
Exposing and Eliminating Vulnerabilities to
Denial of Service Attacks in Secure Gossip-Based Multicast∗

Gal Badishi
EE Department, Technion

Idit Keidar
EE Department, Technion

Amir Sasson
CS Department, Technion

Abstract

We propose a framework and methodology for quantifying the effect of denial of service (DoS) at-
tacks on a distributed system. We present a systematic study of the resistance of gossip-based multicast
protocols to DoS attacks. We show that even distributed and randomized gossip-based protocols, which
eliminate single points of failure, do not necessarily eliminate vulnerabilities to DoS attacks. We pro-
pose Drum – a simple gossip-based multicast protocol that eliminates such vulnerabilities. Drum was
implemented in Java and tested on a large cluster. We show, using closed-form mathematical analysis,
simulations, and empirical tests, that Drum survives severe DoS attacks.

1 Introduction

One of the most devastating security threats faced by a distributed system is adenial of service (DoS) attack,
in which an attacker makes a system unresponsive by forcing it to handle bogus requests that consume all
available resources. In adistributed denial of service (DDoS) attack, the attacker utilizes multiple computers
as the source of a DoS attack, in order to increase the attack strength. In 2003, approximately42% of U.S.
organizations, including government agencies, financial institutions, medical institutions and universities,
were faced with DoS attacks [5]. That year, DoS attacks were the second most financially damaging attacks,
only short of theft of proprietary information, and far above other attacks [5]. Therefore, coping with DoS
attacks is essential when deploying services in a hostile environment such as the Internet [23].

As a first defense, one may protect a system against DoS attacks using network-level mechanisms [4].
However, network-level filters cannot detect DoS attacks at the application level, when the traffic seems le-
gitimate. Even if means are in place to protect against network-level DoS, an attack can still be performed at
the application level, as the bandwidth needed to perform such an attack is usually lower. This is especially
true if the application performs intensive computations for each message, as occurs, e.g., with secure proto-
cols based on digital signatures. In this paper, we are concerned with DoS attacks onsecure application-level
multicast protocols (such as, e.g., Spinglass [2]), focusing only on the multicast protocol layer.

A DoS attack that targets every process in a large system inevitably causes performance degradation, but
also requires vast resources. In order to be effective even with limited resources, attackers target vulnerable
parts of the system. For example, consider a tree-based multicast protocol; by targeting a single inner node
in the tree, an attacker can effectively partition the multicast group. Hence, eliminating single points of
failure is an essential step in constructing protocols that are less vulnerable to DoS attacks.

∗A preliminary version of this paper appeared in The IEEE International Conference on Dependable Systems and Networks
(DSN) 2004.

1

gitta
CCIT Report #477 March 2004

We therefore focus on gossip-based (epidemic) multicast protocols [7, 1, 8, 12, 15, 16, 14], which
eliminate single points of failure using redundancy and random choices. Such protocols are robust and have
been shown to provide graceful degradation in the face of amounting failures [13, 17]. One may expect that
such a system will not suffer from vulnerabilities to DoS attacks, since it can continue to be effective when
many processes fail. Surprisingly, we show that gossip-based protocols can be extremely vulnerable to DoS
attacks targeted at a small subset of the processes. This occurs because an attacker can effectively isolate a
small set of processes from the rest of the group by attacking this set.

To quantify the effects of DoS attacks, we measure their influence on the time it takes to propagate a
message to all the processes in the system, as well as on the average throughput processes can receive. We
do this using asymptotic analysis, simulations, and measurements.

Having observed the vulnerabilities of traditional protocols, we turn to search for a protocol that will
eliminate these vulnerabilities. Specifically, our goal is to design a protocol that would not allow an attacker
to increase the damage it causes by focusing on a subset of the processes. We are not familiar with any
previous protocol that achieves this goal. We are familiar with only one previous work, by Minsky and
Schneider [22], that deals with DoS attacks on a gossip-based protocol. However, the problem they con-
sider differs from ours in a way that renders their approach inapplicable to our setting (see Section 2), and
moreover, they only deal with limited attack strengths.

We presentDrum (DoS-Resistant Unforgeable Multicast), a gossip-based multicast protocol, which,
using a few simple ideas, eliminates common vulnerabilities to DoS attacks. Mathematical analysis and
simulations show that Drum indeed achieves our design goal: an attacker cannot substantially hinder Drum’s
performance by targeting a small subset of the processes. When an adversary has a large sending capacity,
its most effective attack against Drum is an all-out attack that distributes the attacking power as broadly
as possible. (We concentrate on heavy attacks since they are most damaging, and one can expect them to
happen in actual scenarios [28].) Obviously, performance degradation due to a broad all-out DDoS attack
is unavoidable for any multicast protocol, and indeed all the tested protocols exhibit the same performance
degradation under such a broad attack.

We have implemented Drum in Java and tested it on a on a cluster of workstations. Our measurements
validate the analysis and simulation results, and show that Drum can withstand severe DoS attacks, where
naı̈ve protocols that do not take any measures against DoS attacks completely collapse. E.g., under an
attack that focuses on10% of the processes, Drum’s latency and throughput remainconstant as the attack
strength increases, whereas in traditional protocols, the latency growslinearly with the attack strength, and
the throughput continuously degrades.
In summary, this paper makes the following contributions:

• It presents a new framework and methodology for quantifying the effects of DoS attacks. We are
not familiar with any previously suggested metrics for DoS-resistance nor with previous attempts to
quantify the effect of DoS attacks on a system.

• It uses the new methodology to conduct the first systematic study of the impact of DoS attacks on
multicast protocols. This study exposes vulnerabilities in traditional gossip-based protocols.

• It presents Drum, a simple gossip-based multicast protocol that eliminates such vulnerabilities. We
believe that the ideas used in Drum can serve to mitigate the effect of DoS attacks on other protocols
as well.

• It provides closed-form asymptotic analysis as well as simulations and measurements of gossip-based
multicast protocols under DoS attacks varying in strength and extent.

2

This paper proceeds as follows: Section 2 gives background on gossip-based multicast and related work.
Section 3 presents the system model. Section 4 describes Drum. Section 5 presents our evaluation methodol-
ogy and considered attack models. The following three sections evaluate Drum and compare it to traditional
gossip-based protocols using various tools: Section 6 gives closed-form asymptotic latency bounds; Sec-
tion 7 provides a thorough evaluation using simulations; and Section 8 presents actual latency and through-
put measurements. Section 9 evaluates the usefulness of other DoS-mitigation techniques used in Drum.
Section 10 overviews a dynamic membership protocol that can be used along with Drum. Section 11 con-
cludes. Appendix A contains some derivations for the asymptotic analysis. Appendix C provides detailed
numerical analysis and compares it with the simulation results.

2 Background and Related Work

Gossip-based dissemination [7] is a leading approach in the design of scalable reliable application-level
multicast protocols, e.g., [1, 8, 12, 15, 16, 14]. Our work focuses on symmetric gossip-based multicast
protocols like lpbcast [8], that do not rely on external mechanisms such as IP multicast.

Such protocols work roughly as follows: Each process locally divides its time intogossip rounds; rounds
are not synchronized among the processes. In each round, the process randomly selects a small number of
processes to gossip with, and tries to exchange information with them. Every piece of information is gos-
siped for a number of rounds. It has been shown that the propagation time of gossip protocols increases
logarithmically with the number of processes [25, 14]. There are two methods for information dissemina-
tion: (1) push, in which the process sends messages to randomly selected processes; and (2)pull, in which
the process requests messages from randomly selected processes. Both methods are susceptible to DoS at-
tacks: attacking the incoming push channels of a process may prevent it from receiving valid messages, and
attacking a process’s incoming pull channels may prevent it from sending messages to valid targets. Some
protocols use both methods [7, 14]. Karp et al. showed that combining push and pull allows the use of fewer
transmissions to ensure data arrival to all group members [14].

Drum utilizes both methods, and in addition, allocates a bounded amount of resources for each operation
(push and pull), so that a DoS attack on one operation does not hamper the other. Such a resource separation
approach was also used in COCA [33], for the sake of overcoming DoS attacks on authentication servers.
Drum further utilizes randomly selected ports for data transmission, thus making it difficult for an attacker
to target these ports. Note that Drum deals with DoS attacks at the application-level, assuming network-
level defenses are already in place. Network-level DoS analysis and mitigation has been extensively dealt
with [27, 3, 9, 30, 4, 26] but DoS-resistance at the secure multicast service layer has gotten little attention.

Secure gossip-based dissemination protocols were suggested by Malkhi et al. [19, 20, 21]. However,
they did not deal with DoS attacks. Follow-up work by Minsky and Schneider [22] suggested a pull-based
protocol that can endure limited DoS attacks by bounding the number of accepted requests per round. How-
ever, these works solve thediffusion problem, in which each message simultaneously originates at more
than t correct processes, where up tot processes may suffer Byzantine failures. In contrast, we consider
a multicast system where a message originates at a single source. Hence, using a pull-based solution as
suggested in [22] does not help in withstanding DoS attacks. Moreover, Minsky and Schneider [22] focus
on load rather than DoS attacks; they include only a brief analysis of DoS attacks, under the assumption that
no more thant processes perform the attack, and that each of them generates a single message per round
(the reception bound is also assumed to be one message per round). In contrast, we focus on substantially
more severe attacks, and study how system performance degrades as the attack strength increases.

Here, we focus on DoS attacks in which the attacker sends fabricated application messages. DoS can also

3

be caused by churn, where processes rapidly join and leave [18], thus reducing availability. In Drum, as in
other gossip-based protocols, churn has little effect on availability: even when as many as half the processes
fail, such protocols can continue to deliver messages reliably and with good quality of service [17]. A DoS
attack of another form can be caused by process perturbations, whereby some processes are intermittently
unresponsive. The effect of perturbations is analyzed in [1], where it is shown that probabilistic protocols,
e.g., gossip-based protocols, solve this problem. We note that our work is the first that we know of that
conducts a systematic study of the effect of DoS attacks on message latency.

3 System Model

Drum supports probabilistically reliable multicast [1, 8, 14] among processes that are members of a group.
Each message is created by exactly one group member (itssource). Throughout most of this paper we
assume that the multicast group is static. Section 10 suggests a possible solution for dealing with a dynamic
group membership.

Like previous gossip protocols [1, 8], we assume that the underlying network is fully-connected. There
are no bounds on message delays, i.e., the communication is asynchronous. The link-loss probability is
constant, equal for all links, and independent of any other factor. The communication channels are insecure,
meaning that senders of incoming messages cannot be reliably identified in a simple manner. However, the
data messages’ sources (originators) can be identified using standard cryptographic techniques, e.g., [24].
Additionally, some information intended for a specific process may be encrypted using, e.g., a public-key
infrastructure.

An adversary can generate fabricated messages and snoop on messages. However, these operations
require the adversary to utilize resources. Malicious processes perform DoS attacks on group members. In
case these malicious processes are part of the group, they also refrain from forwarding legitimate messages.

We assume that a DoS attack that does not specifically target the random ports does not affect the
reception on these port (i.e., the application-level DoS attack does not cause a network-level DoS attack as
well).

4 DoS-Resistant Gossip-Based Multicast Protocol

Drum is a simple gossip protocol, which achieves DoS-resistance using a combination of pull and push
operations, separate resource bounds for different operations, and the use of random ports in order to reduce
the chance of a port being attacked. Each process,p, locally divides its time into rounds. The rounds are not
synchronized among the processes. A round is typically in the order of a second, and its duration may vary
according to local random choices. Processp holds a list of other processes in the group (maintained by
the membership service). Every round,p chooses two small (constant size) random sets of processes from
this list, viewpush andviewpull, and gossips with them. E.g., when these views consist of two processes
each, this corresponds to a combined fan-out of four. In addition,p maintains a message buffer. Processp
performs the following operations in each round:

• Pull-request – p sends a digest of the messages it has received to the processes in itsviewpull, request-
ing missing messages. Pull-request messages are sent to a well-known port. The pull-request specifies
a randomly selected port on whichp will await responses, andp spawns a thread for listening on the
chosen port. This thread is terminated after a few rounds.

4

• Pull-reply – in response to pull-request messages arriving on the well-known port,p randomly selects
messages that it has and are missing from the received digests, and sends them to the destinations
indicated in the requests.

• Push – in a traditional push operation,p randomly picks messages from its buffer, and sends them to
each targett in its viewpush. In order to avoid wasting bandwidth on messages thatt already has,p
instead requestst to reply with a message digest, as follows:

1. p sends apush-offer to t, along with a random port on which it waits for a push-reply.

2. t replies with apush-reply to p’s random port, containing a digest of the messagest has, and a
random port on whicht waits for data messages.

3. If p has messages that are missing from the digest, it chooses a random subset of these, and
sends them back tot’s randomly chosen port.

The target process listens on a well-known port for push-offers.

The random ports transmitted during the push and pull operations are encrypted (e.g., using the recip-
ient’s public key), in order to prevent an adversary from discovering them. Thus,|viewpush| + |viewpull|
encryptions are performed each time these ports are changed.

Upon receiving a new data message, either by push or in response to a pull-request,p first performs
some sanity checks. If the message passes these checks,p delivers it to the application and saves it in its
message buffer for a number of rounds.

Resource allocation and bounds. In each round,p sends push-offers to all the processes in itsviewpush

and pull-requests to all the processes in itsviewpull. If the total number of push-replies and pull-requests that
arrive in a round exceedsp’s sending capacity, thenp equally divides its capacity between sending responses
to push-replies and to pull-requests. Likewise,p responds to a bounded number (typically|viewpush|) of
push-offers in a round, and if more data messages than it can handle arrive, thenp divides its capability
for processing incoming data messages equally between messages arriving in response to pull-requests and
those arriving in response to push-replies.

At the end of each round,p discards all unread messages from its incoming message buffers. This is
important, especially in the presence of DoS attacks, as an attacker can send more messages thanp can
handle in a round. Since rounds are locally controlled and randomly vary in duration, the attacker cannot
“aim” its messages for the beginning of a round. Thus, a bogus message has an equal likelihood of being
discarded at the end of the round as an authentic messages does.

Achieving DoS-resistance. We now explain how the combination of push, pull, random port selections,
and resource bounds achieves resistance to targeted DoS attacks. A DoS attack can flood a port with fabri-
cated messages. Since the number of messages accepted on each port in a round is bounded, the probability
of successfully receiving a given valid messageM in a given round is inversely proportional to the total
number of messages arriving on the same port asM in that round. Thanks to the separate resource bounds,
an attack on one port does not reduce the probability for receiving valid messages on other ports.

In order to prevent a process fromsending its messages using apush operation, one must attack (flood)
the push-offer targets, the ports where push-replies are awaited, or the ports where data messages are
awaited. However, the push destinations are randomly chosen in each round, and the push-reply and data
ports are randomly chosen and encrypted. Thus, the attacker has no way of predicting these choices.

Similarly, in order to prevent a process fromreceiving messages during apull operation, one needs to
target the destination of the pull-requests or the ports on which pull-replies arrive. However, the destinations

5

and ports are randomly chosen and the ports are sent encrypted. Thus, using the push operation, Drum
achieves resilience to targeted attacks aimed at preventing a process fromsending messages, and using the
pull operation, it withstands attacks that try to prevent a process fromreceiving messages.

5 Evaluation Methodology

The most important contribution of this paper is our thorough evaluation of the impact of various DoS
attacks on gossip-based multicast protocols. In addition to examining the effect of DoS on Drum, we also
measure the effectiveness of the DoS-mitigating techniques employed by it. We mostly concern ourselves
with the benefits of combining both the push and pull methods. We evaluate three protocols: (i) Drum,
(ii) Push, which uses only push operations, and (iii)Pull, which uses only pull operations. Pull and Push
are implemented the same way Drum is, with the important measures of bounding the number of messages
accepted in each round and using random ports. Thus, in comparing the three protocols, we study the
effectiveness of combining push and pull operations under the assumption that these other measures are used.
Following that, Section 9 evaluates the effectiveness of the other DoS-mitigation concepts, by comparing
Drum’s performance to two modified versions of Drum: without resource separation, and without using
random ports.

We begin by evaluating the effect that a range of DoS attacks have on message latency using asymptotic
mathematical analysis (in Section 6) and simulations (in Section 7). Our simulation results exhibit the
trends predicted by the analysis. In Appendix C, we also present detailed mathematical analysis, with
results virtually identical to our simulations.

For these evaluations, we make some simplifying assumptions: We consider the propagation of a single
messageM , and assume thatM is never purged from any process’s message buffer. We do, however,
assume that all the processes have messages other thanM in their buffers, and thus all the processes gossip
regardless of whether they haveM or not. We also assume that when processes send a data message, they
send the complete contents of their buffer in a single operation. We model the push operation as performed
without push-offers (in Drum and in Push). We assume that the rounds are synchronized, and that the
message-delivery latency is smaller than half the gossip period; thus, a process that sends a pull-request
receives the pull-reply in the same round. We consider a static group ofn processes, and assume that every
process has complete knowledge of all the other processes in the group. All of these assumptions were made
in previous analyses of gossip-based protocols, e.g., [1, 8, 19, 22].

The analysis and simulations measure latency in terms of gossip rounds: we measureM ’s propagation
time, which is the expected number of rounds it takes a given protocol to propagateM to all (in the closed-
form analysis) or to99% (in the simulations) of the correct processes. We chose a threshold of99% since
M may fail to reach some of the correct processes. Note that correct processes can be either attacked or
non-attacked. In both cases, they should be able to send and receive dataa messages.

Finally, we turn to measure actual performance on a cluster of workstations (in Section 8). Our goal for
this evaluation is twofold: First, we wish to ensure that the simplifying assumptions made in the analysis
and simulations have little impact on their results. E.g., in the implementation, rounds are not synchronized
and the push-offer mechanism is used (in Drum and in Push). Second, we seek to measure the consequences
of DoS attacks not only on actual latency (in msecs.), but also on the throughput of a real system, where
multiple messages are sent, and old messages are purged from processes’ message buffers.

Attacks. In all of our evaluations, we stage various DoS attacks. In each attack, the adversary focuses on
a fractionα of the processes (0 < α ≤ 1), and sends each of themx fabricated messages per round (in Drum,
this meansx2 push messages andx

2 pull-requests). We denote the total attack strength byB = x · α · n. We

6

0 100 200 300 400 500 600 700 800 900 1000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

processes

p
u

F = 5
F = 4
F = 3
F = 2
F = 1

(a)pu as a function ofn, for various fan-outs.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F/x
p

a

(b) pa vs. F
x for F = 4, n = 1000.

Figure 1: Actual values ofpu andpa.

assume that the message source is being attacked (this has no impact on the results of Push). We consider
attacks either of afixed strength, whereB is fixed andα increases (thus,x decreases); or ofincreasing
strength, where eitherx is fixed andα increases, or vice versa (in both cases,B increases). Examining fixed
strength attacks allows us to identify protocol vulnerabilities, e.g., whether an adversary can benefit from
targeting a subset of the processes. Increasing strength attacks enable us to assess the protocols’ performance
degradation due to an increasing attack intensity.

6 Asymptotic Closed-Form Analysis

To simplify the analysis, in this section we assume that all the processes are correct and the DoS attack is
launched from outside the system. The protocols use a constant fan-out,F . Every round, each process sends
a data message toF processes and accepts data messages from at mostF processes. In Drum,F is equally
divided between push and pull, e.g., ifF = 4, thenviewpush = viewpull = 2, and each process accepts
push messages from at most2 processes and pull-request messages from at most2 processes in a round. We
analyze Drum in Section 6.1, Push in Section 6.2, and Pull in Section 6.3

We denote bypu the probability of a non-attacked process to accept a valid incoming push or pull-
request message sent to it. Similarly, we denote bypa the probability of an attacked process to accept a valid
incoming message. Obviously,pu is independent of the attack strength. In Appendix A, we give detailed
formulas forpa andpu, and Lemma 8 shows thatpu > 0.6 for all F ≥ 3. In fact, an exact calculation using
the formula in Appendix A shows thatpu > 0.6 for all F ≥ 1, as can be seen in Figure 1(a). Since an
attacked process is sent at leastx messages in a round, and accepts at mostF of them, we get the following
coarse bound:pa < F

x . Figure 1(b) shows an example of the numerical calculation ofpa versusF
x .

6.1 Drum

We define theeffective expected fan-in, I, to be the average number of valid data messages a process suc-
cessfully receives in a round. (If the same data message is received fromk processes, we count this ask
messages.) Likewise, theeffective expected fan-out, O, is the average number of messages that a process
sends and are successfully received by their targets in a round.

7

Let us examine the effect of a DoS attack onO andI, with respect to the push operation (Opush and
Ipush, resp.). The probability of an attacked process to receive a push message ispa. The probability of a
non-attacked process to receive a push message ispu. Therefore, the effective fan-insIa

push andIu
push of an

attacked and non-attacked process (resp.) are:

Ia
push = F · pa and Iu

push = F · pu (1)

Whenαn processes are attacked, the effective fan-outs are:

Oa
push = Ou

push = F · (α · pa + (1 − α) · pu) (2)

Similar arguments apply for the pull opertaion. The probability of an attacked process to receive a pull-
request ispa. The same probability for a non-attacked process ispu. Receiving pull-requests allows a
process to send data messages, and on average, each process receivesF pull-requests. Due to the use of
random ports, we can assume that each pull-reply is actually being received, and thus, the effective fan-outs
are:

Oa
pull = F · pa and Ou

pull = F · pu (3)

(4)

Receiving data messages requires sending pull-requests. Each round,F pull-requests are being sent. On
average,αF of them reach an attacked process and are successfully read with probabilitypa, and(1− α)F
of those reach a non-attacked process and are succesfully read with probabilitypu. Due to the use of random
ports, we can assume it makes no difference whether the requesting process is attacked or not. We get the
following fan-ins:

Ia
pull = Iu

pull = F · (α · pa + (1 − α) · pu) (5)

In Drum,O = 1
2(Opush + Opull) andI = 1

2(Ipush + Ipull). Therefore:

Oa = Ia = F
2 · (α · pa + (1 − α)pu + pa) = F · (α + 1

2
· pa +

1 − α

2
· pu) (6)

Ou = Iu = F
2 · (α · pa + (1 − α)pu + pu) = F · (α

2
· pa +

2 − α

2
· pu) (7)

We begin by considering increasing strength attacks. We show that in Drum, an adversary does not
gain any significant advantage by increasing its attack strength while focusing on a fixed strict subset of the
processes.

Lemma 1. Fix α < 1 and n. Drum’s expected propagation time is bounded from above by a constant
independent of x.

Proof. From Equations (6) and (7) we get that for allx, Oa = Ia > F · 1−α
2 ·pu, andOu = Iu > F · 2−α

2 ·pu.
Sincepu is independent ofx, andα < 1 is fixed, the effective fan-ins and fan-outs ofall the processes are
bounded from below by a constant independent ofx. It has been shown that a constant fan-out and a constant
group size entail a constant propagation time [25, 14]. Therefore, the propagation time is inevitably bounded
from above by a constant independent ofx.

8

Figure 3(a) in Section 7.2 illustrates this quality of Drum, using simulations.
We now consider attacks where the adversary has a fixed attacking power. In this scenario, the attacker

can intensely attack a small group of processes, or perform a moderate attack on a large number of processes.
We would like to see which strategy is more beneficial to the attacker. We denote byc = B

F ·n = αx
F the

attack strength divided by the total system capacity. We show that the adversary’s best strategy against Drum
is to attack as many processes as it can, i.e., increaseα.

Lemma 2. For c > 5, Drum’s expected propagation time is monotonically increasing with α.

Proof. We will show that all the processes’ effective fan-ins and fan-outs are monotonically decreasing with
α. That is, we want to prove that:dOa

dα < 0 and dOu

dα < 0. We require the following:

dOa

dα = dIa

dα = F
2 ·
(
pa + αdpa

dα + dpa

dα − pu

)
< 0

pa + (α + 1)dpa

dα < pu

Recall thatpa < F
x . In Lemma 7 in Appendix A we show thatdpa

dα < F
αx . Bounding the left side of the

inequality, we get:

pa + (α + 1)
dpa

dα
<

F

x
+ (α + 1)

F

αx
=

F

αx
· (α + α + 1) =

2α + 1
c

<
3
c

Thus, our condition holds when3c < pu, that is, whenc > 3
pu

. Similarly, for the second derivative we get
the condition:

dOu

dα = dIu

dα = F
2 ·
(
pa + αdpa

dα − pu

)
< 0

pa + αdpa

dα < pu

Bounding the left side of the inequality, we get:

pa + α
dpa

dα
<

F

x
+ α

F

αx
=

F

αx
· (α + α) =

2α
c

<
2
c

Thus, we require that2c < pu, or thatc > 2
pu

. This is already inferred from our previous result. The lemma
follows sincepu > 0.6.

This behavior is validated in the simulations in Section 7.3. Moreover, the simulations show that even
for much smaller values ofc (ranging from0.25 to 2), Drum’s propagation time increases withα (see
Figures 7–8).

6.2 Push

We first prove the following simple lemma.

Lemma 3. ∀a > 0 a < 1
ln(1+ 1

a
)

< a + 1.

Proof. We show that∀y > 0 1
y < 1

ln(1+y) < 1
y + 1.

Defineh(y) = ln(1 + y) − y
1+y andg(y) = ln(1 + y) − y. By taking derivatives we get:

h′(y) = 1
1+y − (1

1+y − y
(y+1)2) = y

(y+1)2 > 0, ∀y > 0,

g′(y) = 1
1+y − 1 < 0, ∀y > 0.

Sinceh(0) = g(0) = 0, y > ln(1 + y) > y
(y+1) . Therefore,1y < 1

ln(1+y) < 1
y + 1.

9

We proceed to show that Push’s propagation time is linear inx.

Lemma 4. The expected propagation time to all processes in Push is bounded from below by:

ln n − ln [(1 − α) n + 1]
ln (1 + Fαpa)

Proof. We prove that the given bound holds even for the case where initially all the non-attacked processes
haveM, in addition to the source (which is attacked). The lemma then follows immediately.

Let M(k) denote the expected number of processes that haveM at the beginning of roundk. In
round k, each process havingM sends it toF other processes. On average,Fα of those are attacked,
and each attacked process receives the message with probabilitypa. Thus, we get the coarse recursive
boundM(k + 1) ≤ M(k) + M(k) · Fαpa with the initial conditionM(0) = (1 − α)n + 1. Thus,
M(k) ≤ [(1 − α) n + 1] (1 + Fαpa)k. M reaches all the processes whenM(k) ≥ n. The first round
numberk that satisfies this inequality is the required formula.

Corollary 1. Fix α and n > 1
α . The propagation time of Push increases at least linearly with x.

Proof. Sinceα and n > 1
α are fixed, the numerator in Lemma 4 is a positive constant. Consider the

denominator: sincepa < F
x , it holds thatF ·α ·pa is O(1

x). The lemma follows since, by Lemma 3, 1
ln(1+ 1

x
)

is θ(x).

The above corollary explains the trend exhibited by Push in Figure 3(a).

6.3 Pull

We begin by proving the following lemma.

Lemma 5. ∀b ∈ N
xb

xb−(x−F)b is Θ(x).

Proof. We first show thata−1
b ≤ ab

ab−(a−1)b ≤ a−1
b + 1 for everya > 1, b ∈ N.

In order to prove the left inequality, we prove by induction on b thatb
a−1 ≥ ab−(a−1)b

ab .

For b = 1, 1
a−1 ≥ 1

a for everya > 1. The inductive Step:a
b+1−(a−1)b+1

ab+1 = a(a)b−(a−1)(a−1)b

a(a)b = ab

a(a)b +
a−1

a
ab−(a−1)b

ab ≤ 1
a + a−1

a
b

a−1 = 1
a + b

a = b+1
a ≤ b+1

a−1 .

Next, we prove that ab

ab−(a−1)b ≤ a−1
b +1, i.e., (a−1)b

ab−(a−1)b ≤ a−1
b . From the inequality(a)b ≥ (a−1)b +

b(a − 1)(b−1), we get thatab − (a − 1)b ≥ b(a − 1)(b−1). Hence, (a−1)b

ab−(a−1)b ≤ (a−1)b

b(a−1)b−1 = a−1
b .

Therefore,a−1
b ≤ ab

ab−(a−1)b ≤ a−1
b + 1. By substitutingx

F for a in the last inequality, we get that
x−F
bF ≤ xb

xb−(x−F)b ≤ x−F
bF + 1 for everyx > F . Therefore, xb

xb−(x−F)b is Θ(x).

We definep̃ as probability thatM is propagated from the source in a round.

Lemma 6. Fix α and n. The number of rounds it takes a message to leave the source in Pull grows at least
linearly with x.

10

Proof. We give a gross over-estimate ofp̃ by assuming that all the othern − 1 processes choose the source
every round. (When fewer processes choose the source,M is less likely to leave the source.) Sincepa < F

x ,
p̃ < (1 − (x−F

x)n−1). The number of rounds it takes to propagate a message beyond the message source is

geometrically distributed with̃p. Therefore, its expectation is1p̃ > xn−1

xn−1−(x−F)n−1 . Substitutingn − 1 for b

in Lemma 5, we get that1p̃ is Ω(x).

Corollary 2. Fix α and n. The propagation time of Pull grows at least linearly with x.

Figure 3(a) illustrates this behavior of Pull.

7 Simulation Results

This section presents MATLAB simulations of the three protocols under various DoS attack scenarios. Only
one of the group members is a source, with respect to the examined data messageM . However, all the group
members constantly have messages to send, even if they do not possessM . Each process receives messages
from at mostF = 4 other processes each round (disregarding pull-replies). If more thanF processes try to
access this process’s incoming channels, a randomF -sized subset of them is chosen. We consider a link-loss
probability of0.01 on all links and a fan-out ofF = 4. Rounds are synchronized among all processes. Each
data point is averaged over1000 runs.

In Section 7.1 we consider situations with no DoS attack (either no failures or only crash failures), and
validae known results about gossip protocols. We continue in Sections 7.2 and 7.3 by measuring the effect
of DoS attacks on the system. In these studies, we assume that10% of the processes are controlled by
the adversary, perform a DoS attack on some correct processes, and do not propagate any valid messages.
It is important to realize that the attacking processes do not attack each other, but the correct processes
may choose to gossip with these malicious processes. In that case, the gossiped messages will be simply
discarded by the attacking processes. We note that, according to our model, malicious group members
performing a DoS attack are equivalent to group members suffering crash failures, and an externally-sourced
DoS attack of the same strength. As Figure 2(b) shows, the protocols are highly robust to crash failures.
Thus, controlling more group members does not grant the adversary with a significant advantage. We
measure the propagation times to the correct processes, both attacked and non-attacked. In Section 7.2
we measure the impact of targeted DoS attacks, and in Section 7.3 we examine fixed strength attacks and
adversary strategies.

7.1 Validating Known Results

We begin by evaluating the three protocols in a failure-free scenario, and in situations where crash failures
occur. We assume that the crashes occur beforeM is generated, and that the source does not crash. We
also assume that the crashes are not detected by the correct processes, i.e., they try to gossip with crashed
processes as well.

Our aim is to validate two known results: (1) the propagation time of gossip-based multicast protocols is
O(log n) [25, 14], as can be seen in Figure 2(a), with a logarithmic x-axis; and (2) the performance of such
protocols degrades gracefully as crash failures amount [13, 17], as depicted in Figure 2(b)). We can see that
Push and Pull slightly outperform Drum in these experiments. This is due to the fact that the bounds on the
pull and push channels in Drum are strict, i.e., even if in a specific round no messages have arrived via the
push channels, only requests from at most two distinct processes will be handled, although the process is
capable of handling four such requests. Conversely, Push and Pull have only one bound, which guarantees

11

10
2

10
3

1

2

3

4

5

6

7

8

9

10

ro

un
ds

processes (log scale)

Push
Pull
Drum

(a) Failure-free operation.

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

% crashed processes

ro

un
ds

Push
Pull
Drum

(b) Operation with crashed processes,n = 1000.

Figure 2: Runs without DoS attack: Average propagation time to99% of the correct processes (simulations).

that messages won’t be discarded if they can be processed. The ability to perform well even when many
processes crash stems from the random choice of communication partners each round.

7.2 Targeted DoS Attacks

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

x

ro

un
ds

Push, 1000
Push, 120
Pull, 1000
Pull, 120
Drum, 1000
Drum, 120

(a)α = 10%.

10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

ro

un
ds

α

Push, 1000
Push, 120
Pull, 1000
Pull, 120
Drum, 1000
Drum, 120

(b) x = 128.

Figure 3: Increasing attack strength: Average propagation time to99% of the correct processes,
n = 120, 1000 (simulations).

In this section we consider targeted attacks, where a subset of sizeαn of the processes is attacked.
Figure 3 compares the time it takesM to reach99% of the correct processes for the three protocols under
various DoS attacks, with120 and 1000 processes. Figure 3(a) shows that when10% of the processes
are attacked, the propagation time of both Push and Pull increases linearly with the severity of the attack,
while Drum’s propagation time is unaffected by the attack strength. This is consistent with the prediction
of Lemma 1 and Corollaries 1 and 2. Moreover, the three protocols perform virtually the same without
DoS attacks (see the leftmost data point). Figure 3(b) illustrates the propagation time as the percentage of
attacked processes (and thusB) increases. The rightmost data point in this figure matches a scenario where

12

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8

9

10

x

ro

un
ds

Push
Pull
Drum

(a)α = 10%.

10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

ro

un
ds

α

Push
Pull
Drum

(b) x = 128.

Figure 4: Increasing attack strength: STD of the propagation time to99% of the correct processes,n = 1000
(simulations).

only 10% of the processes are both correct non-attacked. Although the protocols exhibit similar trends,
Drum propagates messages much faster than Push and Pull.

Figure 4 illustrates thestandard deviation (STD) of the propagation times presented in Figure 3 for
n = 1000. It shows that for a fixedα, Drum’s STD is not affected by the attack strength, whereas the other
protocols’ STD increases linearly. Furthermore, both Drum and Push exhibit a small STD compared to Pull.
E.g., forα = 10% andx = 128, the STDs of Drum and Push are0.5 and2.9 rounds (resp.), whereas Pull’s
STD is9.3 rounds. Therefore, the bahavior of Drum and Push is more predictable. The high STD of Pull’s
propagation time is mainly due to the large STD of the number of rounds it takes to propagateM beyond the
source. The number of rounds it takes to propagateM beyond the source is geometrically distributed with
p̃, wherep̃ is the probability to propagateM beyond the source in a round. Thus, the STD number of rounds

it takes to propagateM beyond the source is
√

1−p̃

p̃ . A numerical calculation of̃p according to the formula
in Appendix B , withF = 4 andx = 128 yields an STD of8.17 rounds, which explains Pull’s measured
STD of 9.3 rounds mentioned above.

Figure 5 illustrates the cumulative distribution function (CDF) of the percentage of correct processes
that receiveM by a given round, under different DoS attacks. As expected, Push propagatesM to the non-
attacked processes very quickly, but takes much longer to propagate it to the attacked processes. Again, we
see that Drum significantly outperforms both Push and Pull when a strict subset of the system is attacked.

Interestingly, on average, Push propagatesM to more processes per round than Pull does (see Figure 5),
although the average number of rounds Pull takes to propagateM to 99% of the correct processes is smaller
than that of Push (see Figure 3). This paradox occurs since, with Pull, there is a non-negligible probability
thatM is delayed at the source for a long time. WithF = 4 andx = 128, the probability forM not being
propagated beyond the source in5, 10, and15 rounds is0.54, 0.3, and0.16 resp. (as computed using the
formula forp̃ in Appendix B). OnceM reaches one non-attacked process, it quickly propagates to the rest of
the processes. Therefore, even if by a certain roundk, in most runs, a large percentage of the processes have
M , there is still a non-negligible number of runs in which Pull does not reachany process (other than the
source) by roundk. This large difference in the percentage of processes reached has a large impact on the
average depicted in Figure 5. In contrast, Push, which reaches all the non-attacked processes quickly in all
runs, does not have runs with such low percentages factoring into this average. Nevertheless, Push’s average

13

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pe
rc

en
ta

ge
 o

f c
or

re
ct

 p
ro

ce
ss

es

rounds

Push
Pull
Drum

(a)α = 10%, x = 64.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pe
rc

en
ta

ge
 o

f c
or

re
ct

 p
ro

ce
ss

es

rounds

Push
Pull
Drum

(b) α = 10%, x = 128.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pe
rc

en
ta

ge
 o

f c
or

re
ct

 p
ro

ce
ss

es

rounds

Push
Pull
Drum

(c) α = 40%, x = 128.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pe
rc

en
ta

ge
 o

f c
or

re
ct

 p
ro

ce
ss

es

rounds

Push
Pull
Drum

(d) α = 80%, x = 128.

Figure 5: Targeted DoS attacks: CDF: Average percentage of correct processes that receiveM, n = 1000
(simulations).

propagation time to99% of the correct processes is much higher than Pull’s, because Push has to propagate
M to all the attacked processes, whereas Pull has to propagateM only out of one attacked process.

Figure 6 illustrates this behavior: Figure 6(a) shows that Push propagatesM much faster than Pull to the
non-attacked processes, while Figure 6(b) indicates that Push and Pull take the same time to propagateM to
the attacked processes. Conversely, Drum exhibits fast propagation times both to attacked and non-attacked
processes.

7.3 Adversary Strategies

We now evaluate the protocols under a range of attacks with fixed adversary strengths. First, we consider
severe attack withB = 7.2n andB = 36n (corresponding toc = 2 andc = 10, resp.) fabricated messages
per round. If the adversary chooses to attack all correct processes, it can send8 (resp.,40) fabricated
messages to each of them in each round, because90% of the processes are correct. If the adversary instead
focuses on10% of the processes, it can send72 (resp.,360) fabricated messages per round to each. Figure
7 illustrates the protocols’ propagation times with different percentages of attacked processes, for system
sizes of120 and500. It validates the prediction of Lemma 2, and shows that the most damaging adversary

14

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rounds

pe
rc

en
ta

ge
 o

f n
on

−a
tta

ck
ed

 p
ro

ce
ss

es

Push
Pull
Drum

(a) Non-attacked processes.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rounds

pe
rc

en
ta

ge
 o

f a
tta

ck
ed

 p
ro

ce
ss

es

Push
Pull
Drum

(b) Attacked processes.

Figure 6: Propagation to attacked vs. non-attacked processes: CDF: Average percentage of attacked versus
non-attacked processes that receiveM, n = 1000, α = 40%, x = 128 (simulations).

strategy against Drum is to attack all the correct processes. That is, an adversary cannot “benefit” from
focusing its capacity on a small subset of the processes. In contrast, the performance of Push and Pull is
seriously hampered when a small subset of the processes is targeted. Not surprisingly, the three protocols
perform equally when all correct processes are targeted (see the rightmost data point).

Next, we evaluate Drum under attacks with relatively small adversary powers ofB = 0.9n, B = 1.8n
andB = 3.6n (c = 0.25, c = 0.5, andc = 1, resp.) and also without an attack (as a baseline). As Figure 8
shows, such attacks have little impact on Drum’s propagation time.

8 Implementation and Measurements

We have implemented Drum, Push, and Pull in Java. The implementations are multithreaded. The operations
that occur in a round are not synchronized, e.g., one process might send messages before trying to receive
messages in that round, while another might first receive a new message, and then propagate it. We run our
experiments on50 machines at the Emulab testbed [32], on a 100Mbit LAN, where a single process is run
on each machine (i.e.,n = 50). As in the simulations, we designate10% of the processes as malicious –
they do not propagate any messages, and instead perform DoS attacks only on correct processes.

8.1 Validating the Simulation Methodology

Our first goal for these experiments is to validate the simulation methodology. To this end, we experiment
with the same settings that were tested in Section 7, first for increasing values ofx andα = 10%, and
then forx = 128 and increasing values ofα. As in the simulations, we track the propagation a single data
messageM , where every process has messages to send, even if it does not holdM . Each data point is
averaged over1000 runs.

Due to the lack of synchronization, messages can be propagated multiple hops in a single round in some
situations. We use the following method to count the number of rounds it takes to propagate a message:
when a message is created, a round counter is attached to it and initialized to0. The message source logs
the value0, and immediately increases the round counter to1. Whenever a process receives a new message,

15

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

ro

un
ds

α

Push, 120
Push, 500
Pull, 120
Pull, 500
Drum, 120
Drum, 500

(a)B = 7.2n (c = 2).

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

ro

un
ds

α

Push, 120
Push, 500
Pull, 120
Pull, 500
Drum, 120
Drum, 500

(b) B = 36n (c = 10).

Figure 7: Strong fixed strength attacks: Average propagation time to99% of the correct processes (simula-
tions).

it logs the message’s current round counter. Every round, each process increments the round counters of all
the messages in its local buffer.

Figure 9 depicts the results of these experiments, and compares them with the corresponding simulation
results. It shows that the experimental results are consistent with the simulation results, indicating that the
simplifying assumptions made in the analysis and simulations have negligible effect on the results.

8.2 High Throughput Experiments

We proceed to evaluate the protocols in a realistic setting, where multiple messages are sent, and old mes-
sages are purged from processes’ buffers. By running on a real network, we can faithfully evaluate latency
in milliseconds (instead of rounds), as well as throughput.

In each experiment scenario, a total of10, 000 messages are sent by a single source, at a rate of40
messages per second. The average received throughput and latency are measured at the remaining44 correct
processes (recall that5 of the 50 processes are faulty). The average throughput is calculated ignoring the
first and last5% of the time of each experiment. The round duration is1 second. Data messages are50
bytes long. (The evaluation in [8] used a similar transmission rate and similar message sizes.)

In a practical system, messages cannot reside in local buffers forever, nor can a process send all the
messages it ever received in a single round. In our experiments, messages are purged from processes’ buffers
after 10 rounds, and each process sends at most80 randomly chosennew messages to each of its gossip
partners in a round. These are roughly twice the buffer size and sending rate required for the throughput of
40 messages per round in an ideal attack-free setting, since the propagation time in the absence of attacks
is about5 rounds. Due to purging, some messages may fail to reach all the processes. Since we measure
throughput at the receiving end, this is reflected by an average throughput lower than the transmission rate
(of 40 messages per second).

Figure 10 shows the throughput at the receiving processes for Drum, Push, and Pull, under the same
DoS attack scenarios staged above. Figure 10(a) indicates that, as for latency, Drum’s throughput is also
unaffected by increasingx, while Push shows a slight degradation of throughput, and Pull’s throughput
decreases dramatically. Figure 10(b) shows that Drum’s throughput gracefully degrades asα increases,
while Push exhibits a linear degradation, and Pull’s throughput is drastically affected for everyα > 0.

16

0 10 20 30 40 50 60 70 80 90
1

2

3

4

5

6

7

8

9

10

ro

un
ds

α

c=1 (B=3.6n)
c=0.5 (B=1.8n)
c=0.25 (B=0.9n)
no attack

(a)n = 120.

0 10 20 30 40 50 60 70 80 90
1

2

3

4

5

6

7

8

9

10

ro

un
ds

α

c=1 (B=3.6n)
c=0.5 (B=1.8n)
c=0.25 (B=0.9n)
no attack

(b) n = 500.

Figure 8: Weak fixed strength attacks: Drum, average propagation time to99% of the correct processes
(simulations).

0 20 40 60 80 100 120 140
0

5

10

15

20

25

x

ro

un
ds

Push measurements
Push simulation
Pull measurements
Pull simulation
Drum measurements
Drum simulation

(a)α = 10%.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

α

ro

un
ds

Push measurements
Push simulation
Pull measurements
Pull simulation
Drum measurements
Drum simulation

(b) x = 128.

Figure 9: Simulations vs. measurements: Average propagation time to99% of the correct processes,n = 50.

Figure 11 depicts the CDF of the average latency ofsuccessfully received messages in two scenarios.
Each data point shows, for a given latencyl, the percentage of correct processes for which the average latency
does not exceedl. We observe that Push is the fastest in delivering messages to non-attacked processes, but
suffers from substantial variation in delivery latency, as messages take a long time to reach the attacked
processes. E.g., Figure 11(a) shows that the4 attacked processes (other than the source) measure an average
latency4 times longer than non-attacked processes. While Pull exhibits almost the same average latency for
all the processes, this latency is very long. Drum combines the best of Push and Pull: it delivers messages
almost as fast as Push, while maintaining a small variation between attacked and non-attacked processes.

9 Other DoS-Mitigation Methods

Until now, we have evaluated the advantage of combining both the push and pull techniques as a way to
mitigate DoS attacks. We now turn to examine the importance of using the other two techniques: utilizing

17

0 20 40 60 80 100 120 140
5

10

15

20

25

30

35

40

45

x

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

m
sg

s/
se

c)

Drum
Push
Pull

(a)α = 10%.

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

α

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

m
sg

s/
se

c)

Drum
Push
Pull

(b) x = 128.

Figure 10: Increasing attack strength: Average received throughput (measurements).

1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Latency (msecs)

P
er

ce
nt

ag
e

of
 C

or
re

ct
 P

ro
ce

ss
es

Drum
Push
Pull

(a)α = 10%, x = 128.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Latency (msecs)

P
er

ce
nt

ag
e

of
 C

or
re

ct
 P

ro
ce

ss
es

Drum
Push
Pull

(b) α = 40%, x = 128.

Figure 11: CDF: average latency of received messages (measurements).

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

x

ro

un
ds

Drum − Known Ports
Drum − Random Ports

(a)α = 10%, n = 1000 (simulations).

0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

x

ro

un
ds

Drum − Shared Bounds
Drum − Separate Bounds

(b) α = 10%, n = 50 (measurements).

Figure 12: The effect of DoS-mitigation methods on Drum’s performance.

18

random ports whenever possible, and allocating separate resources for orthogonal operations.
In order to evaluate the effectiveness of random ports, we simulate Drum as described in Section 7, with

the difference that pull-replies are sent to a well-known port instead of to a random one. The adversary
attacks this port by equally dividing its attack strength for the pull channels between the pull-request port
and the pull-reply port (i.e., each pull port is attacked with a quarter of the total attack strength). Figure 12(a)
presents simulation results comparing Drum’s performance with and without the use of random ports, when
10% of the processes are attacked. The results show a linear increase in propagation time for the well-known
ports variation of Drum, as the rate of bogus messages each attacked process receives in a round increases.
This is in contrast to the propagation time of Drum using random ports, which is bounded by a constant.

When solely using well-known ports, the adversary can attack both pull ports, as well as the push port. A
process under attack experiences difficulty receiving messages both via push and through the pull channels,
since the push and pull-reply ports are attacked. The same process’s ability to send messages is only partly
hampered. Although the pull-request port is attacked, the adversary cannot directly affect the process’s
outgoing push channels.

Next, we measure the effect of resource separation on Drum’s performance. To this end, we change
Drum’s implementation detailed in Section 8. Resources are now combined (i.e., a joint bound on the
maximum number of processed messages per round is used) for receiving control messages: pull-requests,
push-offers, and push-replies. We do not include the reception of data messages in this bound, since this
bound may differ greatly from the bound on control messages in actual scenarios. Figure 12(b) contrasts the
measurements of Drum’s propagation time with shared bounds against those with separate bounds, when
10% of the processes are attacked. The results indicate a linear degradation of performance as the attack
rate increases, when bounds are shared. On the other hand, the unmodified version of Drum is virtually
indifferent to the increase in attack strength.

Shared bounds degrade Drum’s performance under a DoS attack, since the fabricated control messages
sent by the adversary to the well-known push-offer and pull-request ports consume resources that should be
used for reading pull-requests, push-offers, and push-replies. The valid control messages are then discarded
when resources are exhausted, and the attacked process becomes less responsive.

We conclude that random ports and separate resource bounds are crucial to Drum’s ability to cope with
DoS attacks.

10 Dynamic Membership

Our analysis and implementation of Drum until this point assumed that the multicast group is composed
of a static set of processes. This assumption is in accordance with other studies in the literature [1, 8, 19].
However, in a dynamic environment, the membership information known to each process might not be
complete or consistent with the actual group status. Since a process only communicates with processes that
are known to be part of the group, a dynamic membership protocol is needed in order to have processes
maintain up-to-date and consistent membership information. The membership protocol should also strive to
prevent malicious processes from infiltrating the group.

We now sketch out the design of a dynamic membership protocol for Drum, assuming the existence of
a certification authority (CA). The complete details of the CA are beyond the scope of this paper, but we
note that distributed, Byzantine fault-tolerant implementations of CAs exist, e.g., [33, 10]. The membership
protocol is layered on top of Drum’s multicast protocol, as in [8, 6].

19

10.1 Outline of the Suggested Dynamic Membership Protocol

In order to join the group, a process must be authorized by the CA. Once the CA authorizes the process
according to its credentials, the CA grants the process with a timestamped certificate, which expires (and so
must be renewed) after a certain period of time. A process’s membership list will never contain processes that
do not have a valid certificate. This prevents unauthorized processes from joining the group. Additionally,
certificates can be revoked.

The CA provides the newcomer with an initial (not necessarily complete) list of the other processes in
the group, and propagates alog-in message to the other processes, containing the newly issued certificate.

Whenever a process wishes to log out of the group, it sends alog-out request to the CA, which in turn,
revokes that process’s certificate and forwards the log-out message to the other processes in the group.

The CA may also revoke a process’s certificate due to suspicion of malbehavior. In this case, an appro-
priate message is sent to the processes, in order to remove the process from the group.

The certificates expire after a certain amount of time. When a process’s certificate is about to expire, the
process must request a new certificate from the CA, or be effectively removed from the group (we assume
that the clock drift among group members is small and bounded).

Processes may suffer benign failures, or long delays that affect their responsiveness. In order to prevent
situations in which processes try to spread their data through unresponsive processes, a failure detection
mechanism is used. From time to time, each process tests the responsiveness of the other processes it com-
municates with. If a failure is detected, the process stops communicating with the failed process, but does
not propagate this information to other processes. Note that this does not affect the status of the slow/failed
process as a group member, as it is possible that the process can communicate with other processes.

Each process piggybacks its certificate on top of an outgoing message if it hasn’t done so for a rela-
tively long period, or if it has recently joined the system. This way, processes that do not have a complete
membership information database are able to authenticate new messages and complete the database.

Actual implementations of the dynamic memberhsip protocol may differ in two parameters: the size
of the initial membership information obtained from the servers, and the points in time at which a process
piggybacks its certificate on its messages. E.g., piggybacking certificates on all of the messages guarantees
that all valid messages will be authenticated.

10.2 The Rational Behind the Suggested Protocol

We now discuss the implications of dynamic membership in general, and particularly in Drum. We present
possible problems that can occur and point out the solution provided by the proposed membership protocol:

• A process may choose as a gossip partner another process that already logged out of the system.
This is exactly the same as trying to perform a gossip operation to a crashed process. We have inves-
tigated the effect of crashes and found out that they have little effect on performance (see Figure 2),
as also shown in [17]. Eventually, the failure detector will flag the logged-out process as failed, and
even this minor performance penalty will be gone.

• A process may not know of another newly-joined process. Thus, the probability that a “new”
process will be selected as a communication partner by another process in the group is lower than
the respective probability for an “old” process. This property is inherent to all of the membership
protocols layered on top of gossip-based multicast protocols, e.g., [8, 6]. Since the expected number
of rounds to propagate a message to the group members using a gossip-based multicast protocol is
logarithmic in the group size, it takesO(log n) rounds for the log-in message to propagate to all

20

processes and for the process to be known by every other group member [14]. Once this period is
over, this difficulty is naturally gone. Specifically, this propertly holds in Drum even under a DoS
attack, since Drum succeeds in propagating multicast messages to all the processes under such an
attack.

• Membership information can be fabricated by malicious processes. This can create inconsisten-
cies in the system, as bogus processes suddenly appear in local membership databases, and valid
processes are removed from these databases. Drum solves this problem by guaranteeing that ev-
ery join/leave/expel message contains a certificate issued by the CA. Since this certificate cannot be
forged by a malicious process with high probability, an attacker cannot send valid group management
messages. Also, as opposed to some failure detectors [11, 29], with our approach a process’s fail-
ure detector does not remove another process from the local membership view, based on information
received from other processes.

• The membership protocol might suffer a DoS attack. Such an attack may cause group management
messages not to reach the processes. This is resolved by the mere fact that the dynamic membership
protocol operates using Drum’s multicast protocol as its transport layer. Since Drum’s multicast
protocol withstands DoS attacks, so does the membership protocol. Furthermore, a DoS attack on the
CA does not hamper communication among processes that have already joined the group.

• Messages from unknown processes in the group are discarded. The membership information in
Drum is composed of certificates granted by the CA to the processes in the group. These certificates
are used in order to validate incoming messages. Thus, if a process is missing from the local mem-
bership database, its messages will be discarded. In order to resolve this issue, Drum piggybacks
certificates on of data messages.

11 Conclusions

We have conducted the first systematic study of the impact of DoS attacks on multicast protocols, using
asymptotic analysis, simulations, and measurements. Our study has exposed weaknesses of traditional
gossip-based multicast protocols: Although such protocols are very robust in the face of process crashes,
we have shown that they can be extremely vulnerable to DoS attacks. In particular, an attacker with limited
attack strength can cause severe performance degradation by focusing on a small subset of the processes.

We have suggested a few simple measures that one can take in order to improve a system’s resilience to
DoS attacks: (i) combining pull and push operations; (ii) bounding resources separately for each operation;
and (iii) random port selection. We have presented Drum, a simple gossip-based multicast protocol that
uses these measures in order to eliminate vulnerabilities to DoS attacks. Our closed-form mathematical
analysis, simulations, and empirical tests have proven that these measures go a long way in fortifying a
system against DoS attacks. We have shown that, as the attack strength increases asymptotically, the most
effective attack against Drum is one that divides thhe attack power among all the correct processes in the
system. As expected, the inevitable performance degradation due to such a broad attack is identical for all
the studied protocols. However, protocols that use only pull or only push operations perform much worse
under more focused attacks, which have little influence on Drum.

We expect our proposed methods for mitigating the effect of DoS attacks to be applicable to various other
systems operating in different contexts. Specifically, the use of well-known ports should be minimized, and
each process should be able to choose some of its communication partners by itself. Our analysis process

21

and its corresponding metric can be used to generally quantify the effect of DoS attacks. We hope that
other researchers will be able to apply similar techniques in order to quantitatively analyze their system’s
resilience to DoS attacks.

Acknowledgments

We thank Aran Bergman and Dahlia Malkhi for many helpful comments and suggestions. We are grateful
to the Flux research group at the University of Utah, and especially Mac Newbold, for allowing us to use
their network emulation testbed and assisting us with our experiments.

References

[1] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal multicast.ACM
Transactions on Computer Systems (TOCS), 17(2):41–88, 1999.

[2] K. P. Birman, R. van Renesse, and W. Vogels. Spinglass: Secure and scalable communications tools for
mission-critical computing. InDARPA International Survivability Conference and Exposition (DIS-
CEX), June 2001.

[3] R. K. C. Chang. Defending against flooding-based distributed denial-of-service attacks: A tutorial.
IEEE Communications Magazine, 40:42–51, October 2002.

[4] Cisco Systems. Defining strategies to protect against TCP SYN denial of service attacks.
http://www.cisco.com/warp/public/707/4.html.

[5] CSI/FBI. Computer crime and security survey, 2003.
http://www.gocsi.com/forms/fbi/pdf.jhtml.

[6] A. Das, I. Gupta, and A. Motivala. SWIM: Scalable weakly consistent infection-style process group
membership protocol. InThe International Conference on Dependable Systems and Networks (DSN),
pages 303–312, 2002.

[7] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Stuygis, D. Swinehart, and
D. Terry. Epidemic algorithms for replicated database maintenance. In6th ACM Symposium on Prin-
ciples of Distributed Computing (PODC), pages 1–12, 1987.

[8] P. T. Eugster, R. Guerraoui, S. B. Handurukande, A. M. Kermarrec, and P. Kouznetsov. Lightweight
probabilistic broadcast. InThe International Conference on Dependable Systems and Networks (DSN),
2001.

[9] X. Geng and A. B. Whinston. Defeating distributed denial of service attacks.IEEE IT Professional,
pages 46–51, July/August 2000.

[10] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signatures.Information
and Computation, 164(1):54–84, 2001.

[11] I. Gupta, T. D. Chandra, and G. Goldszmidt. On scalable and efficient distributed failure detectors. In
20th Symposium on Principles of Distributed Computing (PODC 2001), August 2001.

22

[12] I. Gupta, A.-M. Kermarrec, and A. J. Ganesh. Efficient epidemic-style protocols for reliable and
scalable multicast. In21st IEEE International Symposium on Reliable Distributed Systems (SRDS),
pages 180–189, October 2002.

[13] I. Gupta, R. van Renesse, and K. P. Birman. Scalable fault-tolerant aggregation in large process groups.
In The International Conference on Dependable Systems and Networks (DSN), pages 433–442, 2001.

[14] R. M. Karp, C. Schindelhauer, S. Shenker, and B. Vocking. Randomized rumor spreading. InIEEE
Symposium on Foundations of Computer Science, pages 565–574, 2000.

[15] A.-M. Kermarrec, L. Massouli, and A. J. Ganesh. Probabilistic reliable dissemination in large-scale
systems.IEEE Transactions on Parallel and Distributed Systems, 14(3):248–258, March 2003.

[16] M. J. Lin and K. Marzullo. Directional gossip: Gossip in a wide area network. InEuropean Dependable
Computing Conference (EDCC), pages 364–379, 1999.

[17] M. J. Lin, K. Marzullo, and S. Masini. Gossip versus deterministically constrained flooding on small
networks. In14th International Symposium on DIStributed Computing (DISC), pages 253–267, 2000.

[18] P. Linga, I. Gupta, and K. Birman. A churn-resistant peer-to-peer web caching system.ACM Workshop
on Survivable and Self-Regenerative Systems, October 2003.

[19] D. Malkhi, Y. Mansour, and M. K. Reiter. Diffusion without false rumors: On propagating updates in
a Byzantine environment.Theoretical Computer Science, 299(1–3):289–306, April 2003.

[20] D. Malkhi, E. Pavlov, and Y. Sella. Optimal unconditional information diffusion. In15th International
Symposium on DIStributed Computing (DISC), 2001.

[21] D. Malkhi, M. K. Reiter, O. Rodeh, and Y. Sella. Efficient update diffusion in Byzantine environments.
In 20th IEEE International Symposium on Reliable Distributed Systems (SRDS), October 2001.

[22] Y. M. Minsky and F. B. Schneider. Tolerating malicious gossip.Distributed Computing, 16(1):49–68,
February 2003.

[23] D. Moore, G. Voelker, and S. Savage. Inferring Internet denial-of-service activity. InProceedings of
the 10th USENIX Security Symposium, pages 9–22, August 2001.

[24] National Institute for Standards and Technology. Digital Signature Standard (DSS).FIPS Publication
186-2, October 2001.http://csrc.nist.gov/publications/fips/.

[25] B. Pittel. On spreading a rumor.SIAM Journal on Applied Mathematics, 47(1):213–223, February
1987.

[26] Riverhead Networks. Products overview.http://www.riverhead.com/pr/index.html.

[27] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A. Sundaram, and D. Zamboni. Analysis of a
denial of service attack on TCP. InProceedings of the 1997 IEEE Symposium on Security and Privacy,
pages 208–223, May 1997.

[28] S. Staniford, V. Paxson, and N. Weaver. How to own the Internet in your spare time. InProceedings
of the 11th USENIX Security Symposium, pages 149–167, August 2002.

23

[29] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service. TR TR98-1687,
Cornell University, Computer Science, May 1998.

[30] J. Wang, L. Lu, and A. A. Chien. Tolerating denial-of-service attacks using overlay networks – impact
of overlay network topology.ACM Workshop on Survivable and Self-Regenerative Systems, October
2003.

[31] E. W. Weisstein.CRC Concise Encyclopedia of Mathematics.

[32] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment for distributed systems and networks. InProc. of
the Fifth Symposium on Operating Systems Design and Implementation, pages 255–270, Boston, MA,
Dec. 2002. USENIX Association.

[33] L. Zhou, F. B. Schneider, and R. van Renesse. COCA: A secure distributed online certification author-
ity. ACM Transactions on Computer Systems, 20(4):329–368, 2002.

24

A Calculating pu and pa

Suppose processpi sends a message to processpj, we want to calculate the probability that processpj
accepts this message. Denote the event “processpi sends a message to processpj” by Sij . Assumen > F ,
and defineq as the probability that processpj appears in processpi’s view, then:

q = 1 − n − 2
n − 1

· n − 3
n − 2

· · · n − 1 − F

n − F
= 1 − n − 1 − F

n − 1
=

F

n − 1
Let Y be the number of valid messages received bypj in a single round, then:

Pr(Y ≤ 0 | Sij) = Pr(Y ≥ n | Sij) = 0

0 < y < n Pr(Y = y | Sij) =
(

n − 2
y − 1

)
qy−1(1 − q)n−1−y

Let pY be the probability that a non-attacked process,pj, discards the message sent bypi, givenSij, then:

pY =
{

0 Y ≤ F
Y −1

Y · Y −2
Y −1 · · · Y −F

Y −F+1 = Y −F
Y Y > F

Calculatingpu gives:

pu = 1 −
∞∑

y=−∞
py · Pr(Y = y | Sij) =

1 −
n−1∑

y=F+1

y − F

y
·
(

n − 2
y − 1

)(
F

n − 1

)y−1(n − 1 − F

n − 1

)n−1−y

=

F∑
y=1

(
n − 2
y − 1

)(
F

n − 1

)y−1(n − 1 − F

n − 1

)n−1−y

+ (8)

n−1∑
y=F+1

F

y
·
(

n − 2
y − 1

)(
F

n − 1

)y−1(n − 1 − F

n − 1

)n−1−y

If pj is attacked withx ≥ F messages, we get:

pY =
Y + x − 1

Y + x
· Y + x − 2
Y + x − 1

· · · Y + x − F

Y + x − F + 1
=

Y + x − F

Y + x

And thus:

pa = 1 −
∞∑

y=−∞
py · Pr(Y = y | Sij) =

1 −
n−1∑
y=1

y + x − F

y + x
·
(

n − 2
y − 1

)(
F

n − 1

)y−1(n − 1 − F

n − 1

)n−1−y

=

n−1∑
y=1

F

y + x
·
(

n − 2
y − 1

)(
F

n − 1

)y−1(n − 1 − F

n − 1

)n−1−y

<

n−1∑
y=1

F

x
·
(

n − 2
y − 1

)(
F

n − 1

)y−1(n − 1 − F

n − 1

)n−1−y

=
F

x

25

Lemma 7. dpa

dα < F
αx .

Proof. Calculating the derivatives, we get:

dpa

dx
=

n−1∑
y=1

d F
y+x

dx
·
(

n − 2
y − 1

)(
F

n − 1

)y−1(n − 1 − F

n − 1

)n−1−y

=

n−1∑
y=1

−F

(y + x)2
·
(

n − 2
y − 1

)(
F

n − 1

)y−1(n − 1 − F

n − 1

)n−1−y

dx

dα
=

d B
αn

dα
=

−B

α2n
dpa

dα
=

dpa

dx
· dx

dα
=

n−1∑
y=1

FB

α2n(y + x)2
·
(

n − 2
y − 1

)(
F

n − 1

)y−1(n − 1 − F

n − 1

)n−1−y

=

n−1∑
y=1

Fx

α(y + x)2
·
(

n − 2
y − 1

)(
F

n − 1

)y−1(n − 1 − F

n − 1

)n−1−y

<

n−1∑
y=1

Fx

αx2
·
(

n − 2
y − 1

)(
F

n − 1

)y−1(n − 1 − F

n − 1

)n−1−y

=
F

αx

We now give a bound onpu.

Lemma 8. pu > 0.6.

Proof. Define:

µ � E[Y | Sij] =
∑n−1

y=1 y · (n−2
y−1

)
qy−1(1 − q)n−1−y = n−2

n−1 · F + 1

E[Y 2 | Sij] =
∑n−1

y=1 y2 · (n−2
y−1

)
qy−1(1 − q)n−1−y = (n−2)(n−3)

(n−1)2
· F 2 + 3 · n−2

n−1 · F + 1

σ2 � V ar(Y | Sij) = (n−2)(n−3)
(n−1)2 · F 2 + 3 · n−2

n−1 · F + 1 −
(

n−2
n−1 · F + 1

)2
= n−2

n−1 · F − n−2
(n−1)2 · F 2

By [31], for n � 1 we get thatY givenSij can be approximated using a normal distribution function,
with µ = F + 1 andσ2 = F . The cumulative distribution functionD(x) is thus given by:

D(x) = 1
2 ·
(
1 + erf

(
x−µ√

2σ

))
= 1

2 ·
(
1 + erf

(
x−F−1√

2F

))
where erf(z) = 1 − 2√

π

∫ ∞

z
e−t2dt

From [31] we get the following:

1
x+

√
x2+2

< ex2 ∫∞
x e−t2dt < 1

x+
√

x2+ 4
π

Concluding that:

erf(z) = 1 − 2√
π

∫ ∞

z
e−t2dt > 1 − 2√

π
· e−z2

z +
√

z2 + 4
π

26

The first sum in formula 8 is approximated byD(F). CalculatingD(F) gives:

D(F) =
1
2
·
(

1 + erf
(−1√

2F

))
>

1
2

+
1
2
·
1 − 2√

π
· e−

1
2F√

1
2F + 4

π − 1√
2F

 =

1 − 1√
π
· e−

1
2F

√
π+8F√
2πF

− 1√
2F

= 1 −
√

2 ·
√

F · e− 1
2F√

π + 8F +
√

π

Define:

g(F) =
√

F · e− 1
2F√

π + 8F +
√

π

We want to bound D(x) from above by finding for which values ofF , g′(F) < 0. The denominator of
g′(F) is always positive, so we ignore it when calculating the derivative:(

e−
1

2F

2
√

F
+

√
Fe−

1
2F

2F 2

)(√
π + 8F −√

π
)− 8

√
Fe−

1
2F

2
√

π+8F
< 0

F
3
2 +F

1
2

2F 2

(√
π + 8F −√

π
)− 8

√
Fe−

1
2F

2
√

π+8F
< 0(

F
3
2 +F

1
2

)
(
√

π+8F−√
π)

√
π+8F−8F

5
2

2F 2
√

π+8F
< 0

Once again, the denominator is positive, and we get:(
F

3
2 + F

1
2

) (√
π + 8F −√

π
)√

π + 8F − 8F
5
2 < 0

π + 8F −√
π2 + 8πF − 8F ·

(
1 − 1

F+1

)
< 0

8F√
π(F+1)

<
√

π + 8F −√
π

Taking derivatives we get:

8√
π(F + 1)2

?
<

8
2
√

π + 8F

2
√

π + 8F
?
<

√
π(F + 1)2

Clearly, (F + 1)2 grows faster than2
√

π + 8F . Numerically solving forF = 1 shows that the inequality
holds. Thus, it holds for everyF ∈ N. Consequently, we only need to find the firstF for which:

8F√
π(F + 1)

<
√

π + 8F −√
π

A numerical solution for this inequality shows that it first holds forF = 3. Thus, forF ≥ 3 we get that
g′(F) < 0, and thusD(F + 1) > D(F). AssigningF = 3 in our previous bound for D(F), we get that for
all F ≥ 3, D(F) ≥ D(3) > 0.3968 ≈ 0.4. AssumingF ≥ 3, we get:

F∑
y=1

(
n − 2
y − 1

)(
F

n − 1

)y−1(n − 1 − F

n − 1

)n−1−y

> 0.4

27

SinceD(x) is maximal atx = µ = F + 1 and symmetric around it, we get the approximation:

2F∑
y=F+1

(
n − 2
y − 1

)(
F

n − 1

)y−1(n − 1 − F

n − 1

)n−1−y

>

F∑
y=1

(
n − 2
y − 1

)(
F

n − 1

)y−1(n − 1 − F

n − 1

)n−1−y

And finally, we conclude that:

pu =
F∑

y=1

(
n − 2
y − 1

)(
F

n − 1

)y−1(n − 1 − F

n − 1

)n−1−y

+

n−1∑
y=F+1

F

y
·
(

n − 2
y − 1

)(
F

n − 1

)y−1(n − 1 − F

n − 1

)n−1−y

>

2
5

+
2F∑

y=F+1

F

2F
·
(

n − 2
y − 1

)(
F

n − 1

)y−1(n − 1 − F

n − 1

)n−1−y

>

2
5

+
1
2
·

F∑
y=1

(
n − 2
y − 1

)(
F

n − 1

)y−1(n − 1 − F

n − 1

)n−1−y

>

2
5

+
1
2
· 2
5

=
3
5

B Calculating p̃

We now computẽp, the probability thatM is propagated from the source in a round in Pull. Assumen > F ,
and defineq as the probability that processp2 appears in processp1’s viewpull, thenq = F

n−1 . Let Y be the
number of valid pull-requests received in a single round, then:

Pr(Y < 0) = Pr(Y ≥ n) = 0

0 ≤ y < n Pr(Y = y) =
(

n − 1
y

)
qy(1 − q)n−1−y

Assumex ≥ F , and definepY as the probability that a valid pull-request is read from the buffer, then:

pY = 1 −
(

1 − Y

Y + x

)(
1 − Y

Y + x − 1

)
. . .

(
1 − Y

Y + x − F + 1

)
= 1 − x! · (Y + x − F)!

(x − F)! · (Y + x)!

The probabilityp̃ that a valid pull-request is read from the buffer, independent ofY , is:

p̃ =
∞∑

y=−∞
py · Pr(Y = y) =

n−1∑
y=0

(
1 − x! · (y + x − F)!

(x − F)! · (y + x)!

)(
n − 1

y

)(
F

n − 1

)y (n − 1 − F

n − 1

)n−1−y

28

C Detailed Analysis

In this section we give a formal analysis of the three protocols in the absence of DoS attacks (failure-free
and crash failures) as well as under Dos attacks. In Section C.1, we describe the parameters and notations
used in our analysis formulas. In Section C.2, we detail our analysis formulas. In Section C.3, we use these
formulas to compute the expected percentage of correct processes that receiveM for a given round, and
compare these results with the simulation results of the previous chapter.

C.1 Definitions

Parameters

• b – number of faulty processes.

• εloss – the link-loss probability. We assume thatεloss is equal for all links and independent of any
other factor.

• Fin−push, Fin−pull – bounds on the number of process to receive messages from in a round, in a push
or a pull (respectively) operation. We fixFin−push = Fin−pull = F

2 in Drum,Fin−push = F in Push,
andFin−pull = F in Pull.

• xpush, xpull – number of fabricated push or pull (respectively) messages sent to an attacked process
in each round. In Drum,xpush = xpull = x

2 , in Push,xpush = x, and in Pull,xpull = x.

Notation

• p – the probability that a given correct process,target, will receive a gossip messageM from another
given correct process,sender, in a certain round. We denoteq = 1 − p.

• ppush, ppull – similar top, but as a result of a push or a pull (respectively) operation.

• dpush – the probability that the target will discard the sender’s incoming push message due to the
bound Fin−push on push messages accepted during each round, given that the sender’s message
reached the target.

• dpull – the probability that the sender will discard the target’s incoming pull-request message due
to the boundFin−pull on pull-request messages accepted during each round, given that the target’s
message reached the sender.

Note that sinceFin−push andFin−pull are smaller in Drum than in Push and Pull, these evaluate to
different values for different protocols.

• Sr – the number of correct processes that haveM at the beginning of roundr, Sr ∈ [1 . . . n − b].

The probabilityd is similar to1 − pu computed in Appendix A for the asymptotic analysis, except for the
following: (i) εloss > 0, (ii) there are faulty processes (b > 0), and (iii) in Drum, the boundsFin−push

andFin−pull are tested separately. That is, each processes accepts push messages from at mostFin−push

processes, and pull-request messages from at mostFin−pull processes.

29

C.2 Formulas

In Section C.2.1, we present the formulas for the case without DoS attacks. In Section C.2.2, we add DoS
attacks. In the next section we present the results obtained from both analyses.

C.2.1 Without DoS Attacks

Here, theb faulty processes are crashed – they do not send any messages (whenb = 0 there is no attack).
Our formulas are based on the analysis of a push-based protocol presented in [8].

We first computedpush anddpull. Wheredpush is the probability that the target will discard the sender’s
incoming push message, given that the sender’s message reached the target, anddpull is the probability that
the sender will discard the target’s incoming pull-request message, given that the target’s message reached
the sender. Note thatdpush (respectively,dpull) depends on the number of messages that the target (respec-
tively, sender) receives in a gossip round, since a process only acceptsFin−push (respectively,Fin−pull) push
(respectively, pull-request) messages in each round. The computation ofdpush is as follows:
Denote the event “sender s chooses target t and the sender’s message is not lost” byRs−t. Let Y be the
number of valid messages received by the target in a single round, andZ be the number of processes that
choose the target in a single round, then:

Pr(Y = y , Z = z | Rs−t) =

(
n − b − 2

z − 1

)(|viewpush|
n − 1

)z−1 (
1 − |viewpush|

n − 1

)n−b−1−z
(

z − 1

y − 1

)
(1 − εloss)

y−1εloss
z−y

Where0 < y ≤ z < n − b. Therefore,

Pr(Y = y | Rs−t) =
∑

z

Pr(Y = y , Z = z | Rs−t) =

n−b−1∑
z=y

(
n − b − 2

z − 1

)(|viewpush|
n − 1

)z−1 (
1 − |viewpush|

n − 1

)n−b−1−z
(

z − 1

y − 1

)
(1 − εloss)

y−1εloss
z−y

Let qY be the probability that the target discards the message sent by the sender, givenRs−t, then:

qY =
{

0 Y ≤ Fin−push
Y −1

Y · Y −2
Y −1 · · · Y −F

Y −F+1 = Y −F
Y Y > Fin−push

Calculatingdpush gives:
dpush =

∑
y

qy · Pr(Y = y | Rs−t) =

n−b−1∑
y=Fin−push+1

y − Fin−push

y
·

n−b−1∑
z=y

(
n − b − 2

z − 1

)(|viewpush|
n − 1

)z−1 (
1 − |viewpush|

n − 1

)n−b−1−z
(

z − 1

y − 1

)
(1 − εloss)

y−1 (εloss)
z−y

We computedpull similarly to the computation ofdpush, and get the following formula:

dpull =
∑

y

qy · Pr(Y = y | Rt−s) =

n−b−1∑
y=Fin−pull+1

y − Fin−pull

y
·

30

n−b−1∑
z=y

(
n − b − 2

z − 1

)(|viewpull|
n − 1

)z−1 (
1 − |viewpull|

n − 1

)n−b−1−z
(

z − 1

y − 1

)
(1 − εloss)

y−1 (εloss)
z−y

We now compute the probabilitiesppush andppull. Whereppush (respectively,ppull) is the probability
that the target will successfully receive a gossip messageM from the sender, in a certain round, as a result
of a push (respectively, pull) operation. The formula forppush includes dependent probabilities. That is,

ppush = Pr

(
sender chooses

target
,

the msg is
not lost

,
target does not
drop the msg

)
=

Pr

(
sender chooses

target

)
Pr

(
the msg is
not lost

)
Pr

(
target does not
drop the msg

| sender chooses
target

,
the msg is
not lost

)
=

(
|viewpush|

n − 1
)(1 − εloss)(1 − dpush)

The probabilityppull is calculated similarly:

ppull = (
|viewpull|

n − 1
)(1 − εloss)2(1 − dpull)

In Pushp = ppush, in Pull p = ppull, and in Drump = 1 − (1 − ppush)(1 − ppull).
Given thati correct processes haveM at the beginning of roundr, we define the probabilitypij that

exactlyj (j ≥ i) correct processes haveM at the beginning of the next round:

pij
∆= Pr(Sr+1 = j|Sr = i)

We now approximatepij as follows1:

pij ≈
(

n − b − i

j − i

)
(1 − qi)j−i(qi)n−b−j

Sr is computed recursively as follows:
Pr(S0 = 1) = 1,

Pr(Sr+1 = j) =
∑
i≤j

Pr(Sr = i)pij

The expected number of correct processes that haveM at the beginning of each gossip round is then as
follows:

E(Sr) =
∑

1≤j≤n−b

Pr(Sr = j)j

1This formula gives an over-estimate ofpij , since some of the counted events reflect a situation where a process sends and
receives more messages than allowed by theFin andFout bounds. However, the probabilities of these events can be neglected
(see [1]).

31

C.2.2 DoS Attacks

We now add DoS attacks into the mix. For a probabilityP , we denote byPa the probability of P when
the process is under an attack, and byPu the case that the process is not under an attack. E.g.,dapush is
the probability that an attacked target will discard the sender’s incoming push message, anddupush is the
probability that a non-attacked target will discard the sender’s incoming push message.

Under a DoS attack,du
push (respectivelydu

pull) is equal todpush (respectively,dpull) as calculated above,
whereas the formulas forda

push andda
pull also depend on the number of fabricated push or pull-request (re-

spectively) messages sent to an attacked correct process in each round, i.e.,xpush andxpull. The computation
of da

push is now as follows:

Let X́push be the number of fabricated push messages that the target receives in a single round, then:

Pr(X́push = x́push) =
(

xpush

x́push

)
(1 − εloss)x́pushεloss

xpush−x́push

and

qY =

{
0 Y + X́push ≤ Fin−push
Y +X́push−F

Y +X́push
Y + X́push > Fin−push

Calculatingda
push gives:

da
push =

∑
y

∑
x́push

qy · Pr(X́push = x́push) · Pr(Y = y | Rs−t) =

n−b−1∑
y=1

xpush∑
x́push=0

max

{
0,

y + x́push − Fin−push

y + x́push

}
·
(

xpush

x́push

)
(1 − εloss)

x́push (εloss)
xpush−x́push ·

n−b−1∑
z=y

(
n − b − 2

z − 1

)(|viewpush|
n − 1

)z−1 (
1 − |viewpush|

n − 1

)n−b−1−z
(

z − 1

y − 1

)
(1 − εloss)

y−1 (εloss)
z−y

We computeda
pull similarly to the computation ofda

push, and get the following formula:

da
pull =

∑
y

∑
x́pull

qy · Pr(X́pull = x́pull) · Pr(Y = y | Rt−s) =

n−b−1∑
y=1

xpull∑
x́pull=0

max

{
0,

y + x́pull − Fin−pull

y + x́pull

}
·
(

xpull

x́pull

)
(1 − εloss)

x́pull (εloss)
xpull−x́pull ·

n−b−1∑
z=y

(
n − b − 2

z − 1

)(|viewpull|
n − 1

)z−1 (
1 − |viewpull|

n − 1

)n−b−1−z
(

z − 1

y − 1

)
(1 − εloss)

y−1 (εloss)
z−y

The probabilitiespu
push (pu

pull) andpa
push (pa

pull) are computed as follows:

pu
push = (

|viewpush|
n − 1

)(1 − εloss)(1 − du
push), pu

pull = (
|viewpull|

n − 1
)(1 − εloss)2(1 − du

pull)

pa
push = (

|viewpush|
n − 1

)(1 − εloss)(1 − da
push), pa

pull = (
|viewpull|

n − 1
)(1 − εloss)2(1 − da

pull)

32

Given thatiu andia non-attacked and attacked (respectively) correct processes haveM at the beginning
of a round, we can compute the probabilityq∗u (respectivelyq∗a), that none of theseiu and ia processes
successfully propagateM to any other non-attacked (attacked) correct process:
Push:

q∗u = (1 − pu
push)iu+ia

q∗a = (1 − pa
push)

iu+ia

Pull:
q∗u = q∗a = (1 − pu

pull)
iu · (1 − pa

pull)
ia

Drum:
q∗u = (1 − pu

push)
iu+ia · (1 − pu

pull)
iu · (1 − pa

pull)
ia

q∗a = (1 − pa
push)iu+ia · (1 − pu

pull)
iu · (1 − pa

pull)
ia

Now we can compute the joint probabilitypiuiajuja that exactlyju andja (ju ≥ iu, ja ≥ ia) correct
processes haveM at the beginning of the next round:

piuiajuja

∆= Pr(Su
r+1 = ju, Sa

r+1 = ja|Su
r = iu, Sa

r = ia) =

Pr(Su
r+1 = ju|Su

r = iu, Sa
r = ia) · Pr(Sa

r+1 = ju|Su
r = iu, Sa

r = ia)

Where:

Pr(Su
r+1 = ju|Su

r = iu, Sa
r = ia) = (

n−b−αn−iu
ju − iu)(1 − q∗u)ju−iu(q∗u)n−b−αn−ju

and

Pr(Sa
r+1 = ja|Su

r = iu, Sa
r = ia) = (

αn−ia
ja − ia)(1 − q∗a)

ja−ia(q∗a)
αn−ja

Su
r andSa

r are computed recursively as follows:

Pr(Su
0 = 0, Sa

0 = 1) = 1

Pr(Su
r+1 = ju, Sa

r+1 = ja) =
∑

0≤iu≤ju

∑
1≤ia≤ja

Pr(Su
r = iu, Sa

r = ia)piuiajuja

Pr(Su
r+1 = ju) =

∑
0≤ju≤n−b−αn

Pr(Su
r+1 = ju, Sa

r+1 = ja)

Pr(Sa
r+1 = ja) =

∑
1≤ja≤αn

Pr(Su
r+1 = ju, Sa

r+1 = ja)

The expected number of non-attacked and attacked correct processes that haveM at the beginning of
each round, is calculated as follows:

E(Su
r) =

∑
0≤ju≤n−b−αn

Pr(Su
r = ju)ju

E(Sa
r) =

∑
1≤ja≤αn

Pr(Sa
r = ja)ja

E(Sr) = E(Su
r) + E(Sa

r)

33

C.3 Results

We numerically computed the above formulas usingMATLAB, with the same parameters used in the simu-
lation presented in the previous chapter. We now compare the analysis results with the results obtained in
the simulations.

We show CDFs of the percentage of correct processes that receiveM by each round. Figure 13 shows
the CDFs for failure-free operation (Figure 13 (a)), and for operation with crashed processes (Figure 13 (b)).
The analysis and simulation results are almost identical.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pe
rc

en
ta

ge
 o

f c
or

re
ct

 p
ro

ce
ss

es

rounds

Push analysis
Push analysis
Pull analysis
Pull simulation
Drum simulation
Drum simulation

(a) Failure-free operation.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pe
rc

en
ta

ge
 o

f c
or

re
ct

 p
ro

ce
ss

es

rounds

Push analysis
Push analysis
Pull analysis
Pull simulation
Drum simulation
Drum simulation

(b) Operation with crashed processes, 10% crashed.

Figure 13: Analysis vs. Simulation: CDFs of percentage of correct processes that receiveM, n = 1000.

Figure 14 compares our analysis results with the simulation results under various DoS attacks for a
system with 120 processes. Again, the analysis and simulation results are virtually the same. Thus, the
analysis validates our simulations (and vice versa).

34

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pe
rc

en
ta

ge
 o

f c
or

re
ct

 p
ro

ce
ss

es

rounds

Push analysis
Push simulation
Pull analysis
Pull simulation
Drum analysis
Drum simulation

(a)α=10%,x = 32.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pe
rc

en
ta

ge
 o

f c
or

re
ct

 p
ro

ce
ss

es

rounds

Push analysis
Push simulation
Pull analysis
Pull simulation
Drum analysis
Drum simulation

(b) α=10%,x = 64.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pe
rc

en
ta

ge
 o

f c
or

re
ct

 p
ro

ce
ss

es

rounds

Push analysis
Push simulation
Pull analysis
Pull simulation
Drum analysis
Drum simulation

(c) α=10%,x = 128.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pe
rc

en
ta

ge
 o

f c
or

re
ct

 p
ro

ce
ss

es

rounds

Push analysis
Push simulation
Pull analysis
Pull simulation
Drum analysis
Drum simulation

(d) α=40%,x = 128.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pe
rc

en
ta

ge
 o

f c
or

re
ct

 p
ro

ce
ss

es

rounds

Push analysis
Push simulation
Pull analysis
Pull simulation
Drum analysis
Drum simulation

(e)α=60%,x = 128.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pe
rc

en
ta

ge
 o

f c
or

re
ct

 p
ro

ce
ss

es

rounds

Push analysis
Push simulation
Pull analysis
Pull simulation
Drum analysis
Drum simulation

(f) α=80%,x = 128.

Figure 14: Analysis vs. Simulation: CDFs of percentage of correct processes that receiveM, n = 120.

35

