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Speech Spectral Modeling and Enhancement

Based on Autoregressive Conditional

Heteroscedasticity Model

Israel Cohen

Abstract

In this paper, we introduce a novel approach for statistically modeling speech signals in the short-

time Fourier transform (STFT) domain. The proposed model is based on autoregressive conditional

heteroscedasticity (ARCH) modeling, which is widely-used for modeling the volatility of financial time-

series such as exchange rates and stock returns. Generalized ARCH models account for excess kurtosis

(i.e., heavy-tailed distribution) and volatility clustering, two important characteristics of financial time-

series. Speech signals in the STFT domain exhibit both “volatility clustering” and heavy tail behavior,

and thus are well suited for such modeling. We define the conditional “volatility” of the STFT expansion

coefficients, and propose to model the one-frame-ahead conditional variance of the expansion coefficients

as a generalized ARCH process. Taking into account speech presence uncertainty, we derive recursive

estimators for the variances and magnitudes of the STFT expansion coefficients. Experimental results

show that the proposed model and speech enhancement algorithm yield a higher segmental signal-to-

noise ratio, lower log-spectral distortion, and better Perceptual Evaluation of Speech Quality scores

(PESQ, ITU-T P.862) than those obtained by using the Gaussian statistical model and the decision-

directed estimation approach of Ephraim and Malah.

I. INTRODUCTION

Statistical modeling of speech signals in the short-time Fourier transform (STFT) domain

has recently received much attention, but is still a puzzling problem. Ephraim and Malah [1]

proposed to model the individual STFT expansion coefficients of the speech signal as zero-mean
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statistically independent Gaussian random variables. This model is motivated by the central

limit theorem, as each expansion coefficient is a weighted sum of random variables resulting

from the random sequence of speech samples. It facilitates a mathematically tractable design of

useful speech enhancement algorithms in the STFT domain, e.g. [1]–[7]. However, the necessary

conditions for the central limit theorem, e.g. that a particular few of the member random variables

does not dominate the sum [8], are not satisfied for speech signals. Furthermore, the span of

correlation within speech signals is often larger than the typical sizes of short-term frames used

in speech enhancement applications [9]. Consequently, the Gaussian approximation can be very

inaccurate in the tail regions of the probability density function [9]–[12].

Martin [9] proposed a Gamma speech model, in which the real and imaginary parts of the

STFT expansion coefficients are modeled as independent and identically distributed (IID) Gamma

random variables. He assumed that distinct expansion coefficients are statistically independent,

and derived minimum mean-squared error (MMSE) estimators for the speech expansion coef-

ficients under either Gaussian or Laplacian noise modeling. He showed that under Gaussian

noise modeling, the Gamma speech model yields higher improvement in the segmental signal-

to-noise ratio (SNR) than the Gaussian speech model. Under Laplacian noise modeling, the

Gamma speech model results in lower residual musical noise than the Gaussian speech model.

Alternatively, the real and imaginary parts of the speech STFT expansion coefficients are modeled

as IID Laplacian random variables, and distinct expansion coefficients are likewise assumed

statistically independent [9], [13]. Martin and Breithaupt [14] showed that MMSE estimators for

the speech expansion coefficients derived under Laplacian modeling have similar properties to

those estimators derived under Gamma modeling, but are easier to compute and implement.

The above-mentioned statistical models consider the variances of the speech STFT expansion

coefficients as the model parameters, which have to be estimated from the noisy observed signal.

Ephraim and Malah [1], [15] proposed three different methods for the estimation of the speech

spectral variances. The first method is maximum-likelihood (ML) estimation, assuming that the

variances are slowly time-varying parameters. This method results in musical residual noise,

which is annoying and disturbing to the perception of the enhanced signal. The second method

is “decision-directed” estimation, which is particularly useful when combined with the MMSE

spectral, or log-spectral, magnitude estimators [1], [2], [16]. It results in colorless residual

noise, but is heuristically motivated and its theoretical performance is unknown due to its
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highly nonlinear nature. The third method [15] is maximum a-posteriori (MAP) estimation,

assuming a specific heuristic first-order Markov model for generating a sequence of speech

spectral variances. It involves a set of nonlinear equations, which are solved recursively by

using the Viterbi algorithm. The computational complexity of the MAP estimator is relatively

high, while it does not provide a significant improvement in the enhanced speech quality over

the decision-directed estimator [15]. Therefore, the decision-directed approach has become the

most acceptable estimation method for the variances of the speech STFT expansion coefficients.

Unfortunately, the decision-directed estimation approach heavily relies on the strong time-

correlation between successive speech STFT expansion coefficients, whereas the underlying

assumption in the above-mentioned models is that distinct expansion coefficients are statistically

independent. Ephraim and Malah concluded their seminal paper [1] by stating that the full

potential of their approach is not yet exploited, and better results may be obtained if the estimation

of the speech spectral variances could be improved. They recognized the limit of their model,

and conjectured that removing the statistical independence assumption may improve the speech

enhancement results. Twenty years later, there still has not been found a statistical model for

speech signals in the STFT domain, which allows reliable and efficient estimation of the variances

and magnitudes of the expansion coefficients in noisy environments.

Recently [17] we proposed to relax the statistical model of Ephraim and Malah by considering

conditional independence of the STFT expansion coefficients given their variances, where the

sequence of variances at a given frequency is described as a random sequence. In this paper,

pursuing this approach, we propose a novel statistical model for speech signals in the STFT

domain, which is based on autoregressive conditional heteroscedasticity (ARCH) modeling.

ARCH models, introduced by Engle [18] and generalized by Bollerslev [19], are widely-used for

volatility modeling of financial time-series such as exchange rates and stock returns. They are

successfully utilized in various financial applications such as risk management, option pricing,

foreign exchange, and the term structure of interest rates [20]. The changes in volatility are

important for understanding financial markets, since higher volatility is associated with a greater

risk and investors require higher expected returns as compensation for holding riskier assets.

Generalized autoregressive conditional heteroscedasticity (GARCH) models [19] explicitly pa-

rameterize the time-varying volatility in terms of past conditional variances and past squared

innovations (prediction errors), while taking into account excess kurtosis (i.e., heavier tailed
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distribution than Gaussian) and volatility clustering, two important characteristics of financial

time-series.

Speech signals, when transformed into the time-frequency domain by using the STFT, demon-

strate both “volatility clustering” and heavy tail behavior. Consider a time series of successive

expansion coefficients in a fixed frequency bin, then successive magnitudes of the expansion

coefficients are highly correlated, whereas successive phases can be assumed uncorrelated [17].

Hence, large magnitudes tend to follow large magnitudes and small magnitudes tend to follow

small magnitudes, while the spectral phase is practically unpredictable. Furthermore, expansion

coefficients of speech signals do not have a Gaussian distribution, but rather Gamma-like distri-

bution with significant heavy tail behavior [9]–[11]. Therefore, GARCH modeling can be tailored

to speech signals in the STFT domain.

Here, we take into account the speech presence uncertainty, and explicitly define the con-

ditional variance of the expansion coefficients. We show that the one-frame-ahead conditional

variance is a MMSE estimator of the variance given past spectral components. We propose

to model the one-frame-ahead conditional variance as a GARCH process, and derive recursive

estimators for the variances and magnitudes of the STFT expansion coefficients. The performance

of the proposed speech enhancement algorithm is evaluated, and compared to that obtained by

using the conventional Gaussian statistical model and the decision-directed estimation approach.

Experimental results show that the proposed method yields a higher segmental SNR, lower

log-spectral distortion, and better Perceptual Evaluation of Speech Quality scores (PESQ, ITU-

T P.862). A subjective study of speech spectrograms and informal listening tests confirm that

by using the GARCH modeling method, weak speech components and unvoiced sounds are

significantly more emphasized, and the enhanced speech is of higher quality.

The paper is organized as follows. In Section II, we review the autoregressive conditional

heteroscedasticity models. In Section III, we formulate a novel approach for statistically modeling

speech signals in the STFT domain. In Section IV, we derive recursive estimators for the

variances and magnitudes of the STFT expansion coefficients. In Section V, we address the

problem of estimating the model parameters. Finally, in Section VI, we demonstrate the improved

performance of proposed speech enhancement algorithm, compared to that obtained by using

the decision-directed estimation approach.
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II. AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY

Let {yt} denote a real-valued discrete-time stochastic process, and let ψt denote an information

set available at time t (e.g., {yt} may represent a sequence of observations, and ψt may include

the observed data through time t). Then, the innovation (prediction error) εt at time t in the

MMSE sense is obtained by subtracting from yt its conditional expectation given the information

ψt−1,

εt = yt − E {yt |ψt−1} . (1)

The conditional variance (volatility) of yt given ψt−1 is by definition the conditional expectation

of ε2
t ,

σ2
t = var {yt |ψt−1}

= E
{

ε2
t |ψt−1

}

. (2)

Changes in the conditional variance are quite important for understanding financial markets, since

higher volatility is associated with a greater risk and investors require higher expected returns

as compensation for holding riskier assets. The ARCH model introduced by Engle [18], and the

GARCH model proposed by Bollerslev [19] as a generalization of Engle’s model, provide a rich

class of possible parametrization of conditional heteroscedasticity (i.e., time-varying volatility).

The ARCH and GARCH models explicitly recognize the difference between the unconditional

variance E {[yt − E{yt}]2} and the conditional variance σ2
t , allowing the latter to change over

time. The fundamental characteristic of these models is that magnitudes of recent innovations

provide information about future volatility.

Let {zt} be a zero-mean unit-variance white noise process with some specified probability

distribution. Then a GARCH model of order (p, q), denoted by εt ∼ GARCH(p, q), has the

following general form

εt = σt zt (3)

σ2
t = f

(

σ2
t−1, . . . , σ

2
t−p, ε

2
t−1 . . . , ε

2
t−q

)

(4)

where σt is the conditional standard deviation given by the square root of (4). That is, the

conditional variance σ2
t is determined by the values of p past conditional variances and q past

squared innovations, and the innovation εt is generated by scaling a white noise sample with



6

the conditional standard deviation. The ARCH(q) model, introduced by Engle [18], is a special

case of the GARCH(p, q) model with p = 0.

The most widely-used GARCH model specifies a linear function f in (4) as follows,

σ2
t = κ+

q
∑

i=1

αi ε
2
t−i +

p
∑

j=1

βj σ
2
t−j , (5)

where the values of the parameters are constrained by

κ > 0 , αi ≥ 0 , βj ≥ 0 , i = 1, . . . , q , j = 1, . . . , p ,
q
∑

i=1

αi +

p
∑

j=1

βj < 1 .

The first three constraints are sufficient to ensure that the conditional variances {σ2
t } are strictly

positive. The forth constraint is a covariance stationarity constraint, which is necessary and

sufficient for the existence of a finite unconditional variance of the innovations process [19].

Mandlebrot [21] observed that many financial time-series such as exchange rates and stock

returns exhibit volatility clustering phenomenon, i.e. large changes tend to follow large changes

of either sign and small changes tend to follow small changes. Equation (5) captures the volatility

clustering phenomenon, since large innovations of either sign increase the variance forecasts for

several samples. This in return increases the likelihood of large innovations in the succeeding

samples, which allows the large innovations to persist. The degree of persistence is determined

by the lag lengths p and q, as well as the magnitudes of the coefficients {αi} and {βj}.

An important attribute of financial time series is excess kurtosis, i.e., the probability distribu-

tions exhibit heavier tails than the Gaussian distribution. Bollerslev [19] showed that GARCH

models account also for heavy tail behavior of the innovations process. Specifically, he showed

that the standard GARCH(1, 1) process, which is defined by

εt |ψt−1 ∼ N(0, σ2
t ) (6)

σ2
t = κ+ α1 ε

2
t−1 + β1 σ

2
t−1 , (7)

generates data with excess kurtosis. Bollerslev found that a necessary and sufficient condition

for the existence of the 2nth moment E {ε2n
t } of the standard GARCH(1, 1) process is

βn
1 +

n
∑

k=1

n! (2k − 1)!!

k! (n− k)!
αk

1 β
n−k
1 < 1 (8)
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where (2k − 1)!!
△
= 1 · 3 . . . (2k − 1). Accordingly, 3α2

1 + 2α1 β1 + β2
1 < 1 is necessary and

sufficient for the existence of the forth-order moment. Under this constraint, the second and

fourth order moments are given by

E
{

ε2
t

}

=
κ

1 − α1 − β1

.

E
{

ε4
t

}

=
3κ2(1 + α1 + β1)

(1 − α1 − β1)(1 − β2
1 − 2α1 β1 − 3α2

1)
.

The kurtosis “excess” is therefore

E {ε4
t}

(E{ε2
t})2 − 3 =

6α2
1

1 − β2
1 − 2α1 β1 − 3α2

1

(9)

which is greater than zero by imposing the constraint on the existence of the forth-order moment.

Speech signals in the STFT domain demonstrate both heavy-tailed distribution [9], [10], [12]

and “volatility clustering”. Magnitudes of successive expansion coefficients in the same frequency

bin are highly correlated, whereas the corresponding phases can be assumed uncorrelated [17].

Hence, large magnitudes tend to follow large magnitudes and small magnitudes tend to follow

small magnitudes, while the spectral phase (“sign” of the innovation) is unpredictable. Therefore,

GARCH modeling is well-suited for speech signals in the STFT domain.

III. SPECTRAL MODELING

In this section, we formulate a novel modeling approach for speech signals in the STFT

domain, which utilizes the GARCH model. We take into account the speech presence uncertainty,

and define the conditional variance of spectral components under signal presence hypothesis. For

simplicity, the conditional distribution of the real and imaginary parts of the spectral components

is assumed Gaussian, and the sequence of the conditional variances is modeled as a GARCH(1, 1)

process.

Let x(n) and d(n) denote speech and uncorrelated additive noise signals, respectively, where

n is a discrete-time index. The observed signal y(n) is transformed into the time-frequency

domain by applying the STFT. Specifically,

Ytk =
K−1
∑

n=0

y(n+ tM)h(n) e−j 2π

K
n k (10)

where t is the time frame index (t = 0, 1, . . .), k is the frequency-bin index (k = 0, 1, . . . , K−1),

h(n) is an analysis window of size K (e.g., Hamming window), and M is the framing step
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(number of samples separating two successive frames). In the time-frequency domain we have

Ytk = Xtk +Dtk, where {Xtk} are the signal components and {Dtk} are the noise components.

In accordance with the Gaussian statistical model, proposed by Ephraim and Malah [1],

we assume that the noise spectral components {Dtk} are zero-mean statistically independent

Gaussian random variables. However, we do not make a similar assumption with regard to

the speech spectral components {Xtk}, since the latter are highly correlated. Recently [17]

we proposed to relax the statistical model of Ephraim and Malah by considering conditional

independence of the speech spectral components given their variances, where the sequence of

variances at a given frequency k is described as a random sequence. Here, pursuing this approach,

we propose to model the variance sequence as a random GARCH process.

Let H tk
0 and H tk

1 denote, respectively, hypotheses of signal absence and presence in the noisy

spectral component Ytk, and let stk denote a binary state variable which indicates signal presence

or absence, i.e., stk = 0 under H tk
0 , and stk = 1 under H tk

1 . Let λtk
△
= E

{

|Xtk|2 |H tk
1

}

denote

the variance of a speech spectral component Xtk under H tk
1 . We assume that given {λtk} and

{stk}, the speech spectral components {Xtk} are generated by

Xtk =
√

λtk Vtk (11)

where
{

Vtk |H tk
0

}

are identically zero, and
{

Vtk |H tk
1

}

are statistically independent complex

Gaussian random variables with zero mean, unit variance, and IID real and imaginary parts:

H tk
1 : E {Vtk} = 0 , E {|Vtk|2} = 1 ,

H tk
0 : Vtk = 0 .

(12)

Accordingly, the speech spectral components
{

Xtk |H tk
1

}

are conditionally zero-mean statisti-

cally independent Gaussian random variables given their variances {λtk}. The real and imaginary

parts of Xtk under H tk
1 are conditionally IID random variables given λtk.

Let X τ
0 = {Xtk | t = 0, . . . , τ, k = 0, . . . , K − 1} represent the set of clean speech spectral

components up to frame τ , and let λtk|τ
△
= E

{

|Xtk|2 |H tk
1 , X τ

0

}

denote the conditional variance

of Xtk under H tk
1 given the clean spectral components up to frame τ . Then, for τ ≥ t we clearly

have λtk|τ = |Xtk|2. For τ = t − 1, we assume that the one-frame-ahead conditional variance

λtk|t−1 evolves according to a GARCH(1, 1) process:

λtk|t−1 = λmin + µ |Xt−1,k|2 + δ
(

λt−1,k|t−2 − λmin

)

(13)
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where

λmin > 0

µ ≥ 0 , δ ≥ 0

µ+ δ < 1

(14)

are the standard constraints imposed on the parameters of the GARCH model. The parameters µ

and δ are, respectively, the moving average and autoregressive parameters of the GARCH(1,1)

model, and λmin is a lower bound on the variance of Xtk under H tk
1 . Note that λmin in (13)

is related to κ in (7) by λmin = κ/ (1 − δ), which is strictly positive under the constraints

κ > 0, µ ≥ 0, δ ≥ 0, µ+ δ < 1. We use (13) rather than (7) for convenience to make the lower

bound on the variance an explicit parameter of the model.

The variances of the speech spectral component are generally unknown, and have to be

estimated from the available information. If the available information include the set of clean

spectral components up to frame t− 1, then a MMSE estimator for λtk can be obtained by

λ̂tk = E
{

λtk

∣

∣H tk
1 , X t−1

0

}

. (15)

From (11), (12) and the definition of the conditional variance λtk|τ we have

λtk|t−1
△
= E

{

|Xtk|2
∣

∣H tk
1 , X t−1

0

}

= E
{

λtk |Vtk|2
∣

∣H tk
1 , X t−1

0

}

= E
{

λtk

∣

∣H tk
1 , X t−1

0

}

E
{

|Vtk|2
∣

∣H tk
1

}

= λ̂tk . (16)

Therefore, given X t−1
0 , the conditional variance λtk|t−1 is a MMSE estimator for λtk. In practice,

the available information is the set of noisy spectral components up to frame t, rather than the

clean spectral components up to frame t − 1. Hence, an estimate for λtk, and ultimately an

estimate for Xtk, have to be derived from the available noisy data.

IV. SPECTRAL ENHANCEMENT

In this section, we assume that the model parameters µ, δ and λmin are known, and derive

recursive estimators for the speech spectral variance λtk and the spectral component Xtk given

the noisy measurements up to frame t. We also assume knowledge of the noise spectrum, which

in practice can be estimated by using the Minima Controlled Recursive Averaging approach [22].

Let Y t
0 = {Yτk | τ = 0, . . . , t, k = 0, . . . , K − 1} represent the set of noisy spectral compo-

nents up to frame t, and let ψt denote the information employed for the recursive estima-

tion at frame t. To retain the computational complexity of the implementation manageable,
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ψt does not include the complete set of spectral measurements up to frame t, but only a

few estimated variables from the previous frame (t − 1) and the new spectral measurements

{Ytk | k = 0, . . . , K − 1}. Suppose that the available information at frame t is an estimate λ̂tk|t−1

for the one-frame-ahead conditional variance of Xtk, and the new noisy spectral components

{Ytk | k = 0, . . . , K − 1}. Then a MMSE estimate for λtk|t can be obtained by calculating its

conditional mean under H tk
1 given Ytk and λ̂tk|t−1:

λ̂tk|t = E
{

λtk|t

∣

∣

∣
H tk

1 , λ̂tk|t−1 , Ytk

}

. (17)

By definition, λtk|t = |Xtk|2. Hence

λ̂tk|t = E
{

|Xtk|2
∣

∣

∣
H tk

1 , λ̂tk|t−1 , Ytk

}

= var
{

Xtk |H tk
1 , λ̂tk|t−1 , Ytk

}

+
∣

∣

∣
E
{

Xtk

∣

∣

∣
H tk

1 , λ̂tk|t−1 , Ytk

}∣

∣

∣

2

. (18)

Let σ2
tk

△
= E

{

|Dtk|2
}

denote the variance of a noise spectral component Dtk. Then, the as-

sumption, that
{

Xtk |H tk
1 , λtk

}

and {Dtk |σ2
tk} are statistically independent Gaussian complex

variables, implies that the conditional distribution of Xtk|λtk under H tk
1 given Ytk is Gaussian

with mean and variance

E
{

Xtk

∣

∣H tk
1 , λtk, Ytk

}

=
λtk

λtk + σ2
tk

Ytk (19)

var
{

Xtk |H tk
1 , λtk, Ytk

}

=
λtk

λtk + σ2
tk

σ2
tk . (20)

Substituting (19) and (20) into (18), we have

λ̂tk|t =
λ̂tk|t−1

λ̂tk|t−1 + σ2
tk

(

σ2
tk +

λ̂tk|t−1 |Ytk|2

λ̂tk|t−1 + σ2
tk

)

. (21)

We call (21) the “update” step, since we start with an estimate λ̂tk|t−1 that relies on the noisy

observations up to frame t− 1, and then update the estimate by using the additional information

Ytk. This step can be expressed in terms of the a priori and a posteriori SNRs, which are defined

by

ξtk|τ
△
=
λtk|τ

σ2
tk

, γtk
△
=

|Ytk|2
σ2

tk

. (22)

Dividing both sides of (21) by σ2
tk, we have

ξ̂tk|t =
ξ̂tk|t−1

ξ̂tk|t−1 + 1

(

1 +
ξ̂tk|t−1 γtk

ξ̂tk|t−1 + 1

)

. (23)
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Computation of the update step requires the estimate λ̂tk|t−1. Suppose we are given at frame

t−1 an estimate λ̂t−1,k|t−2 for the conditional variance of Xt−1,k, which has been obtained from

the noisy measurements up to frame t− 2. Then a recursive MMSE estimate for λtk|t−1 can be

obtained by calculating its conditional mean under H t−1,k
1 given λ̂t−1,k|t−2 and Yt−1,k:

λ̂tk|t−1 = E
{

λtk|t−1

∣

∣

∣
H t−1,k

1 , λ̂t−1,k|t−2 , Yt−1,k

}

. (24)

Substituting (13) into (24), we have

λ̂tk|t−1 = λmin + µE
{

|Xt−1,k|2
∣

∣

∣
H t−1,k

1 , λ̂t−1,k|t−2 , Yt−1,k

}

+ δ
(

λ̂t−1,k|t−2 − λmin

)

. (25)

Equation (18) implies that E
{

|Xt−1,k|2
∣

∣

∣
H t−1,k

1 , λ̂t−1,k|t−2 , Yt−1,k

}

= λ̂t−1,k|t−1. Substituting

this into (25), we obtain

λ̂tk|t−1 = λmin + µ λ̂t−1,k|t−1 + δ
(

λ̂t−1,k|t−2 − λmin

)

. (26)

We call (26) the “propagation” step, since the conditional variance estimates are propagated

ahead in time to obtain a conditional variance estimate at frame t from the information available

at frame t− 1.

The propagation and update steps are iterated, following the rational of Kalman filtering,

to recursively predict and update the conditional variance estimates for the speech spectral

components as new data arrive. The algorithm is initialized at the first frame, say t = 0, with

λ̂0,k|−1 = λmin for all the frequency bins, k = 0, . . . , K − 1. Then, for t = 0, 1, . . ., the estimate

λ̂tk|t is calculated by using the update step (21), and λ̂t+1,k|t is subsequently calculated by using

the propagation step (26).

We are now interested in estimating the speech spectral component Xtk from the information

ψt available at frame t, such that the expected value of a certain distortion measure is minimized:

X̂tk = arg min
X̂

E
{

d
(

Xtk, X̂
)

|ψt

}

, (27)

where d
(

Xtk, X̂tk

)

is a given distortion measure between Xtk and X̂tk. Recall that given

the variance λtk and the state variable stk, the speech spectral component Xtk is statistically

independent of Y t−1
0 , the information required to be extracted from past measurements for the

recursive estimation is the estimates for λtk and the signal presence probability P
(

H tk
1

)

. Let

p̂tk = P
(

H tk
1 | Y t

0

)

denote an estimate for the signal presence probability that is recursively

calculated by using the noisy spectral measurement up to frame t, e.g., [4], [5], [23]. Then given
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p̂tk and employing λ̂tk|t as an estimate for the variance of Xtk, the estimator X̂tk can be obtained

from

min
X̂tk

E
{

d
(

Xtk, X̂tk

)
∣

∣

∣
p̂tk , λ̂tk|t , Ytk

}

. (28)

This estimation problem was already solved for several distortion measures, which are of interest

in speech enhancement applications. In particular, assuming a squared error distortion measure

of the form

d
(

Xtk, X̂tk

)

=
∣

∣

∣
f(Xtk) − g(X̂tk)

∣

∣

∣

2

(29)

where f(X) and g(X) are specific functions of X (e.g., X, |X|, log |X|, ej∠X), the estimator

X̂tk is calculated from

g(X̂tk) = E
{

f(Xtk)
∣

∣

∣
p̂tk , λ̂tk|t , Ytk

}

= p̂tk E
{

f(Xtk)
∣

∣

∣
H tk

1 , λ̂tk|t , Ytk

}

+ (1 − p̂tk)E
{

f(Xtk)
∣

∣H tk
0 , Ytk

}

. (30)

A MMSE estimator for Xtk (Wiener filter) is obtained by using f(X) = g(X) = X:

X̂tk = p̂tk

ξ̂tk|t

1 + ξ̂tk|t
Ytk , (31)

where ξ̂tk|t = λ̂tk|t/ σ
2
tk is an estimate for the a priori SNR. Using f(X) = g(X) = |X| and

combing the resulting spectral amplitude estimator with the phase of the noisy spectral component

Ytk yields [1]

X̂tk = p̂tk GSA

(

ϑ̂tk|t, γtk

)

Ytk , (32)

where ϑ̂tk|t is defined by ϑ̂tk|t =
ξ̂tk|t

1+ξ̂tk|t
γtk, and

GSA (ϑ, γ) =

√
π ϑ

2 γ

[

(1 + ϑ)I0

(

ϑ

2

)

+ ϑ I1

(

ϑ

2

)]

exp

(

−ϑ
2

)

(33)

represents the spectral-amplitude gain function when the signal is surely present [1]. The func-

tions I0(·) and I1(·) denote, respectively, the modified Bessel functions of zero and first order.

The optimally-modified log-spectral amplitude (OM-LSA) estimator [5] is obtained by using

g(X̂tk) = log |X̂tk| , f(Xtk) =







log |Xtk| , under H tk
1 ,

log (Gmin|Ytk|) , under H tk
0 ,

(34)
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where Gmin ≪ 1 represents a constant attenuation factor. Substituting (34) into (30) and combing

the resulting amplitude estimate with the phase of the noisy spectral component Ytk yields

X̂tk =
[

GLSA(ξ̂tk|t, ϑ̂tk|t)
]p̂tk

G1−p̂tk

min Ytk (35)

where

GLSA (ξ, ϑ) =
ξ

1 + ξ
exp

(

1

2

∫ ∞

ϑ

e−x

x
dx

)

(36)

represents the log-spectral amplitude (LSA) gain function under H tk
1 which was derived by

Ephraim and Malah [2]. Note that X̂tk in (35) is not zero when the signal is surely absent,

but it reduces to Ytk attenuated by a constant factor (i.e., X̂tk = Gmin Ytk when p̂tk = 0). The

constant attenuation under H tk
0 retains the noise naturalness, and is closely related to the “spectral

floor” modification of the spectral subtraction method, as proposed by Berouti, Schwartz and

Makhoul [24].

V. MODEL ESTIMATION

In this section we address the problem of estimating the model parameters µ, δ and λmin.

The ML estimation approach is commonly used for estimating the parameters of a GARCH

model [25]. We derive the ML function of the model parameters, by using the spectral com-

ponents of the clean speech signal on some interval t ∈ [0, T ]. For simplicity, we assume that

the parameters are constant during the above interval and are independent of the frequency-bin

index k. In practice, the speech signal can be divided into short time segments and split in

frequency into narrow subbands, such that the parameters can be assumed to be constant in

each time-frequency region. Furthermore, we generally do not have a direct access to the clean

spectral components. However, the expectation-maximization (EM) algorithm [26], [27] can be

utilized for solving this problem by iteratively estimating the clean spectral components and the

model parameters from the noisy measurements.

Let X T
0 = {Xtk | t = 0, . . . , T, k = 0, . . . , K − 1} denote the set of clean speech spectral

components employed for the model estimation, let H1 = {tk |Xtk 6= 0} denote the set of time-

frequency bins in which the signal is present, and let φ =
[

µ δ λmin

]

denote the vector of

unknown parameters. Then for tk ∈ H1, the conditional distribution of Xtk given its variance

λtk is Gaussian:

p (Xtk |λtk ) =
1

π λtk

exp

(

−|Xtk|2
λtk

)

, tk ∈ H1 . (37)
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Furthermore, {Xtk |λtk , tk ∈ H1} are statistically independent. We showed in (16) that the

conditional MMSE estimate of λtk given the speech spectral components up to frame t − 1

is λtk|t−1. The conditional variance λtk|t−1 can recursively be calculated from past spectral

components X t−1
0 by using (13) and the parameter vector φ. Hence, the logarithm of the

conditional density of Xtk given the clean spectral components up to frame t−1 can be expressed

as

log p
(

Xtk

∣

∣X t−1
0 ; φ

)

= − |Xtk|2
λtk|t−1

− log λtk|t−1 − log π , tk ∈ H1 . (38)

It is convenient to regard the speech spectral components in the first frame (t = 0) as deter-

ministic, with the values of λ0,k|−1 in the first frame initialized to their minimal value λmin,

and maximize the log-likelihood when conditioned on the first frame (for sufficiently large

sample size, the spectral components of the first frame make a negligible contribution to the

total likelihood). The log-likelihood conditional on the spectral components of the first frame is

given by

L(φ) =
∑

tk∈H1∩t∈[1,T ]

log p
(

Xtk

∣

∣H tk
1 ,X t−1

0 ; φ
)

. (39)

Substituting (38) into (39) and imposing the constraints in (14) on the estimated parameters, the

maximum-likelihood estimates of the model parameters can be obtained by solving the following

constrained minimization problem

minimize
λ̂min, µ̂, δ̂

∑

tk∈H1∩t∈[1,T ]

[ |Xtk|2
λtk|t−1

+ log λtk|t−1

]

subject to λ̂min > 0 , µ̂ ≥ 0 , δ̂ ≥ 0 , µ̂+ δ̂ < 1 .

(40)

Such problem is generally referred to as constrained nonlinear optimization or nonlinear pro-

gramming. For given numerical values of the parameters, the sequences of conditional variances
{

λtk|t−1

}

can be calculated from (13) and used to evaluate the series in (40). The result can then

be minimized numerically by using the Berndt, Hall, Hall and Hausman [28] algorithm as in

Bollerslev [19]. Alternatively, the function fmincon of the Optimization Toolbox in MATLABr

can be used to find the minimum of the constrained nonlinear function of the model parameters,

similar to its use within the function garchfit of the GARCH Toolbox. The latter function provides

ML estimates for the parameters of a univariate (scalar) one-state GARCH process. It cannot

be used directly in the present work, since the spectral components are complex and generated

from a two-state model (speech presence and absence states).
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VI. EXPERIMENTAL RESULTS

In this section, the performance of the proposed speech enhancement algorithm is evaluated,

and compared to that obtained by using the decision-directed a priori SNR estimator. The

evaluation includes three objective quality measures, and informal listening tests. The first quality

measure is the segmental SNR, in dB, defined by [29]

SegSNR =
10

|T |
∑

t∈T

log10

∑N−1
n=0 x

2(n+ tN/2)
∑N−1

n=0 [x(n+ tN/2) − x̂(n+ tN/2)]2
(41)

where T represents the set of frames that contain speech, |T | its cardinality, and N = 512 is

the number of samples per frame (corresponding to 32 ms half overlapping frames). The second

quality measure is the log-spectral distortion (LSD), in dB, which is defined by

LSD =
1

L

L−1
∑

t=0







1

N/2 + 1

N/2
∑

k=0

[

C (20 log10 |Xtk|) − C
(

20 log10 |X̂tk|
)]2







1

2

(42)

where L denotes the number of frames in the signal, and C confines the dynamic range of

the log-spectrum to 50 dB (that is, C(x) = max {x, ǫ}, where ǫ = max
tk

{20 log10 |Xtk|} − 50).

The third quality measure is the Perceptual Evaluation of Speech Quality (PESQ) score (ITU-T

P.862).

The speech signals used in our evaluation are taken from the TIMIT database [30]. They

include 20 different utterances from 20 different speakers, half male and half female. The speech

signals are sampled at 16 kHz and degraded by white Gaussian noise with SNRs in the range

[0, 20] dB. The noisy signals are transformed into the STFT domain using half overlapping

Hamming analysis windows of 32 milliseconds length. The GARCH model (i.e., the parameters

µ, δ and λmin) is estimated independently for each speaker from the clean signal of that speaker,

as described in Section V. The proposed speech enhancement algorithm is then applied to each

noisy speech signal using the corresponding model parameters and the OM-LSA estimator in (35)

with Gmin = −20 dB. Alternatively, the a priori SNR ξtk is estimated by the decision-directed

method [1]:

ξ̂DD
tk = max

{

α
|X̂t−1,k|2
σ2

t−1,k

+ (1 − α)(γtk − 1) , ξmin

}

, (43)

with the parameters ξmin = −15 dB and α = 0.98 (these value were determined in [1], [2],

[16] by simulations and informal listening tests). The noise spectral variance σ2
tk is estimated
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by averaging over time the spectral power values of the noise signal itself. In practice, the

noise signal is unknown, and the noise spectral variance can be estimated by using the Minima

Controlled Recursive Averaging approach [22], which is particularly useful in nonstationary

noise environments. Speech presence is determined (i.e., p̂tk = 1) whenever 20 log10 |Xtk| >
max

tk
{20 log10 |Xtk|} − 50; In the other time-frequency bins, p̂tk is set to zero and consequently

the OM-LSA estimator reduces to X̂tk = Gmin Ytk. In practice, the clean spectral components

are obviously unknown, and the speech presence probability ptk = P (H tk
1 ) has to be estimated

from the noisy spectral measurements [5].

Table I shows the results of the segmental SNR achieved by the proposed and the decision-

directed a priori SNR estimators. The results of the LSD and the PESQ mean opinion score

are presented, respectively, in Tables II and III. The results show that the proposed estimator

yields a higher segmental SNR, lower LSD, and higher PESQ scores than the decision-directed

estimator under all tested environmental conditions. A subjective study of speech spectrograms

and informal listening tests confirm that the quality of the enhanced speech obtained by using

the GARCH modeling method is much better than that obtained by using the decision-directed

method. In particular, weak speech components and unvoiced sounds are better preserved.

Figure 1 demonstrates the spectrograms and waveforms of the clean signal, noisy signal (SNR

= 5 dB) and the enhanced speech signals obtained by using the two methods. It shows that

weak speech components and unvoiced sounds are significantly more emphasized in the signal

enhanced by the proposed method than in the signal enhanced by using the decision-directed

estimator.

VII. CONCLUSION

We have proposed a novel approach for statistically modeling speech signals in the STFT

domain, and enhancing speech degraded by uncorrelated additive noise. Our approach builds on

advances in stochastic financial models of volatility and conditional heteroscedasticity. It provides

an explicit model for the conditional variance and conditional distribution of the expansion

coefficients. It takes into account the correlation between successive expansion coefficients,

heavy tails of the probability distributions, and persistence in variability. The correlation between

successive expansion coefficients is considered by parameterizing the conditional variances in

terms of past conditional variances and past power values of the expansion coefficients. Excess
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kurtosis and persistence in variability are natural outcomes of modeling the one-frame-ahead

conditional variance as a GARCH process. These aspects conform to the observations that the

STFT expansion coefficients of speech signals have probability distributions with heavier tails

than a Gaussian distribution [9]–[11], and that variability of expansion coefficients persists in

the sense that large magnitudes tend to follow large magnitudes and small magnitudes tend to

follow small magnitudes while the phase is unpredictable.

We assumed that the one-frame-ahead conditional variance evolves as a standard GARCH(1, 1)

process, with Gaussian conditional distribution. To capture a more significant heavy tail behavior

of the unconditional probability distribution of the expansion coefficients, the Gaussian distribu-

tion may be replaced with a heavy-tailed distribution, such as Gamma, Laplacian or student-t.

Furthermore, GARCH models of higher orders may be utilized. However, the choice of the

particular distribution and order of the GARCH model is a matter of trial and error.

We derived recursive estimators for the variances and magnitudes of the STFT expansion

coefficients. The variance of an expansion coefficient is recursively estimated by iterating propa-

gation and update steps following the rational of Kalman filtering. Maximum-likelihood estimates

of the model parameters are obtained by solving a constrained nonlinear minimization problem,

similar to the estimation problem of standard GARCH models. The performance of the proposed

speech enhancement algorithm was compared to that obtained by using the conventional Gaussian

model and the decision-directed estimation approach. Using the proposed method, weak speech

components and unvoiced sounds are significantly more emphasized and the enhanced speech

is of higher quality.

It should be noted that the experimental results in this work are obtained under the assumption

that signal presence is perfectly detected. That is, for each time-frequency bin tk we know in

advance whether a desired speech component Xtk is present or absent in the noisy component

Ytk. Therefore, whenever speech is present we apply the log-spectral gain function (see (36))

to the noisy spectral component, and whenever speech is absent we simply attenuate the noisy

spectral component by a constant factor. In practice, under signal presence uncertainty the signal

presence probability ptk = P
(

H tk
1

)

is estimated, and the quality of the enhanced speech may

be lower due to miss-detection of speech components (p̂tk < 1 under H tk
1 ). Furthermore, some

residual musical noise may be generated due to false-detection of speech components (p̂tk > 0

under H tk
0 ). In addition, we assumed that the clean signal is available for the estimation of the
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model parameters. In practice, the performance of the proposed algorithm will be lower, since

the model has to be estimated from the noisy signal. Nevertheless, the experimental results show

the potential of the proposed model, and motivate a further research on the estimation of the

signal presence probability and the model itself.

ACKNOWLEDGEMENT

The author thanks Prof. David Malah for his helpful comments.

REFERENCES

[1] Y. Ephraim and D. Malah, “Speech enhancement using a minimum mean-square error short-time spectral amplitude

estimator,” IEEE Trans. Acoustics, Speech and Signal Processing, vol. ASSP-32, no. 6, pp. 1109–1121, December 1984.

[2] ——, “Speech enhancement using a minimum mean-square error log-spectral amplitude estimator,” IEEE Trans. Acoustics,

Speech and Signal Processing, vol. ASSP-33, no. 2, pp. 443–445, April 1985.

[3] A. J. Accardi and R. V. Cox, “A modular approach to speech enhancement with an application to speech coding,” in

Proc. 24th IEEE Internat. Conf. Acoust. Speech Signal Process., ICASSP-99, Phoenix, Arizona, 15–19 March 1999, pp.

201–204.

[4] J. Sohn, N. S. Kim, and W. Sung, “A statistical model-based voice activity detector,” IEEE Signal Processing Letters,

vol. 6, no. 1, pp. 1–3, January 1999.

[5] I. Cohen and B. Berdugo, “Speech enhancement for non-stationary noise environments,” Signal Processing, vol. 81, no. 11,

pp. 2403–2418, November 2001.

[6] T. Lotter, C. Benien, and P. Vary, “Multichannel speech enhancement using bayesian spectral amplitude estimation,” in Proc.

28th IEEE Internat. Conf. Acoust. Speech Signal Process., ICASSP-03, Hong Kong, 6–10 April 2003, pp. I 832–I 835.

[7] P. J. Wolfe and S. J. Godsill, “Efficient alternatives to the Ephraim and Malah suppression rule for audio signal

enhancement,” special issue of EURASIP JASP on Digital Audio for Multimedia Communications, vol. 2003, no. 10,

pp. 1043–1051, September 2003.

[8] J. W. B. Davenport, Probability and Random Processes: an Introduction for Applied Scientists and Engineers. New York:

McGraw-Hill, 1970.

[9] R. Martin, “Speech enhancement using MMSE short time spectral estimation with gamma distributed speech priors,” in

Proc. 27th IEEE Internat. Conf. Acoust. Speech Signal Process., ICASSP-02, Orlando, Florida, 13–17 May 2002, pp.

I–253–I–256.

[10] J. Porter and S. Boll, “Optimal estimators for spectral restoration of noisy speech,” in Proc. IEEE Internat. Conf. Acoust.

Speech, Signal Process. (ICASSP), San Diego, California, 19–21 March 1984, pp. 18A.2.1–18A.2.4.

[11] S. Gazor and W. Zhang, “Speech probability distribution,” IEEE Signal Processing Letters, vol. 10, no. 7, pp. 204–207,

July 2003.

[12] ——, “A soft voice activity detector based on a laplacian-gaussian model,” IEEE Trans. Speech and Audio Processing,

vol. 11, no. 5, pp. 498–505, September 2003.

[13] C. Breithaupt and R. Martin, “MMSE estimation of magnitude-squared DFT coefficients with supergaussian priors,” in

Proc. 28th IEEE Internat. Conf. Acoust. Speech Signal Process., ICASSP-03, Hong Kong, 6–10 April 2003, pp. I 896–I 899.



19

[14] R. Martin and C. Breithaupt, “Speech enhancement in the DFT domain using Laplacian speech priors,” in Proc. 8th

Internat. Workshop on Acoustic Echo and Noise Control (IWAENC), Kyoto, Japan, 8–11 September 2003, pp. 87–90.

[15] Y. Ephraim and D. Malah, “Signal to noise ratio estimation for enhancing speech using the Viterbi algorithm,” Technion

- Israel Institute of Technology, Haifa, Israel, Technical Report, EE PUB 489, March 1984.
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TABLE I

SEGMENTAL SNR OBTAINED BY USING THE GARCH MODELING AND THE DECISION-DIRECTED METHODS.

Input SNR GARCH modeling method Decision-Directed method

[dB] Mean Best Worst Median Mean Best Worst Median

0 7.29 8.67 5.68 7.34 6.73 8.09 5.39 6.65

5 10.78 12.25 8.97 10.81 9.62 11.47 8.07 9.59

10 14.69 16.12 12.76 14.77 12.80 14.85 10.95 12.85

15 18.89 20.29 17.03 18.95 16.32 18.32 14.41 16.23

20 23.03 24.33 21.48 23.03 20.03 21.65 18.43 19.97

TABLE II

LOG-SPECTRAL DISTORTION OBTAINED BY USING THE GARCH MODELING AND THE DECISION-DIRECTED METHODS.

Input SNR GARCH modeling method Decision-Directed method

[dB] Mean Best Worst Median Mean Best Worst Median

0 4.47 2.70 6.15 4.47 4.74 3.27 6.27 4.90

5 3.15 1.92 4.46 3.10 4.07 2.81 5.75 4.25

10 2.26 1.36 3.35 2.22 3.50 2.32 5.09 3.56

15 1.61 0.97 2.50 1.56 2.82 1.75 4.20 2.79

20 1.14 0.67 1.82 1.09 2.13 1.27 3.29 2.06

TABLE III

PESQ SCORES OBTAINED BY USING THE GARCH MODELING AND THE DECISION-DIRECTED METHODS.

Input SNR GARCH modeling method Decision-Directed method

[dB] Mean Best Worst Median Mean Best Worst Median

0 2.55 2.90 2.36 2.52 2.21 2.39 2.09 2.19

5 2.98 3.46 2.80 2.95 2.61 2.80 2.49 2.58

10 3.39 3.81 3.05 3.35 2.98 3.15 2.76 3.01

15 3.69 4.05 3.20 3.69 3.31 3.47 2.98 3.33

20 3.89 4.22 3.48 3.92 3.64 3.91 3.28 3.67
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Fig. 1. Speech spectrograms and waveforms. (a) Original clean speech signal: “Draw every outer line first, then fill in the

interior.”; (b) noisy signal (SNR = 5 dB, SegSNR = 3.75 dB, LSD = 12.17 dB, PESQ = 1.80); (c) speech enhanced using

the decision-directed method (SegSNR = 11.04 dB, LSD = 3.28 dB, PESQ = 2.69); (d) speech enhanced using the GARCH

modeling method (SegSNR = 11.78 dB, LSD = 2.56 dB, PESQ = 2.88).


