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Abstract

We consider the problem of estimating a deterministic parameter vector x from observations y = Hx +

w, where H is a known linear transformation and w is additive noise. Although the least-squares (LS)

estimator is often used in such estimation problems, it does not necessarily minimize the mean-squared

error (MSE) between x and its estimate x̂. In fact, with few additional assumptions, linear estimators can

be constructed which outperform the LS estimator. For example, we show that if the parameter vector x is

known to lie within some bounded parameter set U , then a linear minimax estimator exists which has lower

MSE than the LS estimator for any x ∈ U .

The minimax approach, in which the estimator is chosen to minimize the worst-case error, is suitable

when data such as the parameter set bound and noise level are available. If this information is unavailable,

then it may be more appropriate to seek the estimator which guarantees a required maximum error for as

wide a range of conditions as possible. We refer to this approach as unbounded uncertainty estimation, and

develop two types of estimators based on this criterion: estimators guaranteeing the required error for as

large a parameter set as possible, and for as large a noise level as possible. We show a relation between

each of these estimators and the minimax estimator, which allows us to efficiently compute many types of

unbounded uncertainty estimators and, in some cases, to obtain an analytical expression for the estimators.

We then demonstrate the use of the unbounded uncertainty estimator in a channel estimation application,

in which an unknown channel is estimated using a preamble sequence, and show that unbounded uncer-

tainty estimation achieves a lower bit error rate (BER) than classical LS estimation.
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1 Introduction

The problem of estimating an unknown parameter vector x based on noisy measurements y is a fundamental

problem in science and engineering. A common formulation of this problem assumes that y = Hx + w is

a known linear transformation H of x with additive zero-mean random noise w, whose covariance matrix

is known, possibly up to a scaling factor. In an estimation context, we would like to design an estimator

x̂ to be close to x in some sense. For example, we may seek a linear estimator x̂ = Gy that minimizes the

mean-squared error (MSE) E‖x − x̂‖2.

In some cases, the parameter vector x is random with known second-order statistics. Under these cir-

cumstances the well-known Wiener filter [23, 18] minimizes the MSE among all linear estimators. However,

in many other cases the parameter vector x must be treated as a deterministic vector, either because it is in-

herently deterministic or because it is random with unknown statistics. The assumption of a deterministic

parameter vector will be adopted throughout this paper.

In the deterministic case, the MSE is the sum of the variance of x̂ and the squared norm of the bias of x̂.

However, since the bias is a function of the unknown vector x, direct minimization of the MSE is not possible.

A common approach to designing MSE-based estimators is to choose the minimum MSE estimator among all

linear unbiased estimators, i.e., linear estimators whose bias is zero. For unbiased estimators, the MSE equals

the estimator variance, which does not depend on the value of x and can therefore be minimized without

knowledge of x. Minimizing the variance for unbiased estimators results in the (weighted) least-squares

(LS) estimator [15]. The LS estimator has the additional property that it minimizes the measurement error

E‖y − ŷ‖2, where ŷ = Hx̂ is the estimated measurement vector. However, in an estimation context, typically

the objective is to minimize the estimation error, i.e., a measure of the distance between x and x̂ such as the

MSE, rather than the measurement error.

An unbiased estimator does not necessarily guarantee low MSE. Indeed, we show in Section 4.1 that

for any bounded set U , a biased estimator exists whose MSE is lower than the MSE of the least-squares

estimator, for all x in U . Several regularization techniques are aimed at improving estimation performance

by introducing a bias; among these are Tichonov regularization [21] (also known as ridge regression [9]) and

the shrunken estimator [17]. However, like the LS estimator, these estimators are designed to minimize the

measurement error, rather than the estimation error.

Design of an estimator requires knowledge of various system properties, such as the transformation matrix

H and the noise covariance Cw. When this information is lacking, one approach is to minimize the maximum

(worst-case) estimation error among all possible values of the system property. This minimax approach was
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first introduced for dealing with uncertain noise statistics [11, 12], and has since been applied in a variety of

estimation problems [13, 14, 22]. Of particular interest to us is the case of the bounded parameter set, in which

the estimator is designed to minimize the worst-case estimation error for any parameter vector x in a given

parameter set U [19, 6]. An important property of bounded parameter set estimation is that the analysis is

performed on a particular (worst-case) value of x, and can thus be used to minimize the estimation error,

for example by minimizing the worst-case MSE. Minimax estimators can also be constructed to minimize the

worst case of other estimation error functions, such as the regret [7], which is defined as the difference between

the estimator’s MSE and the best possible MSE obtained using a linear estimator which has knowledge of the

parameter vector x.

The minimax approach assumes that bounds on various system properties are known. These bounds

have considerable impact on the obtained estimator. For example, if the parameter set is too small, then the

estimator may receive values of x for which it was not designed, and the estimation error will be larger than

expected. Yet the parameter set, which defines extreme parameter values, is sometimes difficult to characterize

based on past experience, which contains mostly nominal parameter values. Alternatively, the parameter set

may be estimated from the measurements y, but this results in a nonlinear estimator whose computational

complexity is higher.

In some estimation problems, requirements on the maximum estimation error are more readily available

than other system properties. For example, in communication systems, a minimum SNR may be required for

data transmission to be possible, while bounds on the estimated parameters may not be known. For such

cases, following the philosophy of information-gap decision theory [1, 2], we propose an unbounded uncer-

tainty estimation approach; in general terms, this approach designs an estimator to guarantee the required

error for the widest range of conditions possible. The unbounded uncertainty estimation strategy can be ap-

plied in several ways, depending on the uncertain system property. In Sections 2–5, we discuss the case in

which the parameter set is uncertain, and describe the unbounded parameter set (UPS) estimator which maxi-

mizes the parameter set for which error requirements are maintained. In Section 6 we deal with the case in

which the noise level is uncertain, and provide an unbounded noise level (UNL) estimator which maximizes the

noise level for a given maximum error and a given parameter set.

The UPS estimator is more accurately defined as follows. For a given estimator, we find the largest set of

x’s for which performance is satisfactory, i.e., for which the estimation error does not exceed the maximum

allowed error. A measure of the size of this set is called the parameter robustness of the estimator. For instance,

the parameter robustness can be defined as the largest L for which satisfactory performance is guaranteed

for all x such that ‖x‖ ≤ L. The UPS estimator is defined as the estimator which maximizes the parameter
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robustness. In other words, this estimator provides satisfactory performance over as large a range of vectors

x as possible; and yet, it does not require choosing an arbitrary bound on the range of values of x. In Section 2,

the UPS estimator is presented for the most common case in which the MSE is minimized over an ellipsoidal

class of parameter sets. A more general definition of the UPS estimator is given in Section 3.1.

The design criteria of UPS estimators are inherently different from those of their bounded (minimax)

counterparts. Nevertheless, we show in Section 3.2 that in many cases there exists a mathematical equivalence

between the two approaches. This equivalence does not imply that the methods are redundant, as they

are designed to be used for different types of estimation problems. However, as we show in Section 4, the

mathematical relation allows us to apply known properties of the minimax estimator to the UPS estimator,

and thus to efficiently calculate UPS estimators — in some cases reaching a closed form of the estimator.

In Section 5, our results are demonstrated for a typical application of estimation theory: the problem of

channel estimation using a training sequence. We show that UPS estimation substantially reduces estimation

error compared to the classical maximum-likelihood estimator, without requiring additional knowledge of

channel statistics.

Applying the concept of unbounded uncertainty estimation in a different setting, in Section 6 we consider

the estimation problem when the noise covariance is known up to a constant, i.e., Eww∗ = σ2Cw, where

σ2 is unknown [16]. In this case, we assume that x lies in a known parameter set U , and find an unbounded

noise level (UNL) estimator which guarantees a required estimation error for as large a range of noise levels σ2

as possible. Here again, we show that the obtained estimator generally has the same form as the minimax

estimator, and derive a closed form for the estimator obtained when the error function is the MSE and the

parameter set U is spherical.

Throughout the paper, matrices are denoted by boldface uppercase letters and vectors are denoted by

boldface lowercase letters. The Hermitian conjugate of a matrix P is denoted by P∗. The notation P º 0

indicates that the matrix P is positive semidefinite, and the notation P º Q indicates that P − Q º 0.

2 Unbounded Parameter Set Estimation: A Useful Special Case

To demonstrate the main ideas of this paper, we begin by presenting an important special case of the un-

bounded parameter set (UPS) estimator. This example is generalized and formalized in Section 3.

Consider the system of measurements y,

y = Hx + w, (1)

where x is an unknown deterministic vector, H is a known full-rank matrix, and w is a zero-mean random
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vector with positive definite covariance Cw. We wish to construct a linear estimator x̂ = Gy of x, such that

the estimate x̂ is close to the unknown parameter x, i.e., the estimation error ǫ(x̂, x) is small in some sense. For

clarity, this section makes use of the MSE E‖x̂ − x‖2 as the estimation error function; a general discussion

follows in Section 3, in which any estimation error function ǫ(x̂, x) may be used.

The MSE is equal to the sum of the variance of x̂ and the squared norm of the bias of x̂ [15],

ǫ(x̂, x) = v(x̂) + ‖b(x̂)‖2, (2)

where

v(x̂) = E‖x̂ − Ex̂‖2 = Tr(GCwG∗) (3)

and

b(x̂) = E(x − x̂) = (I − GH)x. (4)

Since the bias b(x̂) depends on the unknown value of x, direct minimization of the MSE is not possible. A

common approach is to limit discussion to unbiased estimators, in which case the MSE no longer depends on

x, and then seek the linear estimator that minimizes the MSE. This results in the least-squares (LS) estimator,

given by

x̂LS = (H∗C−1
w H)−1H∗Cwy. (5)

The MSE of the LS estimator is

γ0 = Tr
(

(H∗C−1
w H)−1

)

. (6)

Since the bias is a linear function of x, a nonzero bias causes the MSE to tend to infinity as ‖x‖ → ∞. Thus,

attempting to deal with any value of x requires the use of unbiased estimators. However, in some cases a rea-

sonable assumption can be made regarding the size of x. If x is known to lie within some bounded parameter

set U , then the estimator minimizing the worst-case MSE among all values of x in U can be determined. This

is the minimax MSE estimator [19, 6], given by

min
x̂

max
x∈U

E‖x − x̂‖2. (7)

Many possibilities for defining the parameter set U exist [3]. One commonly used set is the ellipsoid

U = {x : ‖x‖T ≤ L}, (8)

where L > 0 is a known constant and

‖x‖2
T = x∗Tx (9)
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for a Hermitian positive-definite weighting matrix T. For clarity, we continue the discussion in this section

using ellipsoidal parameter sets. A more general discussion is presented in the following section.

Since the parameter L describes the unknown vector x, a suitable value of L is often difficult to determine.

Indeed, even if a small amount of information about x is available, such as several past measurements, then

these usually characterize typical values of x, while L is meant to characterize the extreme or rare values

of x. Thus, in some cases, it is our interest to find an estimator achieving “satisfactory” performance for as

large a parameter set as possible. To this end, we assume that a maximum error ǫm is known; this is the

maximum error allowed for satisfactory performance of the system. We aim to design a UPS estimator, for

which satisfactory performance is achieved for as large a parameter set as possible.

Formally, the parameter robustness L̂ of an estimator x̂ is defined as the largest L for which performance

is satisfactory,

L̂(x̂) = max{L : E‖x − x̂‖2 ≤ ǫm ∀x∗Tx ≤ L}. (10)

The UPS estimator is designed to maximize the robustness, i.e.,

x̂UP = arg max
x̂

L̂(x̂). (11)

Suppose we wish to find the UPS estimator for maximum error ǫm equal to γ0 of (6), which is the MSE

of the LS estimator. The LS estimator achieves this error regardless of the value of x; thus, its parameter

robustness is infinite when the maximum error is γ0 or greater. This implies that requiring a maximum error

of γ0 (or greater) yields the LS estimator as a UPS estimator. More interesting is the case ǫm < γ0, for which

the LS estimator no longer achieves the required error, regardless of the value of x. A UPS estimator x̂ for a

given error level ǫm < γ0 has finite robustness, but within the parameter set UL̂(x̂), its worst-case error does

not exceed ǫm. Thus, the UPS estimator outperforms the LS estimator for any x ∈ UL̂(x̂).

In the remainder of this section, we show that the linear UPS estimator of (11) and (10) can be found

by solving a quasiconvex optimization problem. An optimization problem is quasiconvex if its constraints

are convex, and its objective function is quasiconvex; the function f (z) is quasiconvex if the sublevel sets

{z : f (z) ≤ α} are all convex. Quasiconvex problems can be efficiently solved, for example, using bisection

[4]. In addition, as we shall see in Section 4.1, in many special cases a closed form for the UPS estimator can

be obtained, by exploring its relation to the minimax MSE estimator.

Proposition 1. The linear unbounded parameter set (UPS) estimator x̂UP = Gy defined by (11) and (10) can be found
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by solving the following quasiconvex optimization problem:

min
G,λ,y

y/λ (12)

s.t.







































y + ǫm g∗

g I



 º 0





λI T−1/2(I − GH)∗

(I − GH)T−1/2 I



 º 0

where g is the vector obtained by stacking the columns of GC1/2
w . The parameter robustness L̂ of this estimator is given

by
√

−y/λ for the optimal values of y and λ.

Proof. We seek a solution to (11) with L̂(x̂) defined by (10), which is equivalent to solving the optimization

problem

max
G,L2

L2

s.t.

(

max
‖x‖2

T≤L2
E‖x − x̂‖2

)

≤ ǫm, (13)

where x̂ = Gy = G(Hx + w). Using (2)–(4), the MSE is given by

ǫ = E‖x − x̂‖2 = Tr(GCwG∗) + x∗(I − GH)∗(I − GH)x. (14)

Thus, for a given estimator x̂ = Gy, we have

max
‖x‖T≤L

E‖x − x̂‖2 = Tr(GCwG∗) + max
‖x‖T≤L

x∗(I − GH)∗(I − GH)x. (15)

However,

max
‖x‖T≤L

x∗(I − GH)∗(I − GH)x = max
z∗z≤L2

z∗T−1/2(I − GH)∗(I − GH)T−1/2z

= λmaxL2, (16)

where λmax is the maximum eigenvalue of T−1/2(I−GH)∗(I−GH)T−1/2, and is the solution to the semidef-

inite problem

min
λ

λ

s.t. T−1/2(I − GH)∗(I − GH)T−1/2 ¹ λI. (17)
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Consider the problem

max
G,λ,L2

L2 (18)

s.t.







Tr(GCwG∗) + λL2 ≤ ǫm (a)

T−1/2(I − GH)∗(I − GH)T−1/2 ¹ λI. (b)

We claim that the optimal solution to this problem always has λ = λmax. Suppose this were not the case, and

λ > λmax for the optimal solution. Then, λ can be decreased while still maintaining (18b). As a result, (18a)

is no longer tight, so that L2 can be increased, contradicting the assumption that λ was the optimal solution.

Thus, the optimal solution for (18) always has λ = λmax, and therefore, by (15) and (16), the optimal solution

of (18) satisfies

max
‖x‖2

T≤L2
E‖x − x̂‖2 = Tr(GCwG∗) + λL2, (19)

so that (18) and (13) are equivalent.

Let g be the vector obtained by stacking the columns of GC1/2
w . Using Schur’s Lemma [10, p. 472], it is

shown in [6] that (18a) and (18b) are equivalent to the following matrix inequalities:





ǫm − λL2 g∗

g I



 º 0, (20a)





λI T−1/2(I − GH)∗

(I − GH)T−1/2 I



 º 0. (20b)

Defining r = −L2, (20a) becomes

r





λ 0

0 0



 º −





ǫm g∗

g I



 . (21)

We now add a scalar optimization parameter y and note that the optimization problem is equivalent to

min
G,λ,r,y

r (22)

s.t.















































rλ ≥ y




y 0

0 0



 º −





ǫm g∗

g I









λI T−1/2(I − GH)∗

(I − GH)T−1/2 I



 º 0.

It is evident that the optimal solution to this problem satisfies r = y/λ; substituting this into the above

problem yields the required optimization problem (12). The objective function of (12) is quasiconvex, and all

its constraints are convex, so that this is a quasiconvex optimization problem [4].
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In the next section we generalize the discussion to UPS estimators which optimize various error functions

over different parameter sets. We also demonstrate a relation between UPS estimation and minimax esti-

mation, which provides further insight into the idea of UPS estimation and yields an alternative method for

finding UPS estimators. In particular, this leads to a closed form for the UPS estimator of (11) and (10) when

the weighting matrix T commutes with H∗C−1
w H, which occurs, for example, when T = I.

3 General Form of Unbounded Parameter Set Estimators

The example presented in Section 2 is a special case of a UPS estimator, which can be generalized to include

different error functions and parameter sets. In Section 3.1, we provide definitions which construct the general

form of the UPS estimator. In Section 3.2, we use these definitions to prove a useful relation between bounded

and unbounded parameter set estimators. This relation will be used in Section 4 to find efficient algorithms

for identifying UPS estimators, and in some cases, allows us to derive a closed form for the UPS estimator.

3.1 Definitions

Let x be an unknown vector in Cn and let w be a zero-mean random vector in Cm whose covariance is known.

Suppose H is a known full-rank m × n matrix, and let y = Hx + w. An estimator x̂ is a function of y which

returns an n-vector close to x in some sense. Using this notation, the following set of definitions constructs

the UPS estimator.

Definition 1. The system properties required for the design of an unbounded parameter set (UPS) estimator are

the following three components:

1. An error function ǫ(x̂, x) which quantifies the degree to which an estimator x̂ misrepresents the specific

value x. The error function must be continuous.

2. A maximum error ǫm which defines the error value required for successful operation of the system. This is

a deterministic real number which must be known to the designer. The UPS estimator seeks to maximize

the range of values of x for which the maximum error is guaranteed.

3. A class of parameter sets {UL ⊆ Cn : L ∈ [0, ∞)} which define feasible values of x under varying

parameter set bounds L. The parameter sets obey two basic properties:

• As L increases, more values of x become feasible, so that the sets UL are nested:

UL1
⊆ UL2

⇐⇒ L1 ≤ L2. (23)
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• The parameter L is chosen so that it describes a linear expansion of the parameter sets: For all

L1, L2 > 0,

UL1
=

L1

L2
UL2

=

{

x :
L2

L1
x ∈ UL2

}

. (24)

This requirement implies that the parameter sets are centered on the origin, an assumption which

we adopt without loss of generality.

Most common bounds fulfill the requirements for the class of parameter sets above. The weighted norm

UL = {x : x∗Tx ≤ L2} used in Section 2 is one example. Another example is the box bound, UL = {x : |xi| ≤

Lbi, ∀i}, where bi > 0 are constants.

Definition 2. The parameter robustness L̂(x̂) of an estimator x̂ (for particular system properties) is the maximum

parameter set bound L for which the maximum error is guaranteed, namely,

L̂(x̂) = max{L : ǫ(x̂, x) ≤ ǫm, ∀x ∈ UL}. (25)

Definition 3. An unbounded parameter set (UPS) estimator (among estimators of class E ) is an estimator x̂UP

maximizing the parameter robustness L̂ for given design parameters ǫ(x, x̂), ǫm, and UL; namely,

x̂UP = arg max
x̂∈E

L̂(x̂). (26)

The set E is a given set of estimators among which the UPS estimator is chosen. For example, this set may be

chosen to include only linear estimators, in which case x̂UP is called a linear UPS estimator.

The estimator presented in Section 2 is a special case of a UPS estimator, which makes use of a particular

choice of the error function and of the class of parameter sets. Specifically, the MSE (2) is used as the error

function, ellipsoids (8) of increasing size and constant axis ratios are used as the nested parameter sets, and

the estimator is restricted to being linear.

Although the minimax and UPS estimators are based on different design parameters, they are related

in an important sense: in many cases, the set of minimax estimators equals the set of UPS estimators. This

relation is formalized in Section 3.2. The minimax estimator is defined as follows.

Definition 4. A minimax (or bounded parameter set) estimator (among estimators of class E ) for the parameter set

U is an estimator x̂M minimizing the worst-case error in U :

x̂M = arg min
x̂∈E

max
x∈U

ǫ(x̂, x). (27)
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3.2 Bounded and Unbounded Parameter Set Estimators

An interesting and useful relation exists between the UPS estimator x̂UP and the minimax estimator x̂M: the

UPS estimator maximizes the parameter robustness L within a range defined by the known value of ǫ, while

the minimax estimator minimizes the worst-case error ǫ within a range defined by the known value of L. The

relation is stated formally in Proposition 2 below. One implication of this proposition is that in many cases,

UPS estimators can be efficiently found when an algorithm for finding the corresponding bounded parameter

set estimator is known.

This similarity notwithstanding, bounded and unbounded parameter set estimators differ qualitatively in

the type of information on which their design is based. The minimax estimator requires that a bound on the

uncertain parameter x be stated, while the UPS estimator requires knowledge of the maximum error under

which the system still operates correctly. Thus, proper choice of an estimator should depend on the nature of

the information available to the designer.

Proposition 2. Let ǫ(x̂, x) be an error function, and let {UL : L ≥ 0} be a class of parameter sets, as defined in

Definition 1.

(a) Let x̂UP be an unbounded parameter set (UPS) estimator with maximum error ǫm, and let L̂ be the parameter

robustness of x̂UP. Then x̂UP is a minimax estimator for the parameter set UL̂.

(b) Let {x̂M(L) : L ≥ 0} be minimax estimators for the parameter sets {UL : L ≥ 0}, respectively, and let e(L) be

the worst-case error function of x̂M(L), namely,

e(L) = max
x∈UL

ǫ(x̂M(L), x). (28)

If e(L) is strictly monotonically increasing, then, for all L, x̂M(L) is a UPS estimator with maximum error e(L).

Before proving Proposition 2, let us study the behavior of the worst-case error function e(L) defined in

(28). This function defines a region of achievable estimators (Figure 1). For any parameter set UL, an estimator

may be constructed for which the worst-case error is e(L); this is the minimax estimator x̂M(L). No estimator

can be constructed with lower worst-case error, since this would contradict the fact that x̂M(L) is a minimax

estimator.

Clearly, the worst-case error function is non-decreasing in L. To see this, suppose by contradiction that

e(L) > e(M) for some L < M. Then, the worst-case error of x̂M(M) over UL is lower than the worst-case

error of x̂M(L) over UL, contradicting the fact that x̂M(L) is a minimax estimator for UL. As Proposition 2(b)

shows, if e(L) is strictly increasing, then x̂M(L) is not only the set of minimax estimators, but also the set of
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high error

low error

low robustness high robustness

e(L)

Figure 1: The worst-case error function and the region of achievable estimators

UPS estimators for varying maximum errors. As we shall see in the following sections, e(L) is indeed strictly

increasing for many important cases, such as the MSE error function. However, this is not always the case.

For instance, if the error function decreases with ‖x‖, then increasing the parameter set will not increase the

worst-case error. Also, if the error function is constant, at least for some range of values of x, then increasing

the parameter set may leave the worst-case error unchanged.

The worst-case error function can also be used to find the parameter robustness of a UPS estimator. Sup-

pose we are given a maximum error ǫm and wish to find the robustness of the resulting UPS estimator. For

any L satisfying e(L) ≤ ǫm, the estimator x̂M(L) has worst-case error not exceeding ǫm. Also, for any L satis-

fying e(L) > ǫm, there does not exist an estimator for which the worst-case error does not exceed ǫm. Hence,

the parameter robustness of the UPS estimator is the largest L for which e(L) ≤ ǫm.

When describing UPS estimators, e(L) represents a trade-off between performance and robustness to

uncertainty in the parameter set. When performance requirements are modest (ǫm is large), performance

can be guaranteed for large variations in the parameter set (UL is large); when performance requirements

are stringent, satisfactory performance can only be guaranteed for a small parameter set. As Proposition 2

shows, this is equivalent, in many cases, to the minimax trade-off, which states that when the parameter set

is increased (UL is large), the achieved performance is decreased (the worst-case error is increased).

Proof of Proposition 2. (a) Suppose x̂UP is a UPS estimator with parameter robustness L̂. Assume by contra-

diction that it is not a minimax estimator over UL̂. Then, by Definition 4, there exists an estimator x̂M such
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that

max
x∈UL̂

ǫ(x, x̂M) < max
x∈UL̂

ǫ(x, x̂UP) ≤ ǫm. (29)

By Definition 1, the parameter sets expand linearly, so that for sufficiently small α > 1, the parameter set

UαL contains values of x which are all arbitrarily close to some value of x in UL. Furthermore, by Definition

1, ǫ is continuous, so that sufficiently small changes in x yield arbitrarily small changes in ǫ(x̂UP, x). Hence,

there exists a sufficiently small α > 1 for which

max
x∈UαL̂

ǫ(x, x̂M) ≤ ǫm. (30)

Thus the parameter robustness of x̂M is at least αL̂, which is greater than the parameter robustness of x̂UP.

This contradicts the fact that x̂UP is a UPS estimator.

(b) Given L, define the required maximum error as ǫm = e(L). Assume by contradiction that x̂M(L) is not

a UPS estimator for the maximum error ǫm. Then, there exists an x̂UP for which

L̂(x̂UP) > L̂(x̂M(L)) ≥ L. (31)

Therefore,

max
x∈UL̂(x̂UP)

ǫ(x̂UP, x) ≤ ǫm = e(L) < e(L̂(x̂UP)). (32)

However, by definition of the worst-case error function e(L),

max
x∈UL̂(x̂UP)

ǫ(x̂M(L̂(xu)), x) = e(L̂(x̂UP)). (33)

Hence x̂UP achieves a lower worst-case error over UL̂(x̂UP) than the minimax estimator of UL̂(x̂UP), which is a

contradiction. We conclude that x̂M(L) must be a UPS estimator.

We have shown that under appropriate conditions, a UPS estimator is equivalent to a minimax estimator

with a matching choice of a parameter set. These conditions will be shown to hold for several cases of interest,

including linear MSE estimators, in the following section. This equivalence can be used to efficiently find the

UPS estimator, if an algorithm for finding a minimax estimator is known, using bisection on the worst-case

error function e(L): Since the function is strictly monotonic, a value of L yielding e(L) which equals ǫm to

any desired accuracy can be found using a logarithmic number of calculations of the value of e(L). From

Proposition 2(b), the minimax estimator achieving the required worst-case error is also a UPS estimator.

In some cases, such as the linear MSE estimator presented in Section 2, an algorithm for directly finding

the UPS estimator is known, and may be more efficient than the bisection method. However, for arbitrary

design parameters, a direct algorithm for finding a UPS estimator may not be known. Furthermore, in many
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cases the minimax estimator can be determined very efficiently, and in some cases a closed form is known for

the minimax estimator. Under these conditions the bisection method may be more efficient than the direct

algorithm, even if one is available. If, in addition, e(L) = ǫm can be solved analytically for a particular value

of ǫm, then a closed form can be found for the UPS estimator. One example in which this occurs is presented

in Section 4.1.

4 Estimators for Various Error Functions

As we have shown in Section 3.2, the UPS estimator is equivalent to the minimax estimator, provided that

simple conditions on the error function are maintained. We now prove that these conditions hold for two

cases of interest, the MSE estimator (Section 4.1) and the regret estimator (Section 4.2).

4.1 Linear MSE Estimators

Consider the UPS estimation problem when the error function of interest is the MSE, and the estimator is

restricted to being linear. In Proposition 3, we show that bounded and unbounded criteria for optimality

are equivalent in these circumstances. This allows us to find the UPS estimator whenever an algorithm for

finding the minimax estimator is known. In particular, Proposition 4 derives a closed form for the estimator

when the uncertainty sets are spherical.

Proposition 3. Let {UL : L ≥ 0} be a class of parameter sets as defined in Definition 1. Suppose that the error

function of interest is the MSE, ǫ(x̂, x) = E‖x̂ − x‖2. For all L, let x̂M(L) = GLy be a linear minimax MSE estimator

for the parameter set UL, and let e(L) be the worst-case error function of x̂M(L), namely,

e(L) = max
x∈UL

E‖x̂M(L) − x‖2. (34)

Then, x̂M(L) is an unbounded parameter set (UPS) estimator with maximum error e(L).

The proof of Proposition 3 is based on the following lemma.

Lemma 1. Given any bounded parameter set U , there exists a linear biased estimator x̂b whose MSE is lower than the

MSE of the least-squares estimator, for all x ∈ U .

Proof. For any bounded U , there exists a finite M such that U is bounded within a sphere of radius M. The

linear minimax MSE estimator for this sphere is given by [6]

x̂b = Gy =
M2

M2 + γ0
(H∗C−1

w H)−1H∗C−1
w y (35)

14



where γ0 = Tr((H∗C−1
w H)−1) is the MSE of the unbiased estimator. We now show that x̂b achieves a lower

MSE than the LS estimator for all x ∈ U . The bias of x̂b is given by

b(x̂b) = E(x̂b − x) = E
(

βx + β(H∗C−1
w H)−1H∗C−1

w w − x
)

= (β − 1)x, (36)

where β = M2

M2+γ0
. The variance of x̂b is

v(x̂b) = Tr(GCwG∗)

= Tr
(

β(H∗C−1
w H)−1H∗C−1

w CwC−1
w H(H∗C−1

w H)−1β
)

= β2Tr((H∗C−1
w H)−1)

= β2γ0. (37)

Since MSE(x̂b) = v(x̂b) + ‖b(x̂b)‖
2, we have

MSE(x̂b) = β2γ0 + (1 − β)2‖x‖2 (38)

≤ β2γ0 + (1 − β)2M2 (39)

=

(

M2

M2 + γ0

)

γ0 (40)

< γ0. (41)

Hence, for all x ∈ U , the MSE using x̂b is lower than the MSE for an unbiased estimator.

Proof of Proposition 3. By Proposition 2(b), it is sufficient to show that e(L) is strictly monotonically increasing.

From the definition of e(L) and from (2)–(4),

e(L) = Tr(GLCwG∗
L) + max

x∈UL

x∗(I − GLH)∗(I − GLH)x. (42)

Lemma 1 states that there exists a biased estimator which achieves lower MSE than the LS estimator. Since the

LS estimator achieves the lowest possible MSE among all unbiased estimators, it follows that the minimax

MSE estimator must be biased, i.e., GLH 6= I. Thus, as long as x is not on the boundary of UL, x∗(I −

GLH)∗(I − GLH)x can be increased by replacing x with (1 + δ)x for some small δ > 0. Hence, the maximum

of x∗(I − GLH)∗(I − GLH)x over UL is obtained only on the boundary of UL. Therefore, by shrinking the

parameter set, the worst-case error must decrease: for any L < M,

max
x∈UL

E‖x̂M(M) − x‖2
< max

x∈UM

E‖x̂M(M) − x‖2. (43)

However, since x̂M(L) is a minimax MSE estimator for UL,

max
x∈UL

E‖x̂M(L) − x‖2 ≤ max
x∈UL

E‖x̂M(M) − x‖2. (44)
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Together with (43), this implies that e(L) < e(M) for all L < M. Thus, by Proposition 2(b), x̂M(L) is a UPS

estimator with maximum error e(L), for all L.

As we have seen, using the MSE as an error function, the set of minimax estimators equals the set of UPS

estimators for a given class of parameter sets. Thus, finding a UPS estimator for a given maximum error ǫm

becomes simply a matter of finding the minimax estimator whose worst-case error is ǫm. In particular, when

a closed form is known for the set of minimax estimators and their worst-case errors, one can find a closed

form for the UPS estimator as well. This is the case for the class of ellipsoidal parameter sets, as demonstrated

by the following proposition.

Proposition 4. Consider the MSE error function and define the ellipsoidal parameter sets UL = {x : x∗Tx ≤ L2}.

Let x̂LS be the LS estimator,

x̂LS = (H∗C−1
w H)−1H∗C−1

w y, (45)

and let γ0 = Tr
(

(H∗C−1
w H)−1

)

be the MSE of x̂LS.

(a) Suppose H∗C−1
w H and T have the same unitary eigenvector matrix V, so that H∗C−1

w H = VΣV∗ where Σ =

diag(σ1, . . . σm), and T = VΛV∗ where Λ = diag(λ1, . . . λm) with λ1 ≥ λ2 ≥ · · · ≥ λm > 0. An unbounded

parameter set (UPS) estimator for a given maximum error ǫm is given by

x̂UP =























V





0

Im−k



 V∗(I − αT1/2)x̂LS, ǫm < γ0

x̂LS, ǫm ≥ γ0,

(46)

where

α =
∑

m
i=k+1

1
σi
− ǫm

∑
m
i=k+1

λ1/2
i
σi

(47)

and

k = min
{

i : αλ1/2
i+1 < 1

}

. (48)

(b) Suppose T = I, i.e., the parameter sets are spherical. In this case, a UPS estimator is

x̂UP =







ǫm
γ0

x̂LS, ǫm < γ0

x̂LS, ǫm ≥ γ0.
(49)

The parameter robustness of this estimator is given by

L̂(x̂UP) =











√

γ0ǫm

γ0−ǫm
, ǫm < γ0

∞, ǫm ≥ γ0.
(50)
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Proof. (a) We seek an estimator which guarantees an error not exceeding ǫm for as large a parameter set as

possible. We begin with the case ǫm ≥ γ0. In this case, the allowed error is larger than γ0, the MSE obtained

by the LS estimator. Since the LS estimator guarantees this error for any value of x, its parameter robustness

is infinite; thus, x̂LS is a UPS estimator for this trivial case.

We now consider the case ǫm < γ0. From Proposition 3, the UPS estimator is also a minimax estimator. It

is shown in [6] that the minimax MSE estimator for a given parameter set UL is given by

x̂M = V





0

Im−k



 V∗(I − αT1/2)x̂LS, (51)

where

α =
∑

m
i=k+1

λ1/2
i
σi

L2 + ∑
m
i=k+1

λi
σi

, (52)

and k is defined in (48). The worst-case error for this estimator is

m

∑
i=k+1

1 − αλ1/2
i

σi
. (53)

We require a value of L for which the worst-case error equals ǫm. Equating (53) with ǫm, we arrive at (47).

(b) The case T = I is a special case of (a) in which V is unitary and Λ = I. Substituting λi = 1 in the UPS

estimator obtained for (a), we observe that α < 1 and thus k = 0. Furthermore,

m

∑
i=1

1

σi
= Tr(Σ

−1) = Tr
(

(H∗C−1
w H)−1

)

= γ0, (54)

and thus

α =
γ0 − ǫm

γ0
. (55)

Substituting these results into (46) yields the required estimator (49). We have already seen that the parameter

robustness when ǫm ≥ γ0 is infinite. To find the parameter robustness when ǫm < γ0, notice that (52) is now

α =
γ0

L2 + γ0
. (56)

Combining this with (55) yields

L2 =
γ0ǫm

γ0 − ǫm
, (57)

which is the required result (50).

It is sometimes useful to find the actual MSE obtained by the UPS estimator. The MSE can be calculated for

the matching minimax estimator. For example, it has been shown (38) that the MSE of the minimax estimator

for a spherical parameter set x∗x ≤ L2 is given by

MSE(x̂UP) =

(

L2

L2 + γ0

)2

γ0 +

(

γ0

L2 + γ0

)2

‖x‖2. (58)
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Substituting the value of L2 from (50), we have

MSE(x̂UP) =











ǫ2
m

γ0
+

(

γ0−ǫm

γ0

)2
‖x‖2, ǫm < γ0

γ0, ǫm ≥ γ0

(59)

Thus, the MSE of the unbounded spherical parameter set estimator is a linear function of ‖x‖2. This result

is useful for comparing the performance of the UPS estimator with other estimators, as we demonstrate in

Section 5.

4.2 Linear Regret Estimators

We now present a different example of a UPS estimator, one which guarantees a worst-case regret. The regret

is defined as the difference between the MSE and the best MSE obtainable using a linear estimator x̂ = G(x)y

which is a function of x. Because we are limiting the discussion to linear estimators, even an estimator with

knowledge of the value of x cannot achieve zero MSE. Minimizing the regret is intuitively appealing as it

attempts to disregard errors resulting from limitations of linear estimators. It has been shown [7] that the

regret is given by

ǫ(x̂ = Gy, x) = Tr(GCwG∗) + x∗(I − GH)∗(I − GH)x −
x∗x

1 + x∗H∗C−1
w Hx

. (60)

In this section, we limit our discussion to parameter sets of the form UL = {x : x∗Tx ≤ L2}, where T is

a Hermitian positive definite weighting matrix. For analytical tractability, we further restrict the discussion

to the case where T and H∗C−1
w H have the same eigenvectors. We show that, under these assumptions,

the linear UPS regret estimator is equivalent to the linear minimax regret estimator. It follows that the UPS

estimator can be found as easily as the minimax estimator. In particular, closed-form solutions are known for

some values of T and L [7].

Proposition 5. Let UL = {x : x∗Tx ≤ L2} be a class of parameter sets, where T = VΛV∗ is a Hermitian positive

definite weighting matrix, Λ is a diagonal matrix with diagonal elements λi > 0, and V is an eigenvector matrix of

H∗C−1
w H. Consider the regret (60) as the error function of interest. For all L, let x̂M(L) = GLy be a linear minimax

regret estimator for the parameter set UL, and let e(L) be the worst-case regret of x̂M(L), namely,

e(L) = max
x∈UL

ǫ(x̂M(L), x). (61)

Then, x̂M(L) is a linear unbounded parameter set (UPS) regret estimator with maximum error e(L).

Proof. As in the proof of Proposition 3, we will show that e(L) is strictly increasing with L. By Proposition

2(b), this suffices to show that x̂M(L) is a UPS regret estimator.
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It has been shown in [7, Theorem 1] that under the conditions of Proposition 5, the minimax regret esti-

mator is given by

GL = VDV∗(H∗C−1
w H)−1H∗C−1

w , (62)

where D is a diagonal matrix whose diagonal elements di are the solution to the optimization problem

min
τ,d

τ (63)

s.t.







F1(d) ≤ τ (a)

F2(d, s) ≤ τ ∀ s ∈ S , (b)

where

F1(d) =
m

∑
i=1

d2
i

σi
, (64)

F2(d, s) =
m

∑
i=1

d2
i

σi
+

m

∑
i=1

(1 − di)
2si −

∑
m
i=1 si

1 + ∑
m
i=1 σisi

, (65)

S =

{

s : si ≥ 0,
m

∑
i=1

λisi = L2

}

, (66)

and σi are eigenvectors of H∗C−1
w H such that H∗C−1

w H = VΣV∗, with Σ = diag (σ1, . . . σm). In (63), the

optimal value of τ is the worst-case regret e(L).

We begin our proof by showing that (63b) is an active constraint in the optimization problem. Assume

by contradiction that (63b) is inactive. Then, by the Karush-Kuhn-Tucker conditions for optimality [4, §5.5.3],

(63) is equivalent to

min
d,τ

τ s.t. ∑
d2

i

σi
≤ τ, (67)

for which the optimal solution is d = 0, τ = 0. However, for any s,

F2(0, s) > 0 = τ, (68)

contradicting the fact that (63b) is inactive. Thus, for the optimal value of τ and d, there exists at least one

active s ∈ S for which F2(d, s) = τ. From the definition of F1 and F2, we have

∑(1 − di)
2si −

∑ si

1 + ∑ σisi
≥ 0 for any active s. (69)

In the above discussion, the dependence on L was implicit and resulted from the requirement that ∑ λisi =

L2. To make this dependence explicit, we define

ri =
si

L2
, (70)
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so that the requirement s ∈ S is equivalent to ri ≥ 0, ∑ λiri = 1. Rewriting (69) using this notation, we have

g(d, r, L2) , L2 ∑(1 − di)
2ri −

L2 ∑ ri

1 + L2 ∑ σiri
≥ 0 for any active r. (71)

Let us study the behavior of g(d, r, L2) when L2 is changed. Observe that

∂g

∂L2
= ∑(1 − di)

2ri −
∑ ri

(1 + L2 ∑ σiri)2
. (72)

Hence, at points for which g(d, r, L2) ≥ 0, we have

∂g

∂L2

∣

∣

∣

∣

g≥0

≥
∑ ri

1 + L2 ∑ σiri
−

∑ ri

(1 + L2 ∑ σiri)2

=
∑ ri

1 + L2 ∑ σiri

(

1 −
1

1 + L2 ∑ σiri

)

> 0. (73)

Thus, for any active r, g(d, r, L2) is strictly increasing with L. Therefore, if L is decreased, then F2(d, s) =

F1(d) + g(d, s/L2, L2) is decreased for all active s, and the constraint (63b) is relaxed, which implies that the

optimal value of τ is also decreased. Since this value equals e(L), we conclude that e(L) is strictly monotonic

in L. From Proposition 2(b), this indicates that x̂M(L) is a UPS regret estimator.

Estimators based on different error functions were examined in this section, in an attempt to identify con-

ditions for equivalence between bounded and unbounded parameter set estimation. We have seen (Section

4.1) that when the error function is the MSE, minimax and UPS estimators are equivalent. For the regret as an

error function, the proof of equivalence requires several assumptions for analytical tractability (Section 4.2).

The relation between minimax and UPS estimation led to a closed form for the UPS estimator, in the special

case of ellipsoidal parameter sets with the MSE error function (Proposition 4). An application of the UPS

estimator, which makes use of this closed-form estimator, is presented in the next section.

5 Application: Channel Estimation

As an application of the UPS estimator, we now consider the problem of preamble-based channel estimation.

Specifically, we seek to estimate the impulse response of an unknown channel using a training sequence (also

called a preamble), which is transmitted along with payload data. The received symbols are compared to

the known preamble sequence, and this information is used to obtain an estimate of the channel response.

Knowledge of the channel response is required in many detection algorithms, for example, in maximum

likelihood sequence estimation (MLSE) [20].
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Let c = (c0, . . . cNc−1) denote the unknown channel impulse response of length Nc, and let p =

(p−Nc+1, p−Nc+2, . . . p0, . . . pNp−Nc)
T denote the known vector of preamble symbols of length Np. The cor-

responding received symbols are given by

rk =
Nc−1

∑
l=0

cl pk−l + wk, k = 0, 1, . . . N′
p − 1, (74)

where wk is additive white noise with variance σ2
w, and N′

p = Np − Nc + 1. We assume that the channel

length Nc is known. We also assume that the channel consists of a direct transmission element c0, which is

normalized to 1, and multipath echoes c′ = (c1, . . . cNc−1)
T. Substituting the known value of c0, we obtain

r − p′ = Hc′ + w, (75)

where p′ = (p0, . . . pNp−Nc)
T, and

H =



















p−1 p−2 · · · p−Nc+1

p0 p−1 · · · p−Nc+2

...
...

. . .
...

pN′
p−2 pN′

p−3 · · · p−Nc+N′
p



















. (76)

The classical approach to channel estimation using a preamble is least-squares estimation of the unknown,

deterministic vector c′ from the measurements r [5, 8, 20]. The estimated channel in this case is

ĉ′ = GLSr = (H∗H)−1H∗r. (77)

This estimator minimizes the squared error of the measurements, i.e.,

GLS = arg min
G

∥

∥(r − p′) − HG(r − p′)
∥

∥

2
. (78)

However, in this context there is no advantage in minimizing the measurement error; rather, we are interested

in minimizing the channel estimation error ǫ = ‖c− ĉ‖2, as the channel estimate is used for further processing

(e.g., detection of payload data). For example, in [5], an increase in channel estimation error is assumed to be

equivalent to an increase in noise level.

Unfortunately, the channel estimation error ǫ is a function of the unknown channel parameter c′, so direct

minimization of ǫ is not possible. Were we to know that c lies within some bounded set U , a minimax MSE ap-

proach would allow us to minimize the worst-case error among all possible channels within U . But although

we may believe that ‖c′‖ is generally small compared with c0, we generally cannot explicitly determine a

bound on ‖c′‖.
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Figure 2: The worst-case error for the channel estimation problem

On the other hand, the desired channel estimation error is a parameter with known implications for the

system designer. In particular, the maximum channel estimation error may be treated as an added noise

source. In this case, the estimation error requirement is a design parameter; it is to be chosen together with

other system properties such as receiver SINR requirements. An informed choice may be made regarding the

desired estimation error. We can use the UPS estimator to maximize the set of channels for which a required

estimation error is achieved. The reasoning behind such an approach could state that a given maximum

estimation error is critical for system operation; such an estimation error should be guaranteed for as wide a

range of channels as possible.

Consider a class of nested parameter sets UL = {c′ : ‖c′‖ ≤ L} and suppose we require an MSE not

exceeding ǫm. We seek the estimator guaranteeing estimation error of ǫm or less, for as large an parameter

set as possible. By Proposition 4, the maximum error ǫm must first be compared with γ0 = Tr((H∗H)−1), the

MSE of the LS estimator. If ǫm ≥ γ0, then an error of γ0 is allowable. Such an error is guaranteed by the LS

estimator for any value of c, so that the LS estimator has infinite parameter robustness in this case. However,

when ǫm < γ0, a different estimator is required. It was shown in Proposition 4(b) that in this case, the UPS

estimator is given by

ĉu =
ǫm

γ0
(H∗H)−1H∗r, ǫm ≤ γ0. (79)

To compare the performance of the LS and UPS channel estimators, we consider the problem of estimating
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Figure 3: MSE for various values of ‖c′‖

a 7-tap channel using a 14-symbol BPSK preamble, and use the optimal preamble suggested in [5], given by

[−1, −1, −1, +1, −1, −1, +1, −1, −1, −1, +1, +1, +1, −1]. (80)

We assume that the noise variance is σ2
w = 0.1. For these parameters, the resulting MSE of the LS estimator

is γ0 = 0.0917. Using this value and (58), the worst-case error of various minimax MSE estimators is plotted

in Figure 2. All of these estimators are also UPS estimators. An engineer constructing a channel estimation

system should use such a plot as a design tool, as it demonstrates the tradeoff between channel estimation

error and the range of channels for which the error can be achieved. For instance, if a maximum error level

of 0.1 is acceptable, then clearly the optimal choice is the LS estimator, which guarantees an MSE of γ0 < 0.1

for all channels. However, in some cases the detector degradation provided by such an estimation error

may be prohibitive. The engineer may choose a lower maximum channel estimation error while taking into

consideration the reduced set of channels for which estimation would be successful. For instance, a maximum

error in the range of 50% to 90% of the value of γ0 is a reasonable choice, as this range covers a reasonably-

sized parameter set while still reducing the worst-case error.

Suppose we choose to design our system such that a channel estimation error of ǫm = 0.75γ0 is to be

tolerated, i.e., we require an error not exceeding 75% of the MSE obtained by the LS estimator. This implies

appropriate design steps in the system, which allow the receiver to handle estimation errors up to ǫm (for

example, error correction suitable for such noise levels). Once the choice of ǫm has been made, we would
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like to maximize the set of channels for which the estimation error does not exceed the specified limit; this is

achieved by the UPS estimator (79). The MSE (59) of the UPS estimator is compared with the MSE γ0 of the

LS estimator in Figure 3. The LS estimator never achieves the required error level ǫm, while the UPS estimator

achieves this error level for some channels. The drawback of the UPS estimator is poor performance for other

channels. However, no linear estimator can achieve the required error level for a larger parameter set.

To verify that the reduced estimation error results in improved detection performance, a simulation of

BPSK detection was performed. A received signal (74) was simulated from a BPSK transmission containing

the 14 preamble symbols (80) and 100 random data symbols. A basic 7-tap channel, given by

c = [1.00, −0.20α, 0.15α, 0.10α, −0.08α, 0.05α, 0.02α], (81)

was used, where the parameter α was varied between 0 and 5 to obtain values of ‖c′‖ between 0 and 1.4.

(The coefficient c0 is not multiplied by α as this coefficient is assumed to be normalized to 1.) The channel

was estimated using both the LS and UPS estimators described above, and the resulting channel estimate was

used for MLSE detection of the data symbols. The experiment was repeated 2500 times to obtain an estimate

of the bit error rate (BER).

The results are presented in Figure 4. For comparison, a null estimator is also plotted; this “estimator”

assumes that ‖c′‖ = 0, i.e., only direct transmission is present.

These results demonstrate that in terms of BER, UPS estimation outperforms standard LS estimation for

24



a range of channels. The UPS estimator maintains a BER level around 0.6% in the measured channel range,

while the LS estimator results in BER levels above 1% for many common channels.1

The UPS estimator is a compromise between the LS estimator and the null estimator: the LS estimator

has modest estimation error requirements, but achieves them for all values of c; the null estimator can be

viewed as an estimator requiring zero estimation error, and achieves this requirement only for c′ = 0. UPS

estimators provide a spectrum of choices between these two extremes, allowing the designer to choose a

point in the tradeoff between the estimation error requirement and the size of the parameter set for which the

requirement is achieved.

In summary, we presented the use of UPS estimators for channel estimation problems. We have seen that

channel estimation error can be reduced if a maximum estimation error is specified by the designer, and this

leads to lower BER for a wide range of channels. This is achieved without increasing estimation complexity:

the UPS estimator is a linear estimator and can be calculated as easily as the least-squares estimator.

6 Unbounded Noise Level Estimation

Throughout this paper, we have assumed that the noise covariance E(ww∗) is known. In practice, this is

rarely the case, and the covariance must itself often be estimated from measurements. Following [16], in this

section we consider the case where

E(ww∗) = σ2Cw, (82)

for some unknown deterministic noise level σ2, and some known covariance matrix Cw. For example, when

the noise is i.i.d., Cw = I and σ2 is the noise variance. The estimation techniques used so far require com-

plete knowledge of the noise covariance: LS, minimax or UPS approaches cannot be directly applied to this

problem, unless the noise parameters are estimated from the measurements; this increases computational

complexity and may be unreliable in some situations.

As an alternative approach, we propose to estimate x from the observations y = Hx + w, while guaran-

teeing maximum error requirements, for as large a range of noise levels as possible. To this end, we assume

that x ∈ U for a known parameter set U , and require a maximum error level ǫm. We seek the estimator which

guarantees an error not exceeding ǫm for all x ∈ U , and for as large a noise level σ2 as possible; this will be

referred to as the unbounded noise level (UNL) estimator. As we shall show, the UNL estimator is related to

1The reason for the improved BER achieved by the LS estimator for large ‖c′‖ is not a decrease in channel estimation error. Rather,

it is a result of the large amount of energy found in the multipath channel coefficients; this energy can be used to improve detection

SNR. For the UPS estimator, this increase is roughly cancelled by the increased channel estimation error.
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the minimax estimator, allowing us to efficiently find the UNL estimator whenever the minimax estimator is

known.

Formally, we define an error function ǫσ2(x̂, x), such as the MSE or the regret, and require some level

of performance ǫσ2(x̂, x) ≤ ǫm to be satisfied over the entire range x ∈ U . We can now define a new type

of unbounded uncertainty estimator, in a manner analogous to the definition of the UPS in Section 3.1, as

follows.

Definition 5. The noise robustness σ̂2 of an estimator x̂ is defined as the maximum σ2 for which the performance

requirement is satisfied:

σ̂2(x̂) = max

{

σ2 : max
x∈U

ǫσ2(x̂, x) ≤ ǫm

}

. (83)

Definition 6. The unbounded noise level (UNL) estimator x̂UN (among a class of estimators E ) is the estimator

maximizing the noise robustness among all estimators in E , for given U , ǫσ2(x̂, x) and ǫm:

x̂UN = arg max
x̂∈E

σ̂2(x̂). (84)

We now show that, if the error function ǫσ2 is continuous in σ2, then the UNL estimator is a minimax

estimator. The error function is indeed continuous for many cases of interest, such as the MSE and the regret.

This result enables us to efficiently find UNL estimators, including obtaining a closed form for the estimator

in some important cases.

Proposition 6. Suppose the error function ǫ of interest is continuous in σ2. Then, the unbounded noise level (UNL)

estimator x̂UN is a minimax estimator for the parameter set U , with noise level σ2
1 = σ̂2(x̂UN).

Proof. Assume by contradiction that x̂UN is not a minimax estimator. Then, there exists x̂M 6= x̂UN such that

max
x∈U

ǫσ2
1
(x̂M, x̂) < max

x∈U
ǫσ2

1
(x̂UN, x) ≤ ǫm. (85)

However, since ǫσ2 is continuous in σ2, a sufficiently small change in σ2 causes an arbitrarily small change in

ǫσ2 . Thus, there exists σ2
2 > σ2

1 such that

max
x∈U

ǫσ2
2
(x̂M, x̂) ≤ ǫm. (86)

Hence, σ̂2(x̂M) ≥ σ2
2 > σ2

1 = σ̂2(x̂UN), contradicting the fact that x̂UN is a UNL estimator.

A consequence of this proposition is that the UNL estimator can be found if an algorithm for finding

the minimax estimator is known. This can be performed efficiently using a line search, in which minimax

estimators are calculated for various noise levels, until a minimax estimator whose worst-case error equals

ǫm is found. Alternatively, as the following proposition demonstrates, a closed form for the linear UNL

estimator can be identified when a closed form for the minimax estimator is known.
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Proposition 7. Let U = {x : ‖x‖ ≤ L} and let ǫσ2(x̂, x) be the MSE. For a given maximum error ǫm, a linear

unbounded noise level (UNL) estimator is given by

x̂UN =







L2−ǫm

L2 x̂LS, L2
> ǫm

0, L2 ≤ ǫm,
(87)

where x̂LS = (H∗C−1
w H)−1H∗C−1

w y is the LS estimator.

Proof. We first consider the case L2 ≤ ǫm. In this case, the performance requirements are extremely lax, and

many estimators satisfy these requirements for any noise level. In particular, the estimator x̂ = 0 has a MSE

of ‖x‖2, for which the worst case is max ‖x‖2 = L2 ≤ ǫm; this is true regardless of the noise level. Thus, x̂ = 0

is a UNL estimator (with infinite noise robustness) for the trivial case L2 ≤ ǫm.

We now turn to the more interesting case L2
> ǫm. By Proposition 6, x̂UN is a minimax estimator for some

noise level σ2. The minimax estimator for the parameter set U , and for a given noise level σ2, is given by [6]

x̂M(σ2) =
L2

L2 + σ2γ0
(H∗C−1

w H)−1H∗C−1
w y, (88)

where

γ0 = Tr
(

(H∗C−1
w H)−1

)

(89)

is the MSE of the LS estimator with σ2 = 1. As we have seen in Eq. (40) of Lemma 1, the worst-case error for

this estimator within the set U is given by

max
x∈U

ǫσ2(x̂M(σ2), x) =
L2σ2γ0

L2 + σ2γ0
. (90)

Requiring that this value not exceed ǫm, we obtain

σ2γ0(L2 − ǫm) ≤ ǫmL2. (91)

Since L2
> ǫm, this leads to

σ2γ0 ≤
ǫmL2

L2 − ǫm
. (92)

Combining this with (89), we find that the maximum noise level for which performance requirements are

satisfied is

σ̂2 =
ǫmL2

L2 − ǫm

1

Tr
(

(H∗C−1
w H)−1

) . (93)

Substituting this value of σ2 into (88) yields the required estimator (87).

It is instructive to compare the closed forms obtained for the UPS estimator (Proposition 4(b)) and the UNL

estimator (Proposition 7), when spherical parameter sets are used. Both estimators take the form of a linear
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minimax MSE estimator for a spherical parameter set, and hence they are shrunken least-squares estimators

[17]. They can thus be viewed as a compromise between the least-squares estimator and the zero estimator.

However, for the UPS estimator, the shrinkage factor increases with the maximum allowed error ǫm; while

for the UNL estimator, the shrinkage factor decreases with ǫm. The reason for this is as follows. When the

allowed error is increased, an increase in either the parameter set or noise level is allowed. However, a larger

parameter set is achieved by an estimator closer to the LS estimator (which provides constant error for all x);

while a larger noise level is achieved by an estimator closer to the zero estimator (which provides zero error,

regardless of noise level, for the nominal value x = 0). Thus, increasing the maximum allowed error has

opposite effects, depending on whether the goal is to increase the robustness to uncertainty in the parameter

set or in the noise level.

7 Discussion

Least-squares estimation, despite being very common, is not necessarily the optimal estimator in terms of

mean-squared error. With very little additional information, alternative estimators can be found which out-

perform the LS estimator. For instance, in Lemma 1 we have shown that if the parameter x to be estimated

is known to lie within some bounded parameter set, then there exists a (minimax MSE) estimator which

outperforms LS for any value of x in this set.

Alternatively, it is often possible to define the maximum allowed estimation error. For instance, a system

may be designed to function with a known and tolerable estimation error. In this case, one is interested

in maximizing the parameter set for which the allowed error is guaranteed; this results in the unbounded

parameter set (UPS) estimator. As we have seen in Propositions 3 and 5, in many cases, the UPS estimator is

equivalent in form to minimax estimation. In other words, if a maximum allowed error ǫm is known, then the

UPS estimator equals the minimax estimator whose worst-case error is ǫm.

The maximum allowed error is often a function of system design parameters, and can be influenced by

design decisions. In such cases, a plot of the worst-case error as a function of the size of the parameter set (as in

Figure 2) can be used as a design tool. Such a plot can be interpreted in two complementary ways. It describes

the worst-case error obtained if a minimax estimator is used with a given parameter set bound. However, it

also defines the size of the parameter set obtained if a UPS estimator is used with a given maximum error.

Thus, such a plot can be used to select a meaningful value for the maximum error, based on the tradeoff

between estimation error and parameter set bound.

An alternative estimation strategy, explored in Section 6, attempts to maximize the noise level for which
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a required error level is maintained, for any x in a known parameter set U . This approach leads to the

unbounded noise level (UNL) estimator. As we have seen in Proposition 6, the UNL estimator also has the

same form as the minimax estimator.

The choice of an appropriate estimator for a given problem depends on the data available to the designer.

Knowledge of the second-order statistics of the parameters x, for example, leads to the well-known Wiener

estimator, which is optimal in an MSE sense. However, partial information can also be used to improve

estimation performance. The maximum allowed estimation error is an example of added information which

may be known to the designer, and as we have demonstrated in Section 5, can often result in improved

performance.
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