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Abstract

The dispersion relations for metamaterial cylindrical guides have been found and their Brillouin
diagrams have been drawn for different parameters of the guides. It has been found that the transverse
propagation coefficient of the first TMz mode and of the first TEz mode could be either real or
imaginary. The longitudinal propagation coeflicient of the first TMz mode starts at zero frequency
and ends at a frequency where it is equal to the wave-number of the surrounding dielectric medium,
while the longitudinal propagation coefficient of the first TEz mode starts at this same frequency and
grows afterwards indefinitely. The first hybrid mode of order one as well as subsequent modes have also
been studied. It has been found that for the first TMz and TEz modes, the group velocity is almost
constant whether the transverse propagation coefficient is real or imaginary. Moreover, interesting

coupling effects could be obtained by using adjacent metamaterial and dielectric cylindrical guides.
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1. Introduction

Veselago [1] has shown that the Poynting vector of a plane wave is anti-parallel to its phase-velocity
vector in materials whose permittivity and permeability are both negative. These materials have
been consequently termed metamaterials, backward-wave materials, left-handed materials, and so
on. Lindell et al. [2] and Lakhtakia et al. [3] have reviewed these materials. Pendry [4] has shown
that a metamaterial slab can focus evanescent modes and resolve objects only a few nanometers
wide in the optical domain. Ziolkowsky et al. [5] have studied metamaterials both analytically and
numerically. Engheta [6] has made a theoretical analysis on thin subwavelength cavity resonators
containing metamaterials. Alu et al. [7] have studied the radiation from a traveling current sheet at
the interface between a conventional material and a metamaterial. Feise et al. [8] have investigated
the effects of surface waves on the behavior of perfect lenses and studied metamaterial slabs with
transition layers on either side. Cory et al. [9] have studied the longitudinal propagation coefficient
dependence on frequency of regular modes having a real transverse wave-number. Wu et al. [10] have
shown that additional modes having an imaginary transverse wave-number coexist with the regular
modes. Cory et al. [11] have studied metamaterial slab coupling to another metamaterial slab or to
a dielectric slab, taking into consideration regular trigonometric modes as well as hyperbolic modes.
Baccarelli et al. [12] have investigated surface-wave propagation in a metamaterial grounded slab.
Lakhtakia et al. [13] have shown that there exists a restricted equivalence between a thin bi-layer
made of an epsilon-negative layer and a mu-negative layer and a thin single layer of a negative
phase-velocity material. Finally, Qing et al. [14] have analyzed the Goos-Hénchen shift caused by

total internal reflection at the interface between two media of the same or of opposite handedness.

The purpose of this letter is to analyze surface wave propagation along a metamaterial cylindrical
guide. The TMz modes, the TEz modes, and the hybrid modes or order one have been studied,

and the appropriate Brillouin diagrams have been drawn.



2. The dispersion equations

The potentials for a metamaterial cylindrical guide of radius p = a are given as follows for an
exp(jwt) time variation:

i = AiBy i(kpip) {COS”""} exp(—jk,z) (TMzmodes) (i=1,2;n=0,1,2,...) (la)

sinnp

4§ = DB i(kyip) {f;g;g‘g} exp(—jk.2)  (TEzmodes)  (i=1,2n=0,1,2,...). (b
i = 1 applies to the interior region (p < a) while i = 2 applies to the exterior region (p > a).
By,i(kpip) are appropriate Bessel functions of order n (n = 0,1,2,...). We may chose cosng for
the TMz mode and sinn¢ for the TEz mode, or vice-versa. The tangential electric and magnetic

field components of the hybrid modes can be retrieved as follows from these potentials:
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where 1 = 1,2. €7 and p; are negative real numbers, €5 and po are positive real numbers and
k; = wleipi = ki + k7 (i=1,2). (4)

The requirement that the tangential electric and magnetic field components be continuous at
p = a leads to a system of four homogeneous linear algebraic equations in A;, Ao, D1, Dy, which

have a non-trivial solution only if the determinant of the coefficients of Aj, As, D1, Do, vanishes.



Thus, for the hybrid modes [15]
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where the derivatives (') have been taken with respect to the arguments of the appropriate Bessel

functions (see below). Equation (5) can be solved numerically. It has been found that in the interior
region (i = 1), in addition to the real solutions kp; £ a1 (a1 > 0) for which By 1(ky1p) = Jn(a1p),
there are imaginary solutions k,; = —ja; (a1 > 0) as well, for which By 1(kp1p) = In(a1p). In
the exterior region (i = 2), kj is imaginary since the waves decay outside the guide, i.e. kyo =

—jag (ag > 0) so that By 2(kp2p) = Ky (agp). It should be noted that a%Jn(alp) 2y J! (aip),

,%In(chp) £ a1 1}, (a1p), and (%Kn(azp) 2 ay K (azp).

We obtain for the TMz modes (n = 0, D1 = Dy = 0) and for the TEz modes (n = 0,41 = As =
0) the following relations deduced from eq. (5):

J() (ala)

ea2(1a) {Io(ala) } K} (aza) — |e1|(aza) {I(')(ala) } Ky(aza) =0 (TMz modes) (6a)
pafena) {4 Kifaaa) — lirl(aaa) { B9 Kolaaa) =0 (TBzmodes) (o)

where Jo(aqa) and Jj(aia) apply when k,; is real while Ip(aia) and Ij(aia) apply when kpp
is imaginary. It should be noted that Jj(aia) = —Ji(aa), [j(a1a) = I1(a1a) and Kj(aga) =
—Kl(aga).
We deduce from eq. (4) that
+(a1a)? + (kza)® = o?ler|p1|a? (7a)

where the + sign applies when k1 is real and the — sign applies when k,; is imaginary. Also since

ks is always imaginary, it follows that k§2 is a negative real number so that

—(aga)? + (k,a)? = wiegpoa®. (7b)



Therefore, if k,; is real we obtain

(az20)” + (a10)” = W*(ler||m1| — e2p2)a’ (8a)
which is the equation of a circle, while if k,; is imaginary, we obtain

(e20)” — (a10)? = w?(le1]|p1| — e2p2)a® (8b)

which is the equation of an hyperbola. The values of @1 and as could be found by solving nu-
merically the pair of equations (8a) for real k,; or (8b) for imaginary k,, and (6b) for TEz modes
or (6a) for TMz modes or (5) for hybrid modes. The value of k, could be found afterwards from
equations (7a) or (7b). A similar pattern has been observed for surface wave propagation along

metamaterial slabs [11].

We shall study more particularly the behavior of the first TMz and TEz modes with respect
to frequency. Graphs giving asa as a function of aja (or vice-versa), with e,1 = =2, p,1 = —1,
era = 1, pyo = 1, are given in Fig. (1a) for these modes. They describe egs. (6a) and (6b). Let us
denote by a,b,c and d the sections of these graphs corresponding to real k, for the TMz mode,
imaginary k, for the TMz mode, real k,; for the TEz mode, and imaginary k,; for the TEz mode,
respectively. For zero frequency, the hyperbola given by eq. (8b) degenerates into a straight line
for which a; = ay. The value of oy (or @) is given by solving eq. (6a) with Iy(aia) and Ij(aza)
for &y = ay. This straight line cuts section b at point (1) and does not cut section d. When
the frequency grows, successive hyperbolas given by eq. (8b) cut section b up to point (2) where
a1 = 0. The corresponding value of s is found by substituting a3 = 0 into eq. (6a). The adequate

transcendental equation to solve is given as follows:

Kl(aga) . @

(020)Ko(aza) — 269 (TMz mode) . (9a)

If |e1]| = &2, the solution to this equation does not depend on |p;| or pe. When frequency grows
further, successive circles given by eq. (8a) cut section a up to point (3) (which is common to both
modes), where aie = 0. The corresponding value of o is found by substituting ap = 0 into egs. (6a)

or (6b). The adequate equations to solve are given by

£9 (ala) Jo(oqa)
le1|J1(ara)

=0 (TMz mode) (9b)



pa(aia)Jo(aia)
1|1 (ena)

=0 (TEz mode) (9¢c)

i.e., for both modes, by aya = 2.405, which is the first zero of Bessel’s function of order zero. When
frequency grows further, successive circles given by eq. (8a) cut section ¢ up to point (4) where
a1 = 0. The corresponding value of s is found by substituting a; = 0 into eq. (6b). The adequate

transcendental equation to solve is given as follows:

Ki(oa) _ |l (TEz mode) . (9d)

(aga)Ko(aoa) — 2puz
If |p1] = p2, the solution to this equation does not depend on |e1| or e2. When frequency grows

further, successive hyperbolas given by eq. (8b) cut then section d, giving points such as (5).

The graph of k,a as a function of kya with the same values of permittivity and permeability
as in Fig. (1a), is given in Fig. (1b) for the first TMz and TEz modes. The points (1) to (5) in
Fig. (1b) correspond to the same points in Fig. (1a). It is interesting that for both modes, the

group velocity v, = g—,‘c‘i is almost constant, whether k,; is real or imaginary. The first TMz mode

starts at w = 0 where a1 = a9 and ends at w = al/\/\elﬂm\——em where a1 = 2.405 and ay = 0.
It should be noted that at this point, k&, = k9. The first TEz mode starts at the same w where the
first TMz mode ends and tends afterwards to infinity. If we now chose €,1 = —1, u,1 = —2 instead
of er1 = =2, pr1 = —1, keeping ;2 = 1, pr2 = 1, the curves for the TMz modes and for the TEz

modes interchange.

3. Numerical results

The variation of asa versus aja and of k,a versus k,a for the following two sets of data: a) e,1 =
=2, pr1 = —1, 60 =1, pir2 = 1, b) €11 = =5, pty1 = —1, €20 = 1, pyp = 1, is given in Figs. 2(a), 2(b),
3(a) and 3(b), respectively, for successive TMz and TEz modes and for successive hybrid modes
of order one. It can be seen in Figs. (2a) and (3a) that for the first TEz mode, the value of asa
corresponding to a; = 0 is given by eq. (9d), i.e. aga = 2.387 (point (4)), whether |e;| = —2 or
—b5, since |u1| = peo, as predicted in the previous section. Moreover, for the first TMz mode, the
value of apa corresponding to oy = 0 is given by eq. (9a), i.e. aga = 1.332 (point (2)) for |e;| = —2
and 0.651 (point (2)) for |e1] = —5. It can further be seen in Figs. (2a) and (3a) that for as = 0,

we obtain aja = 2.405 (point (3)), i.e. the first zero of Bessel’s function of order zero, for the first



TMz and TEz modes, as predicted in the previous section, while we obtain aja = 5.520,8.654, . ..,
i.e. the successive (second, third, ... ) zeroes of Bessel’s function of order zero, for the successive
(second, third, ... ) TMz and TEz modes, because these aja’s are the solutions of egs. (9b) and
(9¢). The values of aja for as = 0 depend on the geometry of the device but not on its composition.
Reverting to the hybrid modes of order one, we can see in Figs. (2a) and (3a) that for ap = 0,
we obtain aja = 3.832,7.016, ..., which are the successive (first, second, ... ) zeroes of Bessel’s
function of order one, because these aja’s are the solutions of eq. (5) for ag = 0 and n = 1. It
can also be seen in Figs. (2a) and (3a) that the value of aga for ay = 0 is obtained for the hybrid
modes of order one by solving eq. (5) for aga with @y = 0 and n = 1. It is interesting to note
that the first hybrid mode of order one, as well as the first TMz and TEz modes, have imaginary
solutions for k,;. The next (second, third, ... ) TMz and TEz modes tend asymptotically to
infinity for aja = 3.832,7.016, ..., while the next (second, third, ... ) hybrid modes of order one
tend asymptotically to infinity for aja = 2.405,5.520,... . This behaviour can be explained as
follows: We obtain from egs. (6a) and (6b) that:

|€1 |J1 (ala)Ko (QQG/)

= ™™ d 10
aja = aga e2Jo (1) K (0a) (TMz modes) (10a)
1|1 (a1a) Ko(aza)
16 = a9a TMz modes) . 10b
! 2 /12J0((11G)K1(042a) ( ) ( )

For large asa, Ko(aga) ~ Ki(asga) and they are both positive. Moreover aja and asa are always
positive. Therefore, for the TMz and the TEz modes, only when Jy(aja) and Ji(aja) have the
same sign, is there a solution to egs. (10a) and (10b). This is the reason for the appearance of the
stopbands in the TMz and the TEz modes, which occur between the i’th zero of Jy and that of
Ji1,(i=1,2,3,...). The stopbands in the hybrid modes of order one can be deduced similarly.

It can be seen in Figs. 2(b) and 3(b) that the TMz and TEz modes other than the first (i.e.

the second, the third, ... ), start together on the k, = ko curve where w = a1/+/|e1]|u1] — 2112,
ara = 5.520,8.654, ... , s = 0, and tend asymptotically towards the k, = k1 curve.

4. Conclusion

The Brillouin diagrams of metamaterial cylindrical guides have been drawn for different parameters

of the guides. It has been found that the transverse propagation coefficient of the first TMz mode,



of the first TEz mode and of the first hybrid mode of order one, could be either real or imaginary.
The longitudinal propagation coefficient of the first TMz mode starts at zero frequency and ends
at a frequency where it is equal to the wave-number of the surrounding dielectric medium, while
the longitudinal propagation coeflicient of the first TEz mode starts at this same frequency and
tends afterwards to infinity. It is interesting to note that the first TMz mode is the dominant mode
in a metamaterial cylindrical guide but that it possesses a lower cut-off frequency in a dielectric
cylindrical guide, so that if it was possible to excite both in this mode, useful coupling effects could

be obtained as in the corresponding case of coupled metamaterial and dielectric slabs [11].
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Figure Captions

Figure 1: (a)

Figure 2: (a)

Figure 3: (a)

aga versus aqa for the first TMz and TEz modes.
Er1 = —2, Mr1 = —1;e,0=1, MHr2 = 1.
+ + +: TMz mode, real ky;. © o o TMz mode, imaginary k;.
* * * : 'TEz mode, real k1. e o o: TEz mode, imaginary kp;.
k,a versus koa for the first TMz and TEz modes.
er1 = =2, pr1 = —1; &2 =1, ptro = 1.
+ + +: TMz mode, real ky;. o o oo TMz mode, imaginary k.
* * *x: TEz mode, real ky;. e o o: TEz mode, imaginary k.
aga versus aja for the TMz modes, the TEz modes, and the hybrid modes of order
one;
er1=—2, pr1=—-162=1, o =1.
+ + +: TMz mode, real ky;. oo o:  TMz mode, imaginary k.
* * *: TEz mode, real kp;. e o oo TEz mode, imaginary k1.
x x x: hybrid mode, real ky;. [O0O: hybrid mode, imaginary k.
k,a versus koa for the TMz modes, the TEz modes, and the hybrid modes of order
one.
€1 = =2, pr1 = —1; &2 =1, ptr2 = 1.
+ + +: TMz mode, real kp;. oo o: TMz mode, imaginary k.
* * *: TEz mode, real kp;. e o oo  TEz mode, imaginary k.
x x x: hybrid mode, real ky;. [O0O: hybrid mode, imaginary k.
asa versus aia for the TMz modes, the TEz modes, and the hybrid modes of order
one.
Er1 = =9, 1 = —15 &2 =1, ppg = 1.
+ + +: TMz mode, real ky;. o o o TMz mode, imaginary kp;.
* * x: TEz mode, real kp. e o o:  TEz mode, imaginary kp1.
x x x: hybrid mode, real k,;. OO0O: hybrid mode, imaginary k.
k,a versus koa for the TMz modes, the TEz modes, and the hybrid modes of order
one.
Er1 = =9, 1 = —15 &2 =1, ppg = 1.

+ + +: TMz mode, real kp;. oo o:  TMz mode, imaginary k.
* * x: TEz mode, real kp. e o o:  TEz mode, imaginary kp;.
x x x: hybrid mode, real kp;. OOO: hybrid mode, imaginary k.
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Figure 2: (a)



a

10

10



e
(o]

S S ok KA K R XS

*x

b8

o "

Figure 3 (a)



p*

2
+.*.
X x
Xy
_*#.*

* 4
Thegre
.mxxxxxx

xxxxxxxx )

10

kza

(b)

Figure 3





