
Fast Kernel Entropy
Estimation and Optimization

Sarit Shwartz, Michael Zibulevsky and Yoav Y. Schechner∗

Department of Electrical Engineering,
Technion-Israel Institute of Technology,

Haifa 32000, Israel
psarit@tx.technion.ac.il, {mzib,yoav}@ee.technion.ac.il

Abstract

Differential entropy is a quantity used in many signal processing
problems. Often we need to calculate not only the entropy itself, but
also its gradient with respect to various parameters, for efficient op-
timization, sensitivity analysis, etc. Entropy estimation can be based
on an estimate of the probability density function (PDF), which is
computationally costly. For this reason, some of existing algorithms
have assumed rough parametric models for the PDFs, which can lead
to poor performance in some scenarios. To counter these obstacles,
we consider non-parametric kernel entropy estimation, which is usu-
ally computationally costly, especially for the gradient evaluation. We
present two different accelerated kernel algorithms. The first of them
accelerates the entropy gradient calculation based on a back propaga-
tion technique, which allows the calculation of a gradient of a func-
tion with the same complexity of calculating the function itself. The
second algorithm accelerates the estimation of both entropy and its
gradient, exploiting fast convolution over a uniform grid. We apply
both algorithms to blind source separation (BSS).

∗This research has been supported by the HASSIP Research Network Program HPRN-
CT-2002-00285, sponsored by the European Commission and by the Ollendorff Minerva
Center. Minerva is funded through the BMBF. Yoav Schechner is a Landau Fellow-
supported by the Taub Foundation, and an Alon Fellow

1

gitta
CCIT Report #483 May 2004

1 Introduction

Differential entropy is used as a quality criterion for solution of various

signal processing problems such as segmentation, detection, source separa-

tion, image registration, channel equalization and estimating depth from fo-

cus [1, 2, 3, 4, 5, 6, 7, 8, 9]. Often there is a need to calculate not only

the entropy itself but also its gradient for efficient optimization. Entropy

estimation is based on an estimate of the probability density function (PDF)

of signals, which is computationally costly. For this reason, some existing

algorithms have assumed rough parametric models for the PDFs. There are

scenarios in which assuming a parametric PDFs leads to poor performance.

Therefore, the need arises for non-parametric PDF and entropy estimation,

which are not prohibitively complex.

In this manuscript, we develop two different methods to bypass the com-

putational load of non parametric entropy optimization. In Sec. 2, we derive

a method for accelerating gradient calculations used in entropy optimization.

Calculating the gradient of a function in an explicit way can lead to higher

complexity than the calculation of the function itself. We use an approach

in the spirit of the back propagation algorithm, which is used for neural net-

work training (see for example [10]). It is known as backward packing in

the community of automatic differentiation [11, 12, 13]. This method al-

lows calculation of the entropy gradient with the same complexity needed to

calculate the entropy itself.

In Sec. 3, we develop a non-parametric entropy estimator that has a

complexity of O(N log N) for both entropy and gradient computation, where

N is the number of signal samples. It is based on an approximation of

the kernel estimator, which is calculated using a fast convolution over a

uniform grid. The errors caused by this approximation are reasonably small.

Therefore, our method can be a practical tool for large problems.

Finally, we apply the algorithms to linear blind source separation (BSS)

problems also called independent component analysis (ICA). The ICA prob-

lem is based on minimization of the mutual information (MI) criterion. MI

2

is based on the entropy of signals. By applying our methods to this problem,

we boost the performance of ICA as demonstrated in Sec. 4.

1.1 Non parametric entropy estimation

Let s = [s(1), . . . , s(N)] be an arbitrary signal. In general, s can be an

arbitrary function of several measurements,

s(n) = f(n;y;W) , (1)

where we denote the vector of measurements as y and a sample’s index as n.

Here, W is the vector of parameters of function f . For example, in the special

case of calculating the entropy of some measurements f(n;y;W) = y(n),

thus s(n) = y(n).

The Parzen-windows estimator for the PDF of s at point t is

p̂(t|s) ≡ 1

N

N∑
n=1

ϕ[t − s(n)] , (2)

Where ϕ(t) is a smoothing kernel. There are several options for selecting the

kernel [8, 14, 15]. We use a Gaussian with zero mean and variance σ2,

ϕ(t) =
1√

2πσ2
exp

(
− t2

2σ2

)
. (3)

A discussion about a selection of σ is given in App. B. The Parzen-windows

entropy estimator [6, 9] for a signal s is

Ĥs = − 1

N

N∑
l=1

log

{
1

N

N∑
n=1

ϕ [s(l) − s(n)]

}
. (4)

Eq. (4) requires N2 calculations of ϕ. Define Ncalc f as the number of oper-

ations needed to of calculate f(n;y;W) using Eq. (1). We need to calculate

f(n;y;W) for all N samples of s. Thus, the overall complexity of the Parzen-

windows entropy estimator is

Oexplicit
entropy = O(N2 + NNcalc f) (5)

3

Define the gradient of f with respect to W as

g(n;y;W) = ∇Wf(n;y;W) . (6)

Then, the gradient of the the Parzen-windows entropy with respect to W is

∇W Ĥs = − 1

N

N∑
l=1

∑N
n=1 ∇Wϕ [s(l) − s(n)]∑N
n=1 ϕ [sk(l) − sk(n)]

=

(7)

= 1
Nσ2

N∑
l=1

∑N
n=1 ϕ [s(l) − s(n)] [s(l) − s(n)] [g(l;y;W) − g(n;W;y)]∑N

n=1 ϕ [sk(l) − sk(n)]
.

Eq. (7) has two explicit nested summations, apparently indicating O(N2)

operations. However, we also need to calculate [g(l;y;W) − g(n;W;y)] for

all the nested expressions. Define Ncalc g as the number of operations need

to calculate g(n;y;W). Then, in order to calculate the two nested summa-

tion we need O(Ncalc gN
2) operations. Therefore, the overall complexity of

estimating the entropy gradient is

Oexplicit
gradient = O(Ncalc gN

2) , (8)

if this estimation is based explicitly on Eq. (7). Note that Oexplicit
gradient (Eq. 8) is

more expensive than Oexplicit
entropy defined in Eq. (5).

2 Entropy gradient via back propagation

In this section we present a method for reducing the complexity of the gra-

dient calculation (Eq. 8), so that the gradient of the entropy is calculated in

a complexity which is not higher than Eq. (5). We start by presenting the

general method in section 2.1. Then, we apply the method to the calculation

of the entropy gradient in section 2.2.

2.1 Gradient calculation using back propagation

The back propagation technique [11, 12, 13] allows calculation of a gradient of

a function with the same complexity of calculating the function itself. First,

4

Figure 1: Graphs of the forward [A] and back [B] propagation, corresponding
to the function in the example of Sec. 2.1.

the function is described by slack variables and atom functions. We define

atom functions as very simple operations into which the quality function can

be factored. Each of the atom functions can have several inputs. As an

example, the function

f(x1, x2, x3) = Φ[Ψ(x1), Θ(x2 + x3)] (9)

is described using the slack variables

z ≡ x1 + x2, ζ1 ≡ Ψ(x1), ζ2 ≡ Θ(z) , (10)

and the atom functions Φ, Ψ and Θ. The description of the function with

slack variables is equivalent to describing the calculation as a directional

graph. For example, the directional graph corresponding to the example

of Eq. (9) is illustrated in Fig. 1A. The function is calculated by forward

propagation through the graph, in which the slack variables represent inner

graph layers.

During forward propagation, we calculate the value of each atom function,

based on its direct slack variable inputs. While we calculate the output value

of any atom function, we also calculate the gradient of this atom function

with respect to its direct inputs. We save the values of these gradients for

future use. For example, when calculating ζ1 = Ψ(x1), we also calculate and

save
dΨx1

dx1
, which is the coefficient of the differential dζ1 =

dΨx1

dx1
dx1.

5

We now show that we can calculate the value of the gradient in a similar

way to neural network training by the back propagation algorithm. Training

a neural network starts by updating the network output layer. Then, the

update is propagated backwards in the network. In a similar way, the process

of back propagation of differentials is equivalent to replacing all the atom

functions in the directional graph with multipliers. The multipliers’ values

are the gradients of the atom functions with respect to their direct inputs,

which we had calculated during the forward propagation. In addition, we

flip all the directional edges in the graph, and use 1 as an input to the

inverted graph. The back propagation graph is illustrated in Fig. 1B. We

use the same graph structure for calculating both the function value and the

function derivative. Thus, we calculate the values of the gradient coefficients

with the same complexity of calculating the value of the function itself.

2.2 Efficient calculation of the entropy gradient

In this section, we describe how to use back propagation in order to calculate

the entropy gradient with the same complexity of calculating the entropy

value. We start by defining slack variables and atom functions for the entropy

equation (Eq. 4). The slack variables we use are the signals s and

p(l) ≡ 1

N

N∑
n=1

ϕ[s(l) − s(n)] . (11)

The atom functions we use are ϕ and L, where

L[p(l)] ≡ log[p(l)] . (12)

The directional graph describing the entropy calculation is illustrated in

Fig. 2.

In order to calculate the entropy value, we use forward propagation. The

forward propagation constitutes the following consecutive steps:

(a) ∀l ∈ {1, . . . , N}, s(l) = f(l;y;W) ; save g(l;W;y) .

6

Figure 2: Graphs for forward [A] and back [B] propagation for estimating
the entropy and its gradient.

(b) ∀l ∈ {1, . . . , N}, p(l) =
1

N

N∑
n=1

ϕ[s(l) − s(n)] ; (13)

save ϕ′[s(l) − s(n)] .

(c) Hs = − 1

N

N∑
l=1

L[p(l)] ; save L′[p(l)] = [p(l)]−1 .

The complexity of step (a) is O[N(Ncalc g +Ncalc f)]. The complexity of step

(b) is O(N2). The complexity of step (c) is O(N). Therefore, the overall

complexity of forward propagation is

Oforward = O[N(Ncalc g + Ncalc f) + N2 + N] =

(14)

= O[N(Ncalc g + Ncalc f) + N2] .

The differentials of the entropy and all the slack variables used in Eq. (13)

are

(a) ∀l ∈ {1, . . . , N}, ds(l) = 〈g(l;W;y), dW〉 , (15)

(b) ∀l ∈ {1, . . . , N}, dp(l) =
1

N

N∑
n=1

ϕ′[s(l) − s(n)][ds(l) − ds(n)]

7

(c) dHs = − 1

N

N∑
l=1

L′[p(l)]dp(l) ,

where ϕ′ is the derivative of ϕ with respect to [s(l) − s(n)], and L′ is the

derivative of L with respect to p(l). Thus, whenever we calculate one of the

slack variables in the forward propagation, we also calculate its gradient with

respect to its direct inputs.

After we finish calculating the entropy value, we calculate the gradient

by back propagation of the differentials. This is equivalent to substitution of

Eq. (15) in reverse order

(a) ∀l ∈ {1, . . . , N}, d

dp(l)
Hs = L′[p(l)] . (16)

(b) ∀l ∈ {1, . . . , N}, d

ds(l)
Hs =

1

N

N∑
n=1

ϕ′[s(l) − s(n)]

[
d

dp(l)
Hs

]
.

(c) ∀n ∈ {1, . . . , N}, d

ds(n)
Hs =

−1

N

N∑
n=1

ϕ′[s(l) − s(n)]

[
d

dp(l)
Hs

]
.

(d)
d

dW
Hs =

N∑
l=1

g(l;W;y)

[
d

ds(l)
Hs

]
.

The complexity of step (a) is O(N). The complexity of stages (b) and (c) is

O(N2). The complexity of stage (d) is O(NNcalc g). Therefore, the overall

complexity of back propagation is

Oback = O(N2 + NNcalc g + N) = O(N2 + NNcalc g) . (17)

The back propagation complexity is similar to the forward propagation com-

plexity. The exception is the term O(Ncalc f), which is missing from the back

propagation complexity. This term indicates the complexity of calculating

s from y and is done only once during the forward propagation process.

Combining all the algorithm stages yields estimation of both the entropy

estimator and its gradient in a complexity of

Ogradient
backpropagation = Oforward + Oback = O[N2 + N(Ncalc g + Ncalc f)] . (18)

8

This complexity is less expensive than the complexity of Eq. (8). We sum-

marize in a pseudo-code the calculation of both the entropy and its gradient.

The pseudo-code is given in Fig. 3

Input: W, s

Output: Hs , dHs

dW

Algorithm:

For l = 1 to N
s(l) = f(l;y;W)

g(l;W;y) = ∇Wf(l;y;W)

end
For l = 1 to N

For n = 1 to N
p(l) = p(l) + ϕ[s(l) − s(n)]/N

p′(l) = ϕ′[s(l) − s(n)]/N
end
Hs = Hs − log[p(l)]

L′(l) = 1/p(l)
For n = 1 to N

d
ds(l)

Hs = d
ds(l)

Hs − p′(l)L′(l)/N
d

ds(n)
Hs = d

ds(n)
Hs + p′(l)L′(l)/N

end
end
For l = 1 to N

d
dW

Hs = d
dW

Hs + g(l;W;y)
[

d
ds(l)

Hs

]
end

Figure 3: Pseudo-code for calculating the entropy gradient via back propa-
gation

9

3 Entropy estimation with N log N

complexity

In this section, we develop a non-parametric entropy estimator that has a

complexity of O(N log N). The kernel entropy is approximated by convo-

lution of the signal histogram with the kernel. In addition, we develop an

approximation to the entropy gradient, whose calculation has the same com-

plexity.

3.1 Efficient calculation of the entropy estimator

3.1.1 Motivation

Calculating the differential entropy using Eq. (4) requires N2 calculations of

ϕ. However, consider the situation in which the signal values (range) are dis-

crete and reside on a uniform grid, i.e., they are uniformly quantized. In such

a situation, we can estimate the differential entropy with O(N log N) oper-

ations. In this section we prove this claim. First, we show that for a signal

having uniformly quantized values, the sum 1
N

∑
ϕ[s(l)− s(n)] is equivalent

to estimating the probability of s(l) based on a smoothed histogram of s.

The empirical probability of s(l) estimated using N uniformly quantized

samples of s is

P̂ [s(l)] = (1/N)
N∑

n=1

δ[s(l) − s(n)] , (19)

which is equivalent to the value of the histogram bin in which the value s(l)

falls. Let us sample the smoothing kernel ϕ on the histograms bin grid,

leading to the discrete kernel ϕsampled(j), j ∈ [1, Nkernel], where Nkernel is the

support of ϕsampled. Then, we perform a discrete convolution of ϕsampled with

the histogram, leading to

P̂ [s(l)] ∗ ϕsampled = (1/N)

Nkernel∑
j=1

N∑
n=1

δ[s(l) − s(n) − j]ϕsampled(j) =

10

= (1/N)
N∑

n=1

ϕ[s(l) − s(n)] = p̂[s(l)|s] . (20)

Where p̂ is the PDF defined in Eq. (2). Hence, the inner sum in Eq. (4) can

be calculated simultaneously for all l using a discrete convolution.

In order to calculate the histogram of a signal, we need to scan all of

the signal samples, requiring O(N) operations. Afterwards, we convolve the

histogram with ϕsampled using a fast discrete convolution1 based on FFT.

This step takes O(Nbins log Nkernel) operations, where Nbins is the number

of histogram bins. Finally, the differential entropy estimation is calculated

based on Eqs. (4) and (20)

Ĥs = −(1/N)
N∑

l=1

log{p̂[s(l)|s]} . (21)

Eq. (21) requires O(N) operations, in addition to the operations needed

for Eq. (20). Overall, we achieve a complexity of O(N + Nbins log Nkernel).

Typically, Nbins is of the order of N or smaller. Therefore, the complexity

we achieve is O(N log N).

Clearly, quantization to a uniform grid leads to a high computational effi-

ciency. Yet, we should ensure that we can perform this quantization without

damaging the quality of differential entropy estimation.

3.1.2 The quantization procedure

In order to quantize a signal and create a histogram, we start by defining a

vote function v on a uniform quantization grid. Each bin is δv wide. The vote

function is an approximation of the histogram. We update the vote function

in the following way. Let m# be the index of the bin closest to the value of

s(n). It satisfies m# ≤ s(n)/δv ≤ m# + 1. Define the distance of the signal

value s(n) from the index m# (normalized by δv) as:

η =
s(n)

δv
− m# . (22)

1We used a Matlab code for fast convolution based on FFT, which had been written
by Luigi Rosa, email: luigi.rosa@tiscali.it , http://utenti.lycos.it/matlab

11

Let h(η) be a window function2that satisfies

h(1 − η) = 1 − h(η) 0 ≤ η ≤ 1 . (23)

For each sample of the signal s(n), n = 1, 2, . . . , N we update the voting by

v(m) ←
{

v(m) + h(η) for m = m#

v(m) + 1 − h(η) for m = m# + 1
, (24)

where η is given by Eq. (22). After the voting is over, the quantization

process is done, resulting in a vector v. The voting process requires a scan

of all the signal samples and therefore has a complexity of Ovote = O(N).

Now, we associate the probability P̂ (s) with v/N . Following Eq. (20),

we convolve v/N with ϕsampled:

p̂quant = (v/N) ∗ ϕsampled . (25)

Since we use an efficient convolution, this stage has a complexity of

Oconvolve = O(N log N).

3.1.3 From histogram to differential entropy

Apparently, a natural method to estimate entropy from a histogram is to

follow the discrete entropy definition and use

H̃s =

Nbins∑
m=1

p̂quant(m) log[p̂quant(m)] . (26)

However, the use of discrete binning causes fluctuations in the entropy esti-

mate as a function of W. In addition, the entropy calculated by Eq. (4) is

based on a PDF estimate at s(l), rather than the discrete probability pquant.

We thus estimate a PDF p̂[s(l)|s]. We achieve this simply by interpolating

the histogram given in Eq. (25)

p̂[s(l)|s] = h(η)p̂quant(m
#) + [1 − h(η)]p̂quant(m

+ 1) , (27)

2We use a linear interpolation function h(η) = 1 − η.

12

where m# and η are defined in Sec. 3.1.2. The interpolation requires a scan

of all the signal samples s(l), l = 1, . . . , N . Therefore it has a complexity

of Ointerpolate = O(N). Finally, the estimate of the differential entropy is

calculated by

Ĥs = −(1/N)
N∑

n=1

log{p̂[s(l)|s]} . (28)

Eq. (28) requires O(N) operations. Therefore, the overall complexity of

calculating the signal entropy is

Oentropy
approx = O(N) + Ointerpolate + Oconvolve + Ovote = O(N log N) . (29)

This is significantly lower than the complexity Oexplicit
entropy given in Eq. (5).

3.2 Efficient estimation of the entropy gradient

In order to compute the gradient, we could have differentiated the entropy

approximation which we derived in Sec. 3.1. However, as we already men-

tioned, discrete binning causes fluctuations, which can stop optimization at

local minima. We avoid this problem altogether by taking a different ap-

proach. Rather than differentiating an approximation based on quantization,

we elect to approximate derivatives associated with continuous values. We

thus apply the approximation process directly on the gradient of differential

entropy (Eq. 7). We do so in a similar manner to the approximation of the

differential entropy itself.

The entropy gradient Eq. (7) can be calculated in two stages, following a

chain rule. First, we calculate the entropy gradient with respect to the signal

samples. Then, we calculate the entropy gradient with respect to the desired

parameters by

∇WHs =
1

N

N∑
l=1

g(l;W;y)

[
dHs

ds(l)

]
, (30)

where g(l;W;y) is given by Eq. (6). This equation has a complexity of

13

O(NNcalc g). We define

Φ′[s(l)|s] ≡ (1/N)
N∑

n=1

ϕ′[s(l) − s(n)] (31)

and

F ′[s(l)] ≡ 1

N

N∑
n=1

ϕ′[s(n) − s(l)]

p̂[s(n)|s] , (32)

where p̂[s(l)|s] is defined in Eq. (2). The derivatives of the entropy (Eq. 30)

are given by
dHs

ds(l)
=

1

N

Φ′[s(l)|s]
p̂[s(l)|s] − F ′[s(l)] . (33)

Note that p̂[s(n)|s] is known, since we calculate p̂[s(n)|s] when we calculate

the differential entropy itself, prior to the gradient calculation. Now, we will

develop an efficient procedure for calculating Φ′ and F ′.

3.2.1 Approximating a quantized Φ′

We showed in Eq. (20) that when the values of a signal are uniformly quan-

tized, p̂[s(l)|s] is equivalent to a convolution of ϕsampled with the histogram of

the signal. In the same manner, Φ′[s(l)|s] is the convolution of the histogram

with the sampled sequence of ϕ′, which we term ϕ′
sampled. When the signal

values are not uniformly quantized, we need to perform quantization and

interpolation procedures similarly to Eq. (24) and Eq. (27). This yields the

quantized Φ′, which we denote as Φ′
quant. The complexity of these operations

is OΦ′
quant

= Oconvolve + Ovote = O(N log N) .

3.2.2 Approximating a quantized F ′

Now, we show that when the values of a signal are uniformly quantized,

F ′[s(l)] is a weighted histogram convolved with ϕ′
sampled. Define a weighted

histogram of the signal, in which every signal value is inversely weighted by

its estimated probability,

F [s(l)] ≡ 1

N

N∑
r=1

δ[s(r) − s(l)]

p̂[s(r)|s] . (34)

14

Then, convolve F (s) with ϕ′
sampled(−j), which is ϕ′

sampled in reverse order:

Nkernel∑
j=1

F [s(r) − j]ϕ′
sampled(−j) =

=
1

N

Nkernel∑
j=1

N∑
l=1

δ[s(l) − s(r) + j]

P̂ [s(l)]
ϕ′

sampled(−j) =

=
1

N

N∑
l=1

1

p̂[s(l)|s]
Nkernel∑

j=1

δ[s(l) − s(r) + j]ϕ′
sampled(−j) =

=
1

N

N∑
l=1

ϕ′
sampled[s(l) − s(r)]

p̂[s(l)|s] = F ′[s(l)], (35)

Hence, in order to calculate the second term of Eq. (33), we create a weighted

histogram F and then convolve it with ϕ′
sampled(−j).

In general, the signal values are not uniformly quantized. Hence, we

estimate the weighted histogram in the manner we estimate the histogram

itself (section 3.1.2). We start by defining a weighted vote function vw. The

weighted vote function is defined on the same uniformly quantized grid as

v. Then, for each sample of the signal s(n), n = 1, 2, . . . , N we update the

voting by

vw(m) ←
{

vw(m) + h(η)/p̂[s(n)|s] for m = m#

vw(m) + [1 − h(η)]/p̂[s(n)|s] for m = m# + 1
. (36)

After the voting, we associate vw/N with the weighted histogram F .

Finally, according to Eq. (35) we convolve vw/N with ϕ′
sampled. This convo-

lution yields the quantized F ′. We denote the quantized F ′ as F ′
quant. The

complexity of calculating F ′
quant is OF ′

quant
= Oconvolve + Ovote = O(N log N).

3.2.3 Combining all the approximations

In order to calculate the differential entropy gradient (Eq. 33), we need to

estimate Φ′[s(l)|s] and F ′[s(l)] from F ′
quant and Φ′

quant. As was explained in

15

section 3.1.3, we use interpolation. For each signal sample s(l)

Φ′[s(l)|s] = h(η)Φ′
quant(m

#) + [1 − h(η)]Φ′
quant(m

+ 1)

(37)

F ′[s(l)|s] = h(η)F ′
q(m

#) + [1 − h(η)]F ′
quant(m

+ 1) .

This interpolation has a complexity of Ointerpolate.

Finally, the gradient of the signal entropy is calculated using Eq. (30) and

Eq. (33) with a complexity of

Ogradient
approx = OΦ′

quant
+ OF ′

quant
+ Ointerpolate + NNcalc g =

(38)

= O(N log N + NNcalc g) .

This complexity is significantly smaller than the complexity Oexplicit
gradient appear-

ing in Eq. (8). A pseudo-code for the differential entropy estimator and its

gradient is given in Fig. 4.

16

Input: W , y

Output: Hs,
dHs

dW

Algorithm:

For l = 1 to N
s(l) = f(l;W;y)

end
For l = 1 to N

find and save m#, η for s(l)

v(m#) ← [v(m#) + h(η)]

v(m# + 1) ← [v(m# + 1) + 1 − h(η)]

end
p̂quant = (v ∗ ϕsampled)/N

Φ′
quant = (v ∗ ϕ′

sampled)/N

For l = 1 to N

load m#, η

p̂[s(l)|s] = h(η)p̂quant(m
#) + [1 − h(η)]p̂quant(m

+ 1)

Φ′[s(l)|s] = h(η)Φ′
quant(m

#) + [1 − h(η)]Φ′
quant(m

+ 1)

Hs = Hs − log{p̂[s(l)|s]}/N
vw(m#) = vw(m#) − h(η)/(p̂[s(l)|s]N)

vw(m# + 1) = vw(m# + 1) − [1 − h(η)]/(p̂[s(l)|s]N)
d

ds(l)
Hs = d

ds(l)
Hs − Φ′[s(l)|s]/(p̂[s(l)|s]N)

end
F ′

quant = vw ∗ ϕ′
sampled

For l = 1 to N

load m#, η

F ′[s(l)|s] = h(η)F ′
quant(m

#) + [1 − h(η)]F ′
quant(m

+ 1)
d

ds(l)
Hs = d

ds(l)
Hs + F ′[s(l)|s]

end
For l = 1 to N

d
dW

Hs = d
dW

Hs + g(l;W;y)
[

d
ds(l)

Hs

]
end

Figure 4: Pseudo-code for calculating the entropy and its gradient via fast
kernel convolutions. 17

4 ICA using fast kernel entropy estimation

MI of signals is a natural criterion for statistical dependency and therefore it

is used in ICA algorithms. MI is based on estimates of entropies of signals. In

order to avoid the computational complexity of entropy estimation, existing

ICA algorithms have assumed rough models for the signals PDFs [16, 17, 18]

or used high order cumulants instead of MI [19]. These approximations can

sometimes lead to failure, as demonstrated in [6] as well as in section 4.3.

In contrast, robust separation can be achieved with non-parametric kernel-

based estimation of PDFs [6]. The drawback of current implementations

of that approach is high computational complexity. For K sources, each of

which having N samples, an existing non-parametric ICA algorithm [6] has

a complexity of O(K2N2 + K2N). Another existing algorithm given in [20]

has a complexity of O(3KN + K2N), which may be tolerated for a small

number of sources, but has exponential growth in K.

The complexity of non-parametric ICA algorithms such as [6] stems from

the calculation of the MI gradient. By applying the back propagation tech-

nique, we reduce the complexity of calculating the MI gradient to be similar

to the complexity of calculating the MI itself. The MI calculation requires

O(KN2 + K2N) operations. A more significant acceleration is achieved by

applying the entropy approximation based on discrete convolution. This

method reduces the complexity of calculating both the MI and its gradient

to O(KN log N + K2N).

4.1 ICA and mutual information

Let {s1, s2, ...sK} be a set of independent sources. Each source is of the

form sk = [sk(1), sk(2), . . . , sk(N)]T . Let {y1,y2, ...yK} be a set of mea-

sured signals, each of which being a linear mixture of the sources. Denote

{ŝ1, ŝ2, ...ŝK} as the set of the reconstructed sources and W the separation

matrix. Then,

[ŝ1, ŝ2, ..., ŝK]T = W[y1,y2, ...yK]T . (39)

18

The mutual information of the K random variables ŝ1, ŝ2, ...ŝK is (see for

examples [21])

I(ŝ1, ŝ2, ...ŝK) = Hŝ1 + ... + HŝK
− log | det(W)| − Hmeasurements , (40)

where H(ŝk) is the entropy of ŝk and Hmeasurements is independent of W and

is thus constant for a given sample set {y1,y2, ...yK}. For this reason we will

ignore it.

The goal of ICA is to find the separation matrix W that leads to esti-

mated sources that are independent, thus inverting the mixing process. The

independence criterion is the MI of the estimated sources. The minimization

problem that we solve is

min
W

{
K∑

k=1

Hŝk
− log | det(W)| + λEnormalization

}
, (41)

where

Enormalization ≡
K∑

k=1

(‖ŝk‖√
N

− 1

)2

(42)

penalizes for un-normalized sources. This penalty, weighted by a constant λ

resolves ambiguities arising from the scale invariance of MI.3 The complexity

of calculating a signal norm is N . Therefore, the complexity of Eq. (42) is

Openalty = O(KN). The gradient of this term is:

2√
N

K∑
k=1

(
1√
N

− 1

‖ŝk‖
) [

N∑
n=1

ŝk(n)Υk,n

]
, (43)

where Υk,n is a K × K matrix, all of whose rows are zeros except the k’th

row. That row equals [y1(n), . . . , yK(n)]. Eq. (43) has two nested summation

over matrices which have K non zero terms. Therefore the gradient of the

penalty term has a complexity of Openalty
gradient = O(K2N).

3This term does not affect the separation quality, but improves convergence of the
optimization algorithm as explained in appendix A.

19

The gradient of log | det(W)| is

∇W[log | det(W)|] = (W−1)T (44)

(for example see [21]). The only terms in Eq. (40) that remains to be ad-

dressed in the optimization formulation are the entropies of the estimated

sources Hŝk
. For a non-parametric estimate of these entropies, we use the

Parzen-windows estimator.

4.2 Estimation of MI and its gradient

Substituting the Parzen-windows entropy estimator Eq. (4) into the MI equa-

tion Eq. (40) yields the MI estimator

(45)

I(ŝ1, ŝ2, ...ŝK) = −
K∑

k=1

1

N

N∑
l=1

log

{
1

N

N∑
n=1

ϕ [ŝk(l) − ŝk(n)]

}
− log | det(W)|

where we ignore Hmeasurements and recalling that we already handled the nor-

malization term in Eqs. (42,43). As in Eq. (1), denote fk as the function

creating the k’th signal ŝk based on the recorded signals [y1, . . . ,yK]. Then,

ŝk(n) = fk(n;y;W) = [wk,1, . . . , wk,K][y1(n), . . . , yK(n)]T , (46)

where [wk,1, . . . , wk,K] is the k’th row of W. The gradient of Eq. (46) is

gk(n;y;W) = [y1(n), . . . , yK(n)]T . (47)

Calculating fk(n;y;W) is done by K multiplications, while gk(n;y;W) has

K terms. Thus, the complexity of calculating both terms is Ncalc f = Ncalc g = K.

Substituting Eq. (47) into the gradient of Eq. (45), yields (see [6, 7])

∇W I(ŝ1, ŝ2, ...ŝK) = (48)

=
K∑

k=1

[
1

Nσ2

N∑
l=1

∑N
n=1 ϕ [ŝk(l) − ŝk(n)] [ŝk(l) − ŝk(n)]Yk,l,n∑N

n=1 ϕ [ŝk(l) − ŝk(n)]

]
− (W−1)T .

20

Where Yk,l,n = Υk,l − Υk,n .

The complexity of Eq. (45) is equal to K times the complexity of the en-

tropy estimator, since we are calculating the entropy of K individual signals.

Thus,

Oexplicit
MI = KOexplicit

entropy = O(KN2 + KNNcalc f) = O(KN2 + K2N) . (49)

For the same reason, the complexity of Eq. (48) is equal to K times the

complexity of calculating the gradient of the entropy estimator,

Oexplicit
MIgrad = KOexplicit

gradient = O(KNcalc gN
2) = O(K2N2) . (50)

By applying back propagation we achieve a complexity of

Obackpropgation
MIgrad = O(KN2 + K2N) for calculating both the MI and its gra-

dient. However, by applying entropy approximation by discrete convolution

we achieve a complexity of Oapprox
MI = Oapprox

MIgrad = O(KN log N + K2N). This

complexity is significantly lower than Eqs. (49) and (50). This allows fast per-

formance of ICA, while exploiting the advantages of non parametric methods

in high dimensional problems.

4.3 Demonstrations

In order to evaluate our methods, we performed numerous separation simula-

tions. The first set of simulations dealt with random sources. We simulated

six sources: four of the sources were random i.i.d., while the other two were

extracted as data vectors from the Lena and Trees standard pictures. The

random i.i.d. sources had different PDFs (an exponential PDF[α = 2], an

exponential PDF[α = 0.6], a normal PDF[0,1] and a Rayleigh PDF[β = 1]).

The sample size of each signal was 3K. The sources were mixed using ran-

domly generated full rank matrices (condition number≤ 20).

The source separation was attempted using three parametric ICA algo-

rithms. [19, 21, 22]: InfoMax, Jade and Fast ICA. In addition, separation

was attempted using two non parametric ICA algorithms: the first is based

on [6]. We implemented the algorithm described in [6] with the exception

21

of using the method described in Sec. 2, in order to accelerate the gradient

calculation. The second algorithm is the one we described in Sec. 3. The

software for the prior algorithms was downloaded from the web-pages of the

respective authors.

In order to limit the signals to the grid range we use, we first performed

a rough normalization of the raw measurements. First, we subtracted the

mean of each signal. Then, we divided each signal by its standard deviation.

The InfoMax and FastICA algorithms are more efficient when the measured

signals are sparse. We thus pre-filtered the inputs to these algorithms using

the derivative operator [−1 0 1]/2. Our separation procedure was based on

the BFGS Quasi-Newton algorithm as implemented in the MATLAB opti-

mization toolbox (function FMINUNC).

The results of the simulations are presented in Table 1. The separation

quality is given by the signal to interference ratio (SIR). The SIR is the

energy of the signal divided by the energy of the interference:

SIR = min
k

(‖sk‖2

‖sk − ŝk‖2

)
. (51)

Note that Eq. (51) uses the signal k having the minimal ratio, i.e., having

the worst separation quality.4 After performing numerous simulations, we

report the mean SIR and the standard deviation of the SIR. Clearly, Table 1

shows that practically no degradation of the separation quality is caused by

our entropy approximation. On the other hand, the improvement in the

run time is huge, compared to the competing non-parametric method. Our

method does not compete with the parametric algorithms over run time, but

it outperforms them in separation quality. We can separate signals that the

parametric methods fail to handle.

In order to demonstrate the separation quality, we performed an addi-

tional set of separation simulations, this time based on 10 pictures. The

4As explained in App. A, the estimated ŝk is prone to permutation and scale ambi-
guities. Thus, Eq. (51) is applied to separation results which are compensated for these
ambiguities.

22

Table 1: Simulation results: The accuracy of the separation is measured in
terms of the signal to interference ratio (SIR).
Algorithm SIR [dB] Time
Non-parametric ICA with back propagation gradient
computation

18 ± 4 760 min

Non-parametric ICA with fast kernel convolu-
tion, using histograms of 1K bins

22 ± 3 1.2 min

Jade 7 ± 4 0.2 sec
InfoMax 1 ± 0.5 1.4 sec
InfoMax with pre-filtering 8 ± 4 1.6 sec
Fast ICA 4 ± 4 1.1 sec
Fast ICA with pre-filtering 5 ± 3 1.9 sec

pictures where mixed using randomly generated full rank matrices (condi-

tion number≤ 100). The separation results are presented in Fig. 5.

Figure 5: Four samples of a set of 10 pictures involved in the separation
simulation. The mixed signals were pre-filtered by a derivative operator
before the separation. The separation SIR is 20dB.

23

5 Conclusions

We have presented two techniques for accelerating the estimation of entropy

its gradient using kernel methods. The first technique improves gradient

computation using back propagation, and lowers the gradient complexity to

be comparable to that of the entropy estimation itself. The second technique

provides further acceleration using fast convolution, based on resampling

(quantization) of signals to a uniform grid. This improves the complexity of

estimating the entropy and its gradient from N2 to N log N .

The low computational cost of our algorithms makes non-parametric en-

tropy estimation applicable to high dimensional problems and large sample

sizes. We demonstrated this by applying our methods to the linear ICA

problem, where both high separation performance and practical run times

were achieved.

A Ambiguities in MI optimization

Optimization using MI as a cost function possesses three ambiguities: Per-

mutation ambiguity, sign ambiguity, and scale ambiguity.

Permutation ambiguity

Let x, y be two signals, then

Ix,y = Hx + Hy − Hx,y = Hy + Hx − Hy,x = Iy,x . (52)

Therefore, the reconstructed signals apears in no special order. This ambi-

guity does not concern us in this work.

Scale and sign ambiguity

Let x, y be two statistically independent signals. Then, their joint PDF is

separable and equals

px,y(x, y) = px(x)py(y) . (53)

Therefore, the MI of x, y is

Ix,y =

∫
x

∫
y

px,y(x, y) log

[
px,y(x, y)

px(x)py(y)

]
=

∫
x

∫
y

px,y(x, y) log(1) = 0 . (54)

24

Denote x̄ = ρx and ȳ = τy. The joint PDF of x̄, ȳ is still separable and

equals

px̄,ȳ(x̄, ȳ) = px̄(x̄)pȳ(ȳ) . (55)

Therefore, their MI is also zero. Assume that matrix W is a solution to

the optimization problem, i.e it causes the MI of the reconstructed sources

ŝ1, . . . , ŝK to be zero. Denote R as a diagonal matrix whose diagonal terms

are r1,1, . . . , rK,K . Then, RW is also a solution to the optimization problem,

causing the MI of r1,1ŝ1, . . . , rK,K ŝK to be zero. Therefore the solution W is

derived up to a scaling of each of its rows. The sign ambiguity is a special

case of the scaling ambiguity, in which the scale is −1.

The scale ambiguity implies that we have infinitely many solutions to the

separation problem. This ambiguity may cause the optimization algorithm

to be unstable. In order to stabilize the algorithm, we add a penalty term

that determines the scale of the estimated sources. We choose to force the

norm of the estimates sources to be
√

N . This normalization solves only the

scale ambiguity, but does not resolve the sign ambiguity. Nevertheless, the

sign ambiguity leads to a finite number of solutions.

B Optimal window variance for Parzen-windows

PDF estimation

Following [14], the optimal value for the effective width of the Parzen-window

kernel is

σoptimal = κ−2/5

{∫
ϕ(t)2 dt

}1/5 {
p′′(x)2 dx

}−1/5
N−1/5 , (56)

where p is the unknown PDF being estimated and

κ =

∫
t2ϕ(t) dt . (57)

Unfortunately, Eq. (56) implies that the optimal kernel width depends on the

PDF that we want to estimate. Therefore we cannot determine an optimal

kernel width that will fit every arbitrary source.

25

The kernel width which we used in our simulations is σ = 1.06N−1/5.

It is obtained for the special case where ϕ is a Gaussian window, and p is

Gaussian PDF having a unit variance. In general, the optimal kernel width

can be determined by a maximum likelihood optimization procedure (see [9])

prior to the separation optimization. As a rule of thumb, we recommend

initialize this optimization from σ = 1.06N−1/5σsamples, where σsamples is the

standard deviation of the signal samples.

References

[1] J. V. M. Bove, “Entropy-based depth from focus,” Journal of Optical

Society of America A, vol. 10, pp. 561–566, 1993.

[2] J. Principe and D. Erdogmus, “From adaptive linear to information fil-

tering,” in Proc. IEEE Sympos. Adaptive Systems for Signal Processing,

Communications and Control, pp. 99–104, 2000.

[3] I. Santamaria, D. Erdogmus, and J. C. Principe, “Entropy minimiza-

tion for supervised digital communications channel equalization,” IEEE

Transactions on Signal Processing, vol. 50, no. 5, pp. 1184–92, 2002.

[4] W. Schwartzkopf, B. Evans, and A. Bovik, “Entropy estimation for seg-

mentation of multi-spectral chromosome images,” in Proc. IEEE South-

west Sympos. on Image Analysis and Interpretation., pp. 234–7, 2002.

[5] R. R. Wang, T. Huang, and Jialin-Zhong, “Generative and discrimina-

tive face modelling for detection,” in Proc. IEEE International Conf.

Automatic Face Gesture Recognition., pp. 281–6, 2002.

[6] R. Boscolo, H. Pan, and V. P. Roychowdhury, “Non-parametric ICA,”

in Proc. ICA2001, pp. 13–18.

[7] Y. Lomnitz, Efficient blind source separation using a semi-maximum

likelihhod technique. PhD thesis, Tel-Aviv University, Dept. Elect.

Engineering-Systems, 2003.

26

[8] P. Thevenaz and M. Unser, “Optimization of mutual information for

multiresolution image registration,” IEEE Transactions on Image Pro-

cessing, vol. 9, no. 12, pp. 2083–99, 2000.

[9] P. A. Viola, Alignment by Maximization of mutual information. PhD

thesis, Massachusetts Institute of Technology - Artificial Intelligence

Laboratory, 1995.

[10] R. O. Duda, P. E. Hart, and D. G. Stock, Pattern classification. NY:

John Wiley and Sons, 2001.

[11] L. B. Rall, Automatic differentiation: techniques and applications.

Springer-Verlag, 1981.

[12] A. Griewank, Evaluating derivatives: principles and techniques of algo-

rithmic differentiation. Philadelphia: SIAM, 2000.

[13] B. A. Pearlmutter, “Fast exact multiplication by the hessian,” Neural

Computation, vol. 6, no. 1, pp. 147–160, 1994.

[14] B. Silverman, Density estimation for statistics and data analysis. NY:

Chapman and Hall, 1986.

[15] J. I. de la Rosa and G. Fleury, “On the kernel selection for minimum-

entropy estimation,” in Proc. IEEE Instrumentation and Measurement

Technology Conference., vol. 2, pp. 1205–10, 2002.

[16] A. J. Bell and T. J. Sejnowski, “An information-maximization ap-

proach to blind separation and blind deconvolution,” Neural Compu-

tation, vol. 7, no. 6, pp. 1129–1159, 1995.

[17] A. Hyvärinen, “The Fast-ICA MATLAB package,” 1998.

http://www.cis.hut.fi/˜aapo/.

[18] D. Pham and P. Garrat, “Blind separation of a mixture of independent

sources through a quasi-maximum likelihood approach,” IEEE Trans-

actions on Signal Processing, vol. 45, no. 7, pp. 1712–1725, 1997.

27

[19] J.-F. Cardoso and A. Souloumiac, “Blind beamforming for non Gaussian

signals,” IEE Proc.-F, vol. 140, pp. 362–370, dec 1993.

[20] D. T. Pham, “Fast algorithm for estimating mutual information, en-

tropies and score functions,” in Proc. ICA2003, pp. 17–22.

[21] A. Hyvärinen, J. Karhunen, and E. Oja, Independent component analy-

sis. NY: John Wiley and Sons, 2001.

[22] S. Makeig, A. Bell, T.-P. Jung, and T. Sejnowski, “Independent com-

ponent analysis of electroencephalographic data,” Advances in Neural

Information Processing Systems 8, pp. 145–151, 1996.

28

