
(∆, g), where ∆ is a sequence of edit operations and g is
an isomorphism, such that there is a subgraph isomorphism g
from ∆(G) to G′ and the cost C(∆) of ∆ is minimal.

The algorithm that finds (∆, g) maintains a search tree. The
root of the search tree contains an empty mapping and is
associated with cost 0. At the next level of the search tree,
the first node of G is mapped onto nodes in G′. Each such
mapping, along with its corresponding cost of the relevant edit
operation, is a node in the search tree. The generation of the
next nodes is then guided by the cost of the edit operations.
The node representing the mapping with the lowest cost in the
current search tree is explored by mapping a new node of G
onto every node of G′ that has not yet been used in the path
and the corresponding costs are calculated.

When the first mapping γ ′ describing a complete subgraph
isomorphism from G to G′ is found, a threshold parameter
is set to the cost C(γ′) of γ′. A node having a cost greater
than the threshold is never explored. Other nodes are explored
until a mapping with the minimal cost is found that represents
a subgraph isomorphism from the complete graph G to G′.

This procedure is applied to the graph representing the
query object against each graph in the database. It returns a
corresponding error value for each pair. The lower the error,
the less edit operations are required (or the “cheaper” these
operations are), and thus the more similar the objects are. The
objects are therefore retrieved in a ascending order of their
error values.

III. MESH DECOMPOSITION

The first issue is how to decompose a mesh into its
meaningful components. One option is to decompose it into
solids, as common in computational geometry [8]. There are
a few drawbacks to this approach. First, it is applicable only
to two-manifolds, whereas most of the existing models found
on the Internet are not. Second, programming solid decom-
position algorithms is still considered challenging. Finally,
solid decomposition might suffer a quadratic blowup, which
makes it impractical for large models and in particular to our
application.

The other option is to decompose only the surfaces of the
objects. This is the approach we pursue in this paper.

Since “the human visual system tends to segment com-
plex objects at regions of deep concavities into simple basic
shape” [4], [5], convexity should obviously be taken into
account.

In [14] it is proposed to consider convexity as well as
geodesic distances for determining a decomposition. Though
the algorithm indeed finds the meaningful components, it is
too expensive for our application which requires the decompo-
sition of large databases. Since a rough decomposition suffices
in our cases, we can trade-off the quality of the decomposition
for the speed of producing it.

In [7] the problem of decomposing a mesh into convex sub-
meshes is discussed, where a sub-mesh is called convex if it

lies entirely on the boundary of its convex hull. It is proved that
the optimization problem is NP-complete. Nevertheless, linear
greedy flooding heuristics are used for generating convex
decompositions. These heuristics work on the dual graph H
of mesh S, where nodes represents facets and arcs join nodes
associated with adjacent facets. The class of greedy flooding
heuristics refers to the strategy of starting from some node in
H and traversing H , collecting nodes along the way as long
as the associated facets form a convex sub-mesh. When no
adjacent nodes can be added to the current component, a new
component is started and the traversal resumes.

Another linear decomposition algorithm proposed in the
literature is the Watershed decomposition algorithm [28],
[20] which decomposes a mesh into catchment basins, or
watersheds. Let h, h : V → R be a discrete height function
defined over V , the set of vertices of S. A watershed is
a subset of V , consisting of vertices whose path of steepest
descent terminates in the same local minimum of h.

The key idea of the Watershed decomposition algorithm is
to let vertices descend until a labeled region is encountered,
where all the minima are labeled as a first step. A post-
processing merging step is needed in order to avoid over
segmentation.

As noted in [34], one problem of the watershed algorithm
regards the type of components generated by it [20]. The
algorithm might produce different decompositions for input
models having similar geometries but different triangulations.
This is highly undesirable for retrieval applications. Moreover,
even planar regions might be decomposed, which is often
unacceptable. These problems arise from the definition of the
height function as an approximation of the curvature defined
on the vertices (or edges) of the mesh, which causes the value
of the curvature to depend on the exact triangulation.

To solve this problem it is proposed to define a new height
function which does not depend on a curvature estimation,
but rather on the edges of the mesh: h(edge) = 1 − cos θ
where θ is the dihedral angle of the edge. Since this height
function does not depend on the degree of the vertices, planar
sub-meshes are not decomposed.

Yet, we still face the major problem with both the water-
shed decomposition and the convex decomposition – over-
segmentation (i.e., obtaining a large number of components).
The reason for over-segmentation is the fact that most large
objects have many small concavities, giving rise to many
components. The goal of our application, however, is to obtain
only a handful of components.

To solve over-segmentation, it is proposed in [20] to merge
regions whose watershed depth is below a certain threshold.
Other, more general solutions, are studied in [34] and we
follow them here.

The first solution is to merge components based on their
surface areas. The intuition is that small components are less
vital to recognition [4]. Let Area(S) be the surface area
of mesh S. If the surface area of a component is less than
qArea(S) and the sum of the surface areas of the remaining
components is greater than pArea(S) (where p and q are



(a) Convex Decomposition (b) Convex Decomposition, merging (c) Convex Decomposition , deleting
7 components 4 components 4 components

(d) Watershed (e) Watershed, merging (f) Watershed, deleting
12 components 5 components 5 components

Fig. 2. Decompositions of a rook

parameters), this component is merged with a neighboring
component having the largest surface area. This process is
done in ascending order of surface areas and continues until
all the small components become sufficiently large.

The drawback of merging is that it might result with
undesirable shapes. In other words, even though the initial
components were determined by convexity, after the compo-
nents have been merged, their shape might turn out to be
complex and thus will not fit any basic shape.

To overcome this drawback, the other solution, which our
experiments have indicated to be the best, is to ignore the small
components altogether. Only the original large components
are taken into account both in the construction of the de-
composition graph and in determining the components’ basic
shapes. The small components are used only to determine
the neighboring relations between the large components. Our
experiments, which will be discussed in Section V, support
Biederman’s observation that “recognition can be fast and
accurate” even if “only two or three geons of a complex object
are visible” [6].

Figure 2 presents the results obtained by four variants of
the general scheme, when applied to a rook model. Obviously,
the number of components decreases when small components
are merged or deleted. Moreover, as can be seen in Fig-
ures 2(c),2(f), even when the small components are deleted,
there is still sufficient information to visually recognize the
rook. Finally, Figures 2(e) demonstrates the drawback of
merging – the red component does not resemble any basic

shape.
In summary, the first step in constructing a signature of

an object is to decompose it into a handful meaningful
components. A decomposition algorithm should be efficient,
since it should run on large databases which contain large
objects. In this section we have addressed these issues by
augmenting linear algorithms – the watershed decomposition
and a greedy convex decomposition – with a post-processing
step which either eliminates small components or merges them
with their neighbors. We will show in the sequel how the
various algorithms compare in the context of retrieval.

IV. BASIC SHAPE DETERMINATION

The second issue in the construction of a signature is basic
shape determination. Given a sub-mesh, which of the four
basic shapes – a spherical surface, a cylindrical surface, a cone
surface or a planar surface – better fits this component?

Our problem is related to the problem of fitting implicit
polynomials to data and using polynomial invariants to rec-
ognize three-dimensional objects. In [31], a method based
on minimizing the mean square distance of the data points
to the surface is described. A first-order approximation of
the real distance is used. In [16], a fourth-degree polynomial
f(x, y, z) is sought, such that the zero set of f(x, y, z) is stably
bounded and approximates the object’s boundary. A proba-
bilistic framework with an asymptotic Bayesian approximation
is used in [30].



In order to fit a basic shape to a component, we first sample
the given component. A non-linear least-squares optimization
problem, which fits each basic shape to the set of sample
points, is then solved. The approximate mean square dis-
tance from the sample points to each of the basic surfaces
is minimized with respect to a few parameters specific for
each basic shape. The basic shape with the minimal fitting
error represents the shape attributes of the component. The
algorithm for fitting the points to a surface is based on [31].
We formalize it below.

Let f : Rn → Rk be a smooth map, having continuous first
and second derivatives at every point. The set of zeros of f ,
Z(f) = {Y |f(Y ) = 0}, Y ∈ Rn is defined by the implicit
equations f1(Y ) = 0, · · · , fk(Y ) = 0 where fi(Y ) is the i-th
component of f , 1 ≤ i ≤ k.

The goal is to find the approximate distance from a point
X ∈ Rn to the set of zeros Z(f) of f . In the linear case,
the Jacobian matrix Jf(X) of f with respect to X is a
constant Jf(X) = C, and f(Y ) = f(X) + C(Y − X).
The unique point Ŷ that minimizes the distance ‖Y − X‖,
constrained by f(Y ) = 0, is given by Ŷ = X − C

†f(X),
where C

† = C
T(CC

T)−1 is the pseudo-inverse [10]. If C is
invertible then C

† = C
−1. Finally, the square of the distance

from X to Z(f) is given by

dist(X, Z(f))2 = ‖Ŷ − X‖2 = f(X)T (CC
T )−1f(X). (1)

For the nonlinear case, Taubin [31] proposes to approximate
the distance from X to Z(f) with the distance from X to the
set of zeros of a linear model of f at X , f̃ : Rn → Rk,
where f̃ is defined by the truncated Taylor series expansion
of f , f̃(Y ) = f(X) + Jf(X)(Y − X). But, f̃(X) = f(X),
Jf̃(X) = Jf(X), and the square of the approximated distance
from a point X ∈ Rn to the set of zeros Z(f) of f is given
by

dist(X, Z(f))2 ≈ f(X)T (Jf(X)Jf(X)T )−1f(X). (2)

Specifically, for the basic shapes we are considering, n =
3, k = 1, and the set of zeros Z(f) of f is a surface in
three-dimensions. The Jacobian Jf(X) has only one row and
Jf(X) = (∇f(X))T , where ∇f(X) is the gradient of f(X).

In this case, the approximated distance becomes

dist(X, Z(f))2 ≈ f(X)2/‖∇f(X)‖2. (3)

Moreover, we are interested in maps described by a finite
number of parameters (α1, · · · , αr). Let φ : Rn+r → Rk be a
smooth function, and consider maps f : Rn → Rk, which can
be written as f(X) ≡ φ(α, X), where α = (α1, · · · , αr)

T ,
X = (X1, , · · · , Xn) and α1, · · · , αr are the parameters.

The approximated distance from X to Z(φ(α, X)) is then

dist(X, Z(φ(α, X)))2 = δφ(α, X)2 (4)

≈ φ(α, X)T (Jφ(α, X)Jφ(α, X)T )−1φ(α, X).

In particular, for three-dimensional space

δφ(α, X)2 ≈ φ(α, X)2/‖∇φ(α, X)‖2. (5)

We can now formalize the fitting problem. Let P =
{p1, · · · , pm} be a set of n-dimensional data points and
Z(φ(α, X)) the set of zeros of the smooth function φ(α, X).
In order to fit P to Z(φ(α, X)) we need to minimize
the approximated mean square distance ∆2

P (α) from P to
Z(φ(α, X)):

∆2
P (α) =

1

m

m
∑

i=1

δφ(α, pi)
2 (6)

with respect to the unknown parameters α = (α1, · · · , αr)
T .

This is equivalent to minimizing the length of the residual
vector Q = (Q1, · · · , Qm)T

‖Q(α)‖2 =

m
∑

i=1

Qi(α)2 = m∆2
P (α) (7)

where Qi(α) = δφ(α, pi), i = 1, · · · , m.
The Levenberg-Marquardt algorithm can be used to solve

this nonlinear least squares problem. This algorithm iterates
the following step

αn+1 = αn−(JQ(αn)JQ(αn)T +µnIm)−1JQ(αn)T Q(αn),

where JQ(α) is the Jacobian of Q with respect to α:
JijQ(α) = ∂Qi

∂αj
(α), for i = 1, · · · , m, and j = 1, · · · , r, and

µn is a small nonnegative constant which makes the matrix
JQ(αn)JQ(αn)T + µnIm positive defined.

At each iteration, the algorithm reduces the length of the
residual vector, converging to a local minimum.

THE DISTANCE OF A 3D POINT TO THE BASIC SHAPES:
We can now explicitly define the square of the distance
δφ(α, X) from a three-dimensional point X to the set of zeros
Z(φ(α, X)) of φ(α, X) for our basic shapes, three of which
are quadrics (i.e., sphere, cylinder, cone) and the fourth is
linear (i.e., plane).

A quadric, in homogeneous coordinates, is given by
XT MX = 0 in the global coordinate system, where M
is a 4 × 4 matrix and X is a vector in R4. In its local
coordinate system, it is given by X ′T M ′X ′ = 0, where
X = TrRxRyRzScX

′, Tr is a translation matrix Rx, Ry, Rz

are rotation matrices and Sc is a scale matrix.
If M ′ is known, M can be calculated and the equation of

the quadric in the global coordinate system can be obtained.

φ(tx, ty, tz , θx, θy, θz, sx, sy, sz, X) = XT MX = 0,

where the parameters are the translation, rotation and scale.
Then, for each basic quadric, the square of the approximated

distance δφ(tx, ty, tz, θx, θy, θz, sx, sy, sz, Xp) from a three-
dimensional point Xp to the quadric can be determined by

δφ(tx, ty, tz , θx, θy, θz, sx, sy, sz, Xp)
2 ≈

≈
φ(tx, ty, tz, θx, θy, θz, sx, sy, sz, Xp)

2

‖∇φ(tx, ty, tz, θx, θy, θz, sx, sy, sz, Xp)‖2
=

=
φ(tx, ty, tz, θx, θy, θz, sx, sy, sz, Xp)

2

(∂φ
∂x

)2 + (∂φ
∂y

)2 + (∂φ
∂z

)2
(8)



Hereafter we use the above equation to calculate δφ for each
quadric basic shape, which are all special cases of the above.

For a spherical surface with radius r0 = 1, defined in its
local coordinate system centered at the center of the sphere,
we have

M ′ =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1









.

φ(tx, ty, tz, r, x, y, z) = (x−tx)2+(y−ty)
2+(z−tz)

2−r2 = 0.

For a cylindrical surface with radius r0 = 1, defined in its
local coordinate system, where the z axis is the axis of the
cylinder,

M ′ =









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1









.

The implicit equation in the global coordinate system is

φ(tx, ty, tz, θx, θy, r, x, y, z) = (9)

= D1(x − tx)2 + D2(y − ty)2 + D3(z − tz)
2 +

+2C1(x − tx)(y − ty) + 2C2(x − tx)(z − tz) +

+2C3(y − ty)(z − tz) − r2 = 0

where

D1 = cos2 θy,

D2 = cos2 θx + sin2 θx sin2 θy,

D3 = sin2 θx + cos2 θx sin2 θy,

C1 = sin θx sin θy cos θy,

C2 = − cos θx sin θy cos θy,

C3 = sin θx cos θx cos2 θy,

B1 = −txD1 − tyC1 − tzC2,

B2 = −txC1 − tyD2 − tzC3,

B3 = −txC2 − tyC3 − tzD3.

Note that (tx, ty, tz) can be any point on the cylinder axis,
thus the cylinder is over parameterized. This can be solved by
setting one of these three parameters to zero.

For of a cone surface with g0 = r0/h0 = 1, where r0 is
the radius and h0 is the height, defined in its local coordinate
system, where the z axis is the axis of the cone and the origin
of the coordinate system is the apex of the cone,

M ′ =









1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0









.

The implicit equation in the global coordinate system is

φ(tx, ty, tz, θx, θy, g, x, y, z) =

= D1(x − tx)2 + D2(y − ty)2 + D3(z − tz)
2 +

+2C1(x − tx)(y − ty) + 2C2(x − tx)(z − tz) +

+2C3(y − ty)(z − tz) = 0

(10)

where

D1 = cos2 θy − g2 sin2 θy,

D2 = cos2 θx + sin2 θx sin2 θy − g2 sin2 θx cos2 θy,

D3 = sin2 θx + cos2 θx sin2 θy − g2 cos2 θx cos2 θy,

C1 = (1 + g2) sin θx sin θy cos θy,

C2 = −(1 + g2) cos θx sin θy cos θy,

C3 = (1 + g2) sin θx cos θx cos2 θy,

B1 = −txD1 − tyC1 − tzC2,

B2 = −txC1 − tyD2 − tzC3,

B3 = −txC2 − tyC3 − tzD3.

Finally, a plane is defined by the equation ax+by+cz+d =
0. The square of the distance from a point p = (xp, yp, zp) to
the plane is simply

δφ(a, b, c, d, xp, yp, zp)
2 =

(axp + byp + czp + d)2

a2 + b2 + c2
.

V. EXPERIMENTAL RESULTS

We tested our retrieval algorithm on a database consisting
of 388 objects which were downloaded from the World-Wide
Web. Among the 388 objects we identified six classes: 19
models of human figures, 18 models of four-legged animals,
9 models of knives, 8 models of airplanes, 7 models of missiles
and 7 models of bottles. The other models were not classified.

Four different decomposition heuristics were used in our
experiments:

1) Greedy convex decomposition, where small patches are
deleted;

2) Greedy convex decomposition, where small patches are
merged with their neighbors;

3) Watershed decomposition, where small patches are
deleted;

4) Watershed decomposition, where small patches are
merged with their neighbors.

Based on these four decomposition heuristics, four signature
databases were built. Identical retrieval experiments were
applied to each database. In each experiment a test object
was chosen and the system was queried to retrieve the most
similar objects to this test object in ascending order. At least
one member from each of the six classes was considered as a
test object.

Figures 3– 6 demonstrate some of our results. In each figure
the test object is the left-most, top object, and the objects
retrieved are ranked from left to right. In particular, Figure 3
presents the most similar objects to Detpl (at the top-left), as
retrieved by our algorithm. All the eight airplanes of the class
were retrieved among the top eleven. Figure 4 presents the
results of retrieving objects similar to Cat2. Sixteen out the
eighteen members of the 4-legged animal class were retrieved
among the top twenty. Figure 5 presents the retrieved most
similar objects to Knifech. Eight out of the nine knifes of the
class were retrieved among the top ten. Figure 6 demonstrates



Fig. 3. The most similar objects to Detpl (top left) as retrieved by the {Convex decomposition, delete small patches} sub-method

Fig. 4. The most similar objects to Cat2 as retrieved by the {Watershed decomposition, merge small patches} sub-method

the most similar objects to the missile at the top left as
retrieved by our algorithm. Six out of the the seven class
members were retrieved among the top nine. Note that in all
the above cases the members of each class differ geometrically.
Yet, their decomposition graphs are similar and therefore they
were found to be similar.

There is one class, however, where our algorithm does
not perform as well, the class of bottles. This class contains
seven members (see Figure 7). Though the objects seem
similar geometrically, their connectivity differs. The Beer,
Ketchup and Tabasco bottles consist each of 4-8 disconnected
components while Bottle3, Champagne, Whiskey and Plastbtl



Fig. 5. The most similar objects to Knifech as retrieved by the {Watershed decomposition, delete small patches} sub-method

Fig. 6. The most similar objects to Aram as retrieved by the {Convex decomposition, merge small patches} sub-method

Fig. 7. The bottle class

consist each of only one or two components. Because the
geometric similarity is not reflected in the structure of the
objects, the results of the retrieval experiments are not as good,
as can be seen in Table I.

Table I summarizes the results of our experiments. The first
column shows the classes and the test objects. For each class,
the number of members of the class N is shown. The next
four columns of the table summarize the results obtained for
each test object and for each sub-method. Each result (n/m)
represents the number of the members of the same class n
retrieved among the top m objects. The best result for each
test object is emphasized. The best method for each test object
and for each class is presented in the last column.

A couple of general conclusions can be drawn. First, the
Watershed decomposition outperform convex decomposition.
This fact might be surprising since convexity is the main
factor in human segmentation. However, since the problem

is hard and heuristics need to be applied, the resulting convex
segmentation is usually not optimal. Moreover, the height
function used in the Watershed algorithm considers convexity
as well.

Second, considering only the original large components and
deleting the small ones performs better than merging small
components with their neighbors. This can be explained by
the fact that merging results in complex shapes which might
cause the failure of our basic shape determination procedure.

VI. CONCLUSION

We presented in this paper a new signature for shape-based
retrieval of meshes. This signature is an attributed graph,
where each node represents a meaningful component of the
object, and there are arcs between nodes whose corresponding
components are adjacent in the model. Every node is attributed
with the basic shape found to best match the component while



Class(N)/
Object Convex Convex Watershed Watershed best method

delete merge delete merge
Airplanes(8) Watershed, delete
Detplane 5/6 4/6 5/6 4/6 Watershed, delete

6/9 4/9 7/9 5/9 Watershed, delete
8/16 6/16 8/16 7/16 Watershed, delete

Worldw 3/6 1/6 6/6 5/6 Watershed, delete
5/9 2/9 6/9 6/9 Watershed, delet/merge

7/16 5/16 8/16 8/16 Watershed, delete/merge
747 4/6 3/6 5/6 4/6 Watershed, delete

4/9 3/9 5/9 6/9 Watershed, merge
6/16 4/16 7/16 7/16 Watershed, delete/merge

Animals(18) Watershed, delete/merge
Cat2 6/8 7/8 6/8 7/8 Convex/Watershed, merge

8/14 10/14 11/14 11/14 Watershed, delete/merge
11/20 13/20 14/20 16/20 Watershed, merge

Tiger3 6/8 7/8 7/8 8/8 Watershed, merge
9/14 10/14 11/14 10/14 Watershed, delete
10/20 11/20 13/20 12/20 Watershed, delete

Deer 2/8 2/8 8/8 7/8 Watershed, delete
5/14 6/14 11/14 10/14 Watershed, delete
9/20 8/20 15/20 15/20 Watershed, merge

Humans(19) Watershed, delete
Woman2 8/10 10/10 10/10 9/10 Watershed, delete & Convex, merge

10/17 14/17 17/17 16/17 Watershed, delete
16/24 18/24 19/24 18/24 Watershed, delete

Child3y 10/10 9/10 10/10 10/10 Watershed, delete/merge & Convex, delete
15/17 15/17 15/17 16/17 Watershed, merge
16/24 17/24 19/24 19/24 Watershed, delete/merge

Knives(9) Watershed, delete
Knifech 3/6 2/6 6/6 6/6 Watershed, delete/merge

3/8 4/8 8/8 7/8 Watershed, delete
5/15 4/15 8/15 9/15 Watershed, merge

Knifest 5/6 4/6 6/6 5/6 Watershed, delete
6/8 5/8 6/8 5/8 Watershed, delete

8/15 6/15 8/15 8/15 Watershed, delete
Missiles(7) Convex, delete/merge
Aram 6/6 6/6 3/6 3/6 Convex, delete/merge

6/10 6/10 5/10 5/10 Convex, delete/merge
Bottles(7) Watershed, merge
Beer 2/3 2/3 1/3 3/3 Watershed, merge

3/6 3/6 1/6 3/6 Convex, delete/merge & Watershed, merge

TABLE I

SUMMARY OF THE EXPERIMENTAL RESULTS

each arc is attributed with the relative surface area of its
adjacent nodes.

To construct this signature, two issues were addressed. First,
we described a few alternatives for efficient decomposition
algorithms. We used well-known algorithms and added a
simple post-processing step in order to end up with only a
handful of components. Second, we presented a technique for
finding the best match between a given sub-mesh and pre-
defined basic shapes.

Finally, we built a system that realizes our approach. A
database consisting of 388 objects was collected from the
WWW and six classes were classified within it. In our ex-
periments, at least one object from each class was used as a

test object.

The results, which are presented in the paper, are generally
good. Not only does the algorithm retrieve objects that belong
to the same class, but also it does so in the presence of non-
rigid transformations. The paper also present a comparison of
various sub-methods and draws conclusions.

A major benefit of our signature is being invariant to non-
rigid transformations. Moreover, unlike some other signatures,
normalization is not needed as a pre-processing step. In
addition, the algorithm for generating signatures is simple and
efficient. The signature is very compact and thus can be stored
for large databases.

Our technique has a couple of drawbacks. First, the signa-



ture depends on the connectivity of the given objects, which
might cause geometrically-similar objects to be considered
different. Second, the graph matching algorithm we use is
relatively slow.

In the future we intend to look at faster graph matching
algorithms that people have implemented in other domains
and adopt them. Moreover, we intend to add more attributes
to the signature, such as textures and colors, which might be
important for some retrieval applications.
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