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Abstract

We consider a chip-interleaved randomly spread DS-CDMA scheme employed in

three variants of Wyner’s infinite linear cell-array model with flat fading. Focusing on

the asymptotic setup in which both the number of users per cell and the processing

gain go to infinity while their ratio (the “cell load”) goes to some finite constant,

the spectral efficiencies of the optimum and linear MMSE joint multi-cell receivers

are considered. Dramatic performance enhancement as compared to single-cell-site

processing is demonstrated. The asymptotic behavior of the two receivers in extreme

SNR regimes and in a high cell-load setup are analyzed as well. The impact of chip-

interleaving vs. symbol-interleaving is also investigated. Chip-level interleaving is

found beneficial in several cases of interests, and is conjectured to be beneficial in

general.
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1 Introduction

One of the most dramatic developments of the past two decades in communications tech-

nology is the huge evolvement of cellular communications systems. Cellular systems now

offer ubiquitous wireless access to a wide variety of multimedia services, for both outdoor

and indoor applications, with a constantly increasing penetration and a growing demand

for higher and higher user data-rates. This evolution has led to an abundance of scien-

tific researches in the quest for an efficient utilization of the available bandwidth, thus

increasing the capacity of the systems in concern. In particular, within the framework

of information theoretic research, the fundamental limits of cellular communications have

been explored. One of the major issues to be addressed in cellular systems is the presence

of inter-user interference. The nature of inter-user interference depends on the manner in

which the available time, frequency and space resources are utilized, and on the feasibility

of inter-user/inter-cell-site cooperation. For example, in the cellular uplink channel inter-

ference may be generated by other intra-cell users when a Code Division Multiple Access

(CDMA) scheme is employed, and by other-cell users when both Frequency/Time Division

Multiple Access (F/TDMA) and CDMA schemes are employed (depending obviously on

the inter-cell frequency reuse scheme). Similarly, in the cellular downlink channel, unless a

coordinated transmission scheme is employed, the user may suffer interference from trans-

missions of other-cell sites within its neighborhood. Conventionally, as is the case with 2G

cellular systems, other-user and other-cell-site interference are treated simply as an addi-

tive white Gaussian noise (AWGN), and no receiver/tranmiter cooperation is employed.

However, this approach makes the system interference limited, and it is quite clear that

in order to meet the growing demand for higher data rates more advanced reception and

transmission approaches are called for, that take into account the structure of the chan-

nel and the transmitted signals, and employ cooperative processing techniques whenever

realizable.

Since the introduction of the IS-95 direct-sequence (DS) CDMA cellular standard in the

early 1990’s, and its evolution into the 3G cellular standards, there is a growing interest

in information theoretic aspects of DS-CDMA systems. The aim is at the fundamental

characteristics and limitations of various multiuser detection strategies [1], providing con-

siderable enhancement of system performance as compared to the “conventional” approach.
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Focusing on the more practically appealing systems that employ random signatures, results

of particular interest concern asymptotic conditions at which both the number user per

cell and the length of the signature sequences (processing gain) go to infinity, while their

ratio (referred to as the “cell load”) is kept arbitrarily fixed. These asymptotic conditions

enable the harnessing of results from the theory of random matrices, allowing for analyt-

ical treatment of various system performance indicators. The key here is the property of

random matrices of certain structure according to which their empirical eigenvalue distri-

bution, which depends on specific realizations for finite matrices, goes to a limit given by

a deterministic probability distribution function, depending only on the statistical prop-

erties of the matrices involved (e.g., see [2], [3], [4]). Thus, performance measures which

are otherwise dependent on specific signature realizations, can be expressed in terms of

deterministic functions which at least in some cases of interest take a closed explicit form.

Seminal results in this framework were obtained by Verdú and Shamai in [5] and [6]. The

fundamental figure of merit for system performance is identified as the (per-cell) spectral

efficiency, defined as the maximum number of bits/sec/Hz (or equivalently bits/chip) that

can be transmitted arbitrarily reliably within a cell. In [5], Verdú and Shamai analyze the

uplink of a single-cell synchronous DS-CDMA system with random spreading sequences,

while assuming non-fading channels. Considering the case of equal received powers, which

implies a perfect uplink power control, four multiuser detection strategies are analyzed and

compared in terms of their resulting spectral efficiency. The authors examine the optimum

receiver, the matched filter receiver, the decorrelating detector, and the linear minimum

mean squared error (MMSE) receiver. In addition to explicit analytical expressions for

the spectral efficiencies of the four detection strategies, an asymptotic analysis for cases in

which the cell load or Eb

N0
go to infinity is provided, and also a comparison to the spectral

efficiency obtained without (the constraint of) random spreading. The results obtained

in [5] extend also to the case of homogeneous fading where each of the spreading chips

is assumed to be affected by i.i.d. fading coefficients with unit variance. In [6], Shamai

and Verdú extend their results of [5] to frequency-flat fading channels, while assuming

full channel state information at the receiver. Again, the matched filter, the decorrelator,

the linear MMSE receiver, and the optimum receiver are analyzed, and spectral efficiency

results expressed as a function of the fading distribution are presented. Furthermore, the

spectral efficiency slopes of the receivers in extreme SNR regimes are derived, providing
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for a deeper understanding of characteristics of the four multiuser detection approaches.

Assuming equal average received power, it is shown for the linear MMSE receiver hat

fading increases spectral efficiency for a high cell load. In contrast, it shown that the

optimum receiver cannot benefit from the presence of fading. In addition to the above, the

authors analyze the effect of power control (assuming full channel state information at the

transmitter), and present expressions for the optimum power control functions in terms

of spectral efficiency (given as a function of the fading parameters and their statistics).

For the optimum receiver, a remarkable result is obtained according to which, at least for

Rayleigh fading, the resulting spectral efficiency with optimum power control and a large

system load is higher than that of the single-user AWGN channel. This result demonstrates

the phenomenon of multiuser diversity, i.e., splitting power among many users subject to

independent fading is beneficial. Another important result of [6] is an explicit relation be-

tween the spectral efficiency of the linear MMSE receiver and that of the optimum receiver,

considerably simplifying the (numerical) evaluation of the optimum spectral efficiency, and

characterizing the loss in spectral efficiency due to the suboptimality of the linear receiver

(see also [7] in this respect).

Results related to the ones obtained in [6] are presented in [8]. Linear multiuser detec-

tion strategies are considered (the linear MMSE receiver, the matched filter receiver and

the decorrelating receiver), and the limiting signal-to-interference-plus-noise ratio (SINR)

is obtained. Extension of the results of [8] to linear multiuser detectors in a symbol-

asynchronous but chip-synchronous CDMA system is provided by Kiran and Tse in [9].

Extensions to macro- and microdiversity setups, where a multiplicity of receiving antennas

is employed, can be found in [10].

Until recently, information theoretic analyses of multiuser detection strategies focused

mainly on single-cell CDMA systems, in the sense that all users are equivalently treated by

the receiver. That is, there is no partition of the users to intra-cell vs. other-cell users, with

respect to which different knowledge at the receiver regarding the structure of transmissions

may be assumed. The main difficulty in multi-cell analyses, that take into consideration

inter-cell interference, is in the definition of an appropriate system model, that gives in-

sight into practical “real life” systems on one hand, but on the other hand still allows for

analytical tractability (at least in part) without resorting to tedious numerical simulations.

An attractive model for a multi-cell system, which addresses the above “guidelines”, has
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been presented by Wyner in [11]. In his paper, Wyner proposes a model according to

which the system’s cells are ordered in either a linear (one-dimensional) cellular array, or

in the familiar two-dimensional hexagonal cellular pattern (both patterns are assumed to

be infinite). It is assumed that only adjacent cell interference is present and characterized

by a single parameter, a scaling factor α, lying between zero and unity. Accordingly, as-

suming non-fading channels, the received signal at some arbitrary cell-site is given by the

signals received from intra-cell users, plus the signals of the interfering users of adjacent

cells, as received at their cell sites, multiplied by the above scaling factor. As can be seen

there is a total of two interfering cells in the linear array model, and six interfering cells in

the hexagonal model. Considering a “wideband” CDMA-like transmission, where all band-

width is available for coding (as opposed to random spreading), the throughput obtained

with optimum joint processing of the received signals from all cell-sites is derived. The

results are compared to those obtained with simpler schemes such as intra-cell TDMA,

and with a simpler receiver that passes the signals received at all cell sites through an

MMSE based filter. These results are extended to flat-fading channels (assuming again no

spreading is employed) in [12] and [13].

In [13] Shannon-theoretic limits on the achievable throughput for Wyner’s linear and

hexagonal model in the presence of fading are presented. In this framework, the intra-cell

TDMA and the wideband protocols are considered, where the maximum reliably trans-

mitted equal rate achieved with joint multiple-cell-site processing (which is also aware of

the channel realizations) is used as a figure of merit. Bounds to this rate are found for

the intra-cell TDMA protocol by incorporating information-theoretic inequalities and the

Tchebycheff-Markov moment theory as applied to the limiting distribution of the eigenval-

ues of a quadratic form of tri-diagonal random matrices. The results are demonstrated for

the special case where the amplitudes of the fading coefficients are drawn from a Rayleigh

distribution, i.e., Rayleigh fading. For this special case, it is observed the fading may in-

crease the maximum equal rate, for a certain range of α as compared to the non-faded

case. In this setting, the wideband strategy, which achieves the maximum reliable equal

rate of the model, is proved to be superior to the TDMA scheme. An upper bound to

the maximum equal rate of the wideband scheme is also obtained. This bound is asymp-

totically tight when the number of users is large (K À 1). The asymptotic bound shows

that the maximum equal rate of the wideband scheme in the presence of fading is higher
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than the rate which corresponds to the non-faded case for any inter-cell interference factor

α ∈ [0, 1] and SNR values. This result is found to be independent of the statistics of the

fading coefficients.

Although the analyses of [11] – [13] are devoted to wideband transmission schemes,

the Wyner multi-cell model can be readily applied to DS-CDMA systems employing ran-

dom spreading sequences. In this framework, the results of [5] and [6] were extended to

Wyner’s linear cell-array model in [14] and [15], for non-fading and flat-fading channels, re-

spectively. Confining the discussion to single cell-site processing, four multiuser detection

strategies are considered: the matched-filter receiver, optimum detection with adjacent-

cell interference treated as Gaussian noise, the linear MMSE receiver, and a detector that

performs MMSE-based successive interference cancellation for intracell users with linear

MMSE processing of out-of-cell interference (assuming the codebooks of out-of-cell users

are unknown at the receiver, while their signatures and channels states are known and

used by the receiver for interference mitigation). Employing Gaussian codebooks, which

conforms with the capacity achieving statistics, the latter receiver is equivalent in terms of

spectral efficiency to optimum receiver under the constraints of single-cell-site processing,

and that the transmissions of out-of-cell users cannot be decoded. The impact of taking

into account the structure of multiuser interference at the receiver is clearly demonstrated

in [14] and [15], as reflected by the spectral efficiencies of the above four receivers, differing

in the amount and type of information available to the receiver with respect to other-users

interference.

In this report, one step further is taken and the impact of employing joint multiple-

cell-site processing on the performance randomly spread DS-CDMA systems is explored.

Adhering again to Wyner’s infinite linear cell-array model, it is assumed that the infinite

array is divided into M -cells clusters. The receiver jointly processes the signals received at

each of the cell-sites within the cluster, assuming that the signatures and codebooks of all

intra-cluster users are available to the receiver. As for out-of-cluster users whose signals

are received by the cluster’s cell-sites, it is assumed that their codebooks are unknown to

the receiver. The receiver is only aware of their signatures and uses this information for

interference mitigation. Note that according to Wyner’s model only the two neighboring

cells outside the two edges of the M -cells cluster affect the receiver. Full channel state

information is assumed available to the receiver for both intra- and out-of-cluster trans-
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missions. It is worth mentioning here that the particular case of M = 1 boils down to

single-cell-site processing [14], [15].

Binary spreading sequences are assumed and a variant of the flat-fading channel model

analyzed in [6] and [15] is considered, focusing on Rayleigh fading. Unlike the common

flat-fading model, it is assumed that a long chip-level interleaver is incorporated in each

user’s transmitter, and that a matching de-interleaver is incorporated in the corresponding

multiple-cell receiver. The idea is to interleave, prior to transmission, chips corresponding

to the spreading sequences of different channel symbols, in a way that, effectively, at the

output of the de-interleaver at the receiver different chips experience independent fades,

corresponding to a homogenous fading model [5] (commonly, as e.g. in [6] and [15], a symbol-

level interleaver is assumed, and chips within the same spreading sequence experience the

same channel fade).

Two types of receivers are considered:

(1). The optimum joint processor that achieves the mutual information between the chan-

nel input due to intra-cluster users and the M cell-site received signals, while account-

ing for the structure of the interference generated by out-of-cluster users;

(2). The linear MMSE receiver, that knows the signatures of all interfering users (both

intra-cluster users and interfering users in adjacent clusters), and mitigates their

interference by means of a linear MMSE filter. The outputs of the linear MMSE

filter are then followed by single-user decoders.

The two receivers are analyzed and compared in terms of the cluster-averaged per-

cell spectral efficiency, taken as the figure of merit for system performance. The key tool

for the analysis is the observation that system model in concern is completely equivalent

to a certain class of multiple-input multiple-output (MIMO) channel models. It is well

known that degrees of freedom can be equivalently provided by the processing gain in

a spread-spectrum system, or by the number of antenna elements in a system with an

antenna array. Hence, results obtained for MIMO channels can be directly applied to the

problem in concern. With that in mind, recently obtained results by Tulino et al in [16]

are employed. In [16] the capacity of a rather general class of single-user MIMO channels

is derived while assuming asymptotic conditions in terms of the number of both receiver

and transmitter antennas (arguing that the results are well representative of systems with
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a finite and practical number of antennas). Tulino et al also derive the achievable rate

with a linear MMSE receiver, and identify an elegant relation between this rate and the

maximum achievable rate, in an analogous manner to the relation shown in [6] (for a

single-cell randomly spread single-cell DS-CDMA system). Appropriately interpreting the

different quantities of [16], expressions for the per-cell spectral efficiencies of both the

optimum and linear MMSE receiver are derived. The results are compared to previously

obtained single-cell-site processing results [14], and the performance enhancement due to

multiple-cell-site processing is demonstrated. The low- and high-SNR spectral efficiency

slopes are investigated as well.

For the sake of comparison, and towards a more complete treatment of the multiple-

cell-site processing problem, two modified multi-cell models are also considered. The first

of the two models retains the linear cell-array structure, but assumes only the existence of

M cluster-cells, the received signals of which are to be processed by the multiple-cell-site

receiver. Thus, only intra-cluster multiuser interference is present, and the system model is

referred to as the model of “isolated cells”. This model leads to a somewhat simpler MIMO

channel model interpretation, and is used to demonstrate the effect of other-cluster inter-

ference, assumed undecodable by the multiple-cell-site receiver, on system performance. It

should be noted here that the model of “isolated cluster” is the complete analogy to the

model considered in [11] and [13], where the signals received at all cell-sites were assumed

to be processed by the joint multiple-cell-site processor, but in contrast to the current set-

ting no random-spreading was employed. Here, the particular case of M = 1 boils down to

the setting of a single isolated cell with homogenous fading, equivalent to the one analyzed

in [5].

The second modified model considered in this report is a model in which the system

cells form a cirular array, obtained by simply assuming that the first and the M -th cluster-

cells are adjacent to each other. The circular structure of the resulting equivalent MIMO

channel interpretation leads to particularly simple expressions for the spectral efficiency

of both the optimum and linear MMSE receivers. To be more specific, the expressions

are identical to those obtained for a single-cell system, as considered in [5], but where the

average received power (SNR) of each user equals the sum of the average received power at

its local cell-site plus the average received power at the two adjacent cell-sites (according

to the Wyner model). Furthermore, as the analysis to follow shows, the average per-cell
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spectral efficiencies in the two linear system models approach, as the cluster size M grows,

the corresponding spectral efficiencies obtained in the circular array model. Hence, the

circular array is a useful model for providing insight into the effect of joint multiple-cell-

site processing, when the cluster of cells to be jointly processed is large enough (numerical

results show that one can get very close to the circular array limit even for relatively

moderate cluster sizes).

The last part of this report is devoted to the investigation of the impact of chip-level

interleaving on system performance, while mainly confining the discussion to the optimum

joint-multiple-cell-site receiver. At first, focusing on the circular-array model described

above, two upper bounds on the performance of the optimum receiver with symbol-level

interleaving are derived (one based on the Jensen bound, and a second tighter bound based

on information theoretic arguments). It is then shown that the spectral efficiency of the

optimum receiver with chip-level interleaving coincides with the above two upper bounds

when the cell load is taken to infinity (which is also the optimum choice in terms of spectral

efficiency for the optimum receiver in the circular-array setup). This result establishes the

superiority of chip-level interleaving over symbol-level interleaving in the high cell load

regime. Next, following Verdú [17], the minimum Eb

N0
that enables reliable communications,

and the low-SNR spectral efficiency slope of the optimum receiver is derived for the cases in

which chip-level and symbol-level interleavers are employed, and also for the corresponding

non-fading setup. Comparison of the three low-SNR spectral efficiencies shows that the

spectral efficiency for the optimum receiver in a chip-level interleaved system (with flat

fading) is higher than the corresponding slopes in both a symbol-interleaved system, and

in the non-fading setup. Comparing the two latter slopes, the analysis also identifies the

conditions (in terms of cell load and inter-cell interference factor values) in which flat-fading

becomes beneficial in the low-SNR regime.

In order to get additional insight into the effect of chip-level interleaving, a single

cell microdiversity multi-antenna setup, as considered in [10] and [6], is also investigated.

Expressions for the spectral efficiencies of the optimum receiver and the linear MMSE

receiver are derived, as well as their low- and high-SNR spectral efficiency slopes. The

analysis shows, again, that the spectral efficiency attained with chip-level interleaving

always upper bounds the one attained with symbol-level interleaving in extreme SNR and

in the high cell load regimes. In view of the above results (for both the circular array
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Figure 1: Wyner’s infinite linear cell-array model.

and multi-antenna setups) it is therefore conjectured that the superiority of chip-level

interleaving holds in general.

The structure of the this report is as follows. Section 2 presents the system model.

Section 3 is devoted to a review of the main results of [16], and the equivalent MIMO

interpretation. Next, the isolated cluster model is considered in Section 4, where expres-

sions for the spectral efficiency of the optimum and linear MMSE receivers are presented.

Section 5 and 6 follow with an analogous treatment of the infinite cell-array and circu-

lar array models. Section 7 includes numerical results and compares the three multi-cell

models, respectively. Section 8 investigated the impact of chip-level interleaving on system

performance. Finally, Section 9 ends this report with a summary and some concluding

remarks.

2 System Model

Denoting by K the number of users per cell, and by N the length of the spreading sequences

(the “processing gain”), the focus is on the asymptotic setup in which K,N → ∞, while

K/N → β < ∞. As mentioned in the introduction, the constant β is commonly referred

to as the “cell load”. Adhering to Wyner’s linear cell-array model, as depicted in Fig. 1,

the baseband representation of the complex N -dimensional received signal vector at the

m-th cell-site, at some arbitrary time index, is given by

ym = αSm−1 ◦Hm,m−1xm−1 + Sm ◦Hm,mxm + αSm+1 ◦Hm,m+1xm+1 + nm , (2-1)
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where ◦ stands for the Hadamard product, defined for arbitrary matrices A and B as

[A ◦B]i,j , [A]i,j [B]i,j . (2-2)

In the above notation bold lower case denotes vectors and bold upper case denotes ma-

trices. The K-dimensional vector xm consists of the symbols transmitted by the K users

operating in the m-th cell. The users are assumed to employ Gaussian codebooks (which

conforms with the capacity achieving statistics), and it is also assumed that the users can-

not cooperate their transmissions in any way. Full channel state information is assumed to

be available to the multiple cell-site receiver, however the users are assumed to be unaware

of the instantaneous channel realizations. Therefore, the symbols transmitted by each of

the users are assumed to be zero-mean i.i.d. (across time and users) circularly symmetric

(proper) complex Gaussian random variables [18], with variance P̄ , that designates the

equal transmit power of all users. The entries of the N×K matrices {Hm,n} are the chan-
nel chip-level fades affecting the signals transmitted by users in the n-th cell, as observed by

the m-th cell-site receiver. With the underlying chip-level interleaver assumption, the en-

tries of Hm,n matrices are taken as i.i.d. zero-mean circularly symmetric complex Gaussian

random variables, with unit variance (corresponding to Rayleigh fading). The matrices are

also assumed to be statistically independent for different values of m and n. The N ×K

matrices {Sm} denote the signature matrices, with the columns of the matrix Sm being

the spreading sequences of the users operating in the m-th cell. It is assumed that the users

employ random binary spreading sequences, so that the entries of the signature matrices

are assumed to be i.i.d. random variables taking the values {−1/N, 1/N} with equal prob-

ability. Independence of the spreading sequences of different users is also assumed. The

underlying assumption of full channel state information at the receiver implies that the

channel fade matrices {Hm,n} and the signature matrices {Sm} are instantaneously known

at the receiver. Finally, the N -dimensional vector nm denotes the additive white Gaussian

noise (AWGN) at the receiver of the m-th cell-site, i.e., nm is a zero mean circularly sym-

metric complex Gaussian random vector with E{nmnm
†} = IN , where IN denotes the

N ×N identity matrix. As can be observed the noise spectral level is normalized, without

loss of generality, to unity, and thus P̄ denotes, in fact, the signal-to-noise ratio of each of

the users. The noise vectors at the receivers of different cell-sites are assumed to be i.i.d.
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3 Preliminaries and Multi-Input Multi-Output Inter-

pretation

As already mentioned in the introduction, the key tool used in the analysis to follow is

a recent result by Tulino et al obtained for MIMO channels in [16] (see also [19] for an

extensive review of results from the theory of random matrices and their applications to

wireless communications). This section is devoted to a review of the main results of [16].

The manner in which the results can be applied to the multi-cell randomly spread DS-

CDMA setup analyzed in this report, shall be made clear in the sections to follow, while

indicating the proper interpretation of the main parameters of [16].

Consider now a system with nT transmit and nR receive antennas. Assuming frequency-

flat fading, the corresponding channel model is

y =
√
gHx + n , (3-1)

where x and y are the nT -dimensional transmit and nR-dimensional received complex signal

vectors, and n is a circularly symmetric complex Gaussian nR-dimensional noise vector,

with one-sided spectral density N0 = E
{

‖n‖2
}

/nR. The scalar g is a normalization factor,

and the nR×nT channel transfer matrix H is assumed to be a zero-mean complex Gaussian

matrix, the power of whose entries can be assembled into a matrix P . The entries [P ]i,j of

the matrix P are defined as [P ]i,j , E
{∣

∣[H ]2i,j
∣

∣

}

, and the matrix is constrained to satisfy

nT
∑

j=1

nR
∑

i=1

[P ]i,j = nTnR . (3-2)

The focus in [16] is on the asymptotic setup in which nT , nR →∞, while nT/nR → β <∞,

and the aim is to derive the limiting ergodic capacity per receive antenna

C =
1

nR
E

{

log det

(

I +
SNR

nT
HH†

)}

, (3-3)

where the expectation is taken over the different channel realizations, and SNR, the average
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signal-to-noise ratio, is defined through

SNR = g
E
{

‖x‖2
}

N0

. (3-4)

Defining the power profile

P (nR)(r, t) , [P ]i,j ;
i

nR
≤ r <

i+ 1

nR
,

j

nT
≤ t <

j + 1

nT
, (3-5)

it is assumed that as the system dimensions grow large the above power profile converges

uniformly to a bounded function

P(r, t) , lim
nR,nT→∞
nT
nR

→β<∞

P (nR)(r, t), r ∈ (0, 1], t ∈ (0, β] , (3-6)

referred to as the asymptotic power profile. With the above definitions and notation we

can now quote the main result of [16].

Theorem 3.1 ([16], Proposition 1) Consider a normalized channel H with uncorre-

lated entries and asymptotic power profile P. The capacity per receive antenna converges,
as nR, nT →∞, nT

nR
→ β <∞, to

C(β, SNR) = βE {log(1 + SNRΓ(T, SNR))}+ E {log(1 + E {P(R, T )Υ(T, SNR) |R})}

− βE {Γ(T, SNR)Υ(T, SNR)} log e ,

(3-7)

where the expectations are with respect to the random variables R and T , independent and

uniformly distributed in [0, 1] and [0, β], respectively, and with

Γ(t, SNR) =
1

β
E

{ P(R, t)

1 + E {P(R, T )Υ(T, SNR) |R}

}

Υ(t, SNR) =
SNR

1 + SNRΓ(t, SNR)
.

(3-8)

It is noted that SNRΓ(t, SNR) represents the asymptotic signal-to-interference-plus-noise

ratio (SINR) at the output of a linear MMSE receiver, as a function of the normalized

antenna index t. Also, the mean-squared error at the output of such a receiver equals
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Υ(t, SNR)/SNR.

The tradeoffs between power and bandwidth may be evaluated by expressing the ca-

pacity as a function of the normalized transmit or receive energy per bit

Et
b

N0

=
SNR

C(SNR)

Er
b

N0

=
Et
b

N0

gnR .

(3-9)

It is also useful to approximate the capacity per receive antenna as a first order function of

the energy per bit at the low- and high-SNR regimes [6] [17]. At the low-SNR regime the

key performance measures are the minimum receive or transmit energy per bit required for

reliable communication,
Er
b

N0 min

= loge 2

Et
b

N0 min

=
loge 2

gnR
,

(3-10)

and S0, the low-SNR capacity per receive antenna slope in bits/sec/Hz/(3dB) [17]

S0 =
2n2

TnR
∑nT

j=1 P
2
T (j) +

∑nR
i=1 P

2
R(i)

. (3-11)

In (3-11) the total normalized power injected into the channel by the j-th antenna is defined

as

PT (j) ,
nR
∑

i=1

[P ]i,j , (3-12)

and the total normalized power collected by the i-th receive antenna is defined as

PR(i) ,
nT
∑

j=1

[P ]i,j . (3-13)

At the high-SNR regime the key performance measure is the capacity per receive antenna

high-SNR slope in bits/sec/Hz/(3dB) [6]

S∞ ,
1

nR
min(n′

R, n
′
T ) , (3-14)

where n′
R is the number of receive antennas for which PR(i) > 0, and n′

T is the number of
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transmit antennas for which PT (j) > 0.

When the matrix P exhibits certain structures then the result of Theorem 3.1 can

be significantly simplified. In particular, it can be shown [19] that if the matrix P is

asymptotically doubly regular, then the result of Theorem 3.1 boils down to the function

derived in [5] for independent identically distributed channels (with the appropriate scaling

for complex channels). An m × n matrix A is asymptotically row-regular if for all i and

ξ ∈ R

lim
m→∞

1

m

m
∑

j=1

1 {[A]i,j < ξ} , (3-15)

is independent of i. The matrix A is asymptotically column-regular if AT is asymptotically

row-regular, and it is asymptotically doubly-regular if it is asymptotically both row- and

column-regular. Such a matrix satisfies

lim
m→∞

1

m

m
∑

j=1

[A]i,j = lim
n→∞

1

n

n
∑

i=1

[A]i,j .

4 Isolated Cluster Setup

In this section we consider a single isolated cluster of M cells ordered in a linear array.

The received signal in each cell-site is given by (2-1), except for the two cell-sites at the

cluster edges (i.e. cell-sites 1 and M), as no cells outside the M -cells cluster are assumed.

The notation (·)IC shall be used to denote quantities related to this isolated cluster model.

Unless stated otherwise all the derivations in this section are valid for M ≥ 2. The

overall received signal, as seen by the joint multiple-cell-site receiver, can be written in the

following form

yM
1 [MN×1] = SIC

[MN×MK]x
M
1 [MK×1] + nM

1 [MN×1] , (4-1)
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where yM
1 = [yT

1 , . . . ,y
T
M ]T , xM

1 = [xT
1 , . . . ,x

T
M ]T , nM

1 = [nT
1 , . . . ,n

T
M ]T , and the matrix

SIC equals

SIC =





















S1 ◦H1,1 αS2 ◦H1,2 0 · · · 0

αS1 ◦H2,1 S2 ◦H2,2 αS3 ◦H2,3 0 0

0 αS2 ◦H3,2 S3 ◦H3,3 αS4 ◦H3,4 · · ·
. . . . . . . . .

0 · · · 0 αSM−1 ◦HM,M−1 SM ◦HM,M





















.

(4-2)

The per-cell spectral efficiency of the optimum multiple cell-site processor in this setup

is given by

CIC
M opt

=
1

M
lim

N,K→∞
K
N
→β

1

N
E
{

log det
(

I + P̄SICSIC†
)}

. (4-3)

Recall now the underlying assumption of binary spreading sequences, and independent cir-

cularly symmetric Gaussian channel fades, as described in Section 2. Under these assump-

tions, the entries of the channel transfer matrix SIC are marginally Gaussian. Furthermore

they are independent and hence jointly Gaussian (and uncorrelated). With this observa-

tion, we can now invoke the result of Theorem 3.1, and derive a more explicit expression

for the spectral efficiency of (4-3). Comparing the latter expression to (3-3) the follow-

ing correspondence between the single-user MIMO channel and the multi-cell DS-CDMA

model is observed. The number of transmit antennas nT is replaced by the total number

of users MK, and the number of receive antennas is replaced by MN . Hence, the cell load

β retains the same interpretation as in Theorem 3.1, i.e.,

β = lim
nR→∞

nT
nR

= lim
N→∞

K

N
. (4-4)

Also, it is observed that the one-sided spectral density of the AWGN as in (3-1) satisfies

N0 = 1. Now in view of the channel transfer matrix power constraint of (3-2), it follows

from (4-2) that
MN
∑

i=1

MK
∑

i=1

E
{

∣

∣[SIC]i,j
∣

∣

2
}

= [M + 2(M − 1)α2]K , (4-5)
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and forcing the relation
√

gICH = SIC we get

gIC =
[M + 2(M − 1)α2]K

M2NK

=

[

1 + 2α2

(

1− 1

M

)]

1

MN
.

(4-6)

Hence, the SNR as defined in (3-4) corresponds in the multi-cell DS-CDMA model to

SNRIC =
N,K→∞,K

N
→β

gICMKP̄ = gICMNβP̄

=

[

1 + 2α2

(

1− 1

M

)]

βP̄ .

(4-7)

Defining the average per-user received SNR as

P̄ IC
av =

[

1 + 2α2

(

1− 1

M

)]

P̄ , (4-8)

where the average is taken over the M cell-site received signals, it is observed that SNRIC =

βP̄ IC
av . The final step towards applying Theorem 3.1 is to identify the asymptotic power

profile of the channel in concern. Note that the power profile used in the Theorem cor-

responds to the matrix H in the single-user MIMO channel model of (3-1). Using the

relation H = 1√
gIC

SIC the resulting power profile is given by

[P IC]i,j =



























































1
gICN

,

(

(m− 1)N + 1 ≤ i ≤ mN

(m− 1)K + 1 ≤ j ≤ mK

)

; m = 1, 2, . . . ,M

α2 1
gICN

,

(

(m− 1)N + 1 ≤ i ≤ mN

mK + 1 ≤ j ≤ (m+ 1)K

)

; m = 1, 2, . . . , (M − 1)

α2 1
gICN

,

(

mN + 1 ≤ i ≤ (m+ 1)N

(m− 1)K + 1 ≤ j ≤ mK

)

; m = 1, 2, . . . , (M − 1)

0 , Otherwise ,

(4-9)
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and it is easily verified that the constraint of (3-2) is satisfied and

NM
∑

i=1

KM
∑

j=1

[P IC]i,j = M2KN . (4-10)

The asymptotic power profile is now given by:

P IC
M (x, y) =



























































1
gICN

,

(

(m−1)
M

< x ≤ m
M

(m−1)
M

β < y ≤ m
M
β

)

; m = 1, 2, . . . ,M

α2 1
gICN

,

(

(m−1)
M

< x ≤ m
M

m
M
β < y ≤ (m+1)

M
β

)

; m = 1, 2, . . . , (M − 1)

α2 1
gICN

,

(

m
M

< x ≤ (m+1)
M

(m−1)
M

β < y ≤ m
M
β

)

; m = 1, 2, . . . , (M − 1)

0 , Otherwise ,

(4-11)

where, x ∈ (0, 1] and y ∈ (0, β].

Turning to (3-8), it follows that

ΓIC(y, SNRIC) =
1

β

∫ 1

0

P IC
M (x, y)

1 + 1
β

∫ β

0

PIC
M

(x,t)SNRIC

1+SNRIC ΓIC(t,SNRIC)
dt

dx . (4-12)

Due to the particular structure of the asymptotic power profile, and the symmetry of intra-

cell users (in each of the M cells), the function ΓIC(y, SNRIC) can be written as a discrete

function of the cell index m

ΓIC
M (m) =

1

β

1

M

M
∑

l=1

P IC
M (l,m)

1 + 1
M

∑M

k=1

PIC
M (l,k)SNRIC

1+SNRIC ΓIC
M
(k)

=
1

β

1

M

m+1
∑

l=m−1

P IC
M (l,m)

1 + 1
M

∑l+1
k=l−1

PIC
M (l,k)SNRIC

1+SNRIC ΓIC
M (k)

; m = 1, 2, · · · ,M ,

(4-13)

where the explicit dependency of ΓIC in SNRIC (or P̄ ) was omitted for simplicity of notation.
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Entries of negative indices within the sum expressions in (4-13) should be ignored, and

P IC
M (l,m) =















1
gICN

, m = l

α2 1
gICN

, |m− l| = 1

0 , Otherwise

m, l = 1, 2, · · · ,M ,

(4-14)

The values of the function P IC
M (l,m) correspond to the entries of 1

gICN
P IC

M , where PM is

the M ×M Toeplitz matrix

P IC
M =



























1 α2 0 · · · 0 0

α2 1 α2 0 · · · 0

0 α2 1 α2 0
. . .

...
. . . . . . . . . . . . 0

0 · · · 0 α2 1 α2

0 0 · · · 0 α2 1



























. (4-15)

Rewriting (4-13) in terms of (4-15) yields

ΓIC
M (m) =

1

β

1

M

m+1
∑

l=m−1

P IC
M (l,m)

1 + 1
M

∑l+1
k=l−1

PIC
M

(l,k)gICMNβP̄

1+gICMNβP̄ ΓIC
M
(k)

=
1

β

[

1 + 2α2

(

1− 1

M

)]−1 m+1
∑

l=m−1

[P IC
M ]l,m

1 +
∑l+1

k=l−1
[PIC

M ]l,kβP̄

1+ΓIC
M (k)[1+2α2(1− 1

M )]βP̄

m = 1, 2, · · · ,M ,

(4-16)

where “out-of-range” indices should be ignored. Using the above definition of ΓIC
M (m) and

(3-8) one gets

ΥIC
M (m) =

[

1 + 2α2
(

1− 1
M

)]

βP̄

1 + ΓIC
M (m)

[

1 + 2α2
(

1− 1
M

)]

βP̄
, (4-17)

and following (3-7) the spectral efficiency of the optimum multiple cell-site processor is
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given by

CIC
M opt

= β
1

M

M
∑

m=1

log

(

1 + ΓIC
M (m)

[

1 + 2α2

(

1− 1

M

)]

βP̄

)

+
1

M

M
∑

m=1

log

(

1 +

[

1 + 2α2

(

1− 1

M

)]−1 m+1
∑

k=m−1

[P IC
M ]m,kΥ

IC
M (k)

)

− β
1

M

M
∑

m=1

ΓIC
M (m)ΥIC

M (m) log e .

(4-18)

Finally, substituting (4-17) into (4-18) gets

CIC
M opt

=
1

M

M
∑

m=1

β log

(

1 + ΓIC
M (m)

[

1 + 2α2

(

1− 1

M

)]

βP̄

)

+
1

M

M
∑

m=1

log

(

1 +
m+1
∑

k=m−1

[P IC
M ]m,kβP̄

1 + ΓIC
M (k)

[

1 + 2α2
(

1− 1
M

)]

βP̄

)

− 1

M

M
∑

m=1

β
ΓIC
M (m)

[

1 + 2α2
(

1− 1
M

)]

βP̄

1 + ΓIC
M (m)

[

1 + 2α2
(

1− 1
M

)]

βP̄
log e ,

(4-19)

or more compactly, using (4-8),

CIC
M opt

=
1

M

M
∑

m=1

β log
(

1 + ΓIC
M (m)βP̄ IC

av

)

+
1

M

M
∑

m=1

log

(

1 +
m+1
∑

k=m−1

[P IC
M ]m,kβP̄

1 + ΓIC
M (k)βP̄ IC

av

)

− 1

M

M
∑

m=1

β
ΓIC
M (m)βP̄ IC

av

1 + ΓIC
M (m)βP̄ IC

av

log e .

(4-20)

The per-cell spectral efficiency of the linear MMSE detector can be readily deduced

from (4-20). In fact it is given by the first sum expression in (4-20), where each term of

index m gives the spectral efficiency of the linear MMSE detector for the m-th cell. That

is,

CIC
M ms

=
1

M

M
∑

m=1

β log
(

1 + ΓIC
M (m)βP̄ IC

av

)

. (4-21)
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It should be emphasized however that although each term in the sum refers to the contri-

bution of a single-cell to the overall throughput, this contribution is achieved by using a

multiple-cell-site linear processor, in contrast to the single-cell-site processor considered in

[6] or [15].

Following are some basic properties of the two receivers in the isolated cluster model.

Proposition 4.1 The minimum transmit and receive Eb

N0
that enable reliable communica-

tions for both the optimum and linear MMSE receivers equal

Er
b

N0

IC

min

= loge 2

Et
b

N0

IC

min

=
loge 2

[

1 + 2α2(1− 1
M
)
] .

(4-22)

Proof : The result is immediately obtained from (3-10) and (4-6).

Proposition 4.2 The low- and high-SNR spectral efficiency slopes of the optimum receiver

are given by

SIC
0 opt

=
2β

1 + β

[

1 + 2α2(1− 1
M
)
]2

[

1 + 4α2(1− 1
M
) + 4α4(1− 3

2M
)
] , (4-23)

and

SIC
∞ opt

=

{

β , β ≤ 1

1 , β > 1 .
(4-24)

These results are valid for arbitrary values of K, N and M ≥ 2.

Proof : The proof follows in a similar manner to proof of the corresponding results for

the infinite array setup discussed in Section 5 (see App. B.2.1 and B.3).

The low-SNR slope monotonically increases with β, thus validating the optimality of in-

creasing β without bound in the low-SNR regime. It is also interesting to see that for

M = 2 (4-23) boils down to 2β/(1 + β), which is the low-SNR slope achieved in a non-

fading single-cell setup [6]. This result should come in no surprise while observing that the

channel transfer matrix in the isolated cluster setup is in fact doubly-regular for M = 2

(see Section 3). The non-fading single-cell low-SNR slope is also obtained asymptotically

as M →∞. In contrast, the high-SNR slope of (4-24) is identical to the slope obtained in

the non-fading single-cell setup for all values of M .
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Proposition 4.3 The low-SNR spectral efficiency slope of the linear MMSE is given by

SIC
0 ms

=
2β

1 + 2β

[

1 + 2α2
(

1− 1
M

)]2

[

1 + 4α2
(

1− 1
M

)

+ 4α4
(

1− 3
2M

)] ; M ≥ 2 , (4-25)

Proof : The proof follows in a similar manner to the corresponding proof in App. B.2.2.

Note that as for the optimum receiver, the low-SNR slope of the linear MMSE receiver

reduces to the corresponding slope in single-cell non-fading setup 2β/(1+2β), when M = 2

and M → ∞. Again, (4-25) demonstrates the optimality of increasing β without bound

for the linear MMSE receiver in the low-SNR regime.

Proposition 4.4 For β → ∞ the spectral efficiency of the optimum receiver, C IC
M opt

, is

given by the solution of the following implicit equation

CIC
M opt

=
(M − 2)

M
log

(

1 +
1 + 2α2

1 + 2α2
(

1− 1
M

)CIC
M opt

Er
b

N0

)

+
2

M
log

(

1 +
1 + α2

1 + 2α2
(

1− 1
M

)CIC
M opt

Er
b

N0

)

; M ≥ 2 . (4-26)

Proof : The proof follows in a similar manner to corresponding proof in App. B.4.2.

Note that as the cluster size M grows, (4-26) coincides with the spectral efficiency in the

non-fading single-cell setup [5], for which taking β → ∞ is optimum for all values of Eb

N0
.

Furthermore, for the particular case of M = 2 the limiting optimum spectral efficiency is

given by

CIC
2 opt

=
β→∞

log

(

1 + CIC
2 opt

Er
b

N0

)

. (4-27)

This result coincides with the the non-fading single-cell optimum spectral efficiency result

due to the asymptotic double regularity property of the channel transfer matrix for M = 2.

Proposition 4.5 For β →∞, the spectral efficiency of the linear MMSE receiver, C IC
M ms
,
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is given by the solution of the following quadratic equation

(

CIC
M ms

) 2
+ CIC

M ms

[

(2 + 3α2)
[

1 + 2α2
(

1− 1
M

)]

(1 + α2)(1 + 2α2)

(

Er
b

N0

)−1

− log e

]

+

[

1 + 2α2
(

1− 1
M

)]2

(1 + α2)(1 + 2α2)

(

Er
b

N0

)−1
[

(

Er
b

N0

)−1

− log e

]

= 0 ; M ≥ 2 . (4-28)

Proof : The proof follows in a similar manner to corresponding proof in App. B.4.1.

As observed for the optimum receiver, for the particular case of M = 2, the solution of

(4-28) coincides with the corresponding result in the single-cell non-fading setup

CIC
2 ms

=
β→∞

log e−
(

Er
b

N0

)−1

. (4-29)

It is also observed from (4-28), that the linear MMSE receiver becomes interference limited

for β →∞, and the spectral efficiency reaches the limit of log e as Eb

N0
is increased without

bound.

5 Infinite Linear Array Setup

This section focuses on the infinite linear array setup, as described in Section 1. The

notation (·)IA shall be used to denote quantities related to this model. Unless stated

otherwise all the derivations in this section are valid for M ≥ 2. Without any loss of

generality the expressions to follow relate to the cluster of cells numbered {1, 2, . . . ,M}.
The signal vector received by the joint multiple-cell-site receiver for the cluster in concern

is given by

yM
1 [MN×1] = SIA

[MN×(M+2)K]x
M+1
0 [(M+2)K×1] + nM

1 [MN×1] , (5-1)
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where, yM
1 = [yT

1 ,y
T
2 , . . . ,y

T
M ]T , xM+1

0 = [xT
0 ,x

T
1 , . . . ,x

T
M ,xT

M+1]
T , and nM

1 = [nT
1 ,n

T
2 ,

. . . ,nT
M ]T . The MN × (M + 2)K channel transfer matrix SIA equals,

SIA =





















αS0 ◦H1,0 0

0 0
... SIC ...

0 0

0 αSM+1 ◦HM,M+1





















, (5-2)

where SIC is the MN×MK channel transfer matrix of the isolated cluster setup, as defined

in (4-2).

The spectral efficiency of the optimum receiver in this setting is given by

CIA
M opt

=
1

M
lim

N,K→∞
K
N
→β

1

N
E {I(x1, . . . ,xM ; y1, . . . ,yM)} , (5-3)

where one has to bare in mind, in contrast to the isolated cluster setup, that the cell-

sites at the edges of the M -cells cluster receive signals from users of adjacent clusters (see

(5-1)). According to the underlying assumptions of the current setting, these other-cluster

transmissions cannot be decoded by the receiver, which is only aware of the structure of

their signals. Using Kolmogorov’s identity, the mutual information in (5-3) can be rewritten

as

I
(

xM
1 ; yM

1

)

= I
(

xM+1
0 ; yM

1

)

− I
(

x0,xM+1 ; yM
1 |xM

1

)

. (5-4)

Due to the underlying assumptions of the Wyner model, the second expression in the

righthand side (RHS) of (5-4) can be written for M ≥ 2 as

I
(

x0,xM+1 ; yM
1 |xM

1

)

= I
(

x0,xM+1 ; y1,yM |xM
1

)

= I (x0 ; y1 |x1,x2) + I (xM+1 ; yM |xM−1,xM)

= 2I (x0 ; y1 |x1,x2) ,

(5-5)

where the last equality follows from the symmetry between the two cells at the edges of

the cluster. Substituting (5-4) and (5-5) into (5-3), the spectral efficiency of the optimum
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receiver is given by

CIA
M opt

= CM −
2

M
CI , (5-6)

where

CM ,
1

M
lim

N,K→∞
K
N
→β

1

N
E
{

I
(

xM+1
0 ; yM

1

)}

=
1

M
lim

N,K→∞
K
N
→β

1

N
E
{

log det
(

I + P̄SIASIA†
)}

,
(5-7)

and

CI , lim
N,K→∞
K
N
→β

1

N
E {I (x0 ; y1 |x1,x2)}

= lim
N,K→∞
K
N
→β

1

N
E
{

log det
(

I + α2P̄SISI †
)}

.
(5-8)

The N ×K matrix SI in (5-8) is the channel transfer matrix corresponding to users of cell

0, whose signals are received at cell-site 1, given by

SI , S0 ◦H1,0 . (5-9)

Examining (5-6), it is observed that CM can be interpreted as the average per-cell

spectral efficiency in the case in which the receiver also tries to decode the transmissions of

users in the two cluster-adjacent cells (assuming that their codebooks are now also known

at the receiver). That is, the setup corresponds to an extended cluster of (M + 2) cells,

consisting of the original cluster of M cells and the two cluster-adjacent cells (cells 0 and

(M+1)), while only the signals received at the M cells-sites of the original cluster are being

processed by the receiver. The quantity CI may be interpreted as the spectral efficiency of

an optimum receiver in a single isolated cell setup with homogenous fading [5], and with a

scaled SNR of α2P̄ .

Observing (5-7) and (5-8), the same argumentation of Section 4 regarding the entries of

SIA and SI can be used to conclude that the channel interpretations corresponding to CM
and CI both fit the framework of Theorem 3.1. Starting with CM , and in order to properly

use the results of Theorem 3.1, a new parameter β̃, interpreted as the system average cell
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load, is defined as

β̃ , lim
nR→∞

nT
nR

= lim
N,K→∞

(M + 2)K

MN
=

M + 2

M
β . (5-10)

The channel transfer matrix power constraint of (3-2) translates for (5-2) to

K(M+2)
∑

i=1

NM
∑

j=1

E

{

∣

∣

∣

[

SIA
]

i,j

∣

∣

∣

2
}

= (1 + 2α2)MK . (5-11)

Hence, in view of (3-1) and (3-4) it follows that

gIA =
[1 + 2α2]MK

M(M + 2)KN
= (1 + 2α2)

1

(M + 2)N
, (5-12)

and
SNRIA =

N,K→∞,K
N
→β

gIA(M + 2)KP̄ = gIAMNβ̃P̄

= (1 + 2α2)
M

M + 2
β̃P̄

= (1 + 2α2)βP̄ .

(5-13)

The average per-user received SNR is defined as

P̄ IA
av =

M

M + 2
(1 + 2α2)P̄ . (5-14)

Following the procedure used in Section 4, the discrete-index asymptotic power profile

P IA
M (l,m) is defined, corresponding to the entries of 1

gIAN
P IA

M , where P IA
M is the following

M × (M + 2) matrix

P IA
M =















α2 1 α2 0 · · · 0

0 α2 1 α2 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 0 · · · 0 α2 1 α2















. (5-15)

For convenience, and in order to match between the matrix indices and the cell indices,

the rows of P IA
M are enumerated l = {1, . . . ,M}, while the columns are enumerated m =

{0, . . . , (M + 1)}. Accordingly, the values of the discrete-index function ΓIA
M (m) are given
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by the unique solutions to the following set of equations

ΓIA
M (m) =

1

β̃

1

M

m+1
∑

l=m−1

P IA
M (l,m)

1 + 1
M+2

∑l+1
k=l−1

PIA
M (l,k)SNRIA

1+SNRIAΓIA
M (k)

=
1

β̃

1

M

m+1
∑

l=m−1

P IA
M (l,m)

1 + 1
M+2

∑l+1
k=l−1

PIA
M (l,k)gIAMNβ̃P̄

1+gIAMNβ̃P̄ΓIA
M (k)

=
1

β̃

M + 2

M

(

1 + 2α2
)−1

m+1
∑

l=m−1

[P IA
M ]l,m

1 + M
M+2

∑l+1
k=l−1

[PIA
M ]l,kβ̃P̄

1+ΓIA
M (k)(1+2α2) M

M+2
β̃P̄

=
1

β

(

1 + 2α2
)−1

m+1
∑

l=m−1

[P IA
M ]l,m

1 +
∑l+1

k=l−1
[PIA

M ]l,kβP̄

1+ΓIA
M (k)(1+2α2)βP̄

m = 0, 1, . . . ,M + 1 ,

(5-16)

where “out-of-range” indices should be ignored. In addition, it follows from (3-8) and

(5-12) that

ΥIA
M (m) =

(1 + 2α2) M
M+2

β̃P̄

1 + ΓIA
M (m)(1 + 2α2) M

M+2
β̃P̄

=
(1 + 2α2)βP̄

1 + ΓIA
M (m)(1 + 2α2)βP̄

.

(5-17)

Finally, combining (3-7), (5-16) and (5-17),

CM =
1

M + 2

M+1
∑

m=0

β̃ log

(

1 + ΓIA
M (m)(1 + 2α2)

M

M + 2
β̃P̄

)

+
1

M

M
∑

m=1

log

(

1 +
M

M + 2

m+1
∑

k=m−1

[P IA
M ]m,kβ̃P̄

1 + ΓIA
M (k)(1 + 2α2) M

M+2
β̃P̄

)

− 1

M + 2

M+1
∑

m=0

β̃
ΓIA
M (m)(1 + 2α2) M

M+2
β̃P̄

1 + ΓIA
M (m)(1 + 2α2) M

M+2
β̃P̄

log e ,

(5-18)
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or more compactly

CM =
1

M + 2

M+1
∑

m=0

β̃ log
(

1 + ΓIA
M (m)β̃P̄ IA

av

)

+
1

M

M
∑

m=1

log

(

1 +
M

M + 2

m+1
∑

k=m−1

[P IA
M ]m,kβ̃P̄

1 + ΓIA
M (k)β̃P̄ IA

av

)

− 1

M + 2

M+1
∑

m=0

β̃
ΓIA
M (m)β̃P̄ IA

av

1 + ΓIA
M (m)β̃P̄ IA

av

log e .

(5-19)

Alternatively, expressing (5-18) in terms of the cell-load β yields

CM =
1

M

M+1
∑

m=0

β log
(

1 + ΓIA
M (m)(1 + 2α2)βP̄

)

+
1

M

M
∑

m=1

log

(

1 +
m+1
∑

k=m−1

[P IA
M ]m,kβP̄

1 + ΓIA
M (k)(1 + 2α2)βP̄

)

− 1

M

M+1
∑

m=0

β
ΓIA
M (m)(1 + 2α2)βP̄

1 + ΓIA
M (m)(1 + 2α2)βP̄

log e .

(5-20)

In order to complete the derivation of the spectral efficiency of the optimum receiver, it

remains to derive an expression for CI . However with the single-cell interpretation discussed

above, (5-8) can be interpreted as the spectral efficiency of the optimum receiver in a single-

cell setup with homogeneous Rayleigh flat fading [6] and an equivalent transmit power of

α2P̄ . Accordingly, CI is explicitly given by

CI = β log

(

1 + α2P̄ − 1

4
F(α2P̄ , β)

)

+log

(

1 + α2P̄ β − 1

4
F(α2P̄ , β)

)

− log e

4α2P̄
F(α2P̄ , β) .

(5-21)

Turning to the linear MMSE receiver, then under the assumption of Gaussian code-

books, its average per-cell spectral efficiency equals

CIA
M ms

,
1

M

M
∑

m=1

lim
N,K→∞
K
N
→β

K
∑

k=1

1

N
E
{

I
(

xm,k ; yM
1

)}

. (5-22)

According to [16], the quantity ΓIA
M (m)SNRIA = ΓIA

M (m) (1 + 2α2) βP̄ is recognized as the
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SINR at the output of the joint multi-cell linear MMSE receiver for users of the m-th intra-

cluster cell. Hence, the average per-cell spectral efficiency of the linear MMSE receiver is

given by

CIA
M ms

=
1

M

M
∑

m=1

β log
(

1 + ΓIAM (m)(1 + 2α2)βP̄
)

. (5-23)

Note that although the cluster receiver processes the signals of users from M + 2 cells (M

intra-cluster cells and the two cluster-adjacent cells), the average in (5-23) is over intra-

cluster cells only, as codebooks of out-of-cluster users are assumed to be unknown at the

receiver.

The following propositions present some basic properties of the two receivers in the

infinite linear array setup.

Proposition 5.1 The minimum transmit and receive Eb

N0
that enable reliable communica-

tions for both the optimum and linear MMSE receivers equal

Er
b

N0

IA

min

= loge 2

Et
b

N0

IA

min

=
loge 2

[

1 + 2α2
(

1− 1
M

)] .

(5-24)

Proof : See App. B.1.

Proposition 5.2 The low- and high-SNR spectral efficiency slopes of the optimum receiver

are given by

S0
IA
opt

=
2β

1 + β

[

1 + 2α2(1− 1
M
)
]2

[

1 + 4α2
(

1− 1
(1+β)M

)

+ 4α4
(

1− (3+β)
2(1+β)M

)] , (5-25)

and

SIA
∞ opt

=















β , β ≤ M
M+2

1− 2
M
β , M

M+2
< β ≤ 1

1− 2
M

, 1 ≤ β .

(5-26)

These results are valid for arbitrary values of K, N and M ≥ 2.

Proof : See Apps. B.2.1 and B.3 for the low- and high-SNR spectral efficiency slopes of
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Figure 2: SIA
∞ opt

as a function of β for (a) M > 2, (b) M = 2, and (c) M = 1.

the optimum receiver, respectively.

As can be observed, (5-25) is the product of the low-SNR slope of the spectral efficiency

of the optimum receiver in the single-cell non-fading setup [6] (i.e., 2β/(1 + β)), and a

term that goes to unity as the cluster size M grows. It is also observed that (5-25)

monotonically increases with the cell load β, thus establishing the optimality of increasing

β without bound for the optimum receiver in the low-SNR regime. The limiting slope as

β →∞ is given by

lim
β→∞

S0
IA
opt

=
2
[

1 + 2α2
(

1− 1
M

)]2

(1 + 2α2)2 − 2α2

M

. (5-27)

The high-SNR spectral efficiency slope of the optimum receiver is depicted as a function

of the cell load β in Fig. 2. Examining the high-SNR slope it is observed that taking

β → ∞ is no longer optimum in this regime. In fact the optimum value of β in terms of

the high-SNR slope approaches M
M+2

as Eb

N0
→∞. It is interesting to note that when M = 1

[15], taking β → ∞ turns the receiver interference limited, that is its spectral efficiency

goes to a limit as Eb

N0
→ ∞. This behavior is also observed for M = 2 (joint two cell-site

processing). In contrast, it is observed that for M ≥ 3 the receiver is no longer interference

limited when β →∞, although as said above, this is a strictly suboptimum choice for the

cell-load in the high SNR regime.

Proposition 5.3 The low-SNR spectral efficiency slope of the linear MMSE receiver is
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given by

S0
IA
ms

=
2β

1 + 2β

[

1 + 2α2(1− 1
M
)
]2

[

1 + 4α2
(

1− 1+β
(1+2β)M

)

+ 4α4
(

1− 3+4β
(1+2β)M

)] ; M ≥ 2 . (5-28)

Proof : See App. B.2.2.

Note that as was the case for the optimum receiver, the low SNR slope of the linear

MMSE receiver also coincides, as the cluster size M grows, with the corresponding slope

in the single-cell non-fading setup, i.e., 2β/(1 + 2β) [6]. The slope of (5-28) monotonically

increases with β to a limiting slope of

lim
β→∞

S0
IA
ms

=

[

1 + 2α2(1− 1
M
)
]2

(1 + 2α2)2 − 2α2

M
(1 + 4α2)

, (5-29)

which again establishes the optimality of taking β → ∞ for the linear MMSE receiver in

the low SNR regime, as shown for the optimum receiver.

Proposition 5.4 For β → ∞, the spectral efficiency of the optimum receiver, C IA
M opt

, is

given by the solution of the following implicit equation

CIA
M opt

= log

(

1 +
(1 + 2α2)

[

1 + 2α2
(

1− 1
M

)]

Er
b

N0

CIA
M opt

)

− 2

M
log

(

1 +
α2

[

1 + 2α2
(

1− 1
M

)]

Er
b

N0

CIA
M opt

)

; M ≥ 2 . (5-30)

Proof : See App. B.4.2.

As can be observed, as the cluster size M grows, (5-30) coincides with the spectral efficiency

in the non-fading single-cell setup [5], for which taking β → ∞ is optimum for all values

of Eb

N0
.

Proposition 5.5 For β →∞, the spectral efficiency of the linear MMSE receiver is given
by

CIA
M ms

=

[

1 + 2α2
(

1− 1
M

)]

(1 + 2α2)

(

log e−
(

Er
b

N0

)−1
)

; M ≥ 2 . (5-31)

Proof : See App. B.4.1.
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Note that the last term in (5-31) equals the spectral efficiency of the linear MMSE receiver

in the single-cell non-fading setup (for β →∞), and the two results coincide as M →∞.

Also, the MMSE receiver becomes interference limited for β → ∞, and as
Er
b

N0
→ ∞ the

spectral efficiency approaches the limit of

CIA
M ms

=
β,

Er
b

N0
→∞

[

1 + 2α2
(

1− 1
M

)]

(1 + 2α2)
log e . (5-32)

6 Circular Array Setup

In this section a slight modification is made to the original Wyner linear array setup, as

described in Section 2, and analyzed in Section 4. It is now assumed that the M system

cells are arranged in a circle, so that the first cell and the M -th cell are adjacent to one

another (with M ≥ 3). As shall be evident in the sequel, this modified structure has

an inherent (circular) symmetry that leads to simple analytical results. Furthermore, the

circular model becomes particularly useful, as it will be shown in the following that as

M →∞ the spectral efficiency results for the isolated cluster and the infinite linear array

setups coincide with those of the circular array setup. The notation (·)C shall be used to

denote quantities related to the circular array setting.

The overall received signal, as seen by the joint multiple-cell-site receiver, can be de-

scribed by (4-1), while replacing the channel transfer matrix SIC by

SC =





















S1 ◦H1,1 αS2 ◦H1,2 0 · · · αSM ◦H1,M

αS1 ◦H2,1 S2 ◦H2,2 αS3 ◦H2,3 · · · 0

0 αS2 ◦H3,2 S3 ◦H3,3 αS4 ◦H3,4 · · ·
. . . . . . . . .

αS1 ◦HM,1 0 · · · αSM−1 ◦HM,M−1 SM ◦HM,M





















.

(6-1)

In this framework the cell load β retains the same interpretation as in Theorem 3.1. Forcing
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the relation
√

gCH = SC yields

gC =
M [1 + 2α2]K

M2NK

=
(

1 + 2α2
) 1

MN
,

(6-2)

and the SNR as defined in (3-4) corresponds in the circular array setup to

SNRC =
N,K→∞,K

N
→β

gCMKP̄ = gCMNβP̄

= (1 + 2α2)βP̄ .

(6-3)

The average per-user received SNR in the circular array setup is simply

P̄C
av =

(

1 + 2α2
)

P̄ . (6-4)

The spectral efficiency is derived in an analogous manner to Section 4. Due to the circular

nature of the channel, the discrete-index asymptotic power profile (cf. (4-14)) is given by
1

gCN
PC

M , where PC
M is the M ×M circular matrix

PC
M =



























1 α2 0 · · · 0 α2

α2 1 α2 0 · · · 0

0 α2 1 α2 0
. . .

...
. . . . . . . . . . . . 0

0 · · · 0 α2 1 α2

α2 0 · · · 0 α2 1



























. (6-5)

Hence, due to the circular symmetry and in contrast to the linear array discussed in Section

4, it is straightforward to see that the solution to the equation corresponding to (4-13) in the

current setting, the discrete-index function ΓC
M(m), is independent of the choice of the cell

index m within the circular array. Furthermore, since P̄C
av is not a function of M , ΓC

M(m) is

also independent of the size of the circular array M , and thus ΓC
M(m) = ΓC , m = 1, . . . ,M .

Applying the latter observation to (4-13), ΓC is given by the unique solution to the following
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reduced equation

ΓC =
1

β

1

1 + βP̄C
av

1+ΓCβP̄C
av

, (6-6)

or

βΓC + β
βΓCP̄C

av

1 + ΓCβP̄C
av

= 1 . (6-7)

Equation (6-7) is a quadratic equation for ΓC for which an explicit analytical solution can

be obtained:

ΓC =
1

β

[

1− β

2
− 1

2P̄C
av

+

√

(1− β)2

4
+

1 + β

2P̄C
av

+
1

4P̄C
av

2

]

. (6-8)

Finally, using the symmetry argumentation, (6-7), and in analogy to equation (4-20) it is

concluded that the spectral efficiency of the optimum receiver is given by

CC
opt

= β log(1 + βΓCP̄C
av) + log

1

βΓC
+ (βΓC − 1) log e , (6-9)

and that the spectral efficiency of the linear MMSE receiver is given by

CC
ms

= β log(1 + βΓCP̄C
av) . (6-10)

Examining (6-7)-(6-10), it is observed that the results of the circular array setup are

identical to the results of the non-fading (equivalently homogenous fading) single-cell setup

[5], but with an increased average transmit power per user satisfying P̄av = (1 + 2α2)P̄ .

Joint multiple cell-site processing is thus observed to completely eliminate the effect of

other-cell interference while fully exploiting the total received power from each user, as

received by the antennas of three cell-sites according to Wyner’s model. Using the above

equivalence the spectral efficiency of the optimum receiver can be more explicitly expressed

as [5]

CC
opt

= β log

[

1 + P̄C
av −

1

4
F(P̄C

av, β)

]

+ log

[

1 + P̄C
avβ −

1

4
F(P̄C

av, β)

]

− log e

4P̄C
av

F(P̄C
av, β) ,

(6-11)

where

F(x, z) , (

√

x
(

1 +
√
z
)2

+ 1−
√

x
(

1−
√
z
)2

+ 1 )2 . (6-12)
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It is noted that the above results can also be obtained immediately by observing that the

power profile matrix of SC is asymptotically doubly-regular (see Section 3), and Proposition

3 of [16] can be used to obtain (6-7)-(6-10).

Using (3-10) and (6-2), the minimum Eb

N0
required for reliable communication in the

circular setup is given by
Er
b

N0

C

min

= loge 2

Et
b

N0

C

min

=
loge 2

(1 + 2α2)
.

(6-13)

Taking β →∞, and expressing the spectral efficiency of the linear MMSE receiver in terms

of the received Eb

N0
yields

CC
ms

= log e−
(

Er
b

N0

)−1

. (6-14)

For the optimum receiver it can be shown that the spectral efficiency for β →∞ is given

by

CC
opt

= log

(

1 + CC
opt

Er
b

N0

)

. (6-15)

As can be observed the above result coincides with the spectral efficiency of the single-user

AWGN channel. Furthermore, this result coincides with the result of [13] for the setup

in which no random spreading is employed, demonstrating thus the optimality of taking

β →∞ for the optimum receiver.

To obtain the low- and high-SNR spectral efficiency slopes of the optimum receiver,

one can directly apply the single-cell results of [6] yielding

SC
0 opt

=
2β

1 + β
, (6-16)

and

SC
∞opt

=

{

β, β ≤ 1

1 , β > 1 .
(6-17)

The optimality of increasing β without bound is clearly evident from the fact that both

slopes monotonically increase with β. The low-SNR slope for the linear MMSE receiver is

given by [6]

SC
0 ms

=
2β

1 + 2β
, (6-18)
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demonstrating the optimal choice of β →∞ for the linear MMSE receiver at the low-SNR

regime. The high-SNR slope of the linear MMSE receiver is given by

SC
∞ms

=























β , β < 1

1/2 , β = 1

0 , β > 1 .

(6-19)

The following Theorem defines the relation between the spectral efficiencies of optimum

receiver in the multi-cell setups considered in this report.

Theorem 6.1

lim
M→∞

CIC
M opt

= lim
M→∞

CIA
M opt

= CC
opt

. (6-20)

Proof : See App. A.

It is noted that the coincidence of the minimum Eb

N0
that enables reliable communications,

and of the low- and high-SNR slopes in the three setups, as M →∞, can also be observed

from the explicit expressions of these quantities as derived in Sections 4 and 5.

7 Numerical Results

In this section we bring some numerical results that demonstrate the performance en-

hancement of joint multiple-cell-site processing, and the inter-relations between the three

multi-cell setups considered in this report. Figures 3 and 4 show the spectral efficiencies

in the infinite array setup of the optimum receiver (5-6), and the linear MMSE receiver

(5-23), respectively. The spectral efficiencies are plotted as a function of the transmit
Eb

N0
for the optimum choice of β (which is in general a function of Eb

N0
). The results were

evaluated for α = 1
2
, which corresponds to the case in which the total average inter-cell

interference power equals one-half of the total average intra-cell received power, and can

be considered as a “practical” level of inter-cell interference. As discussed above, while

examining the low-SNR slope of the receivers, it is optimum for low values of Eb

N0
to take

β → ∞. However, beyond some critical value of Eb

N0
the optimum choice for β decreases

from infinity and takes on finite values, approaching eventually, for the optimum receiver,

the value of M/(M+2) in the high-SNR regime. The region in which the optimum choice of
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Figure 3: Spectral efficiency of the optimum receiver vs. transmit Eb

N0
in the infinite linear

array model, for α = 1/2 and optimum choice of β.

β decreases from infinity explains the knee effect observed in the spectral efficiency curves

for both receivers. The optimum values of β for the linear MMSE receiver are depicted in

Fig. 5 as a function of
Et
b

N0
.

For the sake of comparison, we included in all figures the corresponding spectral effi-

ciencies for the case of M = 1 [14], and for the circular array setup. Comparing the results,

the dramatic effect of employing joint multiple cell-site processing on system performance

is clearly evident. The approach of the spectral efficiency in the infinite linear cell-array

setup to the spectral efficiency obtained in the circular array setup, as the cluster size M

gets large, is also clearly observed for both receivers.

In order to emphasize the impact of joint multiple-cell-processing even further, Fig. 6

shows the average per-cell spectral efficiency of the joint multiple-cell-site linear MMSE

receiver for M = 2 and M = 3, together with the spectral efficiencies obtained with single-

cell-site processing (M = 1) of both the optimum and linear MMSE receivers [15]. The

spectral efficiencies are plotted in Fig. 6 as a function of the transmit Eb

N0
for the optimum

choice of β, and for α = 1/2. As can be observed, already with a joint 2-cell-site processor,

the linear MMSE receiver outperforms the optimum single-cell-site processing receiver in

the low Eb

N0
regime, below some threshold Eb

N0
, and in the high Eb

N0
region, beyond a threshold.
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Figure 4: Spectral efficiency of the linear MMSE receiver vs. transmit Eb

N0
in the infinite

linear array model, for α = 1/2 and optimum choice of β.

Furthermore, with no more than joint 3-cell-site processing, the linear MMSE receiver

outperforms the optimum single-cell-site processing receiver for all values of Eb

N0
. This result

is of particular practical interest in view of the fundamental receiver complexity difference

between the two settings. The complexity of the optimum single-cell-site processing receiver

grows exponentially with the number of users per cell, while that of the joint 3-cell linear

MMSE receiver grows only linearly with the number of users per-cell.

To conclude, Figs. 7 and 8 show the average per-cell spectral efficiencies of the optimum

and linear MMSE receivers, respectively, as a function of the transmit Eb

N0
, in the isolated

cluster setup. Again, the spectral efficiencies are evaluated for the optimum choice of the

cell load β, and for α = 1/2. Comparing the results to the results obtained for the infinite

array setup, as plotted in Figs. 3 and 4, it is immediately observed that, as the cluster size

M grows the spectral efficiencies in the isolated cluster setup approach much faster the ones

of the circular array setup, than those in the infinite array setup. In fact one gets very close

to the asymptotic circular array results already when the cluster size equals M = 3. This

clear difference between the two setups demonstrates the impact of undecodable inter-cell

interference on system performance.
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Figure 5: The optimum cell-load β for the linear MMSE receiver as function of the transmit
Eb

N0
model, for α = 1/2.

8 The Impact of Chip-Level Interleaving

As discussed in the introduction to this report, incorporating a chip-level interleaver results

in a homogenous fading process [6], in which each spreading chip of each user experiences

independent fades. This comes in contrast to the conventional use of a symbol-level in-

terleaver, resulting in a fading process in which the whole spreading sequence (N chips)

of each user experiences the same fade, and the fades are independent from symbol to

symbol. Hence, the terms homogeneous fading, and non-homogeneous fading, shall be

used interchangeably in the following to refer to the chip-level interleaved and symbol-level

interleaved setups, respectively. Most of this report is dedicated to the investigation of

multi-cell setups employing chip-level interleaving, for which analytical results can be ob-

tained following [16]. However, it is of great interest to compare these results to the ones

obtained in the more practical multi-cell setups employing symbol-level interleavers.

When single-cell-site processing is employed, it is already well known from [5], [6], [14],

and [15], that while homogenous fading has no effect on the spectral efficiency as compared

to non-fading channels, flat-fading decreases the spectral efficiency of symbol-level inter-

leaved systems (assuming no channel state information at the transmitter). Unfortunately,

the derivation of the spectral efficiency with non-homogeneous fading in the multi-cell sys-
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Figure 6: Comparison of joint multiple-cell-site linear MMSE processing and optimum
single-cell-site processing, for the optimum choice of β and α = 1/2.

tem setups considered in this report poses some considerable analytical difficulties, and is

still an open problem. Therefore, in order to compare the two fading models, we focus

on the optimum joint multiple-cell-site receiver and do the following. First, two bounding

techniques are used to demonstrate the superiority of the optimum spectral efficiency ob-

tained in the homogenous fading multi-cell model, in the high cell load region. Next, the

low-SNR regime is considered for which the same behavior is also observed. Furthermore,

it is proved that in the low-SNR regime fading may turn out beneficial, in terms of the

optimum spectral efficiency, as compared to the corresponding setup in the absence of

fading. This conclusion comes in contrast to the case of single-cell-site processing.

The above comparison is confined to the circular array setup of Section 6 (with the

necessary adaptations to the non-homogeneous and non-faded setups), as it leads to more

tractable results on one hand while capturing the impact of joint multiple-cell-site process-

ing on the other. In addition, this model also provides a good approximation and an upper

bound to the spectral efficiencies obtained in the more “realistic” infinite linear-array setup

of Section 5, for rather moderate values of the cluster size M , as evident from the numerical

results of Section 7. It is noted however, that the same analysis can be repeated for the

infinite-array and isolated-cluster setups in a rather straightforward manner.

Finally, a multi-antenna model is investigated, which also demonstrates that homoge-
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Figure 7: Spectral efficiency of the optimum detector vs. transmit Eb

N0
in the isolated cells

model, for α = 1/2 and optimum choice of β.

nous fading can be beneficial in terms of the optimum spectral efficiency, as compared to

non-homogeneous fading. The investigation considers several scenarios including the low-

and high-SNR regimes, and the case in which the cell load is high.

The above investigations lead us to conjecture that homogeneous fading is beneficial in

terms of the optimum spectral efficiency for all SNRs and cell load values.

8.1 Symbol-Interleaved System Model

Based on the general system model described in Section 2, and the circular array setup

defined in Section 6, the overall received signal while employing symbol-level interleaving

can be described by (4-1), while replacing the channel transfer matrix SIC by

SCS =





















S1H1,1 αS2H1,2 0 · · · αSMH1,M

αS1H2,1 S2H2,2 αS3H2,3 · · · 0

0 αS2H3,2 S3H3,3 αS4H3,4 · · ·
. . . . . . . . .

αS1HM,1 0 · · · αSM−1HM,M−1 SMHM,M





















. (8-1)
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Figure 8: Spectral efficiency of the linear MMSE detector vs. transmit Eb

N0
in the isolated

cells model, for α = 1/2 and optimum choice of β.

The notation (·)CS shall be used to denote quantities related to the symbol-level interleaved

setting. Sm in (8-1) denotes the binary N × K signature matrix of the K users of the

m-th cell, and Hn,m denotes the K × K diagonal matrix of channel fades affecting the

signals of the n-th cell users, when received at the m-th cell-site antenna. It is assumed

that all channel fades are zero-mean, unit-variance i.i.d. random variables, and perfectly

known to the receiver. Note, that when a chip-level interleaver is employed, the resulting

fading process is mathematically described by the Hadamard multiplication of the signature

matrix by the fading matrix. On the other hand, the use of a symbol-level interleaver yields

a fading process that is described using conventional matrix multiplication of the signature

matrix by the diagonal fading matrix.
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8.2 High Cell Load Upper Bounds

8.2.1 Jensen Bound

For any N , K, M , and channel realization, the average input-output mutual information

of the symbol-level interleaved circular array setup is given by

E
{

I
(

xM
1 ;yCSM

1 |SM
1 ,H

)}

= E
{

log det
(

IN + P̄SCSSCS†
)}

, (8-2)

where the channel transfer matrix SCS is defined in (8-1), and the expectation is taken

over all channel fades (denoted by H), and over all spreading sequences. The notation aM
1

is used to designate the set of vectors a1, . . . ,aM . Applying the Jensen inequality to (8-2)

yields

E
{

I
(

xM
1 ;yCSM

1 |SM
1 ,HR

)}

≤ ESM1

{

log det
(

IN + P̄EH{SCSSCS†}
)}

, (8-3)

where the inner expectation is taken over all channel fades, and the outer expectation is

taken over all spreading sequences. Due to the statistical independency of the fading ma-

trices {Hn,m}, all non-diagonal product blocks of EH{SCSSCS†} vanish in the expectation,

and the latter expression becomes a block-diagonal matrix defined by

EH{SCSSCS†} = diag

(

{

SiS
†
i + α2

(

Si−S
†

i−
+ Si+S

†

i+

)}M

i=1

)

, (8-4)

where

i+ = ((M + i) mod M) + 1,

and

i− = ((M + i− 2) mod M) + 1 .
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Hence, (8-3) boils down to

E
{

I
(

xM
1 ;yCSM

1 |SM
1 ,H

)}

≤ ESM1

{

log
M
∏

i=1

det
(

IN + P̄
(

SiS
†
i + α2

(

Si−S
†

i−
+ Si+S

†

i+

)))

}

= M ES31

{

log det
(

IN + P̄ S̃S̃
†
)}

, (8-5)

where the last equality is due to the symmetrical nature of the circular array setup, and

S̃ , (αS1 S2 αS3) . (8-6)

Finally, using (8-5), the per-cell spectral efficiency of the optimum joint multiple cell-site

receiver in this setup is upper bounded by

CCS
M opt

≤ lim
N,K→∞
K
N
→β

1

N
ES31

{

log det
(

IN + P̄ S̃S̃
†
)}

. (8-7)

Careful inspection of the above expression reveals that the RHS of the inequality is in fact

equal to the spectral efficiency of the optimum receiver in a non-fading single isolated cell

setup, accommodating 3K users. The 3K users are received at non-equal powers, with K

users received at power P̄ , while the remaining 2K users are received at power α2P̄ . This

setup, which is treated in [14], may be also interpreted as the extended cluster portion of

the optimum spectral efficiency in the infinite linear array setup analyzed in Section 5, for

the particular case of M = 1 (see (5-7)). This spectral efficiency is given by

C3Kopt = β
[

2 log(1 + α2ηP̄ ) + log(1 + ηP̄ )
]

+ log
1

η
+ (η − 1) log e , (8-8)

where η is the unique solution to the following implicit equation

η + βP̄

[

2α2η

1 + α2ηP̄
+

η

1 + ηP̄

]

= 1 . (8-9)

Simple numerical analysis shows that for any finite value of the cell load β, this upper

bound surpasses the curve of the optimum receiver spectral efficiency obtained in the chip-

44



level interleaved circular array setup (6-9). However, as β → ∞ (which is the optimum

choice in terms of spectral efficiency in a single-cell setting), it is easily verified that

C3Kopt = log
(

1 + β(1 + 2α2)P̄
)

+ o(β−1) . (8-10)

But (8-10) is in fact identical to (6-15), designating the limiting spectral efficiency of the

optimum receiver in the chip-interleaved setup as β →∞. Thus, we have established that

as β →∞, the optimum spectral efficiency with chip-level interleaving coincides with the

upper bound to the corresponding spectral efficiency in the symbol-interleaved setting.

8.2.2 Information Theoretic Bound

For every channel realization and any N , M and K, the conditional channel input-output

mutual information of the symbol-level interleaved circular array setup (see (4-1) and (8-1))

satisfies the following relations

I
(

xM
1 ;yCSM

1 |SM
1 ,H

)

= h
(

yCSM

1 |SM
1 ,H

)

− h
(

yCSM

1 |xM
1 ,SM

1 ,H
)

= h
(

yCSM

1 |SM
1 ,H

)

− h
(

nM
1

)

(a)

≤
M
∑

m=1

(

h
(

yCS
m|SM

1 ,H
)

− h (nm)
)

(b)
= M

(

h
(

yCS
2|SM

1 ,H
)

− h (n2)
)

= M I
(

x3
1;y

CS
2|SM

1 ,H
)

= M log det
(

IN + P̄ ŠŠ
†
)

.

(8-11)

In (8-11), (a) follows from the fact that h(x, y) ≤ h(x) + h(y) for any x,y arbitrary r.v’s,

(b) follows from the symmetrical nature of the circular array setup, and

Š , (αS1H2,1 S2H2,2 αS3H2,3) . (8-12)

45



Hence, the per-cell spectral efficiency of the optimum joint multiple-cell-site receiver in this

setup is upper bounded by

CCS
M opt

≤ lim
N,K→∞
K
N
→β

1

N
E
{

log det
(

IN + P̄ ŠŠ
†
)}

, (8-13)

where the expectation is taken over the spreading sequences and the relevant channel fades.

As was the case with the Jensen bound considered in the previous subsection, careful

inspection of (8-13) reveals that the RHS of the inequality equals the spectral efficiency

achieved by an optimum receiver employed in a single isolated cell accommodating 3K

users. The 3K users, operating in a flat-fading environment, use unequal transmit powers,

with K users transmitting at power P̄ , while the remaining 2K users are transmitting at

power α2P̄ . This setup, which is treated in [15] may also be interpreted as the extended

cluster portion of the optimum spectral efficiency in the infinite linear array setup analyzed

in Section 5, for the particular case of M = 1 (see (5-7)), in an analogous manner to

Subsection 8.2.1. This spectral efficiency is given for the particular case of Rayleigh fading

by

CF
3Kopt

= β log e

[

e
1
P̄ ηE1

(

1

P̄ η

)

+ 2e
1

α2P̄ ηE1

(

1

α2P̄ η

)]

− log η − log e(1− η) , (8-14)

where E1(x) ,
∫∞

x
e−t

t
dt, (t > 0) is the exponential integral, and η is the unique solution

to the following implicit equation

η + βP̄

[

3− 1

P̄ η
e

1
P̄ ηE1

(

1

P̄ η

)

− 2

α2P̄ η
e

1

α2P̄ ηE1

(

1

α2P̄ η

)]

= 1 . (8-15)

Numerical analysis shows that for any finite value of the cell load β, this information theo-

retic upper bound also surpasses the curve of the spectral efficiency of the optimum receiver

in a chip-level interleaved circular array setup (6-9). The current bound is however tighter

than the previously considered Jensen bound, since non-homogeneous fading degrades the

the spectral efficiency [6] [15]. On the other hand, when the cell load β is high, it is easily

verified that

CF
3Kopt

= log
(

1 + β(1 + 2α2)P̄
)

+ o(β−1) , (8-16)
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which is again identical to (6-15). The same arguments used in Subsection 8.2.1 can

therefore be applied to conclude the spectral efficiency with chip-level interleaving upper

bounds the spectral efficiency with symbol-level interleaving in the high cell load region.

8.3 The Low-SNR Regime

8.3.1 Symbol-Level Interleaved Circular Array Setup

Consider the symbol-level interleaved circular array setup defined in Section 8.1. According

to Theorem 8 of [17], the required
Et
b

N0
for reliable communication is

Et
b

N0

CS

min

=
KM loge 2

E
[

trace
{

SCS†SCS
}] . (8-17)

The denominator of (8-17) equals the expected Frobenius norm squared of the channel

transfer matrix SCS [17]

E
[

trace
{

SCS†SCS
}]

=
MN
∑

i=1

MK
∑

j=1

E
[

|
(

SCS
)

i,j
|2
]

, (8-18)

and with the special structure of the SCS, as defined by (8-1), it is easy to verify that

Et
b

N0

CS

min

=
loge 2

m2(1 + 2α2)
, (8-19)

where m2 is the second power moment of an individual fading coefficient.

Turning to the low-SNR spectral efficiency slope of the optimum receiver, then accord-

ing to Theorem 13 in [17] the low-SNR slope in the current setting is given by

SCS
0 opt

=
2

MN

(

E
[

trace
{

SCS†SCS
}])2

(

E

[

trace

{

(

SCS†SCS
)2
}]) . (8-20)

Again, using the Frobenius norm equality of (8-18) for the product matrix
(

SCS†SCS
)

,

and the special structure of channel transfer matrix SCS, an explicit expression for the
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low-SNR slope is obtained

SCS
0 opt

=
2β

1 + β

[

1 +
(K − 1)(1 + 2α4)

(1 + β)(1 + 2α2)2

]−1

, (8-21)

whereK is the kurtosis of an individual fading coefficient (the kurtosis for a random variable

a is defined as K = E[|a|4]/(E[|a|2])2). The slope of (8-21) may also be expressed as

SCS
0 opt

=
2β

K + β

[

1− 2(K − 1)α2(2 + α2)

(K + β)(1 + 2α2)2

]−1

. (8-22)

In the particular case of α = 0, the above expression boils down, as expected, to the low-

SNR slope of the optimum receiver in the single isolated cell setting 2β/(K + β) [6]. The

derivation of the above results is given in more details in App. C.

8.3.2 Non-Faded Circular Array Setup

Consider the symbol-level interleaver circular array setup defined in 8.1 in the absence of

fading. In this setting one should take H i,j = IK in (8-1), where IK is a K ×K identity

matrix, and the resulting channel transfer matrix shall be denoted henceforth as SCNF.

Using similar arguments to those of section 8.3.1, the minimum required
Et
b

N0
for reliable

communication is given by
Et
b

N0

CNF

min

=
loge 2

(1 + 2α2)
, (8-23)

while the low-SNR spectral efficiency slope of the optimum receiver is given by

SCNF
0 opt

=
2β

1 + β

[

1 +
2βα2(4 + α2)

(1 + β)(1 + 2α2)2

]−1

. (8-24)

As was the case in Subsection 8.3.1, for the particular of α = 0 the above slope coincides

with the corresponding slope of the single-cell setting 2β/(1 + β) [6]. See App. D for more

details on the derivation.

8.3.3 Comparison

In this subsection the symbol-level interleaved, chip-level interleaved and non-fading cir-

cular array setups are compared. The comparison is performed in terms of the spectral
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efficiency of the optimum receiver in the low-SNR regime.

Proposition 8.1 The following statements hold with respect to the spectral efficiency of

the optimum receiver in the low-SNR regime:

(1). In the presence of fading, a chip-level interleaver is beneficial over a symbol-level

interleaver.

(2). The presence of homogenous fading (chip-level interleaver) is beneficial over a no

fading.

(3). Rayleigh flat-fading (symbol-level interleaver) is beneficial over no-fading in a certain

range of the interference factor α, for β > (
√
33− 1)/16 ' 0.29.

Proof : Assuming that the second power moment of an individual fading coefficient

m2 = 1, both fading setups require the same
Et
b

N0min
to enable reliable communication

(see (6-13) and (8-19) for the chip-level interleaved and symbol-level interleaved
Et
b

N0min
,

respectively). Now, since K ≥ 1 for any arbitrary random variable, the expression in

brackets in (8-21) is larger than 1, and recalling that the low-SNR spectral efficiency slope

with a chip-level interleaver is 2β/(1 + β), the first statement is proved.

The second statement is easily proved by noting that the expression in brackets of

(8-24) is larger than 1 (for α > 0).

A search for the conditions in which the ratio of the low-SNR slopes in the symbol-level

interleaved setup (8-21) and in the non-faded setup (8-24) is greater than unity, yields after

some algebra the following quadratic inequality (in α2)

(K − 1)− 8βα2 + 2(K − 1− β)α4 < 0 . (8-25)

Focusing on Rayleigh fading (K = 2) reduces (8-25) to

1− 8βα2 + 2(1− β)α4 < 0 . (8-26)

Investigation of this parametric quadratic inequality yields that for β < (
√
33 − 1)/16 '

0.296 there is no solution to (8-26), and for this range of β values fading in not beneficial.

On the other hand, if the cell load lies in the range (
√
33− 1)/16 ≤ β < 3/10, fading turn
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out to be beneficial for an interval of the inter-cell interference factor α ∈ [αl, αh) where

αl =

√

8β −
√

64β2 + 8β − 8

4(1− β)
; αh =

√

8β +
√

64β2 + 8β − 8

4(1− β)
. (8-27)

In addition, for β ≥ 3/10 fading is beneficial for α ∈ [αl, 1], where αl is given by (8-27).

It is also worth mentioning that αl reduces to zero as the β increases (the expression

for αl is continuous at β = 1). This coincides with the results of [13], stating that when

the number of users per cell goes to infinity, and all bandwidth is devoted to coding, fading

is beneficial for all α ∈ [0, 1].

8.4 Multi-Antenna Model

A multi-antenna setup based on the setup presented and analyzed in [10] and [6] is an-

alyzed. In this multi-antenna setup, a chip-level interleaver is employed. Each of the

spreading chips of each user are affected by i.i.d fading coefficients at each receive antenna

(independence across chips and antennas is assumed). The notation (·)MA shall be used to

denote quantities related to the chip-level interleaver multi-antenna setup. In this context,

the received signal vector is given by

yMA
[LN×1] =









S[N×K] ◦H1[N×K]

· · ·
S[N×K] ◦HL[N×K]









x[K×1] + n[LN×1] , (8-28)

where H` , ` = 1, . . . , L , is the matrix of i.i.d. zero-mean channel fading coefficients

related to the `-th receive antenna, satisfying

E
{

|(H`)n,k|2
}

=
1

L
;

1 ≤ n ≤ N

1 ≤ k ≤ K
. (8-29)

Applying similar arguments to those used for the multi-cell setups considered above, while

assuming binary spreading sequences and circularly symmetric Gaussian fading coefficients,

it is easily verified that the chip-interleaved multi-antenna model can be analyzed within

the MIMO framework tools presented in [16] (see also Section 3). However, a more elegant
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approach can be used via the following observation. A careful inspection of the system

model of (8-28) shows that due to the resulting homogenous fading model, a single-cell

interpretation can be employed in order to derive the spectral efficiency of the optimum

and linear MMSE receiver. The chip-interleaved multi-antenna model is equivalent to a

non-faded single isolated cell model with a single receive antenna, where the users employ

random spreading sequences of length LN (with i.i.d. chips). In this case the spectral

efficiency of the optimum and linear MMSE receivers are given by (6-10) and (6-9) respec-

tively, while replacing the cell load β by β/L and P̄av by P̄ . In addition, due to the fact

that the spectral efficiency in bits/sec/Hz is normalized with respect to the actual length

of the spreading sequences N , the expressions obtained for both receivers according to the

single-cell interpretation should be scaled by the number of antennas L. Hence, for the

linear MMSE receiver

CMA
L ms

= β log(1 + ηMA
L P̄ ) , (8-30)

and for the optimum receiver

CMA
L opt

= CMA
L ms

+ L log
1

ηMA
L

+ L(ηMA
L − 1) log e , (8-31)

where ηMA
L is the unique solution to the following implicit equation

ηMA
L +

β

L

ηMA
L P̄

1 + ηMA
L P̄

= 1 . (8-32)

The spectral efficiency of the optimum receiver can be more explicitly expressed as

CMA
L opt

= β log

(

1 + P̄ − 1

4
F(P̄ ,

β

L
)

)

+ L log

(

1 +
P̄ β

L
− 1

4
F(P̄ ,

β

L
)

)

− L
log e

4P̄
F(P̄ ,

β

L
) ,

(8-33)

where F is defined in (6-12). With similar arguments it can be shown that the minimum

energy per bit required for reliable communications satisfies
Et
b

N0

MA

min
=

Er
b

N0

MA

min
= loge 2, the
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high-SNR spectral efficiency slopes of the receivers are given by

SMA
∞ ms

=















β , β < L

L/2 , β = L

0 , β > L ,

SMA
∞ opt

= min(β, L) ,

(8-34)

and the low-SNR spectral efficiency slopes are

SMA
0 ms

=
2βL

L+ 2β
,

SMA
0 opt

=
2βL

L+ β
.

(8-35)

In addition, in the high cell load region, it is easily verified that

ηMA
L =

1

1 + β

L
P̄

+ o(β−1) , (8-36)

and the spectral efficiencies reduce to

CMA
L ms

= L(1− ηMA
L ) log e+ o(β−1)

CMA
L opt

= (L− 1)(1− ηMA
L ) log e+ L log

1

ηMA
L

+ o(β−1) .
(8-37)

For the sake of comparison, the multi-antenna setup presented and analyzed in [10]

and [6], is also considered. In this setup, a symbol-level interleaver is employed resulting

in a non-homogeneous fading process as described in the beginning of this section. The

notation (·)MAS shall be used to denote quantities related to the symbol-level interleaver

multi-antenna setup. In this context, the received vector at the multi-antenna receiver is

given by

yMAS
[LN×1] =









S[N×K]H1[K×K]

· · ·
S[N×K]HL[K×K]









x[K×1] + n[LN×1] , (8-38)

where H` , diag (Ak,`)
K

k=1 , ` = 1, . . . , L, is the diagonal matrix of channel fading coef-

ficients corresponding to the `-th receive antenna. The fading coefficients are assumed to
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be i.i.d., and satisfy

E
{

|Ak,`|2
}

=
1

L
;

1 ≤ k ≤ K

1 ≤ ` ≤ L
. (8-39)

The spectral efficiencies of the linear MMSE and optimum receiver in this setup are derived

in [6], and given by

CMAS
L ms

= βE
{

log(1 + ηMAS
L P̄ |Ā|2)

}

CMAS
L opt

= CMAS
L ms

+ log
1

ηMAS
L

+ (ηMAS
L − 1) log e ,

(8-40)

where ηMAS is the unique solution to the following implicit equation

ηMAS
L +

β

L
E

{

P̄ |Ā|2ηMAS
L

1 + P̄ |Ā|2ηMAS
L

}

= 1 . (8-41)

The expectations in (8-40) and (8-41) are with respect to the distribution of

|Ā|2 =
L
∑

`=1

|A1,`|2 , (8-42)

where A1,` is the fading coefficient associated with user 1 and the `-th receive antenna

(note that the fades are i.i.d. across users and antennas).

According to [6], the minimum energy per bit required for reliable communication
Et
b

N0

MAS

min
=

Er
b

N0

MAS

min
= loge 2, and the low-SNR spectral efficiencies slopes are given by

SMAS
0 ms

=
2βL

LK(|Ā|) + 2β

SMAS
0 opt

=
2βL

LK(|Ā|) + β + β (1− 1/L)
,

(8-43)

where K(|Ā|) is the kurtosis of |Ā|. Since the kurtosis of an arbitrary random variable is

greater than one, it is clear that the low-SNR slopes of the chip-level interleaver multi-

antenna setup of (8-35), surpass the low-SNR slopes of the symbol-level interleaver multi-

antenna setup of (8-43). The high-SNR spectral efficiency slopes are also derived in [6]

53



and given by

SMAS
∞ ms

=















β , β < L

L/2 , β = L

0 , β > L

SMAS
∞ opt

=























β , β < L

(L+ 1)/2 , β = L

1 , β > L .

(8-44)

In the high-SNR regime, the spectral efficiency slopes of the linear MMSE receiver in both

multi-antenna setups, as given by (8-34) and (8-44), coincide. Turning to the optimum

receiver, the difference between the high-SNR slopes in the two setups is

∆S∞opt = SMA
∞ opt

− SMAS
∞ opt

=















0 , β < L

(L− 1)/2 , β = L

L− 1 L ≤ β .

(8-45)

As can be observed, the slope in the chip-level interleaved setup is always higher or equal

to the slope in the symbol-level interleaved setup.

The high cell load region of the symbol-level interleaved setup is also analyzed in [6],

and it can be shown that

ηMAS
L =

1

1 + β

L
P̄

+ o(β−1) , (8-46)

and the spectral efficiencies of the two receivers are given by

CMAS
L ms

= L(1− ηMAS
L ) log e+ o(β−1)

CMAS
L opt

= (L− 1)(1− ηMAS
L ) log e+ log

1

ηMAS
L

+ o(β−1) .
(8-47)

Comparing (8-46) and (8-36), it is observed that ηMAS
L = ηMA

L . Hence, the spectral efficiency

of the linear MMSE receiver in both setups, as given by (8-37) and (8-47), coincide. In

contrast, the spectral efficiency of the optimum receiver in the chip-level interleaved setup is

significantly higher than that of the corresponding receiver in the symbol-level interleaved
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setup. Comparing (8-37) and (8-47), the spectral efficiency difference is given by

∆CLopt =
β→∞

CMA
L opt

− CMAS
L opt

= (L− 1) log(1 +
β

L
P̄ ) + o(β−1) , (8-48)

which is bounded for LÀ 1 by βP̄ (note that βP̄ is finite whenever the spectral efficiency

and Eb/N0 are finite, regardless of the value of β, as can be observed from (3-9)).

9 Concluding Remarks

This report examines the effect of joint multiple-cell-site processing on the performance

of randomly spread DS-CDMA systems, for three variants of Wyner’s infinite linear cell-

array model [11]: 1) An isolated cluster of M cells; 2) An infinite linear cell-array divided

into clusters of M -cells, which are seperately processed; 3) M cells arranged on a circle.

Chip-level interleaver is used in order to form an uncorrelated Gaussian channel transfer

matrix, which in the single-cell setup yields the homogeneous fading channel model [5].

The resulting model may be interpreted as a single-user MIMO channel analogous to the

channel analyzed in [16]. Expressions for the spectral efficiencies of the optimum and linear

MMSE joint multiple cell-site receivers in the three multi-cell settings were derived, as well

as expressions for the low- and high-SNR spectral efficiency slopes, and the limiting spectral

efficiency in the high cell load region. The results can be straightforwardly extended from

the Wyner framework to include the case in which each cell-site receives the signals of more

than just the two adjacent cells.

Analysis of the per-cell spectral efficiencies shows that the joint multiple-cell-site strat-

egy dramatically enhances system performance for both receivers. Focusing on the infinite

cell-array setup, this dramatic performance enhancement is demonstrated by showing that

for α = 1/2 the spectral efficiency attained with the joint 3-cell-site linear MMSE receiver,

always surpasses the much more complex (!) optimum single-cell-site processor [15]. Con-

sidering the transmit Eb/N0min, the joint multiple-cell-site processing scheme produces an

energy gain of
[

1 + 2α2
(

1− 1
M

)]

as compared to single cell-site processing. The low-SNR

spectral efficiency slopes of the two receivers coincide, as the cluster size M grows, with

the corresponding slopes in the single-cell non-fading setup [6], and the optimality of in-

creasing β without bound in the low SNR regime is established. However, beyond a critical
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value of Eb/N0 the optimum choice for β decreases from infinity and takes on finite values,

approaching for the optimum receiver the value of M/(M + 2) in the high SNR regime.

In fact, the linear MMSE receiver becomes interference limited for β → ∞, where as the

optimum receiver is not interference limited for M ≥ 3. However, some amount of spread-

ing is still beneficial for the optimum receiver for any finite value of the cluster size M . In

the limiting setup in which both M,β → ∞ the effect of random spreading is eliminated,

and the spectral efficiency of the optimum receiver coincides with the corresponding result

for the non-spread Rayleigh flat-fading Wyner model [13] (which always surpasses the one

attained in the absence of fading [11]). This comes in contrast to single-cell-site processing,

for which homogeneous fading has no effect on system performance [6] (as compared to

a non-faded setup), and demonstrates the beneficial effect of fading when optimum joint

multiple-cell-site processing is employed.

Comparison of the above results to the corresponding results in the isolated cluster

setup, demonstrates the impact of inter-cluster interference on system performance. The

spectral efficiencies in the isolated cluster setting are shown to approach much faster with

the cluster size M (as compared to the corresponding results in the infinite cell-array

setting) the high-M spectral efficiency limit, as represented by the results of the circular-

array model. In the latter model, the per-cell spectral efficiencies of the two receivers

coincide with the corresponding spectral efficiencies in a single-cell non-fading setup [6],

but with received SNR increased by a factor of (1 + 2α2).

The circular-array setup is also used to investigate the impact of chip-level interleaving

on system performance. Focusing on the spectral efficiency of the optimum receiver, it is

shown that for β →∞ (which is the optimum choice in terms of spectral efficiency in the

circular setting) the spectral efficiency with chip-level interleaving coincides with upper

bounds on the spectral efficiency attained with symbol-level interleaving. Considering

the low-SNR regime it is shown that in the presence of fading chip-level interleaving is

beneficial over symbol-level interleaving. Comparison to the corresponding low-SNR regime

in the absence of fading shows that the homogeneous fading model resulting from chip-level

interleaving is beneficial. In addition, it is shown that the low-SNR spectral efficiency with

Rayleigh flat-fading and a symbol-level interleaver surpasses the corresponding spectral

efficiency in the absence of fading for a certain range of the interference factor α and β. This

comes in contrast to the effect of fading in the case of single-cell-site processing, where non-
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homogeneous fading always degrades system performance. To complete the investigation,

a single-cell multiple-receive-antenna model is also considered. It is shown that in the low

SNR regime, the spectral efficiencies with chip-level interleaving always surpass the ones

with symbol-level interleaving for both the linear MMSE and optimum receiver. In the

high-SNR regime, the spectral efficiency slope of the linear MMSE receiver remains the

same with both interleaving schemes. In contrast, for the optimum receiver the slope is

higher with chip-level interleaving when the cell-load is higher than the number of receive

antennas. For β → ∞ the spectral efficiencies of the linear MMSE receiver coincide for

both interleaving schemes, while for the optimum receiver the spectral efficiency with chip-

level interleaving is always higher than the one attained with symbol-level interleaving.

In view of the above results, it is conjectured that with optimum processing chip-level

interleaving is beneficial in terms of spectral efficiency in general.
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A Proof of Theorem 6.1

Let
{

yIC
1 , . . . ,yIC

M

}

and
{

yC
1 , . . . ,y

C
M

}

denote the sets of received signal vectors in each of

the M cell-sites in the setups of M -cells isolated cluster, and a circular array of M cells,

respectively. Let {x1, . . . ,xM} denote the set of input signal vectors from users in the

corresponding cells. Recall that the statistical properties of the input signals, as defined in

Section 2, are independent of the particular arrangement of cell-sites (and no cooperation

between different users is assumed). With the above notation, the following set of mutual

information relations holds for any channel realization and any value of K, N , and M ≥ 3:

I(M)(x1, . . . ,xM ; yC
1 , . . . ,y

C
M)

(a)

≥ I(M)(x1, . . . ,xM ; yC
1 , . . . ,y

C
M |xM = 0)

= I(M)(x1, . . . ,xM−1 ; yC
1 , . . . ,y

C
M |xM = 0)

(b)

≥ I(M)(x1, . . . ,xM−1 ; yC
1 , . . . ,y

C
M−1 |xM = 0)

(c)
= I(M−1)(x1, . . . ,xM−1 ; yIC

1 , . . . ,yIC
M−1) ,

(A-1)

where the subscript (·)(M) denotes that the mutual information relates to a setup of M cells

(arranged either in a linear array or a circular array). Inequality (a) follows the fact that

conditioning reduces entropy (and that the channel is an additive noise channel). Inequality

(b) follows from the fact that information can only be lost if the (overall) received signal

vector is truncated. Finally, equality (c) holds because with the preceding input constraints

and the output truncation, a circular array of M cells is equivalent to a linear array of

M − 1 isolated cells. But

CC
opt

=
1

M
lim

N,K→∞
K
N
→β

1

N
E
{

I(M)(x1, . . . ,xM ; yC
1 , . . . ,y

C
M)
}

, (A-2)

and

CIC
M opt

=
1

M
lim

N,K→∞
K
N
→β

1

N
E
{

I(M)(x1, . . . ,xM ; yIC
1 , . . . ,yIC

M )
}

. (A-3)

Hence, it follows that

MCC
opt
≥ (M − 1)CIC

(M−1)opt
, (A-4)
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or

CC
opt
≥
(

1− 1

M

)

CIC
(M−1)opt

. (A-5)

To upper bound the spectral efficiency of the optimum receiver in the circular setup we

use the following set of mutual information relations:

I(M)(x1, . . . ,xM ; yC
1 , . . . ,y

C
M)

= I(M)(x1,xM ; yC
1 , . . . ,y

C
M) + I(M)(x2, . . . ,xM−1 ;y

C
1 , . . . ,y

C
M |x1,xM)

(a)
= I(M)(x1,xM ; yC

1 , . . . ,y
C
M) + I(M)(x2, . . . ,xM−1 ;y

IC
1 , . . . ,yIC

M |x1,xM)

= I(M)(x1,xM ; yC
1 , . . . ,y

C
M)− I(M)(x1,xM ;yIC

1 , . . . ,yIC
M )

+ I(M)(x1,xM ;yIC
1 , . . . ,yIC

M ) + I(M)(x2, . . . ,xM−1 ;y
IC
1 , . . . ,yIC

M |x1,xM)

= I(M)(x1,xM ; yC
1 , . . . ,y

C
M)− I(M)(x1,xM ;yIC

1 , . . . ,yIC
M )

+ I(M)(x1, . . . ,xM ;yIC
1 , . . . ,yIC

M )

≤ I(M)(x1,xM ; yC
1 , . . . ,y

C
M) + I(M)(x1, . . . ,xM ;yIC

1 , . . . ,yIC
M ) .

(A-6)

Here, inequality (a) follows from the fact that given the inputs from cells 1 and M the

mutual information in the second term is identical for both linear (isolated cluster) and

circular setups. Now examining the first term in the RHS of the inequality of (A-6), we

observe that

I(M)(x1,xM ; yC
1 , . . . ,y

C
M) ≤ I(M)(x1,xM ; yC

1 , . . . ,y
C
M |x2 = · · · = xM−1 = 0)

= I(M)(x1,xM ; yC
1 ,y

C
2 ,y

C
M−1,y

C
M |x2 = xM−1 = 0)

, K1 ,

(A-7)

where K1 is fixed and independent of M (M ≥ 3) for any fixed P̄ , α and β. The inequality

in (A-7) follows from the fact the the mutual information in the LHS of the inequality

designates the achievable sum-rate when decoding only the users of cells 1 and M , while

taking into account the structure of the interference generated by the users operating in

all other cells within the circular array, and therefore eliminating all other-cell interference

can only increase the achievable rate. The equality in (A-7) straightforwardly follows from

the fact that without any transmissions in cells 2 to M−1, the signals received in cell-sites

3 to M −2 include only AWGN and therefore do not contribute to the mutual information
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in the LHS of the equality. Combining (A-7) and (A-6) with (A-2) and (A-3), the spectral

efficiency of the optimum receiver for the circular array can be upper bounded by

CC
opt
≤ CIC

M opt
+
K1

M
. (A-8)

Finally, from (A-5) and (A-8) it follows that

CC
opt
− K1

M
≤ CIC

M opt
≤
(

1− 1

M + 1

)−1

CC
opt

, (A-9)

and taking the limit as M →∞, while recalling that CC
opt

is independent of M for M ≥ 3,

it follows that

lim
M→∞

CM opt = CC
opt

. (A-10)

Now in order to show that the same asymptotic result also holds for the infinite linear

array setup of Section 5, recall first that according to (5-6)

CIA
M opt

= CM −
2

M
CI . (A-11)

Clearly, the term CI , as given by (5-21), is fixed for any fixed P̄ , α and β, and is independent

of M . It therefore remains to investigate the behavior of CM as M grows large. Clearly CM
is lower bounded by CIC

M opt
in view of (A-3), (5-7) and the following mutual information

relations
I
(

xM+1
0 ; yIAM

1

)

≥ I
(

xM+1
0 ; yIAM

1 |x0 = xM+1 = 0
)

= I
(

xM
1 ; yIAM

1 |x0 = xM+1 = 0
)

= I
(

xM
1 ; yICM

1

)

.

(A-12)

A simple upper bound to CM can be derived by observing that (assuming an array of no

more than M + 2 active cells)

I
(

xM+1
0 ; yICM+1

0

)

≥ I
(

xM+1
0 ; yICM

1

)

= I
(

xM+1
0 ; yIAM

1

)

, (A-13)

and hence (again following (A-3) and (5-7))

CM ≤ (1 +
2

M
)CIC

(M+2)opt
. (A-14)

60



But from (A-10) it is seen that both upper and lower bound on CM converge to the same

limit CC
opt

as M → ∞, which completes the proof of the Theorem, since the term 2
M
CI in

(5-6) vanishes with M .

B Proofs Related to the Infinite Array Setup

B.1 Minimum Eb/N0

The minimum transmitted energy per bit required for reliable communication is expressed

in [17] by
Et
b

N0 min

,
β

Ċopt(0)
, (B-1)

where the derivative is with respect to the transmit SNR P̄ . Substituting (5-6) into (B-1)

yields
Et
b

N0

IA

min

=
β

ĊM(0)− 2
M
ĊI(0)

=
β

β̃

(

Et
b

N0

M

min

)−1

− 2
M
β

(

Et
b

N0

I

min

)−1 ,
(B-2)

where
Et
b

N0

M

min
is the transmit Eb

N0min
of the extended cluster receiver that corresponds to CM

in (5-7),
Et
b

N0

I

min
is the transmit Eb

N0min
of the isolated single-cell setup that corresponds to CI

in (5-8), and β̃ is the system average cell load of the extended cluster as defined by (5-10).

Using (3-10) and (5-12), we get

Et
b

N0

M

min

=
loge 2

(1 + 2α2)

M + 2

M
, (B-3)

and
Et
b

N0

I

min

=
loge 2

α2
. (B-4)

Substituting (B-3) and (B-4) into (B-2) finally yields (5-24).
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B.2 Low-SNR Spectral Efficiency Slope

B.2.1 Optimum Receiver

The low-SNR spectral efficiency slope of the optimum receiver is expressed in [17] as

S0 ,
2
[

Ċ(0)
]2

−C̈(0)
, (B-5)

where the derivatives are with respect to the transmitted signal-to-noise ratio P̄ . Using

(5-6), (B-1), (B-5) and some algebra we get for M ≥ 2

S0
IA
opt

=

(

Et
b

N0

IA

min

)−2

β2

1
S0

M
opt

(

Et
b

N0

M

min

)−2

β̃2 − 2
M

1
S0

I
opt

(

Et
b

N0

I

min

)−2

β2

, (B-6)

where (S0
M
opt

,
Et
b

N0

M

min
, β̃) and (S0

I
opt

,
Et
b

N0

I

min
, β) are the low-SNR spectral efficiency slope, the

minimum transmitted energy per bit, and the system average cell load of the optimum

receiver in the extended cluster, and in the isolated single cell, respectively.

In order to obtain S0
M
opt

it is required to calculate the total normalized power injected by

the j-th transmit antenna, and the normalized power collected by the i-th receive antenna

of the equivalent MIMO model, as defined by (3-12) and (3-13). These are given for M ≥ 2

by

PT (j) =















α2 1
gIA

, j = 0,M + 1

(1 + α2) 1
gIA

, j = 1,M

(1 + 2α2) 1
gIA

, 2 ≤ j ≤M − 1 ,

(B-7)

and

PR(i) = (1 + 2α2)
β

gIA
; 1 ≤ i ≤M , (B-8)

respectively. Substituting (B-7) and (B-8) into (B-5), yields for M ≥ 2

S0
M
opt

=
2β

1 + β

(1 + 2α2)
2

1 + 4
(

1− 1
(1+β)M

)

α2 + 4
(

1− 1
(1+β)M

)

α4
. (B-9)
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To complete the derivation recall that the low-SNR slope of the optimum receiver in the

isolated single-cell setup is given in [6] by

S0
I
opt

=
2β

1 + β
. (B-10)

Now, substituting (B-9) and (B-10) into (B-6) finally yields (5-25).

B.2.2 Linear MMSE Receiver

In the low SNR regime (P̄ ¿ 1), it is easy to verify that ΓIA
M (m), as defined by (5-16), is

approximated well for M ≥ 2 by

β
(

1 + 2α2
)

ΓIA
M (m) =

m+1
∑

l=m−1

[P IA
M ]l,m

(

1−
l+1
∑

k=l−1

[P IA
M ]l,kβP̄

)

+O(P̄ 2)

m = 1, 2, . . . ,M ,

(B-11)

where out-of-range indices should be ignored. Using the special structure of the discrete-

index asymptotic power profile of the infinite cell-array setup, P IA
M , as defined by (5-15),

it follows that (B-11) boils down to

β
(

1 + 2α2
)

ΓIA
M (m) = am − bmP̄ +O(P̄ 2)

m = 1, 2, . . . ,M ,
(B-12)

where

am =

{

1 + α2 , m = 1,M

1 + 2α2 , 2 ≤ m ≤M − 1 ,
(B-13)

and
M = 2 : b1 = 1 + 2α2 + 2α4 ,

M = 3 : b1 = 1 + 2α2 + 2α4 ; b2 = 1 + 4α2 + 3α4 ,

M ≥ 4 : bm =















1 + 2α2 + 2α4 , m = 1,M

1 + 4α2 + 3α4 , m = 2,M − 1

1 + 4α2 + 4α4 , 3 ≤ m ≤M − 2 .

(B-14)
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In addition, it is easily verified that in the low-SNR regime, every summand in the expres-

sion for the spectral efficiency of the linear MMSE receiver (5-23) reduces to

log
(

1 + ΓIA
M (m)(1 + 2α2)βP̄

)

=

(

amP̄ − 1

2

(

2bm + a2m
)

P̄ 2

)

log e+O(P̄ 3)

m = 1, 2, . . . ,M .

(B-15)

Now, substituting (B-15) in (5-23) it follows that the low-SNR spectral efficiency of the

linear MMSE receiver is approximated by

M = 2 : CIA
M ms

(P̄ ) =
β

2

[

2a1P̄ −
1

2

(

4b1 + 2a21
)

P̄ 2

]

log e+O(P̄ 3) ,

M = 3 : CIA
M ms

(P̄ ) =
β

3

[

(2a1 + a2) P̄ −
1

2

(

4b1 + 2b2 + 2a21 + a22
)

P̄ 2

]

log e+O(P̄ 3) ,

M ≥ 4 : CIA
M ms

(P̄ ) =
β

M

[

(2a1 + (M − 2)a2) P̄−
1

2

(

4b1 + 4b2 + 2(M − 4)b3 + 2a21 + (M − 2)a22
)

P̄ 2
]

log e+O(P̄ 3) .

(B-16)

Finally, substituting {am} and {bm} in (B-16), identifying ĊIA
M ms(0) and C̈IA

M ms(0), and

using the general expression of the low-SNR slope (B-5), (5-28) is obtained.

B.3 High-SNR Spectral Efficiency Slope

The high-SNR spectral efficiency slope of the optimum receiver is expressed in [6] as

S∞ , lim
P̄→∞

P̄ Ċ(P̄ ) , (B-17)

where the derivative is with respect to the transmit SNR P̄ . Using (5-6) and (B-17), it

follows that for M ≥ 2

SIA
∞ opt

= lim
P̄→∞

P̄ ĊIA
M opt(P̄ )

= lim
P̄→∞

P̄ ĊM(P̄ )− 2

M
lim
P̄→∞

P̄ ĊI(P̄ )

= S∞
M
opt
− 2

M
SI
∞opt

,

(B-18)
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where SM
∞ opt

and SI
∞opt

are the high-SNR spectral efficiency slopes of the optimum receiver

in the extended cluster setup, and in the isolated single cell setup, respectively. Using

(3-14) and the definition of the extended cluster setup, it is easily verified that

SM
∞ opt

= min

(

β

(

1 +
2

M

)

, 1

)

. (B-19)

In addition, the high SNR slope in the single-cell setup is given by [6]

SI
∞opt

= min (β, 1) . (B-20)

Finally, substituting (B-19) and (B-20) into (B-18), we get (5-26).

B.4 Spectral Efficiencies in the High Cell Load Region

B.4.1 Linear MMSE Receiver

In the high cell load region (β À 1), a finite transmit energy per bit implies that P̄ ¿ 1,

since from (3-9) βP̄ = C
Et
b

N0
(with C being the spectral efficiency). In addition, examin-

ing the implicit equation for ΓIA(m) (5-16), it is concluded that a consistent solution to

the equation exists, for β À 1, only if βΓIA(m) is finite. Hence, β (1 + 2α2) ΓIA
M (m) is

approximated well for M ≥ 2 by

β
(

1 + 2α2
)

ΓIA
M (m) =

m+1
∑

l=m−1

[P IA
M ]l,m

1 +
∑l+1

k=l−1[P
IA
M ]l,kβP̄

+O(β−1)

m = 0, 1, . . . ,M + 1 ,

(B-21)

where out-of-range indices should be ignored. Using the special structure of the discrete-

index asymptotic power profile for the infinite cell-array setup, as defined by (5-15), (B-21)

boils down to
β
(

1 + 2α2
)

ΓIA
M (m) =

am
1 + (1 + 2α2)βP̄

+O(β−1)

m = 0, 1, . . . ,M + 1 ,

(B-22)
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where

am =















α2 , m = 0,M + 1

1 + α2 , m = 1,M

1 + 2α2 , 2 ≤ m ≤M − 1 .

(B-23)

Now, recalling that β À 1 implies (1 + 2α2) ΓIA
M (m)βP̄ ¿ 1, then every summand in the

expression for the spectral efficiency of the linear MMSE receiver (5-23) can be expressed

by

β log
(

1 + ΓIA
M (m)(1 + 2α2)βP̄

)

=
amβP̄

1 + (1 + 2α2)βP̄
log e+O(β−1) . (B-24)

Finally, substituting (B-24) and (B-23) into (5-23), replacing βP̄ by
Et
b

N0
CIA
M ms

and following

some algebra, (5-31) is obtained.

B.4.2 Optimum Receiver

The spectral efficiency of the optimum receiver in the infinite cell-array setup is combined

of two terms as given in (5-6). Starting with CM as given by (5-20), it can be shown

applying similar arguments to those used in Subsection B.4.1, that for β À 1 the first and

third terms of (5-20) cancel each other (up to O(β−1)). Hence CM can be approximated as

CM =
1

M

M
∑

m=1

log

(

1 +
m+1
∑

k=m−1

[P IA
M ]m,kβP̄

1 + ΓIA
M (k)(1 + 2α2)βP̄

)

+O(β−1) . (B-25)

Recalling that β (1 + 2α2) ΓIA(m)P̄ ¿ 1 when β À 1, then (B-25) reduces to

CM =
1

M

M
∑

m=1

log

(

1 +
m+1
∑

k=m−1

[P IA
M ]m,kβP̄

)

+O(β−1)

= log
(

1 +
(

1 + 2α2
)

βP̄
)

+O(β−1) ,

(B-26)

where the last equality is obtained by using the structure of the discrete-index asymptotic

power profile of the infinite cell array setup, P IA
M , as defined in (5-15).

The second term of (5-6) is the optimum receiver spectral efficiency of an isolated single

cell setup where the received SNR is α2P̄ . Hence (see [5]), for β À 1 the spectral efficiency
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of the optimum receiver in this setup is given by

CI = log
(

1 + α2P̄ β
)

+O(β−1) . (B-27)

Finally, substituting (B-26) and (B-27) into (5-6), replacing βP̄ with
Et
b

N0
CIA
M ms

, and follow-

ing some algebra, (5-30) is obtained.

C Low-SNR Slope with a Symbol-Level Interlevear

The channel transfer matrix in the circular cell-array setup SCS, as defined in (8-1), is a

three-block diagonal matrix. Ignoring the interference factor α, each block is of the form of

SH where S is an N×K signature matrix and H is a K×K diagonal channel fades matrix.

Hence, the product matrix SCS†SCS is a five-block diagonal matrix. Examining (8-20), it

observed that in order to evaluate the denominator of the equation, it is required to derive

the power profile of the above product matrix. Considering the symmetrical structure of

the setup, it is enough to focus on a single row of five K ×K blocks. Furthermore, it is

enough to consider the diagonal block (referred in the following to as B0), and the two

off-diagonal blocks on its right (referred to in the following as B1 and B2).

Relating to an arbitrary block-row m (1 < m < M) of SCS, the diagonal block B0 of

the product matrix SCS†SCS is given by

B0 = α2H
†
m−1,mS†

mSmHm−1,m+H†
m,mS†

mSmHm,m+α2H
†
m+1,mS†

mSmHm+1,m . (C-1)

Careful examination of the entries of the K × K matrix B0 reveals that in terms of

power profile there are only two types of entries: diagonal entries and non-diagonal entries.

Starting with the set of K diagonal entries, and focusing without loss of generality on

(B0)1,1, it is easily verified that

(B0)1,1 =
(

α2|(Hm−1,m)1,1|2 + |(Hm,m)1,1|2 + α2|(Hm+1,m)1,1|2
)

N
∑

i=1

|(Sm)i,1|2 . (C-2)

With the assumption of binary random signatures, the second moment of a diagonal entry
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is given by

E[|(B0)1,1|2] = m4(1 + 2α4) +m2
2(4α

2 + 2α4) , (C-3)

where m2 = E[|a|2] and m4 = E[|a|4] are the second and forth power moments of an

individual fading coefficient, respectively. Turning to the set K2 −K non-diagonal entries

of B0, and focusing without loss of generality on (B0)1,2, it is easily verified that

(B0)1,2 =
(

α2(Hm−1,m)
∗
1,1(Hm−1,m)2,2 + (Hm,m)

∗
1,1(Hm,m)2,2

+ α2(Hm+1,m)
∗
1,1(Hm+1,m)2,2

)

N
∑

i=1

(Sm)
∗
i,1(Sm)i,2 , (C-4)

and the respective second power moment of a non-diagonal entry is given by

E[|(B0)1,2|2] =
m2

2(1 + 2α4)

N
. (C-5)

The off-diagonal block B1 is given by

B1 = αH†
m,mS†

mSm+1Hm,m+1 + αH
†
m+1,mS†

mSm+1Hm+1,m+1 . (C-6)

Examining the entries of B1 it is concluded that in terms of power profile all K2 entries of

the matrix are of the same type. Hence, it is enough to inspect (B1)1,1 which is given by

(B1)1,1 = α
(

(Hm,m)
∗
1,1(Hm,m+1)1,1 + (Hm+1,m)

∗
1,1(Hm+1,m+1)1,1

)

N
∑

i=1

(Sm)
∗
i,1(Sm+1)i,1 ,

(C-7)

and its respective second power moment equals to

E[|(B1)1,1|2] =
2α2m2

2

N
. (C-8)

The second off-diagonal block B2 is given by

B2 = α2H
†
m+1,mS†

mSm+2Hm+1,m+2 . (C-9)

Examining the entries of B2 it is concluded that, as observed for B1, all K
2 entries of the
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matrix have the same second power moment. Hence, it is enough to inspect (B2)1,1 which

is given by

(B2)1,1 = α2(Hm+1,m)
∗
1,1(Hm+1,m+2)1,1

N
∑

i=1

(Sm)
∗
i,1(Sm+2)i,1 , (C-10)

and its respective second power moment equals

E[|(B2)1,1|2] =
α4m2

2

N
. (C-11)

Now, combining (C-3), (C-8) and (C-11), the denominator of (8-20) can be expressed

as

E

[

trace

{

(

SCS†SCS
)2
}]

=
MK
∑

i=1

MK
∑

j=1

E
[

|(SCS†SCS)i,j|2
]

= M
(

KE[|(B0)1,1|2] + (K2 −K)E[|(B0)1,2|2] + 2K2E[|(B1)1,1|2] + 2K2E[|(B2)1,1|2]
)

= MK

([

m4 +

(

K

N
− 1

N

)

m2
2

]

+ 4m2
2

[

1 +
K

N

]

α2 + 2

[

m4 +

(

1 + 2
K

N
− 1

N

)

m2
2

]

α4

)

.

(C-12)

The nominator of (8-20) equals

(

E
[

trace
{

SCS†SCS
}])2

=

(

MN
∑

i=1

MK
∑

j=1

E
[

|(SCS)i,j|2
]

)2

= M2K2m2
2(1 + 2α2)2 .

(C-13)

Combining (C-13) and (C-12) the low-SNR spectral efficiency slope of the optimum receiver

is given by

SCS
0 opt

=
2K
N
(1 + 2α2)2

[

K + K
N
− 1

N

]

+ 4
[

1 + K
N

]

α2 + 2
[

K + 1 + 2K
N
− 1

N

]

α4
. (C-14)

Finally, recalling the asymptotic nature of the model in concern where N,K → ∞ while
K
N
→ β, (C-14) can be rewritten as

SCS
0 opt

=
2β(1 + 2α2)2

[K + β] + 4 [1 + β]α2 + 2 [K + 1 + 2β]α4
. (C-15)
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Additional minor algebra is needed to express (C-15) as (8-21) and (8-22).

D Low-SNR Spectral Efficiency Slope - No Fading

The derivation in this appendix follows closely the argumentation and procedures employed

in App. C, while accounting for the absence of fading. Accordingly, the diagonal block B0

of the product matrix SCNF†
SCNF equals

B0 =
(

1 + 2α2
)

S†
mSm . (D-1)

Careful examination of the entries of the K ×K matrix B0 reveals that, as was the case

for the symbol-interleaved setup, in terms of power profile there are only two types of

entries: diagonal entries and non-diagonal entries. Starting with the K diagonal entries,

and focusing without loss of generality on (B0)1,1, it is verified that

(B0)1,1 =
(

1 + 2α2
)

N
∑

i=1

|(Sm)i,1|2 . (D-2)

With the assumption of binary random signatures, the second power moment of a diagonal

entry is given by

E[|(B0)1,1|2] = (1 + 2α2)2 . (D-3)

Turning to the set ofK2−K non-diagonal entries, and considering without loss of generality

(B0)1,2, it is easily verified that

(B0)1,2 =
(

1 + 2α2
)

N
∑

i=1

(Sm)
∗
i,1(Sm)i,2 , (D-4)

and the respective second power moment of a non-diagonal entry is given by

E[|(B0)1,2|2] =
(1 + 2α2)2

N
. (D-5)
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The off-diagonal block B1 is given by

B1 = αS†
mSm+1 . (D-6)

Examining the entries of B1 it is concluded that all K2 entries have the same power profile.

Hence, it is enough to consider (B1)1,1 which is given by

(B1)1,1 = 2α
N
∑

i=1

(Sm)
∗
i,1(Sm+1)i,1 , (D-7)

and its respective second power moment equals

E[|(B1)1,1|2] =
4α2

N
. (D-8)

The second off-diagonal block B2 is given by

B2 = α2S†
mSm+2 . (D-9)

Examining the entries of B2 it is concluded that all K2 entries have the same second power

moment. Hence, it is enough to inspect (B2)1,1 which is given by

(B2)1,1 = α2

N
∑

i=1

(Sm)
∗
i,1(Sm+2)i,1 , (D-10)

and its second power moment equals

E[|(B2)1,1|2] =
α4

N
. (D-11)
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Combining (D-3), (D-8) and (D-11), the denominator of (8-20) can be expressed as

E

[

trace

{

(

SCNF†
SCNF

)2
}]

=
MK
∑

i=1

MK
∑

j=1

E
[

|(SCNF†
SCNF)i,j|2

]

= M
(

KE[|(B0)1,1|2] + (K2 −K)E[|(B0)1,2|2] + 2K2E[|(B1)1,1|2] + 2K2E[|(B2)1,1|2]
)

= MK

([

1 +
K

N
− 1

N

]

+ 4

[

1 + 3
K

N
− 1

N

]

α2 + 2

[

2 + 3
K

N
− 2

N

]

α4

)

.

(D-12)

The nominator of (8-20) equals to

(

E
[

trace
{

SCNF†
SCNF

}])2

=

(

MN
∑

i=1

MK
∑

j=1

E
[

|(SCNF)i,j|2
]

)2

= M2K2(1 + 2α2)2 .

(D-13)

Using (D-13) and (D-12) the low-SNR spectral efficiency slope of the optimum receiver is

given by

SCNF
0 opt

=
2K
N
(1 + 2α2)2

[

1 + K
N
− 1

N

]

+ 4
[

1 + 3K
N
− 1

N

]

α2 + 2
[

2 + 3K
N
− 2

N

]

α4
. (D-14)

Finally, applying the asymptotic nature the system model in concern it follows that

SCNF
0 opt

=
2β(1 + 2α2)2

[1 + β] + 4 [1 + 3β]α2 + 2 [2 + 3β]α4
, (D-15)

and with some minor algebra (D-15) can be expressed as (8-24).
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