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Abstract

We consider the problem of multichannel estimation, in which we seek to estimate N multiple
input vectors that are observed through a set of linear transformations and corrupted by additive
noise. We discuss both the case where the linear transformations are fixed (certain) and the
case where they are only known to reside in some deterministic uncertainty set. The input
vectors xk are known to satisfy a weighted norm constraint. We seek the linear estimator
that minimizes the worst-case mean-squared error (MSE) across all possible values of xk. We
show that for an arbitrary choice of weighting, the optimal minimax MSE estimator can be
formulated as a solution to a semidefinite programming problem (SDP), which can be solved
efficiently. For an Euclidean norm bound on xk, we show that the SDP can be reduced to
a simple convex program with N + 1 variables, or just 3 variables, depending on the specific
structure of the underlying model matrix. Moreover, when the linear transformations are fixed,
the minimax MSE multichannel estimator reduces to the shrunken estimator of Mayer and
Willke, with a specific choice of shrinkage factor, that explicitly takes the prior information into
account. Finally, we demonstrate through examples, that the robust minimax MSE estimator
can significantly increase the performance over conventional methods e.g., least squares (LS),
regularized nonlinear LS and total LS.
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1 Introduction

Estimation of multiple signals from multiple outputs is an important problem that appears in a

variety of applications, such as multiuser communications and space-time coding with antenna

arrays, multichannel image restoration, and multiple speaker separation using multiple microphone

measurements.

In a multichannel estimation problem, we seek to estimate multiple input vectors {xk, 0 ≤ k ≤
N − 1}, that are observed through a set of linear transformations Hk,i and corrupted by additive

noise. Thus, the kth output vector yk is given by the superposition yk =
∑N−1

i=0 Hk,ixi, where Hk,i

is the transfer function from the ith input xi to the kth output yk.

There is a vast body of literature that treats the multichannel estimation problem, under the

assumption that the input vectors are random with known statistics. If the second order statistics

of the input vectors and the noise vectors are known, then we can design an estimator to minimize

the mean-squared error (MSE). The resulting estimator is the well-known Wiener estimator, or the

minimum MSE (MMSE) estimator. However, if the prior statics or the transfer matrices Hi,k are

unknown, then the Wiener estimator cannot be implemented.

The blind multichannel estimation problem, in which the transfer matrices are assumed to be

unknown, has also received much attention. To enable estimation in this case, it is typically assumed

that the input vectors are statistically independent. The simplest example of a blind multichannel

signal estimation problem is the scalar case in which each channel hk,i is a scalar, and the channel

inputs xk are independent, identically distributed (iid) random variables. This class of problems is

referred to as blind source separation, and has been studied extensively (see e.g., [1, 2, 3, 4]). Blind

source separation methods attempt to extract the signals from the observed mixtures by exploiting

the fact that the inputs are independent.

In the context of speech, multichannel estimation problems arise when more than one speaker

is present and there are several microphones, so that each microphone records the primary speaker

together with reflections from other speakers [5, 6, 7]. Traditional noise cancellation schemes

usually assume the availability of the interfering signal and ignore the cross-signal interaction [8].

Here again, to deal with multichannel signals, it is typically assumed that the input signals are

independent random signals.

Another context in which multichannel estimation plays an important role is in the context of

image restoration. Multichannel images arise from measuring a scene using more than one type of
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sensor. In most applications, the multichannel images are distorted due to motion, out of focus

blur, channel cross talk, quantization error and devise noise. Although there is a large amount

of work in the literature on restoration of single channel images [9], there has been less work on

multichannel restoration. One approach to multichannel image restoration is to assume that the

input images are random with known statistics, and then apply an MMSE Wiener estimator to

estimate the inputs [10, 11, 12].

A significant amount of prior knowledge is required for MMSE multichannel estimation. Specif-

ically, the statistics of all the inputs and noise vectors must be known. In many practical scenarios,

this information may not be available. Although the MMSE estimator minimizes the MSE, its suc-

cess depends on accurate statistical knowledge of the inputs and noise characteristics. Therefore,

in many cases it is more reasonable to assume that the inputs are deterministic but unknown.

A straightforward approach to deterministic multichannel estimation is the least-squares (LS)

approach, in which the estimator is designed to minimize the norm of the data error, which is the

sum of the norms of the differences between each of the observation vectors yk and the correspond-

ing estimated observation vector ŷk. This approach has been used e.g., in the context of image

restoration [13, 14]. However, in an estimation context, the objective typically is to minimize the

size of the norms of the estimation errors x̂k−xk, rather than that of the data error. To develop an

estimation method that is based directly on the estimation error, we may seek the estimator that

minimizes the MSE, which is equal to the sum of the variance and the squared norm of the bias.

Since the bias generally depends on the unknown parameters xk, we cannot choose an estimator to

directly minimize the MSE.

In this paper we consider the case in which the (possibly weighted) norm of the unknown

vectors xk is bounded, and develop robust estimators x̂k of xk whose performance is reasonably

good across all possible values of xk in the region of uncertainty. Specifically, we develop a minimax

MSE estimator that minimizes the worst-case MSE across all possible bounded values of xk, i.e.,

over all values of xk such that ‖xk‖T = x∗
kTxk ≤ L2 for some constant L and weighting matrix

T. We then develop minimax MSE estimators which are robust with respect to uncertainty in

the model matrices Hi,k. To be more specific, we assume that Hi,k are not known exactly but

rather given by Hi,k + ∆i,k where Hi,k is known and ∆i,k is an unknown perturbation matrix. The

multichannel minimax MSE estimator is an extension of the recently proposed linear minimax MSE

estimator for the single channel case [15].

Given a norm constraint on the vectors xk, one approach to incorporate the norm constraints in
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the estimation is to use a nonlinear regularized estimator, which is the solution to the optimization

problem of minimizing the data error subject to the norm constraints. This regularized nonlinear

estimator does not have an explicit expression and finding it involves the usage of an iterative

optimization method [16, 17]. This is in contrast to the minimax MSE estimator, which is linear,

and in many practical cases has an explicit and simple expression.

In our development, we assume that the norm bound L is known. However, our algorithms

can also be implemented when L is not known, by first estimating it from the data. Thus, in

practice, no prior information is needed for implementing our proposed estimators. Specifically, in

our simulations in Section 6 we estimate L as the norm of the LS estimator. Our experimental

results suggests that with this estimated L, the minimax MSE estimator outperforms not only the

linear LS estimator but also the nonlinear regularized estimator. Notice that the minimax MSE

estimator is linear only if L is known. In the case where L is not known the minimax MSE estimator

is not linear but still has an explicit and simple expression.

The mathematical analysis in this paper covers several possible models. The first case is the

direct model in which we wish to estimate N unknown deterministic parameter vectors xk ∈ C
m, 0 ≤

k ≤ N −1 from N vector observations yk ∈ C
n, 0 ≤ k ≤ N −1, where each observation vector yk is

related to the corresponding parameter vector xk through the linear model yk = H0xk + wk, 0 ≤
k ≤ N − 1, where H0 is an n×m matrix assumed to have full rank m, and wk, 0 ≤ k ≤ N − 1 are

zero-mean random vectors.

If the noise vectors wk are uncorrelated, then we may treat this estimation problem as N

independent problems, where each problem reduces to the problem considered e.g., in [18, 15], of

estimating an unknown vector x̃ from observations ỹ = H̃x̃ + w̃ subject to the constraint that

‖x̃‖T ≤ L, where w̃ is a zero-mean noise vector. If, on the other hand, the noise vectors wk are

correlated, then we may be able to improve the estimation performance by treating the vectors to

be estimated jointly, so that the estimate x̂k of xk depends on all the observations yl, 0 ≤ l ≤ N−1,

and not only on yk. Therefore, in the direct model, we always assume that the noise vectors are

correlated.

The second model that our analysis covers is the symmetric model. Here, we consider the

multichannel problem with Hi,i = H0 for every i and Hi,k = H1 for every i 6= k. For N = 2 (the

two channel case), this implies that the within channel transfer function, i.e., the transfer function

between each input vector and the corresponding output vector, is identical (H0,0 = H1,1), and the

cross channels are also equal (H0,1 = H1,0). The symmetric model is a natural generalization of
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the symmetric two channel case.

The direct model and the symmetric model are both special cases of the general model, in which

we assume that the multichannel transfer matrix H with block matrices Hi,k is a block circulant

matrix, so that Hi,k = H(k−i)modN where N is the number of channels. The block circulant model

has also been used in the context of image restoration [19], and in the context of cyclic convolution

filter banks [20]. Moreover, in many practical scenarios it is reasonable to assume that H is a

block Toeplitz matrix so that Hi,k = Hi−k. Using the well know convergence properties of Toeplitz

matrices [21, 22], we can approximate the block-Toeplitz matrix H by a block circulant matrix.

Besides including several cases of practical interest, one of the attributes of the block circulant

structure is its analytical tractability. As we show, this structure will allow us to develop the

minimax MSE estimator by exploiting properties of block circulant matrices. In particular, the

matrix discrete Fourier transform (DFT), i.e., a DFT defined on matrices, will play an important

role in our derivations. Therefore, in Section 3, we discuss some properties of circulant matrices

and the matrix DFT. As we show, the eigenvalues of a block circulant matrix are exactly the

eigenvalues of its discrete Fourier components, and its eigenvectors have a special structure which

will be exploited in our analysis.

In Section 4 we first show that if the multichannel transfer matrix H and the covariance ma-

trix of the concatenated noise vectors C are block circulant, then with x̂ = Gy, where x̂ is the

concatenation of the estimated inputs x̂k, G must also be a block circulant matrix. This allows

us to formulate the minimax MSE estimator as a solution to a semidefinite programming problem

(SDP) [23, 24, 25], which is a tractable convex optimization problem that can be solved efficiently,

e.g., using interior point methods [25, 26]. We then develop, in Section 5, a closed form solution

to the minimax MSE estimation problem, for the case in which the weighting matrix T is equal to

I. We first show that when H is certain the optimal estimator is a shrunken estimator proposed

by Mayer and Willke [27], with a specific choice of shrinkage factor, that explicitly takes the prior

information into account. We then show that, when H is uncertain, the task of finding the optimal

G reduces to a simple convex optimization problem in N + 1 unknowns in the general model or 3

unknowns in the symmetric model. Finally, we demonstrate through examples, in Section 6, that

in the case of certain H, the minimax MSE estimator can significantly increase the performance

over the conventional multichannel LS approach and over the nonlinear regularized LS approach,

and in the case of uncertain H the minimax MSE estimator can significantly outperform the total

LS estimator.
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2 Problem Formulation

We denote vectors by boldface lowercase letters and matrices by boldface uppercase letters. The

identity matrix of appropriate dimension is denoted by I, (·)∗ and (·)T denote the Hermitian

conjugate and the transpose of the corresponding matrices respectively, and (̂·) denotes an estimated

vector. For two Hermitian matrices A,B the notation A º B means that A − B is a positive

semidefinite matrix. For an Hermitian matrix A, λmax(A) denotes the largest eigenvalue of A.

We denote by ‖v‖ the Euclidean norm of the vector v and by ‖A‖ =
√

Tr(ATA) the Frobenius

norm of the matrix A.

Consider the problem of estimating N unknown deterministic parameter vectors xk ∈ C
m, 0 ≤

k ≤ N − 1 from N vector observations yk ∈ C
n, 0 ≤ k ≤ N − 1, where each observation vector yk

is related to all of the parameter vectors x0,x1, . . . ,xN−1 through the linear model

yk =
N−1∑

i=0

(Hk,i + ∆k,i)xi + wk, 0 ≤ k ≤ N − 1. (1)

Here Hk,i is the n × m nominal transfer matrix from the ith input vector xi to the kth output

vector yk, ∆k,i is an n × m unknown perturbation matrix, and wk is the kth noise vector. We

assume that E(wk) = 0 and that

E(wiw
∗
j ) = Ci,j . (2)

The matrices Hi,i and Hi,k, i 6= k, represent the within channel and cross channel nominal transfer

matrices, respectively. We assume that the perturbation matrices satisfy a norm constraint ‖∆i,k‖ ≤
ρi,k and that each vector xk is known to satisfy the weighted norm constraint ‖xk‖T ≤ L for some

positive definite matrix T and scalar L > 0, where ‖z‖2
T = z∗Tz. It is interesting to note that

L and ρi,k does not have to be given in advance and can be estimated from the LS or total LS

estimators (see Section 6 for further details). Thus, practically, our estimator do not require the

knowledge of parameters, which are sometimes not known. The input-output relation of (1) is

illustrated schematically in Fig. 1 for the special case in which N = 2 and H is exactly known

(ρ0,0 = ρ0,1 = ρ1,0 = ρ1,1 = 0).
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x0

x1

w0

H0,0

H0,1

H1,0

H1,1

w1

y0

y1

Figure 1: Two channel model.

Using the notation

H =




H0,0 H0,1 · · · H0,N−1

H1,0 H1,1 · · · H1,N−1

...
...

...

HN−1,0 HN−1,1 · · · HN−1,N−1




, C =




C0,0 C0,1 · · · C0,N−1

C1,0 C1,1 · · · C1,N−1

...
...

...

CN−1,0 CN−1,1 · · · CN−1,N−1




, (3)

and

∆ =




∆0,0 ∆0,1 · · · ∆0,N−1

∆1,0 ∆1,1 · · · ∆1,N−1

...
...

...

∆N−1,0 ∆N−1,1 · · · ∆N−1,N−1




, (4)

where Hi,k and ∆i,j are defined by (1) and Ci,j are defined by (2), we can rewrite (1) as

y = (H + ∆)x + w, (5)

where H is a known nN × mN matrix, ∆ is an unknown nN × mN perturbation matrix, x =

7



(xT
0 ,xT

1 , . . . ,xT
N−1)

T , y = (yT
0 ,yT

1 , . . . ,yT
N−1)

T and w = (wT
0 ,wT

1 , . . . ,wT
N−1)

T is a zero-mean

random vector with covariance given by C. Throughout the paper, we assume that H has full rank

mN .

The most complex model that we consider in our development of the minimax MSE estimator is

the general model, in which we assume that H,C and ∆ are block circulant matrices. Specifically,

H, C and ∆ are assumed to have the form

H =




H0 H1 · · · HN−1

HN−1 H0 · · · HN−2

...
...

H1 H2 · · · H0




, C =




C0 C1 · · · CN−1

CN−1 C0 · · · CN−2

...
...

C1 C2 · · · C0,




∆ =




∆0 ∆1 · · · ∆N−1

∆N−1 ∆0 · · · ∆N−2

...
...

∆1 ∆2 · · · ∆0




,

(6)

where H0, . . . ,HN−1 ∈ C
n×m and C0, . . . ,CN−1 ∈ C

n×n. For brevity, throughout the paper we

use the notation C = C(C0,C1, . . . ,CN−1) to denote the block circulant matrix with first row

of matrices (C0,C1, . . . ,CN−1) (see Section 3 for further details). Using this notation, we can

write H of (6) as H = C(H0,H1, . . . ,HN−1) and ∆ of (6) as ∆ = C(∆0,∆1, . . . ,∆N−1), where

‖∆0‖ ≤ ρ0, ‖∆1‖ ≤ ρ1, . . . , ‖∆N−1‖ ≤ ρN−1. We use the following notation for the set of possible

values of ∆ in the general model

UG
△
={∆ = C(∆0, ∆1, . . . ,∆N−1) : ‖∆0‖ ≤ ρ0, . . . , ‖∆N−1‖ ≤ ρN−1}. (7)

The linear model (5) with block circulant matrices H, ∆ and C will be called the general model.

We note that in many practical scenarios it is reasonable to assume that H is a block Toeplitz

matrix so that Hik = Hi−k. Using the well know convergence properties of Toeplitz matrices

[21, 22], we can approximate the block-Toeplitz matrix H by a block circulant matrix of the form

(6). Similar ideas have been used to justify the use of the block circulant model in the context of

multichannel image restoration [19].

The second model that we consider is the model in which

yk = (H0 + ∆0)xk +
∑

i 6=k

(H1 + ∆1)xi + wk, 0 ≤ k ≤ N − 1, (8)

so that the affect of all of the interfering vectors xi, i 6= k on the kth output yk is the same (i.e.,
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independent of k). To model the correlation between the noise vectors in this case, we note that in

many useful applications the order of the observations yk is immaterial, so that the statistics of yk

and the joint statistics of yi and yj do not depend on i and j. Equivalently, the statistics of the

noise vectors wi and the joint statistics of wi and wj do not depend on i and j. In this case,

E(wiw
∗
i ) = C0, 0 ≤ i ≤ N − 1, (9)

for some covariance matrix C0 º 0, and

E(wiw
∗
j ) = C1, 0 ≤ i 6= j ≤ N − 1, (10)

for some matrix C1. Since from (10) we have that E(wiw
∗
j ) = E(wjw

∗
i ), and it is always true that

E(wiw
∗
j ) = E∗(wjw

∗
i ), we conclude that under the assumption (10), E(wiw

∗
j ) = E∗(wiw

∗
j ), or,

C1 = C∗
1. Therefore, if the order of the observations is immaterial, as is often the case in practice,

then the second order statistics of the noise vectors wi, 0 ≤ i ≤ N − 1 are given by (9) and (10),

where C1 is an Hermitian matrix. Thus, in this case we have that

H =




H0 H1 · · · H1

H1 H0 · · · H1

...
...

H1 H1 · · · H0




, C =




C0 C1 · · · C1

C1 C0 · · · C1

...
...

C1 C1 · · · C0




, ∆ =




∆0 ∆1 · · · ∆1

∆1 ∆0 · · · ∆1

...
...

∆1 ∆1 · · · ∆0




.

(11)

Throughout the paper we use the notation H = M(H0,H1), C = M(C0,C1) and ∆ = M(∆0, ∆1),

where ‖∆0‖ ≤ ρ0 and ‖∆1‖ ≤ ρ1. In this case, model (5) will be called the symmetric model. We

use the following notation for the set of possible values of ∆ in the symmetric model:

US
△
={M(∆0, ∆1) : ‖∆0‖ ≤ ρ0, ‖∆1‖ ≤ ρ1}. (12)

It is interesting to note that the symmetric model is, in general, not a special case of the

general model since the symmetric case requires not only that H1 = H2 = . . . = HN−1 but also an

additional constraint ∆1 = ∆2 = . . . = ∆N−1, which implies a different structure of the uncertainty

set. However, in the case where H is known (ρ0 = . . . = ρN−1 = 0) the symmetric model is indeed

a special case of the general model (H1 = H2 = . . . = HN−1).
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The third model that we consider is the direct model in which

H =




H0 0 · · · 0

0 H0 · · · 0
...

...

0 0 · · · H0




, C =




C0 C1 · · · C1

C1 C0 · · · C1

...
...

C1 C1 · · · C0,




, ∆ =




∆0 0 · · · 0

0 ∆0 · · · 0
...

...

0 0 · · · ∆0




,

(13)

i.e., H = M(H0,0), ∆ = M(∆0,0) and C = M(C0,C1). In this model,

yk = (H0 + ∆0)xk + wk, k = 0, 1, . . . , N − 1, (14)

so that the kth observation is effected only by the kth input vector, as illustrated in Fig. 2. It is

w1

H0 y1x1

yN−1H0

wN−1

xN−1

H0 y0

w0

x0

...

Figure 2: Direct model.

important to note that the direct model is indeed a special case of the symmetric model (ρ1 = 0

and H1 = 0). The results in the paper are stated only for the general and symmetric models. The

results for the direct model can be easily obtained by substituting H1 = 0 and ρ1 = 0 in the results

for the symmetric model. If the noise vectors wk are uncorrelated, then under the direct model

(14) with known H we may treat our estimation problem as N independent problems, where each

problem reduces to the problem considered e.g., in [18, 15], of estimating an unknown vector x̃
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from an observation ỹ = (H0 + ∆)x̃ + w̃ subject to the constraint that ‖x̃‖T ≤ L, where w̃ is a

zero-mean noise vector. If, on the other hand, the noise vectors wi are correlated, then we may be

able to improve the estimation performance by treating the vectors to be estimated jointly, so that

the estimate x̂j of xj depends on all the observations yk, 0 ≤ k ≤ N − 1, and not only on yj .

Now, consider the general model. We estimate x using a linear estimator so that x̂ = Gy for

some mN × nN matrix G. The MSE of the estimator x̂ = Gy is given by

E(‖x̂ − x‖2) = Tr(GCG∗) + x∗(I − G(H + ∆))∗(I − G(H + ∆))x. (15)

Since the MSE depends on the unknown perturbation matrix ∆ and on the unknown parameters

x, in general we cannot construct an estimator to directly minimize the MSE. Instead, we seek

the linear estimator that minimizes the worst-case MSE across all possible values of xk satisfying

‖xk‖T ≤ L and ∆ ∈ UG, where UG is defined by (7). Thus, we consider the problem

min
x̂=Gy

max
‖x0‖T≤L,...,‖xN−1‖T≤L,∆∈UG

E(‖x̂ − x‖2) = (16)

min
G

max
‖x0‖T≤L,...,‖xN−1‖T≤L,∆∈UG

{x∗(I − G(H + ∆))∗(I − G(H + ∆))x + Tr(GCG∗)} .

Problem (16) is reminiscent of the estimation problem considered in [15]. However, whereas in

the problem considered in [15] the entire vector x was norm constrained, in (16) the norm constraint

is on sub-vectors of x, which, as we will show, complicates the problem considerably. Furthermore,

while in [15] the entire perturbation matrix ∆ was norm constrained, in (16) we assume that ∆ has

a particular structure given by (6), and each of the individual blocks is norm constrained.

The mathematical tools needed to analyze the multichannel model, mainly properties of blocks

circulant matrices, are given in Section 3. In Section 4.1, we show that under the assumptions

of the general model, G can be chosen as a block circulant matrix. This enables us, in Section

4.2, to formulate the minimax estimation problem (16) as an SDP problem. From the derived

formulation we deduce that in the symmetric model (i.e., H = M(H0,H1), ∆ = M(∆0, ∆1) and

C = M(C0,C1)), the optimal G can be chosen as G = M(G0,G1). We then find, in Section 5,

explicit expressions for the minimax MSE estimator in the case where T = I. We show that the

multichannel minimax MSE estimator with known H is a shrunken estimator proposed by Mayer

and Willke [27], with a specific choice of shrinkage factor. If H is unknown we show that the

computation of the minimax MSE estimator involves the solution of a simple convex optimization
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problem with N + 1 unknowns in the general model and with only 3 unknowns in the symmetric

model.

The next section contains results on block circulant matrices, which are essential for the analysis

of the problem (16) in the rest of the paper.

3 Block Circulant Matrices and the Discrete Fourier Transform

The aim of this section is to give a short summary of results on block circulant matrices and the

DFT defined on them that will be used later in the paper. Since results on this subject are scat-

tered throughout the literature (e.g. [28, 29, 30, 31]) we find it practical to gather all the important

results in this section.

A block circulant matrix is a matrix of the form

C(A0,A1, . . . ,AN−1)
△
=




A0 A1 · · · AN−1

AN−1 A0 · · · AN−2

...
...

...

A1 A2 · · · A0




, (17)

where each submatrix Aj is a k × l matrix. The dimensions k and l are always clear from the

context.

3.1 General Properties

From the definition of block circulant matrices we have the following lemma:

Lemma 3.1 Let A0,A1, . . . ,AN−1 ∈ C
k,l and B0,B1, . . . ,BN−1 ∈ C

l,m. Then,

1. C∗(A0,A1, . . . ,AN−1) is also a block circulant matrix and

C∗(A0,A1, . . . ,AN−1) = C(A∗
0,A

∗
N−1, . . . ,A

∗
1). (18)

2. The product C(A0, . . . ,AN−1)C(B0, . . . ,BN−1) is a block circulant matrix C(C0, . . . ,CN−1)

where

Cj =
N−1∑

i=0

AjBj−i, 0 ≤ j ≤ N − 1. (19)
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Note, that in Lemma 3.1, as well as in the rest of the paper, the indexes are computed modulo

N . Thus, for example BN = B0 and B−1 = BN−1.

Remark 1: From equation (18) it follows that a block circulant matrix C(A0,A1, . . . ,AN−1) where

A0, . . . ,AN−1 ∈ C
m×m is Hermitian if and only if

A∗
i = AN−i, 0 ≤ i ≤ N − 1. (20)

Remark 2: Equation (19) is the definition of the discrete convolution of (A0,A1, . . . ,AN−1) and

(B0,B1, . . . ,BN−1) also denoted by:

(C0,C1, . . . ,CN−1) = (A0,A1, . . . ,AN−1) ∗ (B0,B1, . . . ,BN−1). (21)

Let A = C(A0,A1, . . . ,AN−1). Then the discrete Fourier transform (DFT) of A is also a block

circulant matrix of the same dimensions given by

F(A) = C(Â0, Â1, . . . , ÂN−1), (22)

where Âj , 0 ≤ j ≤ N − 1 is defined as:

Âj
△
=

N−1∑

i=0

ωijAi, 0 ≤ j ≤ N − 1, (23)

and ω = e−
2πi
N (here i =

√
−1). In the sequel, we will also use the notation1

F j(A)
△
=Âj =

N−1∑

i=0

ωijAi, 0 ≤ j ≤ N − 1. (24)

The matrices F j(A) are called the discrete Fourier components. The inverse DFT (IDFT), denoted

by F−1, is defined by F−1(A) = (Ã0, Ã1, . . . , ÃN−1), where

Ãj =
1

N

N−1∑

i=0

ω−ijAi, 0 ≤ j ≤ N − 1. (25)

We also use the notation F−1
j (A)

△
=Ãj . It is not difficult to see that for every A = C(A0, . . . ,AN−1)

we have:

1We use two notations for the DFT components; depending on the context one notation is better suited than the

other.
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F−1(F(A)) = A, F(F−1(A)) = A. (26)

The following properties of F j are generalizations of well known properties of the DFT:

Lemma 3.2 Suppose that A = C(A0,A1, . . . ,AN−1) , B = C(B0,B1, . . . ,BN−1) and C =

C(C0,C1, . . . ,CN−1), where Aj ,Cj ∈ C
k×l and Bj ∈ C

l×m, 0 ≤ j ≤ N − 1. Then for every

0 ≤ j ≤ N − 1 the following holds:

1. (F j(A))∗ = F j(A
∗).

2. F j(ImN ) = Im.

3. F j(A + C) = F j(A) + F j(C).

4. F j(AB) = F j(A)F j(B).

5. If k = l and A is invertible then F j(A
−1) = (F j(A))−1.

Indeed, given a length-M sequence x[n] with DFT X[k], property 1 in Lemma 3.2 is analogous to

the scalar DFT property X∗[k] = F (x∗[−n mod M ]). Property 5 is analogous to the convolution

property (taking into account that matrix multiplication represents convolution).

An important special case of block circulant matrices are matrices of the form:

M(A0,A1)
△
=C(A0,A1, . . . ,A1) =




A0 A1 · · · A1

A1 A0 · · · A1

...
...

...

A1 A1 · · · A0




. (27)

In this case there are only two different DFT components:

F0(M(A0,A1)) = A0 + (N − 1)A1, (28)

F j(M(A0,A1)) = A0 − A1, 1 ≤ j ≤ N − 1. (29)

It is also easy to see that there are only two different inverse DFT components:

F−1
0 (M(A0,A1)) =

1

N
(A0 + (N − 1)A1), (30)

F−1
j (M(A0,A1)) =

1

N
(A0 − A1), 1 ≤ j ≤ N − 1. (31)
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3.2 Eigenvalues of Hermitian Block Circulant Matrices

In this section, we consider the eigenvalues and eigenvectors of an Hermitian block circulant matrix.

We use the following notation: Let A ∈ C
k×k be an Hermitian matrix. Then a matrix U ∈ C

k×k

is called an eigenvector matrix of A if its columns are independent eigenvectors of A. Theorem

3.1 below shows that the eigenvalues of a block circulant matrix are exactly the eigenvalues of its

discrete Fourier components. This theorem will be important in the analysis later in the paper.

Theorem 3.1 Let A0,A1, . . . ,AN−1 ∈ C
k×k be matrices such that A = C(A0,A1, . . . ,AN−1) is

an Hermitian matrix. For each 0 ≤ j ≤ N − 1 let Uj be an eigenvector matrix of F j(A) =
∑N−1

i=0 ωijAi, where ω = e−
2πi
N , and let λj,0, λj,1, . . . , λj,k−1 be the eigenvalues of F j(A). Then:

1. An eigenvector matrix of C(A0,A1, . . . ,AN−1) is the matrix

U =




U0 U1 U2 · · · UN−1

U0 ωU1 ω2U2 · · · ωN−1UN−1

...
...

...
...

U0 ωN−1U1 ω2(N−1)U2 · · · ω(N−1)(N−1)UN−1




. (32)

2. The eigenvalues of A are the N · k eigenvalues λj,i , 0 ≤ i ≤ k − 1, 0 ≤ j ≤ N − 1.

Proof: see Appendix A. ✷

4 Minimax MSE Multichannel Estimator

We now use the properties of block circulant matrices and the DFT discussed in the previous section

in order to find the G which is the optimal solution to (16). Section 4.1 establishes the fact that G

can always be chosen as a block circulant matrix. In Section 4.2 we use this structure of G to find

an SDP formulation of the estimation problem (16), where an SDP is the problem of minimizing a

linear objective subject to linear matrix inequality (LMI) constraints, which are matrix constraints

of the form A(x) º 0, where the matrix A depends linearly on x [23, 24, 25]. The advantage in this

formulation is that it readily lends itself to efficient computational methods. Indeed, by exploiting

the many well known algorithms for solving SDPs [24, 23], e.g., interior point methods2 [25, 26],

2Interior point methods are iterative algorithms that terminate once a pre-specified accuracy has been reached.

A worst case analysis of interior point methods shows that the effort required to solve an SDP to a given accuracy

grows no faster than a polynomial of the problem size. In practice, the algorithms behave much better than predicted

by the worst case analysis, and in fact in many cases the number of iterations is almost constant in the size of the

problem.
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the optimal estimator can be computed efficiently in polynomial time. Furthermore, SDP-based

algorithms are guaranteed to converge to the global optimum.

4.1 The Structure of G

In Theorem 4.1 below, we show that in the general model (5) and (6) the minimax MSE mul-

tichannel matrix G that is the solution to (16) can be chosen as C(G0,G1, . . . ,GN−1) for some

G0, . . . ,GN−1 ∈ C
m×n. In this case x̂ = Gy = C(G0,G1, . . . ,GN−1)y, so that

x̂k =
N−1∑

i=0

Gi+kyi, 0 ≤ k ≤ N − 1. (33)

Note, that (33) implies the intuitive result that the vector yl has the same effect on the estimator

of xl+j as yk on the estimator of xk+j , for every l, k, j.

Theorem 4.1 Let x =
(
xT

0 ,xT
1 , . . . ,xT

N−1

)T
denote the unknown deterministic parameters in the

model y = (H + ∆)x + w, where H = C(H0,H1, . . . ,HN−1) and H0,H1, . . . ,HN−1 are known

n × m matrices, ∆ ∈ UG = {∆ = C(∆0, . . . ,∆N−1) : ‖∆0‖ ≤ ρ0, . . . , ‖∆N−1‖ ≤ ρN−1} and w

is nonzero-mean random vector with covariance C = C(C0,C1, . . . ,CN−1). Then there exists an

optimal solution G to

min
x̂=Gy

max
‖x0‖T≤L,...,‖xN−1‖T≤L,∆∈UG

E(‖x̂ − x‖2) =

min
G

max
‖x0‖T≤L,...,‖xN−1‖T≤L,∆∈UG

{x∗(I − G(H + ∆))∗(I − G(H + ∆))x + Tr(GCG∗)} ,

which is equal to C(G0,G1, . . . ,GN−1) for some G0,G1, . . . ,GN−1 ∈ C
m×n.

Proof: Before we begin the proof, we introduce some notation. The set of all permutations of

{0, 1, . . . , N − 1} is denoted by SN . For every permutation σ ∈ SN and a positive integer l, we

associate an lN × lN matrix Pσ,l comprised of N × N blocks of size l × l. The (i, j) block of Pσ,l

is defined as:

(Pσ,l)i,j = δj,σ(i)Il, (34)

where

δi,j =





0, i 6= j,

1, i = j
(35)
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is the kronecker delta. For example, if N = 4 and σ(0) = 1, σ(1) = 0, σ(2) = 2 and σ(3) = 3, then,

Pσ,4 =




0 I4 0 0

I4 0 0 0

0 0 I4 0

0 0 0 I4




, (36)

where I4 is the identity matrix of size 4× 4. We will be interested particularly in a special class of

permutations:

A = {σ0, σ1, . . . , σN−1} , (37)

where σk(i) = (i + k) modN . For example, if N=4, then

Pσ0,4 =




I4 0 0 0

0 I4 0 0

0 0 I4 0

0 0 0 I4




, Pσ2,4 =




0 0 I4 0

0 0 0 I4

I4 0 0 0

0 I4 0 0




. (38)

Permutation matrices Pσ,l satisfy some interesting properties that will be useful later on in the

proof:

1. For every σ ∈ SN and positive integer l, Pσ,lP
∗
σ,l = P∗

σ,lPσ,l = I.

2. For every σ ∈ SN and for every block vector x = (xT
0 , . . . ,xT

N−1)
T , Px = y where

yk = xσ(k), 0 ≤ k ≤ N − 1. (39)

3. For every block circulant matrix A = C(A0,A1, . . .AN−1), where Ak ∈ C
m,n and every

permutation σ in the class A, we have that Pσ,mAP∗
σ,n = A, or equivalently, Pσ,mA = APσ,n.

We are now ready to prove that there is an optimal G which is block circulant. First, we show that

if G is an optimal solution to (16) then so is Pσ,mGP∗
σ,n for every permutation σ ∈ A. To this end

we prove that Γ(G) = Γ(Pσ,mGP∗
σ,n) where

Γ(G) = max
‖x0‖T≤L,...,‖xN−1‖T≤L,∆∈UG

{x∗(I − G(H + ∆))∗(I − G(H + ∆))x + Tr(GCG∗)} (40)
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is the objective function in the minimization problem (16). Indeed, (the number of the property

used is indicated):

Tr(GCG∗)
1
= Tr(P∗

σ,mPσ,mGCG∗) = Tr(Pσ,mGCG∗P∗
σ,m)

3
= Tr(Pσ,mGP∗

σ,nCPσ,nG
∗P∗

σ,m) = Tr((Pσ,mGP∗
σ,n)C(Pσ,mGP∗

σ,n)∗),

and,

max
‖x0‖T≤L,...,‖xN−1‖T≤L,∆∈UG

{x∗(I − G(H + ∆))∗(I − G(H + ∆))x} 2
=

max
‖x0‖T≤L,...,‖xN−1‖T≤L,∆∈UG

{x∗P∗
σ,m(I − G(H + ∆))∗(I − G(H + ∆))Pσ,mx} 1

=

max
‖x0‖T≤L,...,‖xN−1‖T≤L,∆∈UG

{x∗P∗
σ,m(I − G(H + ∆))∗P∗

σ,mPσ,m(I − G(H + ∆))Pσ,mx} 1
=

max
‖x0‖T≤L,...,‖xN−1‖T≤L,∆∈UG

{x∗(I − Pσ,mG(H + ∆)P∗
σ,m)∗(I − Pσ,mG(H + ∆)P∗

σ,m)x} 3
=

max
‖x0‖T≤L,...,‖xN−1‖T≤L,∆∈UG

{x∗(I − (Pσ,mGP∗
σ,n)(H + ∆))∗(I − (Pσ,mGP∗

σ,n)(H + ∆))x},

where in the last equality we used the fact that H + ∆ is a block circulant matrix. Since

(16) is a convex optimization problem, if Pσ,mGP∗
σ,n is an optimal solution to (16) for all

σ ∈ A, then so is the convex combination 1
N

∑
σ∈APσ,mGP∗

σ,n. We can immediately show

that 1
N

∑
σ∈APσ,mGP∗

σ,n = C(G0,G1, . . . ,GN−1) for some matrices G0,G1, . . . ,GN−1 ∈ C
m×n.

Specifically, if

G =




G00 G01 · · · G0,N−1

G10 G11 · · · G1,N−1

...
...

...

GN−1,0 GN−1,1 · · · GN−1,N−1




, (41)

then Gk = 1
N

∑N−1
i=0 Gi,i+k, 0 ≤ k ≤ N − 1 completing the proof of the theorem. ✷
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4.2 SDP Formulation of the Estimation Problem

We now use Theorem 4.1 to develop an SDP formulation of (16). We first consider the inner

maximization problem

max
‖x0‖T≤L,...,‖xN−1‖T≤L

x∗(I − G(H + ∆))∗(I − G(H + ∆))x. (42)

As a result of Theorem 4.1 we have that G = C(G0,G1, . . . ,GN−1). Since I and H + ∆ are also

block circulant matrices, Lemma 3.1 implies that (I−G(H+∆))∗(I−G(H+∆)) is a block circulant

matrix. Therefore, there exists A0,A1, . . . ,AN−1 ∈ C
m×m such that

(I − G(H + ∆))∗(I − G(H + ∆)) = C(A0,A1, . . . ,AN−1), (43)

and C(A0,A1, . . . ,AN−1) is an Hermitian matrix. Using (43), (42) can be expressed as:

max
‖x0‖T≤L,...,‖xN−1‖T≤L

x∗C(A0,A1, . . . ,AN−1)x. (44)

The following lemma is the key result which enables us to solve (44).

Lemma 4.1 Let A0,A1, . . . ,AN−1 ∈ C
m×m be matrices such that C(A0,A1, . . . ,AN−1) is an

Hermitian matrix. Let T be a positive definite matrix and let L > 0 be a constant. Then,

max
‖x0‖T≤L,...,‖xN−1‖T≤L

x∗C(A0, . . . ,AN−1)x =

NL2 max
0≤j≤N−1

{
λmax

(
T−1/2

(
N−1∑

i=0

ωijAi

)
T−1/2

)}
, (45)

where w = e−
2πi
N . Furthermore,

max
‖x0‖T≤L,...,‖xN−1‖T≤L

x∗C(A0, . . . ,AN−1)x = max
‖x‖2

T
≤NL2

x∗C(A0, . . . ,AN−1)x.

Proof: See Appendix B. ✷

The expression
∑N−1

i=0 ωijAi which appears in (45) is exactly F j((I−G(H+∆))∗(I−G(H+∆)).

By the properties listed in Lemma 3.2 we can deduce that for every 0 ≤ j ≤ N − 1,
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N−1∑

i=0

ωijAi = F j((I − G(H + ∆))∗(I − G(H + ∆)))

= F j ((I − G(H + ∆))∗)F j (I − G(H + ∆))

= (F j(I) −F j(G)F j(H + ∆))∗ (F j(I) −F j(G)F j(H + ∆))

= (I −F j(G)F j(H + ∆))∗ (I −F j(G)F j(H + ∆))

= (I −F j(G)(F j(H) + F j(∆)))∗ (I −F j(G)(F j(H) + F j(∆))) . (46)

Substituting (46) into (45) we conclude that

max
‖x0‖T≤L,...,‖xN−1‖T≤L,∆∈UG

x∗(I−G(H+ ∆))∗(I−G(H+ ∆))x = NL2 max
∆∈UG

max
0≤j≤N−1

αj(∆) (47)

where

αj(∆) = λmax

(
T−1/2(I − Ĝj(Ĥj + ∆̂j))

∗(I − Ĝj(Ĥj + ∆̂j)T
−1/2

)
, 0 ≤ j ≤ N − 1, (48)

and Ĝj , Ĥj and ∆̂j are defined by

Ĝj = F j(C(G0,G1, . . . ,GN−1)) =
N−1∑

i=0

ωijGi, 0 ≤ j ≤ N − 1,

Ĥj = F j(C(H0,H1, . . . ,HN−1)) =

N−1∑

i=0

ωijHi, 0 ≤ j ≤ N − 1,

∆̂j = F j(C(∆0,∆1, . . . ,∆N−1)) =
N−1∑

i=0

ωij∆i, 0 ≤ j ≤ N − 1. (49)

We can express (47) as the solution to the problem

min
τ

NL2τ (50)
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subject to

T−1/2(I − Ĝj(Ĥj + ∆̂j))
∗(I − Ĝj(Ĥj + ∆̂j))T

−1/2 ¹ τI, ∀∆ ∈ UG, 0 ≤ j ≤ N − 1. (51)

We now rely on the following important result:

Lemma 4.2 (Schur’s complement [23]) Let

M =


 A B∗

B C




be a Hermitian matrix with C ≻ 0. Then M º 0 if and only if ∆C º 0, where ∆C is the Schur

complement of C in M and is given by

∆C = A − B∗C−1B.

✷

Using Lemma 4.2 we can rewrite the constraint (51) as


 τI T−1/2(I − Ĝj(Ĥj + ∆̂j))

∗

(I − Ĝj(Ĥj + ∆̂j))T
−1/2 I


 º 0, ∀∆ ∈ UG, 0 ≤ j ≤ N − 1,

(52)

which is equivalent to

Rj º P∗
j∆̂jQj + Q∗

j∆̂
∗
jPj , ∀∆ ∈ UG, 0 ≤ j ≤ N − 1, (53)

where

Rj =


 τI T−1/2(I − ĜjĤj)

∗

(I − ĜjĤj)T
−1/2 I


 , Pj =

(
0 Ĝ∗

j

)
, Qj =

(
T−1/2 0

)
.

(54)

We now exploit the following lemma, the proof of which is provided in Appendix C:

Lemma 4.3 Given matrices P,Q,R with R = R∗,

R º P∗X̂jQ + Q∗X̂∗
jP, ∀X ∈ UG
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if and only if there exists a λ ≥ 0 such that


 R − λQ∗Q −ρP∗

−ρP λI


 º 0,

where ρ =
∑N−1

j=0 ρj.

From Lemma 4.3 it follows that (53) is satisfied if and only if there exists λj ≥ 0, 0 ≤ j ≤ N − 1

such that




τI − λjT
−1 T−1/2(I − ĜjĤj)

∗ 0

(I − ĜjĤj)T
−1/2 I −ρĜj

0 −ρĜ∗
j λjI


 º 0, 0 ≤ j ≤ N − 1, (55)

with ρ =
∑N−1

j=0 ρj . Thus, it follows that the problem (16) reduces to

min
τ,λ0,...,λN−1,G

Tr(GCG∗) + NL2τ (56)

subject to (55).

Since C and G are both block circulant matrices, by Lemma 3.1 the product GCG∗ is also a

block circulant matrix. Let

GCG∗ = C(S0,S2, . . . ,SN−1), (57)

for some S0,S2, . . . ,SN−1 ∈ C
m×m. Then, Tr(GCG∗) = NTr(S0). But,

NS0 = NF−1
0 (F(GCG∗)) =

N−1∑

j=0

F j(GCG∗) =
N−1∑

j=0

F j(G)F j(C)F j(G
∗) =

N−1∑

j=0

ĜjĈjĜ
∗
j . (58)

Making the change of variables

Aj = Ĝj , 0 ≤ j ≤ N − 1 (59)

we arrive at the following formulation of the minimax problem (16):
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min
τ,λ0,...,λN−1,A0,A1,...,AN−1

NL2τ +
N−1∑

j=0

Tr(AjĈjA
∗
j ) (60)

subject to




τI − λjT
−1 T−1/2(I − AjĤj)

∗ 0

(I − AjĤj)T
−1/2 I −ρAj

0 −ρA∗
j λjI


 º 0, 0 ≤ j ≤ N − 1, (61)

which is equivalent to

min
τ,t0,...,tN−1,A0,...,AN−1,λ0,...,λN−1

N−1∑

j=0

tj + NL2τ (62)

subject to the LMI (61) and

Tr(AjĈjA
∗
j ) ≤ tj , 0 ≤ j ≤ N − 1. (63)

Using Lemma 4.2, (63) can be expressed as the LMI


 tj a∗

j

aj I


 º 0, 0 ≤ j ≤ N − 1 (64)

aj = vec(AjĈ
1/2
j ), 0 ≤ j ≤ N − 1, and m = vec(M) denotes the vector obtained by stacking the

columns of M. Thus, our problem reduces to that of (62) subject to (64) and (61), which is an

SDP.

We summarize the our results in the following two theorems. In Theorem 4.2 we present the

SDP formulation for the general model and in Theorem 4.3 we present the SDP formulation of the

symmetric model.

Theorem 4.2 (SDP Formulation for the General Model) Let x =
(
xT

0 ,xT
1 , . . . ,xT

N−1

)T

denote the vector of unknown parameters in the model y = (H + ∆)x + w, where H =

C(H0,H1, . . . ,HN−1) and H0, . . . ,HN−1 are known n×m matrices, ∆ is an unknown matrix sat-

isfying ∆ ∈ UG = {∆ = C(∆0, . . . ,∆N−1) : ‖∆0‖ ≤ ρ0, . . . , ‖∆N−1‖ ≤ ρN−1} and w is zero-mean
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random vector with covariance C = C(C0,C1, . . . ,CN−1). Then there exists a solution to

min
x̂=Gy

max
‖x0‖T≤L,...,‖xN−1‖T≤L,∆∈UG

E(‖x̂ − x‖2) =

min
G

max
‖x0‖T≤L,...,‖xN−1‖T≤L,∆∈UG

{x∗(I − GH)∗(I − GH)x + Tr(GCG∗)} ,

given by G = C(G0,G1, . . . ,GN−1) where

Gj =
1

N

N−1∑

i=0

ω−ijAi, 0 ≤ j ≤ N − 1.

Here ω = e−
2πi
N , and Aj , 0 ≤ j ≤ N − 1 are the solutions to the SDP

min
τ,λ0,...,λN−1,t0,...,tN−1,A0,...,AN−1

NL2τ +
N−1∑

j=0

tj

subject to


 tj a∗

j

aj I


 º 0, 0 ≤ j ≤ N − 1 ,




τI − λjT
−1 T−1/2(I − AjĤj)

∗ 0

(I − AjĤj)T
−1/2 I −ρAj

0 −ρA∗
j λjI


 º 0, 0 ≤ j ≤ N − 1,

where aj = vec(AjĈ
1/2
j ), ρ =

∑N−1
j=0 ρj and

Ĥj =

N−1∑

i=0

ωijHi, 0 ≤ j ≤ N − 1,

Ĉj =
N−1∑

i=0

ωijCi, 0 ≤ j ≤ N − 1.

Using similar ideas, we can derive the minimax MSE estimator for the symmetric model:

Theorem 4.3 (SDP Formulation for the Symmetric Model) Let x =
(
xT

0 ,xT
1 , . . . ,xT

N−1

)T

denote the vector of unknown parameters in the model y = (H + ∆)x + w, where H = M(H0,H1)

and H0,H1 are known n × m matrices, ∆ is an unknown matrix satisfying ∆ ∈ US = {∆ =

M(∆0,∆1) : ‖∆0‖ ≤ ρ0, ‖∆1‖ ≤ ρ1} and w is zero-mean random vector with covariance C =
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M(C0,C1). Then there exists a solution to

min
x̂=Gy

max
‖x0‖T≤L,...,‖xN−1‖T≤L,∆∈UG

E(‖x̂ − x‖2) =

min
G

max
‖x0‖T≤L,...,‖xN−1‖T≤L,∆∈UG

{x∗(I − GH)∗(I − GH)x + Tr(GCG∗)} ,

given by G = M(G0,G1) where

G0 =
1

N
(A0 + (N − 1)A1), G1 =

1

N
(A0 − A1).

Here ω = e−
2πi
N , and A0,A1 are the solutions to the SDP

min
τ,λ0,λ1,t0,t1,A0,A1

NL2τ + t0 + (N − 1)t1

subject to


 tj a∗

j

aj I


 º 0, j = 0, 1,




τI − λjT
−1 T−1/2(I − AjĤj)

∗ 0

(I − AjĤj)T
−1/2 I −ρ̂jAj

0 −ρ̂jA
∗
j λjI


 º 0, j = 0, 1,

where aj = vec(AjĈ
1/2
j ), ρ̂0 = ρ0 + (N − 1)ρN−1, ρ̂1 = ρ0 + ρ1 and

Ĥ0 = H0 + (N − 1)H1, Ĥ1 = H0 − H1,

Ĉ0 = C0 + (N − 1)C1, Ĉ1 = C0 − C1.

Proof: The proof is almost identical to the proof of Theorem 4.2 and only the two major differences

between the proofs will be given here. The first difference is that in the symmetric case, G is of

the form M(G0,G1) and thus has only two different DFT components A0 = G0 + (N − 1)G1 and

A1 = G1 − G1. In the same manner, H, ∆ and C also have only two different DFT components.

As a result, the inner maximization with respect to x (42) reduces to

max{α0(∆), α1(∆)} + Tr(A0Ĉ0A
T
0 ) + (N − 1)Tr(A1Ĉ1A

T
1 ) (65)
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where α0(∆) and α1(∆) are defined as in (48). The second main difference is that we need to use

a slightly different version Lemma 4.3. The new version of Lemma 4.3 states that for each j = 0, 1

R º P∗X̂jQ + Q∗X̂∗
jP,∀X ∈ US (66)

if and only if there exists a λ ≥ 0 such


 R − λQ∗Q −ρ̂jP

∗

−ρ̂jP λI


 º 0,

where ρ̂0 = ρ0 + (N − 1)ρ1 and ρ̂1 = ρ0 + ρ1.✷

Remark: In the case where the block matrices H0, . . . ,HN−1 are known exactly, i.e., in the case

where

ρ0 = ρ1 = . . . = ρN−1 = 0 (67)

the LMI (61) reduces to




τI − λjT
−1 T−1/2(I − AjĤj)

∗ 0

(I − AjĤj)T
−1/2 I 0

0 0 λjI


 º 0, 0 ≤ j ≤ N − 1. (68)

Since λj ≥ 0 we have that (68) is the same as


 τI − λjT

−1 T−1/2(I − AjĤj)
∗

(I − AjĤj)T
−1/2 I


 º 0, 0 ≤ j ≤ N − 1. (69)

Thus, we can formulate a simplified SDP for the minimax MSE estimator in the case where H is

known exactly.

In the next section we develop explicit expressions for the minimax MSE estimator in the case

T = I for both the known and unknown H scenarios.
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5 Minimax MSE Estimator for T = I

In this section we discuss a special case of minimax MSE estimator problem where T = I. For the

case in which H is certain we find an explicit expression for the optimal minimax MSE estimator.

In the case of uncertain H show that the SDP problem of Theorem 4.2 can be reduced to a simple

convex optimization problem in N + 1 unknowns. Moreover, for the symmetric model case, the

SDP of Theorem 4.3 is reduced to a simple convex optimization problem in 3 unknowns regardless

of the value of N .

5.1 Minimax MSE Estimator for T = I with Known H

Using Lemma 4.1 we can replace the set of constraints ‖x0‖ ≤ L, . . . , ‖xN−1‖ ≤ L with the single

constraint ‖x‖2 ≤ NL2. Thus, in the case of known H we return to the problem of a single system

y = Hx + w with ‖x‖2 ≤ NL2. This problem was discussed in [15] where it was shown that the

minimax MSE estimator for the case T = I is given by

x̂ = α(H∗C−1H)−1H∗C−1y, (70)

with α = NL2

NL2+B
where

B = Tr
(
(H∗C−1H)−1

)
. (71)

The estimator of (70) is a shrunken estimator proposed by Mayer and Willke [27], which is simply

a scaled version of the LS estimator with an optimal choice of shrinkage factor.

Note that the dominant computation in (70) and (71) is the inversion of the mN ×mN matrix

H∗C−1H, which requires O(m3N3) operations. This number is prohibitively large even for medium

size problems. On the other hand, the calculation stemming from Theorem 5.1 below, which exploits

the block circulant structure, requires the inversion of N DFT components, each an m×m matrix

resulting in a total of only O(m3N) operations. For example, if N = 100 then our computation is

10000 cheaper than the direct computation.

Theorem 5.1 Let x =
(
xT

0 ,xT
1 , . . . ,xT

N−1

)T
denote the vector of unknown parameters in the model

y = Hx+w, where H = C(H0, . . . ,HN−1) and Hj , 0 ≤ j ≤ N−1 are known n×m matrices, and w

is a zero-mean random vector with covariance C = C(C0,C1, . . . ,CN−1). For every 0 ≤ j ≤ N −1,

let Ĥ∗
jĈ

−1
j Ĥj = VjΣjV

∗
j where Σj is a diagonal matrix with diagonal elements σj,1, σj,2, . . . , σj,m >
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0 and Vj is a unitary matrix. Then the solution to the problem

min
x̂=Gy

max
‖x0‖≤L,...,‖xN−1‖≤L

E
(
‖x̂ − x‖2

)

is given by

x̂k =
N−1∑

i=0

Gi+kyi (72)

where

Gj =
1

N

N−1∑

i=0

ω−ijAi, 0 ≤ j ≤ N − 1,

and

Aj =
NL2

NL2 + B

(
Ĥ∗

jĈ
−1
j Ĥj

)−1
Ĥ∗

jĈ
−1
j , 0 ≤ j ≤ N − 1.

Here B =
∑N−1

j=0

∑m
i=1

1
σj,i

=
∑N−1

j=0 Tr
(
(Ĥ∗

jĈ
−1
j Ĥj)

−1
)

and

Ĥj =

N−1∑

i=0

ωijHi, Ĉj =

N−1∑

i=0

ωijCi, 0 ≤ j ≤ N − 1.

Proof: We know from [15] that x̂ = Gy where

G =
NL2

NL2 + B
(H∗C−1H)−1H∗C−1 ,

and B = Tr((H∗C−1H)−1), which is equal to
∑mN

i=1
1
λi

, where λ1, λ2, . . . , λmN are the eigenvalues of

H∗C−1H. From Theorem 3.1 it follows that B =
∑N−1

j=0 Tr
(
(Ĥ∗

jĈ
−1
j Ĥj)

−1
)
. By Theorem 4.1, G

is a block circulant matrix and thus is equal to C(G0,G1, . . . ,GN−1) for some G0,G1, . . . ,GN−1 ∈
C

m×n. Using the properties listed in Lemma 3.2, we can calculate the jth DFT component Aj =

Gj ,

Aj = F j

(
NL2

NL2 + B
(H∗C−1H)−1H∗C−1

)
=

NL2

NL2 + B
(Ĥ∗

jĈ
−1
j Ĥj)

−1Ĥ∗
jĈ

−1
j .

Applying the inverse DFT we obtain the desired expression for Gj :
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Gj = F−1
j (C(Ĝ0, Ĝ1, . . . , ĜN−1)) =

1

N

N−1∑

i=0

ω−ijAi ,

and the result follows. ✷

As can be expected intuitively, when L → ∞, x̂ of (72) reduces to the LS estimator. Indeed,

when the norm of x can be made arbitrarily large, the MSE will also be arbitrarily large unless

the bias is equal to zero. Therefore, in this limit, the worst-case estimation error is minimized by

choosing an estimator with zero bias that minimizes the variance, which leads to the LS estimator.

5.2 Minimax Estimator for T = I, C = σ
2I and with Unknown H

We now show that in the case where T = I and C = σ2I, the minimax MSE estimator reduces to

a simple convex optimization problem in N + 1 unknowns in the general model and in 3 unknowns

in the symmetric models (regardless of the value of N), solved very efficiently. Specifically, we have

the following theorem.

Theorem 5.2 (Minimax MSE Estimator for the General Model with T = I and C = σ2I)

Let x =
(
xT

0 ,xT
1 , . . . ,xT

N−1

)T
denote the vector of unknown parameters in the model

y = (H + ∆)x + w, where H = C(H0,H1, . . . ,HN−1) and H0, . . . ,HN−1 are known n × m

matrices, ∆ is an unknown matrix satisfying ∆ ∈ UG = {∆ = C(∆0, . . . ,∆N−1) : ‖∆0‖ ≤
ρ0, . . . , ‖∆N−1‖ ≤ ρN−1} and w is zero-mean random vector with covariance C = σ2I. For every

0 ≤ j ≤ N − 1, Let Ĥj = UjΣjV
∗
j be the singular value decomposition of Ĥj =

∑N−1
i=0 ωijHi,

where Σj is an n × m diagonal matrix with diagonal elements σj,i > 0, 1 ≤ i ≤ m, and Uj and

Vj are unitary matrices. Then there exists a solution to

min
x̂=Gy

max
‖x0‖≤L,...,‖xN−1‖≤L,∆∈UG

E(‖x̂ − x‖2)

given by G = C(G0,G1, . . . ,GN−1) where

Gj =
1

N

N−1∑

i=0

ω−ijAi, 0 ≤ j ≤ N − 1.

Here ω = e−
2πi
N , and

Aj = VjZjV
∗
j (Ĥ

∗
jĤj)

−1/2Ĥ∗
j , 0 ≤ j ≤ N − 1
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where Zj is an m × m diagonal matrix with diagonal elements zj,i = fj,i(τ, λj), with

fj,i(τ, λj) =

σj,iλj −
√

λj(τ − λj)
(
σ2

j,iλj − ρ2(1 + λj − τ)
)

(τ − λj)ρ2 + σ2
j,iλj

, 1 ≤ i ≤ m, 0 ≤ j ≤ N − 1,

ρ =
∑N−1

j=0 ρj and λ0, . . . , λN−1 and τ are the solution to the convex optimization problem

min
τ,λ0,...,λN−1



σ2

N−1∑

j=0

m∑

i=1

f2
j,i(τ, λj) + NL2τ





subject to

λjσ
2
j,i ≥ ρ2(1 + λj − τ), 1 ≤ i ≤ m, 0 ≤ j ≤ N − 1;

λj ≥ 0 , 0 ≤ j ≤ N − 1 ;

τ ≥ λj , 0 ≤ j ≤ N − 1 .

Proof: From Theorem 4.1, the optimal estimator G is equal to C(G0, . . . ,GN−1) where Gj =

1
N

∑N−1
i=0 ω−ijAi and (Aj)

N−1
j=0 is the solution to

min
τ,A0,...,AN−1,λ0,...,λN−1



σ2

N−1∑

j=0

Tr(ÂjÂ
∗
j ) + NL2τ



 , (73)

subject to

Mj
△
=




(τ − λj)I (I − AjĤj)
∗ 0

(I − AjĤj) I −ρAj

0 −ρA∗
j λjI


 º 0, 0 ≤ j ≤ N − 1. (74)

The proof of the proposition is comprised of three parts. First, we show that the optimal

solution (Aj)
N−1
j=0 to (73) and (74) is of the form

Aj = VjZjV
∗
j

(
Ĥ∗

jĤj

)−1/2
Ĥ∗

j , 0 ≤ j ≤ N − 1, (75)

for some m×m matrices Z0,Z1, . . . ,ZN−1. We then show that Z0,Z1, . . . ,ZN−1 can be chosen as

diagonal matrices. Finally, we find the diagonal elements of Z0,Z1, . . . ,ZN−1.
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We begin by showing that the optimal (Aj)
N−1
j=0 has the form (75). The constraint (74) is

equivalent to QjMjQ
∗
j º 0 for any invertible Qj . Choosing

Qj =




V∗
j 0 0

0 V∗
j 0

0 0 U∗
j


 , 0 ≤ j ≤ N − 1, (76)

(74) becomes




(τ − λj)I V∗
j (I − AjĤj)

∗Vj 0

V∗
j (I − AjĤj)Vj I −ρV∗

jAjUj

0 −ρU∗
jA

∗
jV λjI


 º 0, 0 ≤ j ≤ N − 1. (77)

Make the following change of variables

Bj
△
=V∗

jAjUj , (78)

so that

Aj = VjBjU
∗
j , (79)

the problem of (73) and (77) can be expressed as

min
τ,λ0,...,λN−1,B0,...,BN−1



σ2

N−1∑

j=0

Tr(B∗
jBj) + NL2τ



 , (80)

subject to 


(τ − λj)I (I − BjΣj)
∗ 0

(I − BjΣj) I −ρBj

0 −ρB∗
j λj


 º 0, 0 ≤ j ≤ N − 1. (81)

Let Bj = (Zj Wj) where Zj is the m × m matrix consisting of the first m columns of Bj and

let Σ̃j denote the m × m matrix with diagonal elements σj,i, 1 ≤ i ≤ m for every 0 ≤ j ≤ N − 1 .
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Then we can express the constraint (81) as

L(Bj)
△
=




(τ − λj)I (I − ZjΣ̃j)
∗ 0 0

(I − ZjΣ̃j I −ρZj −ρWj

0 −ρZ∗
j λjI 0

0 −ρW∗
j 0 λjI




º 0, 0 ≤ j ≤ N − 1. (82)

Clearly, if (82) is satisfied, then

K(Zj)
△
=




(τ − λj)I (I − ZjΣ̃j)
∗ 0

(I − ZjΣ̃j) I −ρZj

0 −ρZ∗
j λj


 º 0, 0 ≤ j ≤ N − 1. (83)

Now, let Bj = (Zj Wj) be any matrix satisfying (82), and define B̃j = [Zj 0]. Then,

L(B̃j) =


 K(Zj) 0

0 λj


 º 0, (84)

since K(Zj) º 0. In addition,

Tr(B̃∗
jB̃j) = Tr(Z∗

jZj) ≤ Tr(Z∗
jZj) + Tr(W∗

jWj) = Tr(B∗
jBj). (85)

Therefore, the optimal value of Bj satisfies Wj = 0 for every 0 ≤ j ≤ N − 1, so that the problem

of (80) and (81) reduces to

min
τ,Z0,...,ZN−1,λ0,...,λN−1



σ2

N−1∑

j=0

Tr(Z∗
jZj) + NL2τ



 , (86)

subject to (83). Once we find the optimal (Zj)
N−1
j=0 , the optimal (Aj)

N−1
j=0 can be found from (79)

as

Aj = VjZj [I 0]U∗
j = VjZjV

∗
j (Ĥ

∗
jĤj)

−1/2Ĥ∗
j , 0 ≤ j ≤ N − 1, (87)

thus completing the first part of the proof.
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We now show that the optimal values of (Zj)
N−1
j=0 can be chosen as diagonal matrices. To this

end, we first note that if (Zj)
N−1
j=0 satisfies (83), then for every 0 ≤ j ≤ N − 1




J 0 0

0 J 0

0 0 J







(τ − λj)I (I − ZjΣ̃j)
∗ 0

(I − ZjΣ̃j) I −ρZj

0 −ρZ∗
j λj







J 0 0

0 J 0

0 0 J


 =

=




(τ − λj)I (I − JZjJΣ̃j)
∗ 0

(I − JZjJΣ̃j) I −ρJZjJ

0 −ρJZ∗
jJ λj


 º 0. (88)

Here J is any diagonal matrix with diagonal elements ±1, and we used the fact that diagonal

matrices commute and that J∗J = J2 = I. It follows from (88) that K(Z̃j) º 0 for any J, where

Z̃j = JZjJ. In addition, we have that Tr(Z̃∗
j Z̃j) = Tr(Z∗

jZj). Therefore, if (Zj)
N−1
j=0 is an optimal

solution, then so is (JZjJ)N−1
j=0 . Since our problem is convex, the set of optimal solutions is also

convex [32], which implies that (Z′
j)

N−1
j=0 = ((1/2m)

∑
J JZjJ)N−1

j=0 is also a solution, where the

summation is over all 2m diagonal matrices J with diagonal elements ±1. It is easy to see that Z′
j

is a diagonal matrix. Therefore, we have shown that there exists an optimal diagonal solution Zj

for every 0 ≤ j ≤ N − 1.

Denote the diagonal elements of Zj by zj,i, 1 ≤ i ≤ m, and let diag(α1, . . . αm) denote the

m×m diagonal matrix with diagonal elements αi. Then the constraint K(Zj) º 0 can be written

as




diag(τ − λj , . . . , τ − λj) diag(1 − σj,1zj,1, . . . , 1 − σj,mzj,m) 0

diag(1 − σj,1zj,1, . . . , 1 − σj,mzj,m) I −ρdiag(zj,1, . . . , zj,m)

0 −ρdiag(zj,1, . . . , zj,m) λjI


 º 0.

(89)

By permuting the rows and the columns of the matrix in (89), we can transform it into a block

diagonal matrix, where the ith block is




τ − λj 1 − σj,izj,i 0

1 − σj,izj,i 1 −ρzj,i

0 −ρzj,i λj


 , (90)
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so that (89) is satisfied if and only if each of the matrices (90) is positive semidefinite. Thus, the

problem of (86) and (83) become

min
τ,zj,i,λj



σ2

N−1∑

j=0

m∑

i=1

z2
j,i + NL2τ



 (91)

subject to




τ − λj 1 − σj,izj,i 0

1 − σj,izj,i 1 −ρzj,i

0 −ρzj,i λj


 º 0, 1 ≤ i ≤ m, 0 ≤ j ≤ N − 1. (92)

We now show that the problem of (91) subject to (92) can be further simplified. First we note

that to satisfy (92) we must have that

τ ≥ max
0≤j≤N−1

λj . (93)

Suppose first that τ > max0≤j≤N−1 λj . In this case, using Lemma 4.2, (92) is equivalent to


 1 −ρzj,i

−ρzj,i λj


 − 1

τ−λj


 1 − σj,izj,i

0




(
1 − σj,izj,i 0

)
=


 1 − (1−σj,izj,i)

2

τ−λ −ρzj,i

−ρzj,i λj


 º 0. (94)

Now, a 2×2 matrix is positive semidefinite if and only if the diagonal elements and the determinant

are nonnegative. Therefore, (94) is equivalent to the conditions

λj ≥ 0; (95)

τ − λj ≥ (1 − σj,izj,i)
2; (96)

λj

(
1 − (1−σj,izj,i)

2

τ−λj

)
− ρ2z2

j,i ≥ 0. (97)

Clearly, (97) and (95) together imply (96). Furthermore, we can express (97) as

z2
j,i

(
(λj − τ)ρ2 − σ2

j,iλj

)
+ 2zj,iσj,iλj + λj(τ − λj − 1) ≥ 0. (98)
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Since the coefficient multiplying z2
j,i in (98) is negative, it follows that there exists a zj,i satisfying

(98) if and only if the discriminant is nonnegative, i.e., if and only if

σ2
j,iλj +

(
(τ − λj)ρ

2 + σ2
j,iλj

)
(τ − λj − 1) ≥ 0, (99)

which, using the fact that τ − λj > 0 for every 0 ≤ j ≤ N − 1, is equivalent to

λjσ
2
j,i ≥ ρ2(1 + λj − τ). (100)

If (100) is satisfied, then the set of zj,i’s satisfying (98) are

z−j,i ≤ zj,i ≤ z+
j,i, (101)

where z−j,i ≤ z+
j,i are the roots of the quadratic function in (98). Since we would like to choose zj,i

to minimize (91), it follows that the optimal zj,i is

zj,i = fj,i(τ, λj) =

σj,iλj −
√

λj(τ − λj)
(
σ2

j,iλj − ρ2(1 + λj − τ)
)

(τ − λj)ρ2 + σ2
j,iλj

. (102)

Thus, if τ > max0≤j≤N−1 λj , then the optimal value of zj,i is given by (102), where in addition

conditions (100) and (95) must be satisfied.

Next, suppose that τ = λj for some j. In this case, to ensure that (92) is satisfied we must have

that

zj,i = 1
σj,i

; (103)

λj ≥ ρ2

σ2
j,i

. (104)

We can immediately verify that (103) and (104) are special cases of (102) and (100) with τ = λj .

We therefore conclude that the optimal value of zj,i is given by (102), subject to (100) and (95).

Substituting the optimal value of zj,i into (91), our problem becomes

min
τ,λ0,...,λN−1



σ2

N−1∑

j=0

m∑

i=1

f2
j,i(τ, λj) + NL2τ



 , (105)
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subject to

λjσ
2
j,i ≥ ρ2(1 + λj − τ), 1 ≤ i ≤ m, 0 ≤ j ≤ N − 1,

λj ≥ 0, 0 ≤ j ≤ N − 1,

τ ≥ λj , 0 ≤ j ≤ N − 1. (106)

Since the problem of (91) subject to (92) is convex, and the reduced problem (105) subject

to (106) is obtained by minimizing over one of the variables in (91), the reduced problem is also

convex, completing the proof of the theorem. ✷

We have shown in Theorem 5.2 that in the general model, the computation of the minimax

MSE estimator with unknown H is reduced to solving a convex optimization problem with N + 1

unknowns. Theorem 5.3 below states that in the symmetric model, the computation is reduced to

solving a convex optimization problem with only 3 unknowns, regardless of the value of N . The

analysis in the symmetric model is very similar to the analysis in the general model, thus, Theorem

5.3 is presented without a proof.

Theorem 5.3 (Minimax MSE Estimator for Symmetric Model with T = I and C = σ2I)

Let x =
(
xT

0 ,xT
1 , . . . ,xT

N−1

)T
denote the vector of unknown parameters in the model

y = (H + ∆)x + w, where H = M(H0,H1) and H0,H1 are known n × m matrices, ∆ is

an unknown matrix satisfying ∆ ∈ US = {∆ = M(∆0, ∆1) : ‖∆0‖ ≤ ρ0, ‖∆1‖ ≤ ρ1} and w is

zero-mean random vector with covariance C = σ2I. Let Ĥ0 = H0 + (N − 1)H1 and Ĥ1 = H0 −H1

and let Ĥj = UjΣjV
∗
j be the singular value decomposition of Ĥj for j = 0, 1. Σj is an n × m

diagonal matrix with diagonal elements σj,i > 0, 1 ≤ i ≤ m. Then there exists a solution to

min
x̂=Gy

max
‖x0‖≤L,...,‖xN−1‖≤L,∆∈US

E(‖x̂ − x‖2)

given by G = M(G0,G1) where

G0 =
1

N
(A0 + (N − 1)A1), G1 =

1

N
(A0 − A1).

Aj are of the form

Aj = VjZjV
∗
j (Ĥ

∗
jĤj)

−1/2Ĥ∗
j , j = 0, 1,
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where Zj is an m × m diagonal matrix with diagonal elements zj,i = fj,i(τ, λj), where

fj,i(τ, λj) =

σj,iλj −
√

λj(τ − λj)
(
σ2

j,iλj − ρ̂2
j (1 + λj − τ)

)

(τ − λj)ρ̂2
j + σ2

j,iλj
, 1 ≤ i ≤ m, j = 0, 1,

ρ̂0 = ρ0 + (N − 1)ρ1, ρ̂1 = ρ0 + ρ1 and λ0, λ1 and τ are the solution to the convex optimization

problem

min
τ,λ0,λ1

{
σ2

m∑

i=1

f2
0,i(τ, λj) + (N − 1)σ2

m∑

i=1

f2
1,i(τ, λj) + NL2

}

subject to

λjσ
2
j,i ≥ ρ2

j (1 + λj − τ), 1 ≤ i ≤ m, j = 0, 1;

λj ≥ 0; j = 0, 1

τ ≥ λj , j = 0, 1.

6 Examples

We now consider several examples illustrating the minimax MSE estimates with T = I both for

the case of known H, and for the case of unknown H.

6.1 Known H

To demonstrate the multichannel minimax MSE estimator of Theorem 5.1, we give an example of

the symmetric model. We consider the two channel case (N = 2) in which

y0 = H0x0 + H1x1 + w0;

y1 = H1x0 + H0x1 + w1,

with

37



H0 =




0.1 0 0 0

0.2 0.1 0 0

0.4 0.2 0.1 0

1 0.4 0.2 0.1

0 1 0.4, 0.2

0 0 1 0.4




, H1 =




0.1 0 0 0

0.4 0.1 0 0

1 0.4 0.1 0

0 1 0.4 0.1

0 0 1 0.4

0 0 0 1




(107)

so that H0 and H1 represent convolution with LTI filters. The noise covariance matrix is given by

C = σ2I for some σ2.

To evaluate the performance of the minimax MSE estimator, we generate a random vector x

with subvectors x0 and x1 such that ‖x0‖ = ‖x1‖ = 3 and random perturbation matrices ∆0 and

∆1 with norm 0.02. We consider three estimation methods:

1. Least Squares (LS).

2. Minimax MSE with L estimated as the norm of the LS estimator.

3. Regularized LS estimator (RLS). This is a regularization of the LS estimator, that takes the

norm constraints into account and is given by:

x̂ = argmin
‖x0‖≤L,‖x1‖≤L

‖C−1/2(y − Hx)‖2. (108)

Like in the Minimax MSE estimator, L is approximated as the norm of the LS estimator. Notice

that (108) does not define the classical Tikhonov regularization estimator since we have two norm

constraints, one for each subvector. This nonlinear estimator does not have an explicit expres-

sion. In order to calculate it we have implemented a gradient projection algorithm (see e.g., [33]).

Specifically, the iterations are defined by:

Initial step: Take an arbitrary x0.

General step: For every k = 0, 1, 2, . . . define:

zk+1 = xk − tk

(
H∗C−1Hxk − H∗C−1y

)
, (109)

for i = 0, 1,

xk+1
i =





zk+1
i , if‖zk+1

i ‖ ≤ L ,

zk+1

i

‖zk+1

i ‖
L , else.

(110)
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In Fig. 3 we plot the MSE averaged over 400 noise realizations as a function of 10log
(

σ2

‖x0‖2

)

using each of the methods above (for the LS we have an analytic expression for the MSE, so the

400 realizations of the noise are relevant only for RLS and the minimax MSE ).
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Figure 3: MSE as a function of SNR for the LS, RLS and minimax MSE estimators for unknown
L.

It is clear that the minimax MSE estimator is the best of the three estimators for SNR > −9dB,

the LS is the worst of the three and RLS is somewhere in between these two estimators. This is

somewhat a surprising result since the RLS estimator is a highly nonlinear estimator even for a

known L, while the minimax MSE is only a linear estimator for a known L. Note, that even

for an unknown L the minimax MSE estimator is much easier to compute, since it has an explicit

expression, while the RLS estimator is computed via an iterative method, whether or not L is known.

An empirical reason for this phenomena can be shown in the following experiment. Suppose that

we don’t estimate L and we know theoretically that L = 5. Now, in Fig. 4 we can see our three

estimators with L = 5. Fig. 4 (a) is the case of a signal with ‖x0‖ = ‖x1‖ = 3 and Fig. 4 (b) is the

case where the norm is tight i.e., ‖x0‖ = ‖x1‖ = 5. It is obvious from the plots that if the norm

bound L is not tight (plot (b)) then the RLS estimator is worse than minimax MSE. However, if

L is tight (as in the plot (b) then the RLS estimator for SNR > −5dB is better than the minimax

MSE. Thus, the RLS estimator is very sensitive to the choice of L and requires tight bounds on

the norms (a very difficult requirement). As a result, if we don’t have a tight bound for the norms

then RLS will be inferior to the minimax MSE.
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Figure 4: MSE as a function of SNR for the LS, RLS and minimax MSE estimators for L = 5, (a)
‖x0‖ = ‖x1‖ = 3, (b) ‖x0‖ = ‖x1‖ = 5

6.2 Unknown H

To demonstrate the multichannel minimax MSE estimator of Theorem 4.3 for uncertain transfer

functions, we use the same H0, H1 as in (107). We consider the two channel case (N = 2) in which

y0 = (H0 + ∆0)x0 + (H1 + ∆1)x1 + w0 ;

y1 = (H1 + ∆1)x0 + (H0 + ∆0)x1 + w1 . (111)

The noise covariance matrix is given by C = σ2I for some σ2. To evaluate the performance of

the minimax MSE estimator, we generate a random vector x with subvectors x0 and x1 such that

‖x0‖ = ‖x1‖ = 3. We considered two estimation methods:

1. Structured total LS (STLS). This is a modified TLS method where here we seek a pair

(Ĥ,y) that minimizes the error ‖Ĥ − H‖2 + ‖ŷ − y‖2 subject to the consistency equation

ŷ ∈ Im(Ĥ) and the constraint that H is of the form M(H0,H1). The implementation of the

STLS requires only the calculation of the singular value decompositions of two n × (m + 1)

matrices.
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2. Minimax MSE with L, ρ0 and ρ1 estimated from the STLS estimator in the following manner:

The STLS outputs a matrix Ĥ = M(H0 + ∆0,H1 + ∆1) a vector ŷ such that ŷ ∈ Im(Ĥ)

and an estimator x̂STLS that is a solution to the system Ĥx = ŷ. We estimate then L as

‖x̂STLS‖, and ρ0 and ρ1 are estimated as ‖∆0‖ and ‖∆1‖ respectively.

In Fig. 5 we plot the MSE averaged over 400 noise realizations as a function of 10log
(

σ2

‖x0‖2

)

using each of the methods above.

−10 −8 −6 −4 −2 0 2 4 6 8 10
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

SNR[dB]

M
S

E

STLS
Minimax

Figure 5: MSE as a function of SNR for the STLS and minimax MSE estimators for unknown L, ρ0

and ρ1.

It is clear that the minimax estimator outperforms the STLS estimator even though the norm

bounds are unknown. Moreover, the STLS exhibits an unstable behavior in the sense that the

estimation error has a huge variance. For example, for the same value of σ, we got that the square

of the estimation error was 141 in one realization of the noise and approximately 106 in another

realization.
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A Proof of Theorem 3.1

Proof of Theorem 3.1: First, let us establish that Uj exists for every 0 ≤ j ≤ N − 1. In order

to show this, we prove that the matrix Âj =
∑N−1

i=0 ωijAi is Hermitian. This then implies that for

every 0 ≤ j ≤ N − 1, Âj has k independent eigenvectors with real eigenvalues. Now,

(
N−1∑

i=0

ωijAi

)∗

=

N−1∑

i=0

ωN−ijA∗
i

(20)
=

N−1∑

i=0

ω(N−i)jAN−i =
N−1∑

i=0

ωijAi, (112)

so that Âj is Hermitian and as a result has an eigenvector matrix denoted by Uj . From the definition

of an eigenvector matrix we have that ÂjUj = UjD where D = Diag(λj,0, λj,1, . . . , λj,k−1). Now,

A




Uj

ωjUj

...

ω(N−1)jUj




=




(∑N−1
i=0 ωijAi

)
Uj

ωj
(∑N−1

i=0 ωijAi

)
Uj

...

ω(N−1)j
(∑N−1

i=0 ωijAi

)
Uj




=




UjD

ωjUjD
...

ω(N−1)jUjD




, (113)

which implies that the columns of
(
UT

j ωjUT
j · · · ω(N−1)jUT

j

)T
are k eigenvectors of A with

eigenvalues λj,0, λj,1, . . . , λj,k−1.

The only fact left to prove is that the matrix (32) is invertible. Assume that




U0 U1 U2 · UN−1

U0 ωU1 ω2U2 · ωN−1UN−1

...
...

...
...

U0 ωN−1U1 ω2(N−1)U2 · · · ω(N−1)(N−1)UN−1







α1

α2

...

αN




=




0

0
...

0




. (114)

Denoting xj = Ujαj for 0 ≤ j ≤ N − 1, (114) is equivalent to the set of equations

x0 + x1 + . . .+ xN−1 = 0

x0 + ωx1 + . . .+ ωN−1xN−1 = 0
...

...
...

...

x0 + ωN−1x1 + . . .+ ω(N−1)(N−1)xN−1 = 0

(115)

Since the Fourier matrix is invertible we have xj = 0 for every 0 ≤ j ≤ N − 1 and so Uαj = xj = 0

which implies that αj = 0 for every 0 ≤ j ≤ N − 1, completing the proof. ✷
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B Proof of Lemma 4.1

Proof of Lemma 4.1: By making the change of variables zk = T1/2xk we have:

max
‖x0‖T≤L,...,‖xN−1‖T≤L

x∗C(A0, . . . ,AN−1)x = max
‖z0‖≤L,...,‖zN−1‖≤L

z∗C(Ã0, . . . , ÃN−1)z (116)

where Ãi = T−1/2AjT
−1/2 0 ≤ i ≤ N − 1 . If we relax the constraint set of our maximization

problem, then we obtain the following simple relation:

max
‖z0‖≤L,...,‖zN−1‖≤L

z∗C(Ã0, . . . , ÃN−1)z

︸ ︷︷ ︸
(P1)

≤ max
‖z‖2≤NL2

z∗C(Ã0, . . . , ÃN−1)z

︸ ︷︷ ︸
(P2)

. (117)

The value of the solution of (P2) is L2NλmaxC(Ã0, . . . , ÃN−1) and it is attained at an eigenvector

of C(Ã0, . . . , ÃN−1) with square norm of NL2. But, by the structure of the eigenvector matrix (32)

we see that for every eigenvalue we can find an eigenvector z of square norm NL2 that satisfies

‖z0‖ = ‖z1‖ = . . . = ‖zN−1‖ = L. From this it follows that val(P1) = val(P2) and that the optimal

value of (P1) is equal to:

NL2λmax(C(Ã0, . . . , ÃN−1)) = NL2 max
0≤j≤N−1

{
λmax

(
N−1∑

i=0

ωijÃi

)}

= NL2 max
0≤j≤N−1

{
λmax

(
T−1/2

(
N−1∑

i=0

ωijAi

)
T−1/2

)}
, (118)

completing the proof. ✷

C Proof of Lemma 4.3

To prove the proposition, we first note that

R º P∗ẐjQ + Q∗Ẑ∗
jP, ∀Z ∈ UG (119)
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if and only if for every x,

x∗Rx ≥ max
Z∈UG

{
x∗P∗ẐjQx + x∗Q∗Ẑ∗

jPx
}

= max
Z∈UG

{
x∗P∗

(
N−1∑

i=0

ωijZi

)
Qx + x∗Q∗

(
N−1∑

i=0

ωijZi

)∗

Px

}

= max
Z∈UG

{
N−1∑

i=0

(
x∗P∗ωijZiQx + x∗Q∗ω−ijZ∗

i Px
)
}

=
N−1∑

i=0

max
‖Zi‖≤ρi

{
x∗P∗ωijZiQx + x∗Q∗ω−ijZ∗

i Px
}

=
N−1∑

i=0

2ρi‖Px‖ ‖Qx‖

= 2ρ‖Px‖ ‖Qx‖. (120)

Using the Cauchy-Schwarz inequality, we can express (120) as

x∗Rx − 2ρy∗Px ≥ 0, ∀x,y : ‖y‖ ≤ ‖Qx‖. (121)

We now rely on the following lemma [34, p. 23]:

Lemma C.1 [S-procedure] Let P (z) = z∗Rz + 2u∗z + v and Q(z) = z∗Bz + 2x∗z + y be two

quadratic functions of z, where R and B are symmetric and there exists a z0 satisfying P (z0) > 0.

Then the implication

P (z) ≥ 0 ⇒ Q(z) ≥ 0

holds true if and only if there exists an α ≥ 0 such that


 B − αR x − αu

x∗ − αu∗ y − αv


 º 0.

Since ‖y‖ ≤ ‖Qx‖ is equivalent to x∗Q∗Qx − y∗y ≥ 0, we can use Lemma C.1 to conclude that

(121) is satisfied if and only if there exists a λ ≥ 0 such that


 R − λQ∗Q −ρP∗

−ρP λI


 º 0, (122)

completing the proof. ✷
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