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Abstract

We study a class of stochastic control problems where a cost of the form
IE/ e P U(X,)ds + h(YL)d|Y|s] (0.1)
[0,00)

is to be minimized over control processes Y whose increments take values in a cone Y of R?,
keeping the state process X = x + B + GY in a cone X of R¥, & < p. Here, z € X, B is
a Brownian motion with drift b and covariance X, G is a fixed matrix, and Y° is the Radon-
Nikodym derivative dY/d|Y|. Let £ = —(1/2)trace(¥D?) — b- D where D denotes the gradient.
Solutions to the corresponding dynamic programming PDE

(L+B)f -tV sup [=Gy-Df—h(y)]=0, (0.2)

y€eY:|Gy|=1

on X are considered with a polynomial growth condition and are required to be supersolution
up to the boundary (corresponding to a “state constraint” boundary condition on 8X). Under
suitable conditions on the problem data, including continuity and nonnegativity of £ and h, and
polynomial growth of £, our main result is the unique viscosity-sense solvability of the PDE by
the control problem’s value function in appropriate classes of functions. In some cases where
uniqueness generally fails to hold in the class of functions that grow at most polynomially (e.g.,
when h = 0), our methods provide uniqueness within the class of functions that, in addition,
have compact level sets. The results are new even in the following special cases: (1) The one-
dimensional case kK = p = 1, X = Y = Ry; (2) The first order case ¥ = 0; (3) The case
where ¢ and h are linear. The proofs combine probabilistic arguments and viscosity solution
methods. Our framework covers a wide range of diffusion control problems that arise from
queueing networks in heavy traffic.
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1 Introduction

This paper is concerned with a class of singular stochastic control problems with state constraints.
The controlled diffusion process takes values in a closed convex cone X. The cost is of the form (0.1),
and the running cost, ¢, is not assumed to be bounded. The corresponding dynamic programming
equation (0.2) is considered with a polynomial growth condition, and the role of a boundary condi-
tion on 0X is played by the requirement that the solution be a supersolution up to the boundary.
It is well known that classical solutions to Hamilton-Jacobi-Bellman (HJB) type equations do not
exist in general, and that an appropriate partial differential equations (PDE) framework is via the
notion of viscosity solutions (cf. Section 2). Our main result is the characterization of the value
function for the problem as the unique viscosity-sense solution of (0.2).

For an introduction to viscosity solutions and a list of relevant literature the reader is referred
to Crandall, Ishii and Lions [8]. Much of the motivation and first examples of this theory came
from problems in optimal control. See Bardi and Capuzzo-Dolcetta [1] and Fleming and Soner [15]
for accounts on viscosity solutions in deterministic and stochastic control and differential games.
Control problems with state constraint were studied in the viscosity solution framework in the
monograph by Lions [25] for the deterministic (first order) case. The relation between control with
state constraint and viscosity supersolutions of the corresponding PDE on the boundary was first
observed and developed by Soner [30]. It was extended to more general first order equations by
Capuzzo-Dolcetta and Lions [6]. For stochastic control with state constraints (and no singular
term), see the recent work of Ishii and Loreti [22] and references cited therein. See also Duffie,
Fleming, Soner and Zariphopoulou [10] and references therein for models in mathematical finance
with state constraints.

Many authors have contributed to the study of singular control of diffusions. One dimensional
problems were studied by direct analysis by Benes, Shepp and Witsenhausen [2], Karatzas [23]
and Harrison and Taksar [18]. HJB-type PDE associated with singular stochastic control were
studied for their classical and weak (a.e.-sense) solutions by Evans [14], Menaldi and Robin [27],
Chow, Menaldi and Robin [7] and Ishii and Koike [21]. Contributions to viscosity solutions for
such HJB equations include Fleming and Soner [15], Martins, Shreve and Soner [26], and Shreve
and Soner [29]. In [26], the authors consider a two dimensional model that arises from the heavy
traffic analysis of a queueing network and corresponds to a problem of the type studied in the
current paper (with linear £ and A = 0). The authors use the viscosity solution framework to
establish asymptotic optimality of proposed control schemes. The model studied in [29] arises from
a problem in mathematical finance. The role of the singular control there is, in a sense, antipodal
to its role in the current model: it is possible to force the state process to move to the origin and
remain there, whereas in the current model it will be seen that the control can only contribute to
a motion away from the origin (in the sense of equation (2.2)).

Some of the papers that address uniqueness of solutions to HJB equations on unbounded do-
mains are as follows. The paper [27] mentioned above investigates a class of singular control
problems (without state constraints and with » = 0) and gives various results on characterization
of the value function as the maximal or the unique solution of the associated PDE in a suitable weak
sense; however viscosity solutions are not considered there. In [10], the authors study a drift control
problem with state constraints and prove uniqueness within a class of concave functions. Results



for a broad family of second order degenerate elliptic PDE appear in Ishii [20] and [8]; however
the results on unbounded domains therein, do not cover PDEs associated with singular control or
state constraints. Crandall and Lions [9] consider first order equations on unbounded domain, and,
motivated by problems in optimal control, extend previous results on uniqueness within uniformly
continuous functions (see references therein) to continuous sub-exponential functions. All of the
results mentioned above fail to cover PDEs of the form (0.2). The delicate nature of the uniqueness
problem in the current setting can be seen from several simple one dimensional examples, that are
provided in Section 2, where uniqueness fails. In particular when A = 0, uniqueness may fail to hold
in the class of functions that grow at most polynomially. In such cases, our approach establishes
uniqueness within the class of functions that, in addition, have compact level sets.

A primary motivation for the problems considered in this paper comes from controlled queueing
systems in heavy traffic. A formal diffusion approximation of such systems leads to a class of
problems referred to as Brownian control problems (BCPs) (cf. Harrison [16, 17]). These in turn
can be transformed using techniques introduced in Harrison and Van Mieghem [19], to singular
control problems with state constraints, of the form considered in this paper. We will demonstrate
that our result on the PDE characterization of the value function covers control problems arising
from a broad family of stochastic networks (See Section 3).

We now remark on some of the key steps in the proof of our main result. There are two natural
ways to define a value function for the problem. A strong formulation, in which infimum of the
cost is taken over control processes Y adapted to the Brownian motion, and a weak formulation,
where the infimum ranges over all filtered probability spaces and all control processes adapted to the
underlying filtration. Denoting the two resulting value functions by V and V, it is clear that V <V
(see Section 2, equations (2.12), (2.13) for precise definitions). Solvability of the PDE by both V' and
V is established by means of two different dynamic programming principles (DPPs) (Propositions
5.1 and 5.2). While the DPP associated with V' is quite standard and is essentially a consequence of
the strong Markov property of Brownian motion, the DPP for V is less straightforward. The latter
relies on a representation of V as the infimum of the cost over controls that are, in an appropriate
sense, of feedback form (cf. Section 5). Results of this type are well understood for absolutely
continuous controls (cf. [4]), and go back to a fundamental martingale representation result due to
Wong [32]. However, in presence of singular control and state constraint, our result on the DPP
for V appears to be new. The proof also makes use of the so called Skorohod problem to account
for the state constraint. For a DPP for singular control problems (without state constraints), see
[27].

The proof of uniqueness of solutions is carried out first for a mixed Dirichlet state-constraint
boundary value problem on a bounded domain, and then lifted to the unbounded domain. Unique-
ness on bounded domain uses tools from the theory of viscosity solutions, and although several key
ingredients in the argument have been well developed in the literature, it appears that this paper
is the first to prove uniqueness of viscosity solutions of the HJB equation for a stochastic singular
control problem with state constraints. This treatment could, in fact, be carried out for a much
more general second order degenerate elliptic operator than £. The limitation put on the operator
comes from our treatment of the problem on unbounded domain, where certain estimates on the
dynamics are used crucially (namely, (4.10)-(4.12)).



As already mentioned, the literature on second order degenerate elliptic PDE on unbounded
domains fails to capture uniqueness for equation (0.2). Our approach uses a verification argument,
that compares an arbitrary solution w to the value function V. More precisely, it is first shown
that u solves a singular control problem on a bounded domain, with an exit cost equal to its
value on the boundary, giving a variational representation for u similar to a DPP (cf. Proposition
6.1). Tt is here that the uniqueness result on bounded domain is required. This sets the ground
for comparing V with u by means of constructing an admissible control for one problem using
the other and considering the control problem for u on an increasing sequence of domains. In
such a construction, a large time sub-exponential estimate on the controlled process is crucially
used in obtaining the inequality © < V. For the inequality V < wu, a control process for the
problem associated with V' is constructed by suitably patching together a sequence of controls for
the bounded domain problems.

The paper is organized as follows. Some notation is introduced at the end of this section.
Section 2 introduces the control problem setting, the PDE, the main result and some examples of
non-uniqueness. Section 3 demonstrates the applicability of the main result to problems that arise
from queues in heavy traffic. Section 4 contains the bounded domain problem formulation and
some preliminary lemmas. Section 5 proves solvability of the PDE by the value functions, based on
the DPPs. Sections 6 and 7 establish uniqueness on bounded, and respectively, unbounded domain.
In Section 8, the DPPs are proved. Finally, some auxiliary results are provided in the Appendix.

The following notation will be used.
For a € R", || denotes the Euclidean norm.

For a set S C R", C?(S) denotes the space of twice continuously differentiable functions on S.
C¢(S) denotes the class of continuous functions f on S for which all level sets {x € S : f(z) < r},
r € R, are compact. Cpe(S) denotes the class of continuous functions f on S for which there is
a constant a = a(f) such that |f(z)| < a(l + |z])?, =z € S. Cp(S) denotes the class of continuous
and bounded functions on S. C,(S) denotes the class of nonnegative continuous functions on S,
Cp017+ = Cpol Nncy,, Cb,+ =CyNCy4 and Cgol,—l— = Cp017+ NnCe.

For a function f : [0,00) — R" write [f[; = sup,cpq|f(s)], and |f[; for the total variation of f over
[0, ] with respect to the Euclidean norm. For a process X, we use X (¢) and X; interchangeably.

Denote B.(z) = {y € R¥ : |z —y| < e}. S%! denotes the unit sphere in R?. Infimum over an
empty set is regarded as co. ¢, c1,c2,... denote positive deterministic constants whose values may
change from the proof of one result to another.

A function from [0, c0) to some metric space E is RCLL if it is right-continuous on [0, c0) and has
left limits on (0,00). A process is RCLL if, with probability one, its sample paths are RCLL. If £
is RCLL denote A&(t) = £(t) — &(t—) for £ > 0 (see Section 2 for a convention regarding A£(0)).



2 Setting and main result

A filtered probability space ® = (2, F, (F;),P, B), satisfying the usual hypotheses, endowed with
a k-dimensional (F;)-Brownian motion B with drift b and covariance ¥ is said to be a system.
Denote by (F;) the P-completion of the filtration generated by B. We say that C' is a cone of R?
if C ¢ RY, and if ¢ € C implies ac € C, for all a > 0. We consider a control problem in which a
p-dimensional control process Y, whose increments take values in a cone Y (in a sense made precise
below), keeps a k-dimensional process X (t) = z+ B(t)+ GY (t) in a cone X, where G is a fixed k x p
matrix of rank k£ (k < p). The k-dimensional cone GY is denoted by U. Our precise assumptions
on the cones and related notation are described in what follows. X [resp., Y, U] is a closed convex
cone of R¥ [RP, R¥] with non-empty interior. It is assumed that

UNX° 0. (2.1)

We remark that, unless 3 is degenerate, the above condition is necessary to guarantee the existence
of controls; nonetheless, (2.1) will be assumed even for degenerate ¥. Since U has non-empty
interior, (2.1) implies that there exists a unit vector uy € U° NX°. Pick gy € Y for which Gy = uyg.
The unit vector uy and the non-zero vector 7o will be fixed throughout. Assume moreover that
there exist a unit vector @, € R*, a unit vector 3, € R, and a constant ag > 0 such that

u-up > aplul, weTU, x-up > aglz|, ze€X vy > aolyl, yeY. (2.2)

A function y : [0,00) — RP, is said to have increments in Y if y(0) € Y and y(t) — y(s) € Y,
0 < s <t<oo. A process is said to have increments in Y if, with probability one, its sample paths
have increments in Y.

Definition 2.1 (édmissible control) An admissible control Y for the system ® and the initial
data x € X is an (F;)-adapted RCLL process with increments in Y for which the process

X(t)=z+ B(t)+GY(t), t>0, (2.3)
satisfies X (t) € X, t > 0, P-a.s.

By convention, Y (0—) = 0 and X(0—) = z. The pair (X,Y) [resp., the process X] is referred to
as an admissible pair [controlled process associated with Y] for ® and z. The class of admissible
controls for ® and x is denoted by A(®, ), and the class of (F;)-adapted admissible controls is
denoted by A(®, z). When there is no confusion we refer to A(®, ) [resp., A(®, )] as A(z) [A(x)].

Before introducing the cost functional, we fix some notation. Associated with a nondecreasing
function ¢ : [0,00) — R we define a o-finite measure m on ([0, 00), B([0,00))) via the relations
m(a,b] = ¢(b) — ¢(a) for a,b € (0,00) and m{0} = ¢(0). For ¢» € L'([0,0), B([0,00)),m) we
will write f[O,oo) P(s)dp(s) = f[O,oo) 1(s)dm(s). Note that with this notation, the Stieltjes integral

S (s)dgs(s) is given as [, (s)dp(s).

Let y : [0,00) — Y be an RCLL function with increments in Y, and note that by (2.2) it has
bounded variation over finite intervals. Then it can be written as

y(t) = /[ V), (2.4)



where 4°, the Radon-Nikodym derivative dy/d|y|, is a measurable function with values in Y N SP~!
(see Lemma 9.1 in the appendix). Let A : Y — R be a continuous function satisfying the radial
homogeneity condition

h(an) = ah(n), a>0,neY. (2.5)

Denote

Sy = | @)s) (2.6
[a,b]
for every function f for which the right-hand side is well defined. The notation y° and [ fh(dy) of
(2.4) and (2.6) is used throughout. In a similar manner, given a system ® and an {F,}-adapted
RCLL process Y with increments in Y, we can find an {F,;}-progressively measurable process {Y,°}
with values in Y N SP~! such that Y (t) = f[o,t] Y2d|Y|(s) (and clearly the value of the integral is
independent of the choice of such {Yt }). For this statement see Lemma 9.1. Once more, we will

abbreviate f[a o f($)h(Y°(s))d|Y|(s) by fa 5 f(8)1(dY (s)). The cost associated with given system
®, initial data z € X and admissible pair (X,Y’) is given as
J(®,z,Y) = ]E/ e PS[0(X,)ds + h(dYy)], (2.7)
[0,00)

where, here and throughout, E denotes expectation with respect to P, and 8 > 0 is a constant.

Remark 2.1 (a) In order to formulate the control problem, one needs to define h only on YN.SP~1,
However, the radial homogeneous extension of such h to all of Y will turn out to be convenient.
(b) In the special case where h is linear, say h(y) = ho-y, the integral in (2.6) is same as
[ f(s)ho-dy(s).

(c) The definition (2.6) reflects the formal identity, h(dy/d|y|)d|y| = h(dy), suggested by the radial
homogeneity of h. Of course, the notation [ fh(dy) should not be confused with a Lebesgue integral
against a measure h.

Following are our assumptions on ¢ and h. The function ¢ is in C(X) and there exist constants
ey Ce2,¢03 € (0,00), my € [0,00) such that

conlz|™ —coo < l(z) < coz(|z|™+1), zeX (2.8)

Note that my = 0 corresponds to the case that £ is bounded. Let mod(r,d) = sup{/(z) — ¢(y) :
z,y € XN B,(0) : |z —y| < 0} denote the modulus of continuity of £ on B,(0). It is assumed that

mod(r + 1,d) < m(d)(L +r™), d>0,r7>0, (2.9)

where m(0+) = 0. Note that (2.9) is clearly satisfied if £ is a polynomial. In addition to (2.5), the
function h is assumed to be (globally) Lipschitz, convex, and nonnegative on Y. All assumptions
mentioned thus far apply throughout this paper. At several places we will also use the following
conditions, under which sharper results will be obtained. We will explicitly refer to them when

they apply:

Either ¥ is non-degenerate or 41+ b > 0; (2.10)



h(y) > cply|, vy €Y for some constant c¢; > 0. (2.11)

We will consider two notions of value function for the control problem. Let

V(z) =inf inf J(®,z,Y), 2.12
() =inf inf J(@Y) (2.12)

where in the outer infimum & ranges over all systems, and let

V(z)= inf J(®,z,Y). 2.13
(@)=, inf  J(@.2.7) (213)

Given any two systems ® and ®, for every Y € A(®,z) one can find Y € A(®, z) such that (B,Y)
is equal in law to (B,Y), and thus V' does not depend on ®.

Consider now the equation

(L+ B —2)VH(DY) =0, (2.14)
where £ denotes the differential operator
L= —%trace(ZDZ) — b D, (2.15)
and
H(p) = sup ~(Gyp+h(y), e R®, (2.16)

where Y, = {y € Y : |Gy| = 1}.

Definition 2.2 (Constrained viscosity solution)

(1.) For S C X, a continuous function 1 : S — [0,00) is said to be a viscosity supersolution [resp.,
subsolution] of (2.14) on S if for all x € S and all o € C%(S) for which 1) — has a global minimum
[mazimum] at x one has

(BY(2) + Lp(x) = £(x)) VH(Dp(z)) 20 [<0].

(2.) 1 is said to be a constrained viscosity solution of (2.14) on X if it is a viscosity supersolution
of (2.14) on X and a viscosity subsolution of (2.14) on X°.

Our main result characterizes the value function as a constrained viscosity solution of (2.14).

Theorem 2.1

(1.) If my > 0 [resp., my = 0/ then the functions V and V are in Chor 1 (X) [resp., Cp 1 (X)].

(2.) Solvability. V and V' are constrained viscosity solutions of (2.14) on X.

(3.) Uniqueness. Let (2.10) hold. Then in the case that my >0, V is the only such solution in the
class Cpy (X); and in case that my =0, V' is the mazimal solution in the class Cpor+(X). If, in
addition, (2.11) holds then uniqueness holds in Cpel 4 (X), mg > 0.

(4.) If (2.10) holds then V = V.



Remark 2.2 Examples (a) and (b) below show that conditions (2.10) and (2.11) in part (3) of the
theorem are, in a sense, necessary. Example (c¢) demonstrates the role of the function class C’g
Let X=Y=R,,G=1,=1,u; =1and h =0.

(a) Condition (2.10) cannot be dropped in general. Consider the data b= —1, X =0, ¢(z) =z + 1.
Clearly (2.10) is not satisfied, and m; = 1. By direct calculation one finds that V(z) = z + e
on Ry. However, uniqueness in C} , fails to hold, since for every c € [0,1], C € (¢, 1], ¢¥(z) =
max{z + ce *,C} is a constrained viscosity solution of the equation on R, .

(b) Condition (2.11) cannot be dropped in general. Consider now the data b =0, ¥ =1 and ¢ = 1.
Then (2.10) holds and (2.11) fails. Clearly my =0 and V =1 on R;. In this case the statement
regarding uniqueness in Cpl 4 fails to hold, as one checks that for every ¢ € [0,1], 9 = cis a
constrained viscosity solution of the equation on R,. This example also demonstrates that in
the statement regarding my = 0, one cannot in general replace “maximal solution” by “unique
solution”.

(c) The conclusion “uniqueness in 0501,4- 7 cannot, in general, be replaced by “uniqueness in Cpol 4 7.
Retaining all data of example (a) except that now b = 1, one finds that V (z) = x 4+ 2. Also, it can
be easily checked that for every ¢ € [0,1], 1 = ¢ is a solution. Hence it follows that under (2.10)
alone, uniqueness in C}1, 4 does not hold in general.

ol,+*

Remark 2.3 If / is convex and h is linear, the equality of V and V is an immediate consequence
of Jensen’s inequality.

3 Stochastic networks

In this section we discuss applications of our result to BCPs. The formulation introduced here
is used only in this section, and readers who are not interested in this aspect can safely skip it
without losing continuity. As mentioned in the introduction, BCPs arise from queueing control
problems considered in their formal diffusion limit and they often can be transformed into singular
control problems of the form studied in this paper. The transformed control problem is sometimes
referred to in the literature as the equivalent workload problem. Our objective in this section is to
describe how our results apply to equivalent workload problems corresponding to a broad family of
stochastic networks. To this end, we first define BCPs and quote results of [19] regarding reduction
to a singular control problem (no attempt is made to discuss the underlying queueing model or
how the BCP arises from it). BCPs were introduced by Harrison in the important work [16] (see
[17] for more general formulation). Our presentation follows [19]. Let

d = (Q,F,(F,),P,B), (3.1)

where (Q, F, (Fy),P) is a filtered probability space satisfying the usual hypothesis, and (B(t);t > 0)
is an m-dimensional (F;)-Brownian motion, with drift b and covariance Y. The problem data of a
BCP is an m x n matrix R, a p x n matrix K and a vector z € R" (termed input-output matrix,
capacity consumption matrix and, respectively, initial inventory vector). We follow the notation of
[19] as far as dimensions of vectors and matrices are concerned, except that we use the symbol k
in place of [19]’s d. The matrix K is assumed to have rank p (p < n).



Definition 3.1 (Admissible control for BCP) An admissible control {L(t);t > 0} for the BCP,
associated with ® and z € R, is an RCLL (F1)-adapted process with values in R" such that, setting

Z(t) = z + B(t) + RL(t), t > 0, and Y (t) = KL(t), one has that Z(t) € R for allt >0, and Y
has increments in R .

Denote by ./T(&), z) the class of all admissible controls for the BCP associated with ® and z. The
goal is to minimize

J(®,z,L) =E / e PUU(Z(t))dt + h-dY (t)], (3.2)
[0,00)
where £ € C+(R7), and h € R . Let V(z) = infg infLEﬂ(iz) J(®,2,L).

Let B={\ € R": K\ =0}, let N = RB C R™, and let g be the dimension of N'. The
dimension of M = N is then & = m — q. Let M be any k x m matrix whose rows span M. By
Proposition 2 of [19], there exists a k X p matrix G such that MR = GK. The choice of G, in
general, is not unique. Set X = MRT, Y = R} and U = GY, and note that both X and U are
subsets of R¥. Define £: X — R, as

lz) =inf{l(z): z e R, Mz = z}.
Assume

there exists a continuous function g : X — [0, c0) such that

g(z) € argmin{/(z) : z € R} and Mz =z}, forallz € X. (3.3)

With the data X, Y, G, U = GY, ¥ = MSM”, b = Mb, ¢, h, the singular control problem of
Section 2, and in particular, A(z) and V are well defined.

Theorem 3.1 (Harrison and Van-Mieghem) [19] Given z € R}, let ¥ = Mz. Then V(z) =

In fact, [19] give an explicit way of constructing an L from a Y such that j(ff),z,L) = J(®,z,Y)
(where ® consists of the same filtered probability space as ® and is equipped with the Brownian
motion B).

_ We now list some sufficient conditions for our characterization results to hold. For example, if
¢ is linear, nonnegative on R, and vanishes only at zero, conditions (2.8) and (2.9) are satisfied
(in fact, £ is piecewise linear and my = 1). From Theorem 2 of [3] it follows that (3.3) holds as
well. Next, if G and M have full rank then X and U have non-empty interior as subsets of R¥,
as required. In case that M and G have nonnegative entries, (2.2) is satisfied with any fixed unit
vectors ©1 and ¥ in the respective positive orthant. Finally, let us assume that ¥ is non-degenerate.
These assumptions hold for a broad family of stochastic networks. Under the heavy traffic condition
(cf. Assumption 1 of [17]) one can choose G with nonnegative entries (see equation (3.12) ibid.).
Conditions for a nonnegative choice for M have been given in Theorem 7.3 of [5]. In particular,
these conditions hold for open multiclass queueing networks (cf. Section 3.1 ibid.), parallel server
networks (cf. Section 3.2 ibid.) and several other classes of unitary networks (see Corollary 7.4
ibid.). As a result, these families of networks are covered under our characterization results.



4 Preliminary results

In this section we study some basic properties of the value functions V and V (cf. (2.12), (2.13)) as
well as those of the value function of an analogous problem on a bounded domain, defined below.
For r > 0, denote

Xy ={zeX:zu <r}, O ={zxeX:izu =r} (4.1)

We will always write X¢ for X\ X,.. By (2.2), X, and 0, are bounded sets. Fix a system ®, and let
A(z) = A(®,x). For Y € A(x), let X =z + B + GY be the corresponding controlled process, and
set 0 = o(r) as

o =inf{t: X, ¢ X, ). (4.2)
For z € X, let
Ar(z) ={Y € A(z) : on the set {o < oo}, X, € 0, }. (4.3)
Let ¢ be any function in Cy (9;). Define for z € X, and Y € A,(x) the cost for the bounded domain
problem J,.(z,Y) = J, 4(2,Y) as

Jrp(z,Y) =E

/[ }e‘ﬂs[é(Xs)ds—Fh(dYs)]+e_5”qb(Xg) , (4.4)
0,0

where here and throughout we use the convention that, on the event {o = oo}, [0,0] = [0, 00), and
e B7f(X,) =0. Let also V; = V. 4 be defined as
7¢)
Ve(z) = inf J.(z,Y), € X,. 4.5
@ =, it L@Y). o (4.5)

The notation, A, (®,z), J.(®,7,Y) and V,(z) is used analogously to A(®,z), J(®,z,Y) and V()
defined in Section 2.

We first state and prove a result related to the Skorohod problem [11, 12]. For E = [0,00) or
E = [0,T], let D(E : R¥) denote the space of RCLL functions from E to RF. Denote Dx/([0,00) :
RF) = {z € D([0,00) : R¥) : 2(0) € X}. Define Dx([0,T] : R¥) analogously.

Lemma 4.1 There exist maps T from Dx ([0, 00) : R¥) into itself and T from Dx([0,00) : R¥) into
D([0,00),R) such that the following hold.
(1.) If z € Dx([0,00) : RF), v = [(2) and z = I'(2) then v : [0,00) — Ry is RCLL and non-
decreasing, © = z + uyv = z + Gyov, and x(t) € X for all t > 0.
(2.) The maps T and T are Lipschitz in the following sense. For all 1,2 € Dx ([0, 00) : R¥) and
allT > 0, R R

IP(21) = T(22)l7 + [T(21) = T(22) |7 < 6|21 — 227,
where the constant k < oo does not depend on T, z1 and zs.

(3.) The map T is non-anticipating in the following sense. For every T € (0,00) there exists a map
Iy : Dx([0,T] : R¥) — D([0,T] : R), such that for z € Dx([0,00) : R¥),

f(2’) [0,7] = fT(2’|[0,T})-
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(4.) If z € Dx([0,00) : R¥) takes values in X on [0,T], then v = T'(z) vanishes on [0, T).
The notation T and T is kept throughout this paper.

Remark 4.1 Clearly I'(z) = z+G’370/F\(z). The lemma will help us construct one admissible control
from another, as follows. If X =z 4+ B + GY is the controlled process for a Y € A(z) then letting
¢ =T(x+ B+ GY), the process Y =Y + 3y( is seen to be admissible for z.

Proof. Let S be the collection of all unit vectors 5 € R¥ such that {¢ € RF :5-¢ > 0} D X. Then
one has the following representation for X (cf. [28]):

X=[|¢eR :5:¢ >0}
3eS

Recall that Gy € X°. For &£ € R¥ let 7(¢) denote the projection of & onto the boundary X along
up. Explicitly, 7(€) = & + a(€)uo, where

It is elementary to check that the range of m is 0X and that « is globally Lipschitz. Given z €
Dx ([0, 00) : R¥), let

v(t) =0V Oitigtﬂg- (m(z(s)) — 2(s)), t >0,

and x = z + upv. Then using the fact that w(z(t)) = =w(z(¢)), it is not hard to check that
uo- (z(t) — w(xz(t))) > 0, t > 0. Thus z(t) = w(x(t)) — a(x(t))uy, where a(xz(t)) < 0. Since
both @y and 7(z(t)) are in X, this shows that z(¢) € X, and part (1) of the lemma is established.
Parts (2), (3) and (4) follow by construction and the fact (used in proof of (2)) that 7 is globally
Lipschitz. B

Recall that h is radially homogeneous and convex. This is easily seen to imply that
h(y +z) <h(y) +h(z), y,z€Y. (4.6)

As a result we have the following.
Lemma 4.2 Let Y] and Yy have increments in Y and set Y =Y1 +Y5. Then for all t € (0,00)

e s e/ s e=Ps s)). .
/M B(dY (s)) < /M h(dYi(s)) + / h(dYa(s)) @

[0,¢]

Let, fori=1,2, u; be a o-finite measure on (Ry,B(R)) defined as

uz-(B)i/Bdmus), BeBR,),

where B(Ry.) is the Borel o-field on Ry.. If uy and pe are mutually singular, then (4.7) holds with
equality.
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Proof. Along the lines of [15], p. 320, let }/;(s) =y1- Y (s) and denote dé(s) = d|Y|(s) and dg(s) =

dAY(s). Also let
w(B) = [ d¢ uw(B) = dg
( ) / ? ( ) / ?

for Borel B C [0,00), and define similarly Y, dé;, d&; and fi; for i = 1,2. By (2.2), aoly| <y1-y < |y
for y € Y. Hence p and iz are mutually absolutely continuous, and a similar statement holds for u;
and 1;, i = 1,2. Since Y =Y, + Y and Y, are non-decreasing, clearly fi; is absolutely continuous
with respect to fz, for ¢ = 1,2. This shows that p; is absolutely continuous with respect to u, and
we denote by d¢;/d¢ the respective Radon-Nikodym derivatives. Thus

NS 0 &2

Yo=Y"— d +Yy a W a.e.
By (4.6),
h(Y°(s)) < Z C(lfg( V(Y (s)), wae. (4.8)
and as a result
e Ps —Bs ° (). .
/M h(Y*(5))de (5) < Z/ h(Y? (5))di(s) (49)

Next, suppose that p; and pe are mutually singular. Then there are disjoint sets S; € B(R) such
that 1;(S7) = 0. Clearly d¢;/d¢ = 1g,d¢;/d€, p a.e.. Since (4.6) holds with equality whenever either
y or z vanishes, (4.8) holds with equality, and so does (4.9). B

Lemma 4.3 Letz € X andy €Y. If x + Gy € X then
V(z+Gy) +h(y) > V(2), V(z+Gy)+h(y) >V(2)

Proof. We will only prove the result for V. The proof for V is similar. Assume without loss of
generality that A(x + Gy) is nonempty. Let Y € A(x + Gy). Then the corresponding controlled
process X = z + Gy + B + GY takes values in X. Set Y =y +Y and X = x4+ B + GY. Clearly
X = X, and Y has increments in Y, and therefore Y € A(z). Also AY(0) = y + AY(0), and
therefore by (4.6), h(AY (0)) < h(y) + h(AY(0)). Thus

J@+GyY) = J@Y)=hly) = V()= hy).
Since Y € A(z + Gy) is arbitrary, the result follows. B

In the proof of the next result, and several times in the paper, we use the fact that if X is the
controlled process corresponding to some Y € A(x), then by (2.2), for 0 <t < s < 00,

| Xs| > U1 X > ur- Xy + Uy (Bs — Bt) > ao| X¢| — |Bs — Byl (4.10)

As immediate consequences of this inequality we have
2TE| X | > ag'E| X | — 2™ E|By — Bs|™, s>t, m >0, (4.11)
| X[5 < 2a5" (IXs] +|B[5), s>0. (4.12)
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Lemma 4.4 There exist constants a1, as, a3 > 0 such that
alz|™ —ay < V(z) <az(l+[|z]™), zeX
The above inequality also holds with V replaced by V.
Proof. Once more we will only prove the result for V. Let z € X and define Y = /y\gf(x + B) and

X =T(z+ B). Then X =z + B+ GY, and it follows from parts (1) and (3) of Lemma 4.1 that
Y € A(z).

Denoting by 0 the zero trajectory in RF, it is clear that I'(z + 0)(t) = =, t > 0. Hence by
Lemma 4.1(2), |X(¢t) — z| + |Y(¢)] < ¢i|B|f. With the notation of the proof of Lemma 4.2, the
Radon-Nikodym derivative of p w.r.t. 1z is bounded above by a, L as follows from (2.2). Thus

/ e B3|V |(s) < a7 / 554V () = (apB)~! / =055 (s)ds < ()" / e B3| (5)|ds.
[0,00) [0,00) [0,00) [0,00)
(4.13)

By (2.8) and (4.13),

J(z,Y) = ]E/[o )e‘ﬂt(E(X(t))dt + h(Y°(t))d|Y|(t))

<ol [T X Yo
[0,00)
< CgE/ e—ﬁt(l + ™ (|B|:)ml\/1)dt
[0,00)
< a1+ [2™),
where ¢, c3, ¢4 do not depend on z. By (2.8) and (4.11), for every admissible Y,

J(z,Y) > C5E/ e*ﬁt|Xt|m‘dt —cg > crlx|™ — cs,
[0,00)

where c7,cg > 0 are independent of z and Y. B
Lemma 4.5 V and V are continuous on X.

Proof. We will only consider V. Fixr > 0, and given arbitrary ¢ € (0, 1), consider z1,zo € XNB,(0)
with |z; — 2] < § < 1, where § > 0 will be chosen later. Fix ¥; € A(z;) such that
J(IEI,Yl) < V(IEl) +E/2, (4:14)

and let Xy be the corresponding controlled process, namely X1 = 1 + B + GY;. Let Z = f(xg +
B+GY1), Yg = Y1 +Q\UZ and X2 = :L‘2+B+GY2 = I9 +B+GY1+E()Z. By Lemma 4.1, Y2 € .A(J?Q)
and Xs is the corresponding controlled process. Note that

X1 :F(Xl), XQZF((I}Q—xl—i-Xl).
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Hence, by Lemma 4.1
| X1 (t) — Xao(t)| +|Y1(t) — Ya(t)| < 16, (4.15)

where ¢; does not depend on ¢, 1 and z3. Assume that § is small enough so that ¢;0 < 1. In
particular this shows that f[o 00) e PtdZ(t) < cyd, and thus by (2.8), (2.9), Lemma 4.2 and Lemma
4.4 we have

J(w3,Y3) — J(z1,Y1) <E /[ ., ¢ 00 — HX )i+ G2 0]

IN

E/ e Ptmod(| X ()| + 1,0)dt + c30
[0,00)

< cii(c1)E / e P O(X (1)) + 1)t + 56
0,00)

(615)(V(5L‘1) + ].) + 635
(c10)(r"™ 4+ 1) + c30. (4.16)

05’7/7\1
m

IN N

Ce

Choosing 0 so small that the expression on the last line is bounded by £/2, we conclude that
V(z2) — V(z1) < € whenever |21 — x2| < ¢ and z1,29 € XN B(0,r). Since r is arbitrary, V is
continuous on X. A

Remark 4.2 Lemmas 4.4 and 4.5 are seen to imply part (1) of Theorem 2.1.

For z € X, and v € U for which there exists p > 0 such that z + pv € X¢, let
Yr(z,v) =inf{p > 0: 2 + pv € X[ }. (4.17)
Clearly  + 7, (z,v)v € 0, for x,v as above, and

z€e€X, velU z4+veXl = v(x,v) <L (4.18)
Lemma 4.6 Let ¢ € C(0;) and suppose that (2.10) holds. Then V; 4 is continuous on X,.

Proof. Below we use implicitly the fact that, in the definition of V., the values X and Y take on
the interval (o, 00) are immaterial. Fix ¢ > 0 and consider all z1, x5 € X, with |z; —z9| < § < 1/2,
where § > 0 will be chosen later. Let Y7 € A, (z1) be such that

Jr7¢,(ac1, Yl) < Vr,(b(xl) + 6/2, (4.19)

let X; be the corresponding cont£olled process, X1 = X* = x1 + B + GY7, and let o; be the
corresponding exit time. Let Z = I'(zo+ B+ GY1) and X = I'(z2 4+ B+ GY1). By Lemma 4.1(1,3),
Z is Ry -valued, adapted, RCLL and nondecreasing, and X (¢) € X, ¢t > 0. Also, by Lemma 4.1(4),

~

['(z1 + B + GY7) = 0, hence by Lemma 4.1(2),

0< Z(t) < kb, t>0. (4.20)
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Let Y = Y7 + ypZ. Define 7 = inf{t : X(¢) € X¢}. Let 09 = 01 A 7 and set (X3,Y2) = (X,Y) on
[0,032). Define also

Yy(og) = Yo(r—) + % (X (7—),AX(7))AY (1), 7 < o7, (4.21)
Y (o1) + (X (1), o) o, o1 <7, '
and
XQ(O’Q) = XQ(O’Q—) + GAYQ(O’Q). (422)

Note that X5(02) € 0,. Hence X is well defined until o9, the first time it exits X,. We leave Xy
undefined on (o2, 00). Below we sometimes write U; for GY;, i = 1, 2.

Note that o9 < 01. By (4.17) and (4.21), the random variable AXs(02) is U-valued and F,,-
measurable, and since
Xg(t) =22+ B(t) + GYQ(t), t < o9,

we see that Yo € A(z2) and Xy is the corresponding controlled process. On the time interval [0, o2)
we have

X1 :F(Xl), XZZF(:EZ—I1+X1),
and therefore by Lemma 4.1,

[ X1(t) = Xo ()| + [Y1(t) — Yo ()| < ci]wy — 3| S e1d, £ <o, (4.23)
and similarly
X1(8) — X(1)] <16, <o, (4.24)
where ¢; does not depend on ¢, 1, z2 and 6.
We show that there exists a constant ¢ not depending on 1, z9 and ¢ such that
| X1(02) — X2(02)| + h(AYz(02)) — h(AYi(02)) < cd. (4.25)

Different arguments are used in the two cases below.

Case (i): 7 < o1.

By (4.17) and (4.21), X (7) — X2(7) € U. Moreover, since X2(7) € 9, and X;(7) € X,., U1 (Xo(T) —
X1(7)) > 0. Therefore by (2.2) and (4.24)

agl| X (1) — Xo(7)| <01+ (X (1) — Xo(71)) <01+ (X (1) — X1(7)) < 16 (4.26)
Combining (4.24) and (4.26) we get
|X1(O’2) - X2(O’2)| S 025. (427)

Since X (7—) € X, and X (1) € X¢, it follows from (4.18) that v = ~,(X(7—),AX(7)) < 1. With

(4.21) we have AY3(09) = yAY (02) = yAY1(02) + v9oAZ(02). Thus by the Lipschitz property of
h and (4.20)

h(AYQ(UQ)) S h(")/AYl (02)) + 03’}/|@\0|AZ(02) S h(AYl (02)) + 045, (4.28)
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and (4.25) follows.
Case (ii): o1 < 7.
Note that o7 = o9 and by (4.24), | X1(02) — X(02)| < ¢10. Since Xi(09), X2(02) € O, we have
u1- X1(02) = U1- Xo(02). Also note that Xo(02) — X (09) € X. Thus using (4.24):
a0|X2(02) — X(02)| < ﬂl- (XQ(UQ) — X(Ug)) = ﬂl- (Xl(UQ) — X(Ug)) < 01(5, o1 <T. (4.29)

Combining (4.24) and (4.29), the estimate (4.27) holds for an appropriate constant c;. Now, by
(4.21) and (4.22),

AXs(o1) = GAYs(o1) = G(Y1(01—) — Ya(o1—)) + GAY;(01) + ',
where ' = 7,.(X (01), %) + Z(01). Since AX;(01) = GAYi(01), we have
v <|AX3(01) — AXi(o1)] + e5|Yi(01—) — Ya(o1-)],
and since o1 = 09, we have by (4.23) and (4.27) that
v < cgé. (4.30)

Using again (4.21), AYs(o2) — AY1(02) = 7'go. Combining (4.30) and the Lipschitz property of h,
we establish (4.25).

Let
m(er) = max{[(y) — £(2)| : y, 2 € Xy, ly — 2| < o} Vmax{|p(y) — #(2)| : y, 2 € Iy, |y — 2| < ).
Recalling the convention e #7 f(X,) = 0 when o = oo,
Trp(2,Ys) — Jp (21, Y1)
< E/[Om e P(U(Xa(1) — L(X1(#)))dt + h(dYa(t) — h(dYi(D))]
+ E{ly, —gye 2 ($(Xa(02)) — $(X1(02)))}

+ E{ 1oy <o, [e P72 (X2 (02)) — e P71 (X1 (00))]}
< ¢70 + csm(csd) + E{ Loy <o, [ P72 (X2 (02)) — e P71 (X1 (01))]}- (4.31)

The estimate c70 in the last line above follows on using Lemma 4.2, (4.20) and (4.25). By (4.27),
since Xy(o9) € 0, we have r — U1+ X1(02) < ¢9d. Thus, for « > 0, o1 > o9 + « implies that for
te [02, o9 + O(]

r >y X1(t) > ur-zy + Uy B(t) + ur- Uy (02) = Uy X1(02) +u1- (B(t) — B(o2))
>7r —cgd + Uy (B(t) - B(O’g))

Therefore

P(oy >0+ a) < P(Orgixa u1- (B(o2 +t) — B(02)) < c96) = Ai(a, ). (4.32)
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Note that, if either ¥ is non-degenerate or u;-b > 0, we have that for each fixed a, Ai(c,0) — 0
as 0 — 0. Moreover, writing X;(01) — X1(02) = B(o1) — B(os) + Ui(01) — U1(02), we have
u1- (Ui (01) — Ur(o2)) < 90 + |B(01) — B(o2)|. Using (2.2), on {0 < 01 — 03 < a},

|X1(01) — X1(02)| < ¢100 + c1p max{|B(02 + t) — B(02)| it € [0, a]} = c100 + )\2(04). (4.33)
Using (4.32) and (4.33) in (4.31) we obtain

Jrp(x2,Uz) — Jyp g(x1,U1) c11(0 + m(cad) + A1 (e, 8) + a + E(m(ciod + A2 ()))

<
< e (6 +m(ead) + A, 0) + a+ m(2¢106) + E(m(2X2(a))).

Note that E(m(2X\2(«))) — 0 as a — 0 since mg is uniformly bounded (bound only depends on r)
and Az2(a) = 0 as @ — 0. Choose « small enough and then ¢ small enough so that the right-hand
side is bounded by /2. Combining this with (4.19) we have that V; 4(z2) <V, 4(21) + € whenever
|z1 — 2| < 0. This proves the continuity of V. 4 on X,. ®

The following lemma shows that the infimum in the definition of V(z) [ V(z)] in (2.13) [resp.
(2.12)] can equivalently be performed over a class of admissible controls under which the controlled
process’s moments are finite and sub-exponential in the time variable.

Lemma 4.7 For x € X and a system ®, let

Ap(z) ={Y € A(z) : Va,t > 0 E|Xy (£)|* < 00; Ya >0 lim e PR Xy (£)|* = 0},
o0

where Xy is the controlled process corresponding to Y. Define Ap(®,z) similarly by replacing
A(®,z) above by A(®,z). Then

V(z) = inf{J(z,®,Y):Y € Ap(®,z)} (4.34)
and

V(z) = i%finf{,](m, ®,Y):Y € Ap(®,1)}. (4.35)

Proof. We will prove (4.34). The proof of (4.35) is identical. Fix z € X. Given p > |z|,
an admissible control Y and the corresponding controlled process X for which J(z,Y) < oo, let
Ap = inf{t : ;- X (t) > p}. Note that A, may assume the value 0. Let

Zp(t) = X(t)1p,0,) (1) + (X (Ap—) + B(t) = B(Ap)) 11,000 (1), £ 20,
where 1)y ) is understood as zero in case A, = 0 and X (0—), by convention, equals z. Set
Y, =Yl +9l(Z), X, =TD(Z) =z+B+GY1y, )+l (Z). (4.36)

By Lemma 4.1, Y}, is an admissible control and X, is the corresponding controlled process. Denote

Xp(t) = X(t) 1o, (t) + X(Ap—)1[, ,00)- Clearly X, takes values in X and therefore X, = I'(X}).
Thus by Lemma 4.1, on {\, < oo},

X, — X, < K|Z, — Xp|5 = ksup{|B(s) — BO)| : s € M\, T]}, T > \p. (4.37)
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Thus by (4.36) the right-hand side of (4. 37) is an upper bound for |X,(T") — X,(A\p,—)| for T' > X,,.
A similar argument using the fact that F( ») = 0 shows that the right-hand side of (4.37) is an
upper bound also for |Y,(7T") — Y,(A\p—)|. Thus have on {}, < oo},

IX,(T) = X, ()| + (1) = Yp(0p—)| < 1 sup{IB() — BOW| 1 £ € P TT}, T > Ay (4.38)

Since on {), < oo} we have |X,(\,—)| = |X(N\,—)| < ag'p, the sub-exponential behavior of the
ath moment of X, (¢) follows from a similar property of the Brownian motion. Thus to prove (4.34)
it suffices to show that

limsup J(z,Y,) < J(z,Y), Y € A(z). (4.39)

p—0o0

Note that by (2.8)
1,00 (8)cea | X ()™ < £(X) + cra

and since J(z,Y) < oo, we have E [ e775(£(X;) + cr2)ds < co. Also, clearly A, — oo, a.s., as
p — oo. Thus [{° X, € ﬁ5|X( )|™ds — 0 a.s. and in L'. Using (4.10) with ¢ = A\,—, this shows that

lim E[e=#*|X (\,—)|™] = 0. (4.40)

p—00

Note that with £ = @\gf(Zp), [Yp(t) = Yp(Ap—)]1li>x, = £(t). Hence using (4.38) we get

/w,oo) e Ph(d(s)) < e /[A

Therefore, with (2.8) and (4.38), we have

Pl < [P0 V0 lds,
) Ap

p,00 ,O0

J(2,Yp) = J(z,Y) < Ce,glE/[A )6*55[(|Xp(8)|m‘ + 1)ds + h(d(s))]

< &E / e (X, (Ap)[™ + sup |By — By, ™V 4 1)ds,
[Ap,00) LE[Ap,s]

where the constant ¢y does not depend on p and Y. Using the above along with (4.40) yields (4.39).
This proves the lemma. W

The following lemma shows that in computing the value function, the class of admissible controls
can be further restricted.

Lemma 4.8 Fizz € X, a system ® and Y € Ap(®,z) with J(z,®,Y) < co. Then one can find a
c € (0,00) such that for all € € (0,1), setting

—inf{t: E /[t )e*ﬂS(e(Xs)ds + h(dY,)) < e} Vlog(e P, (4.41)

Z(t) = X ()17 (8) + (X (T%) + B(t) = B(T)) (7= sy (£), >0 (4.42)
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and

Y® =Yg +50(2°),  X°=D(Z°) =2+ B+ GY1lp e + Gl (Z°), (4.43)
we have that for all T > T¢
X5 — Xoe| + |V — V| < csup{|B(t) — B(T)| : t € [T, T]} (4.44)

and J(z,Y®) < J(z,Y) + ce.
Proof. Note that X© is the controlled process corresponding to Y. Since X*(t) € X for t < T,
we have I'(Z%)(t) = 0 for ¢ < T* and so
(Ye(t), X°(t) = (Y(¢), X(¢), t<T°. (4.45)
Arguing again by Lemma 4.1, letting X¢ = X (-AT*) we have X¢ = I'(X¢) and therefore for T > T*
X7 — Xefj < 5125 — X°J5 = wsup{|B(#) — B(T?)| : ¢ € [T, T},
Combining the above with (4.43) yields (4.44).
Next, moment estimates on the Brownian motion imply
E|X* (T)|™ < ¢y (B|Xq- ™ + (T —T°)™ + 1), T >T°, (4.46)

where ¢1, m do not depend on T, e and Y. Hence
E / e P X (5) ™ ds < e PTT (B Xp ™ + 1). (4.47)
(T ,00)
Arguing as in the previous lemma, by (4.44), we also have
E / e Ph(dYF) < cR / e PS|YE — Vi |ds < cze P < e (4.48)
[T ,00) [T ,00)
Next, by (4.41), (4.11) and (2.8)

£> E/ e P (0(Xy)ds + h(dYy))
[T=,T5+1)

; TE+1
> e-AT R / (con| X[ = cpp)ds

> cyge PTE[E| X |™ — c5(1 + E(|B|})™)]
= C4€_ﬁTE [E|XT€ |ml - 06],

where ¢4, c5,¢6 > 0 are independent of ¢ and Y. Hence by (4.41)

e_’BTSE|XTa | < £ + C—Ge_/BTE < ¢re. (4.49)
Cq Cq

By (4.45), (4.47), (4.48) and (4.49),
J(z,Y?) <E / e P(U(XE)ds + h(dY?E)) 4 cse PT (B Xpe ™ + 1) + ese < J(2,Y) + coe.
[0,77]

This proves the lemma. B
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5 Solvability

In this section we establish part (2) of Theorem 2.1 by proving the following result.
Theorem 5.1 Both V and V are constrained viscosity solutions of (2.14) on X.

A key to the proof will be the following DPPs, Propositions 5.1 and 5.2, whose proof, along with
the proof of Lemma 5.1 are postponed to Section 8. The first DPP regards V.

Proposition 5.1 Let x € X and ¢ > 0 be given. For Y € A(xz) and X the controlled process
associated with x and Y let

v =7 =1inf{t > 0: X(¢) ¢ B:(x)}. (5.1)

Then for t € [0,00),

V(z)= inf E
YeA(z)

/[ ]e*ﬂS(e(X(s))ds+h(dY(s)))+e*ﬁ<W>V(X(tAT)) 62
0,tAT

In order to present the DPP associated with V, we need to introduce some notation. Let ® =
(Q, F,(F;),P, B) be a system and ¢ be an R* valued random variable with probability distribution
p given on (Q, Fo,P). We will refer to (®,() as an extended system. An F; adapted RCLL process
Y with increments in Y is said to be an admissible control for (®,() if X; = ( + B, + GY; satisfies
X; €X, P a.s., for all £ > 0. Denote the class of all such admissible controls by A(®, ¢). Let

J(®,0,Y) = ]E/[O | e O 0(X,)ds + h(dY,)). (5.3)

Denote the class of all F; adapted RCLL processes with increments in Y by Ay (®). Given YO €
Ao (®) and ¢ as above, let

Zi=C+ B +GYY, n=T(Z)andY =Y° + fon. (5.4)

Then, Y € A(®, ¢) and the corresponding controlled process X is given as X; = (+B;+G Y +Gjon;.
Let

Fo=o{(, Xams :0< s < ) (5:5)
Let
A(®, () = {Y € A(®,¢)| there exists YO € Ay(®) satisfying (5.4) and Y is Fi adapted}. (5.6)

Elements of .,zl\(q), IS ) will be referred to as feedback controls. When y = §,, for some z € X, we will
write A(®,() as A(P,x). Let, for z € X|

V(z) =inf inf J(z,9,Y). (5.7)
® YeA(®,r)

The following lemma, proves the equality of Vand V.
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Lemma 5.1 For all z € X V(z) = V(z) .
We can now state the second dynamic programming principle.

Proposition 5.2 Let 2 € X and € > 0 be given. For Y € A(®,x), let 7y be defined via (5.1).
Then for t € (0, 00)

V(z) =inf inf E
® YeA(d,r)

/[ ]e—ﬁS(e(X(s))ds+h-dy(s)))+e—ﬂ<tAT>V(X(tAT)) L (58)
0,tAT

Remark 5.1 When using Propositions 5.1 and 5.2 we can assume without loss of generality that
the infimum is taken only on those Y € A(x) (respectively A(®, z))for which, on the set {7 < ¢},
X (1) € 0B:(z). More precisely, in case of Proposition 5.1, for ¢ € (0,00), let

Ai(z) ={Y € A(z) : On the set {r <t}, X(7) € 0B.(2)}.

Then

V(z)= inf E
YGAl,t(ZL‘)

/[ | B8 (0(X ())ds + h(dY (5))) + e POV (X (£ A 7))
0,tAT

Indeed, for a general Y € A(x), consider (X,Y) that agree with (X,Y) on [0,7) and, on {7 <},
satisfy AY (1) = aAY (1), where a € (0, 1] is such that X (7) € 0B.(z). Denoting by Ji(Y) the

expectation on the right-hand side of (5.2) and writing § = AY (1) —AY (1), clearly J1(Y)—J1(Y) =
E{l;<;e77[h(0) + V(X (7) + Gd) — V(X(7))]} > 0 by Lemma 4.3. Similar statement holds for the
dynamic programming principle in Proposition 5.2.

The proofs of the two dynamic programming principles and Lemma, 5.1 are deferred to Section 8.
Proposition 5.3 Both V and V are viscosity supersolutions of (2.14) on X.

Proof. We will first consider V. Fix z € X and let ¢ € C?(X) be such that V — ¢ has a global
minimum at . We can assume without loss of generality that V(z) — p(z) = 0. We need to show
that either

Be(x) + Lo(z) —L(z) > 0 (5.9)
inf{Gy- Do(z) + h(y) : y € Y1} <0. (5.10)

Arguing by contradiction, assume that neither of the above assertions is true. Then one can find
6 > 0 and € > 0 such that for all z € B.(z) N X

Be(T) + Lo(T) — £(z) < —0 (5.11)
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and Gy- Dyp(z) + h(y) > 0 for all y € Y;. The latter implies that for all y € Y
Gy- Dp(Z) + h(y) = 0|Gy|. (5.12)

Let ¢ > 0, fix Y € A1 (z) and denote U = GY. Let X be the corresponding controlled process.
Denote
Yet)=Y(t)— Y AY(s), U°=GY"
0<s<t

Then U€ is continuous, U¢(0) = 0, and it has increments in U. Let 7 be as in (5.1). An application
of It6’s formula gives

p(z) = Ele 7" Xenr)] + ]E/ "o (Lp(X,) + B(X,)) ds

0
B[ DX U -E Y X —p(X). (1)
[0,tAT]

0<s<tAT

From (5.12) it follows that, for 0 < s <tAT

1
P(Xs) —p(Xs-) = / Dyp(X,s_ + 0 AU,)-GAY,do
0
> 0|AU,| — h(AY;). (5.14)

We also have by (5.12)
/ e P Dp(X, )-dUE > 0 / e PdUe|, — / e P(dYY). (5.15)
[0,tAT] [0,tAT] [0,¢AT]
Combining (5.11), (5.13), (5.14), (5.15) and the second part of Lemma 4.2 we obtain

o(z) < E[e_ﬁ(t/\T)(P(Xt/\T)] + E/

B [U(X,)ds + h(dY,)] — OF / 5 (ds + d|U],).
[0,tAT]

[0,tAT]
Since ¢ <V and |U,| < f[o . d|U|s, we have
o(z) < Ele PV (X)) + E / e P [0(X,)ds + h(dY,)] — 0e BBt AT+ |Uinsl]. (5.16)
[0,tAT]
Taking infimum over all Y € A, ;(x) we have from Proposition 5.1 and Remark 5.1 that
V(z) = p(@) < V() — e T a(t),
where

)= inf  Elt AT+ Ul
a(t) yEiﬁ,t(w)[ 7+ |Uiaz ]

A contradiction will be obtained by showing

3 ¢t>0 s.t. at) >0. (5.17)
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Recall that X = 24+ U 4+ B, U = GY and that, since Y € A;(z), one has | X, —z| = ¢ on
{r < t}. Hence
]E|Ut/\7'|1'r§t Z E[(5 - |Bt/\'r|)]-7'§t]-

Thus
Elt AT+ Uinell > BftLrst + (6/2)Lrar, 1p1:<csa) > [t A (/2]P(BI; < 2/2).

Clearly for all ¢ > 0 small enough, P(|B|; < £/2) > 0. Note that the qualifier “small enough” is
needed since the Brownian motion is allowed to be degenerate. This proves (5.17) and hence the
first part of the result. The proof that V is a supersolution as well is similar; instead of taking
infimum over all Y € A, (z) in (5.16), we take infimum over all feedback controls and use the
dynamic programming principle in Proposition 5.2. B

Proposition 5.4 Both V and V are viscosity subsolutions of (2.14) on X°.

Proof. Once more we only prove the result for V. Fix z € X° and let ¢ € C?(X°) be such that
V — ¢ has a global maximum at z. We need to show that

BV (z) + Lp(z) —£(z) <0 (5.18)
and
Gy- Do(x) + h(y) > 0, y € Y. (5.19)

We can assume without loss of generality that ¢(xz) = V(z). Thus V < ¢ on X°. For all § > 0
small enough one has z + Gy € X° for all y € Y;. Hence by Lemma 4.3

p(z+0Gy) — p(z) 2 V(z +6Gy) —V(z) = —0h(y), yeYi.
Dividing by ¢ and taking 6 — 0 proves (5.19).

To prove (5.18), let ¢ > 0 be such that B.(z) C S°. For a control Y and a corresponding

controlled process X, let o
7y = 1 Ainf{t : X(¢) ¢ B.(z)}.

Now set Y; = 0 for s € [0,7y/], and thus Xy = z + By for s < 75.. In what follows denote 7 = 7.
An application of Itd’s formula gives

Vi) = ola) = Ble (X)) + B [ "¢ P (Lp(X) + Be(X)ds (5.20)

Using Proposition 5.1, the inequality V < ¢ and (5.20),
T
Viz) < E ( / e P 0(X,)ds + eﬁTgo(XT)>
0

T

= @) +E / e (0(X,) — Lo(X,) — Bp(X,)) ds. (5.21)
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Recalling that V(z) = ¢(z) and denoting
¢(z) = £(z) — Lo(z) — Bp(z), T € Be(w),

we have E [ e #*¢(X,)ds > 0. Hence

T

T T
C(w)]E/ e Psds > —]E/ e P3(¢(X,) = C(x))ds > —a(w,e)]E/ e Psds,

0 0 0

where
a(z,e) = max |((z) —((z)].
ZEB:(x)

Since 7 > 0 a.s. it follows that ((z) > —a(z,e). Taking ¢ — 0 we obtain ((z) > 0, proving
(5.18) and hence the first part of the result. The second part, once more is obtained upon using
Proposition 5.2 rather than Proposition 5.1 in proving the statement analogous to (5.21). B

Combining Propositions 5.3 and 5.4 we obtain Theorem 5.1. B

6 Uniqueness on bounded domain

Recall the notation X, 0., 0 = o(r), as well as J, 4, V.4 and Vr,(b from Section 4. In particular,
recall that

Vi) = Yeiitlf(w) Jrg(@,Y),  Vig(z)= Yeii_lf(x) Jrg(@,Y).

Let r > 0 be fixed throughout this section. In this section we prove the following.

Proposition 6.1 Let u € C(X) be a constrained viscosity solution of (2.14) on X. Assume that
(2.10) holds. Then for x € X,

u(z) = Vey(z) = Vyu(z). (6.1)

Recall Definition 2.2 of viscosity sub and supersolutions.

Definition 6.1 Let ¢ : 0, — R be given. We say that a continuous function v : X, — Ry
is a constrained viscosity solution of (2.14) on X, with the Dirichlet boundary condition ¢ if the
following conditions hold:

(1.)  is a viscosity supersolution of (2.14) on X,;

(2.) 1 is a viscosity subsolution of (2.14) on X2;

(3.) Y = ¢ on O,.

Remark 6.1 If 4 : X — Ry is a constrained viscosity solution of (2.14) on X then it is clearly a
constrained viscosity solution of (2.14) on X, with the Dirichlet boundary condition uls, .

The proof of the following result is similar to that of Theorem 5.1 and therefore is omitted.
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Theorem 6.1 Let ¢ € C,(0,). Assume that (2.10) holds. Then both V,.4 and V4 are constrained
viscosity solutions of (2.14) on X, with the Dirichlet boundary condition ¢.

The following will be the principal tool in proving Proposition 6.1.

Theorem 6.2 Let ¢ € Cy(0,). Let u,v € C(X,) be two constrained viscosity solutions of (2.14)
on X, with the Dirichlet boundary condition ¢. Then u = v.

Proof of Proposition 6.1. The function V;, is clearly nonnegative, and by Lemma 4.6 and
Theorem 6.1 it is a C'; (X,.) constrained viscosity solution of (2.14) on X, with the Dirichlet boundary
condition uly,. In view of Remark 6.1, so is u. A similar statement holds for V,nyu. Hence the result
follows from Theorem 6.2. B

In the rest of this section we prove Theorem 6.2.

Lemma 6.1 For every £ € 90X, there exist n =n(§) € R" and a = a(§) > 0 such that
Bio(z +1tn) C X2, Vz € X, N B,(&) and Vt € (0,1]. (6.2)

Proof. Fix ¢ € 0X,. Let w € X% and let @ > 0 be so small that Ba,(w) C X9. If z € X, and
y € X2, then convexity of X, implies that any point on the line segment joining = and y, excluding
x, belongs to the interior X?. Hence for any z € X,

Boo(z + t(w —2)) = {z + t(2 — x) : 2 € Bag(w), t € (0,1]} C XV.
The inclusion above may be written as
Ute(()’l}Bgm(x + t(w - ZU)) - Xg. (63)

Let n = w — &. Clearly, for z € Bo(§) N X, Use(o,1)Bia (7 + 1) C Use(o,11Bata(z + t(w — x)). Hence
the result follows from (6.3). W

Proof of Theorem 6.2. We introduce some notation specific to the proof. For n € N, denote
by 8(n) the space of symmetric n x n matrices. We write My < M, if and only if My — M is
nonnegative definite, My, My € 8(n). Let S be relatively open in X. For z € X, r € R, p € R* and
A € 8(k) write

F(z,r,p,A) =pr—bp— %trace(EA) —l(x).
For z € S and a real valued continuous function v on X,, denote
J§’+1/)($) = {(Dg(z), D*p(z)) : ¢ € C*(S) and ¢ — ¢ has a local maximum at z},
J2p(x) = {(Dg(x), D*¢(x)) : ¢ € C*(S) and 4 — ¢ has a local minimum at z}.
Define the closures of the above sets in the following way. For z € §
725’—1—1/)((1}) ={(p, M) € R¥ x 8(k) : there exists a sequence (z,,pn, My) € X, x RF x §(k) s.t.
(P> M) € T3 4p(wn), and (n, (), P, My) = (,(x),p, M) as n — 0.}
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2,4

Define 7@’71/)@) analogously. For short, write J?7% for Jé’f and similarly define J>~, J~ and

777 Generic elements of Y will be denoted by y (rather than y).
To prove the result it suffices to show that
u(r) <wv(r), z€X,. (6.4)

Let ¢; = aj'. Note that Gyt > 1,y € Yy (cf. (2.2)). Let ¢(z) = 1201 — 2, © € X, where ¢,
is fixed and large enough so that

P(z) <0, zeX. (6.5)
Thus
Gy-Dip(z) > 1, z € X,,y € Y. (6.6)
For a € (0,1) define
Uq = au + (1 — a)ip. (6.7)

It suffices to show that for every a € (0,1)

uo(r) <v(z), z€X,. (6.8)

We argue by contradiction and assume that (6.8) does not hold. Therefore there exist o € (0,1)
and ¢ € X, such that

uq(§) — v(§) = max(uq(z) — v(z)) =0 > 0. (6.9)
reX,

The rest of the argument is divided into several steps.

Step 1. We show that A > 0, where

A = max (uq(2) — v(2)).

Arguing by contradiction, assume A < 0. Define, for 6 > 0,

— 0
My= max _(ua(z) —v(y) - Slz —yl’)
(2,y)€X, xX,r 2
and let 9
(T0,59) € argmax (ua(w) —v(y) — 5|z —yl*).
(z,y)€Xr XXy
From Proposition 3.7 of [8] we have that
lim 0|79 — gg|*> = 0, (6.10)
0—o00
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and that there exist 7 € X,. and a sequence (Zy, Jp)gco, such that, along the index set ©, (Zg, 79) —
(z,7) and
lim My = ua(z) — v(Z) = sup (ua(z) — v(z)) = 6.
0—00,0€0 z€X,

Along with the assumption A < 0 this yields that there exists fp such that for all & > 6y, 6 € ©
one has My > 0 and (Zy,yp) € X2 x X?. Henceforth we assume that 6§ > 6y and § € ©. Define
U:X, xX, — R, as U(z,y) = (§/2)|z —y[2. Then by Theorem 3.2 of [8] one can find X, Y € $(k)
(possibly depending on #) such that X <Y and

(D2 ¥(T0,50), X) € T T ua(@), (—~DyU(T9,59),Y) € T v(J)-
Thus
(0(F0 — o), X) € T ua(@o), (0F0—70),Y) €T v(F). (6.11)
Next note that if z € X2 and (p, A) € J*Fuq(2) then by (6.7)

1 l—«

* % . ]__a
(p*, A") = (=p —
(04

Dip(2), éA _ 1m0 peu0)) € Pt

e
Using the subsolution property of u (cf. Definition 6.1) we have

l—«o

1
0 > F(zu(2),p",4%) > —F(zua(2),p, A) +
« (67

Thus

F(Z,Ua(Z),p, A) < _(1 - O().
Now since z € X2 and (p, A) € J> uy(2) are arbitrary, and F is continuous in all variables, the
above display holds, in fact, for all z € X2 and (p, 4) € 72’+ua(z). In a similar way, using (6.6), it

is seen that

sup{—Gy-p—h(y)} < —(1—a),
yeY

for all (p, A) € 72’+ua(z). In particular, from (6.11) we have

F(fg,ua(gg),O(fg - gﬂ)aX) < _(1 - Oé), (612)
sup {—Gy-0(Zg — o) — h(y)} < 0. (6.13)
yeY1

Next, using the supersolution property of v, we have, for all z € X?,

F(z,0(2),p, A) V ;g§{—0g-p —h(y)} = F(z,0(2),p, A) VH(p) 20, (p,A) € J*7v(2).

It is easy to see that H is continuous. Thus by continuity of F', the above relation holds for all
(p, A) € T w(z). By (6.11),

F (g, v(Ys),0(Tg — ¥p),Y) V Su§{—9Gy' (To —Yp) — h(y)} > 0. (6.14)
yer
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Combining (6.13) and (6.14),
F (g, v(yp),0(Zo — Up),Y) > 0. (6.15)
Now, (6.12) and (6.15) along with the relations X <Y and ua(Zg) — v(§g) > My > 0 imply

F(9p,v(Ua), 0(Tg — 4p),Y) — F(Zp,ua(Zo),0(Zo — Ua), X)
£(7g) — £(Yp)-

Taking 0 — oo, recalling (6.10) and the continuity of ¢, we arrive at a contradiction. Thus we have
shown that A > 0.

<
<

Step 2. Denote u® = u, — A. We show that

sup (u’(z) — v(z)) < 0. (6.16)
mexr
Arguing by contradiction, assume that (6.16) does not hold. Then sup, 5 (u(z) —v(z)) = 6* > 0.
Define,

My= max (u
(z,y)€Xy x X,y 2

and let
M

(z0,y9) € argmax (u’(z) —v(y) — 5lz —yf).

(z,y) X, x X,

Once more, from Proposition 3.7 of [8] we have that

lim |zg — yg|*> =0, (6.17)
0—o00

and that there exists z € X, such that, along a sequence, (z9,y9) — (Z,Z), and

glim My = uMZ) — v(Z) = sup (u’(z) —v(z)) = 6*.
—0 reX,

With the observation that u”* < v on 0X,, this yields that (zg,9) € (X2,X9) for all § > 6y, along
the sequence, for appropriate 6. Henceforth assume that 8 > ;. Once again, let X,Y € 8(k) be
such that X <Y and

=2, —2,—
(0 —y0), X) € T u(a), (O(ws —y0),Y) € T v(yn). (6.18)
Arguing as in Step 1, it follows from (6.18) that

F(zg,u™(zg),0(zg —yp), X) < —(1 — @) — AB, (6.19)

F(yp,v(yp),0(zo — yp),Y) > 0. (6.20)

Relations (6.19), (6.20), X <Y and u”(zg) — v(yg) > My > 0 yield

(I —a)+AB F(yg,v(ya), (g — y9),Y) — F(mg,u(z9),0(x9 — 1), X)

<
< Uwg) — £(yp)-

28



Recalling that A > 0, taking # — oo and using (6.17) and the continuity of ¢, we arrive at a
contradiction. Therefore (6.16) holds.

Step 3. Recall that £ is defined via (6.9). In view of (6.16) we can assume without loss of generality
that £ € 9X,. Let n = n(€) be as in Lemma 6.1. For v € (1,00) and € € (0, 1) set

U(z,y) = [y(x —y) —en> +ely — €% ®(z,y) = ua(z) —v(y) — U(z,y), (2,9) €X, x X,
and let

(Tey, Uey) = (2,y) € argmax P(z,y).
(Izy)EXT XXT

By Lemma 6.1,
£+ %n € X. (6.21)
Clearly ®(z,7) > ®(¢ + vy 'en, £). This can be rewritten as
ua(@) = 0(7) — val€ + Zn) +0(€) 2 1T — ) —enl? +elg — €. (6.22)

Dividing by 72 we see that, for every ¢, |# — 3| — 0 as v — oo. This observation along with (6.9),
(6.22) and the continuity of u, and v, gives that limsup, ., [v(Z —7) —en|* + ]y — €|* < 0. Hence
for all € € (0,1)

y—& (T —y) —>en, asy — oo. (6.23)

In particular, # = § + ‘en +v 'o(1) as vy — co. Hence by (6.21) and Lemma 6.1 & € X for
¥ > 0, for some vy = y(e) < co. By (6.5), (6.7), (6.9) and nonnegativity of u, it follows that
v(€) < u(€). By choosing 7y larger if necessary, we have v(y) < u(y) for v > y. Henceforth assume
v > 7. Since both u and v satisfy the boundary condition ¢ outside X, we conclude that

yeX,. (6.24)
For (z,7,p,A) € X, x R x R¥ x §(k) let
G(x,r,p, A) = F(z,r,p, A) V H(p).

Then since # € S?, we have as before
-~ =24~
G(Z,ua(7),p, X) < =(1=a), (p,X) €T ua(7).

By (6.24) and the supersolution property of v,

~ —2,—
Gy,v(y),q.Y) 20, V(g,Y) € J" v(y).
Combining the above two displays we obtain that for all (p, X) € 72’+ua(:f) and (¢,Y) € 72’_1)@)

l-—a< G@a”@)a%y) - G(iaua(i)aan)

< max{lg —pl, B(v(y) — ua()) + |bllg — pl + [6(z) — £(y)] + (1/2)trace(E(X — Y))(}- )
6.25
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Next, noting that us(z) —v(y) > ®(z,y) > ®(&, ), and using (6.9), we have
v(y) — ua() < %>, (6.26)
Hence by (6.25)
1 —a < max{lg —pl, Bn]* + [bllg — p| + [€(Z) — £@)| + (1/2)trace(S(X ~Y))}.  (6.27)
By Theorem 3.2 of [8], for each o € (0,00) one can find X,Y € §(k) such that

(D,U(Z,7),X) €T ua(®@), (—D,¥(F,7),Y) €T v(H),

and
< )0( e ) < D*U(E,7) + o(D*U(F, )’ (6.28)
Observe that
D,¥(2,y) =2y (v(@ —y) —en); —Dy¥(z,y) =27 (v(Z —y) —en) — 2e(y — &), (6.29)
DQ\y(z,@:w( _II _II>+25<8 ?) (6.30)

From (6.28) it follows that, with 1 = (I, I)’,

X 0

Y
X 1/_1<0 oy

) 1 < 1(D?*T(,5) + o(D?*T(,7))?)1.

This implies that
trace(X(X —Y)) < trace(X1'(D*¥U(zZ,7) + o(D*¥U(Z,7))?)1).
From (6.30) it now follows that for some ¢ € (0, 00) which is independent of &7, o
(1/2)trace(2(X —Y)) <e. (6.31)
Using (6.26), (6.29) and (6.31) in (6.27) we have
L= o < Bnf? + 26l — €]([b] + 1) + |6F) — 6)] +<e.

Letting 0 — 0 we obtain
1 —a< B +ce.

Finally, letting ¢ — 0 we arrive at a contradiction. Hence (6.8) must hold, and the result follows.
|
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7 Uniqueness on unbounded domain

This section proves uniqueness of solutions to (2.14) on X. The two results stated below establish
part (3) of Theorem 2.1.

Theorem 7.1 Suppose that (2.10) holds. Let u € Cpho1,+(X) be a constrained viscosity solution of
(2.14) on X. Then u <V (in particular, u <V ).

Theorem 7.2 Suppose that (2.10) holds. Let u € Cphop +(X) be a constrained viscosity solution of
(2.14) on X. Then u >V provided that, in addition, one of the following holds: (a) u € Cf;ol,-;—(x);
or (b) (2.11) holds.

While both results above hold regardless of the value of my € [0,00), in the special case where
my = 0, the statement of part (a) of Theorem 7.2 is void: If a solution u belongs to Cp1 1 then by
Theorem 7.1, v < V, and by Lemma 4.4 V' is bounded, and so u cannot lie in 0501,+-

Before proving the above, we show that these results, along with the results of the previous
sections, imply Theorem 2.1.

Proof of Theorem 2.1. For part (1), see Remark 4.2. Theorem 5.1 establishes part (2). We now
consider part (3). Let my > 0 and u € Cf | be a constrained viscosity solution of (2.14) on X.
Then Theorem 7.1 and Theorem 7.2(a) establish that V' = u and so by part (1) of the Theorem we

get that V is the only solution in the class Cgol, - For the case my = 0, Theorem 7.1 establishes

the maximality of V' among solutions in Cpe 4. Finally, under (2.11), uniqueness in Cp1 4 follows
from Theorem 7.1 and Theorem 7.2(b). This proves part (3).

The identity V' = V under condition (2.10) is an immediate consequence of parts (1)—(3).
O

Proof of Theorem 7.1. Fix u and let ¢,, m,, be such that u(z) < ¢, (1 + |z|™), z € X. Recall
the notation of Lemmas 4.7 and 4.8. Fix z € X, a system ®, Y € Ap(z) and € € (0,1). Let
T¢,Y?, X? Z° be defined via (4.41), (4.42) and (4.43). Let 0 = o(r) be as in (4.2). Now we
estimate E[e™57 (|X2|™ + 1)]. Recalling the definition of Ap(®,z) and (4.12), we have that for
every t,

P(oc <t) = P(|uy- X|; >r) < 2a5'r 'E(|X,| + |B[}) — 0,

as r — oo. Hence o(r) — oo a.s. as 7 — oo. By (4.12)
Lycree P(IX5 ™ +1) < colo<rs [(|X5=| + [Bl7)™ + 1].
Since Y € Ap(®,z), (| X5:| + |B4:)™ is integrable and thus

lim E[l,<7ee P7(| XE|™ +1)] = 0. (7.1)
T—00
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Let g(¢) = gy (e) = e T E|X(T¢)|™=. Once more, since Y € Ar, and T° — oo as € — 0, we have
g(e) — 0 as € — 0. Hence by (4.41) and (4.44),
E[losree 77 (| X5 ™ + 1))
< (e (B Xpe [ + 1) + B(Lysge e~ X5 — Xe|™)
< cole + gy (€) + E[lysre e P sup{|B; — Br<|™ : s € [T*%, 0]}]
oo
=ca(e +gv(e) + Y Bllpereyiesivnye "0 T sup{|By — Bye|[™ : s € [T, T° +i+1]}])
=0

<c3(e+gy(e) +e” /’TZ Y1 4 43)™)

< ca(e + gy (e))-
Combining this with (7.1) we have

lim sup Ele =77 (|X2|™ + 1)] < ¢5(e + gy (€)). (7.2)

r—00

Next note that the control Y¢ need not be in A, but we can modify it as follows. On {0 = oo} let
X" =X On {0 < oo} let (X=7(¢),Y*"(t)) = (X°(¢),Y*4(¢)) for t € [0,0), and, recalling (4.17),
set

X7 (0) = Xo(0=) +7AX (o),  Y*'(0) = Y(0—) + 7AY*(0),

where
v =7 (X (0—), AX*(0)).

Then X" = z + B + GY*®" on [0,0] and moreover, Y € A,. Since v < 1, h(AY*"(0)) <
h(AY?(0)), and by (2.2) | X5 (0)| < ag'U1- Xo7 (o) < ag'|X?(c)|. Tt therefore follows from Propo-
sition 6.1 that

u(z) < E[/ e_ﬁs(f(XsE’r)ds + h(dYST)) + cue_ﬁ0(|X§ﬂ"|mu +1)]
[0,0]
SB[ PN s+ BAYE)) + uag™ e (X 4 D)
[0,0]

Thus by (7.2) and Lemma 4.8,
u(z) < J(@,2,Y%) +cs(e +gv(e)) < J(D,z,Y) + cr(e + gy (e)).

Sending € — 0, recalling that Y € Ap(®,z) and = € X are arbitrary, we conclude by Lemma 4.7
that u <V on X. W

Proof of Theorem 7.2. Once again, let u be fixed and let ¢, m,, be such that u(z) < ¢, (1+|z|™*),
z € X. Fixz € X. Let € € (0,e9) be given, where the constant g9 > 0 will be chosen later. We will
use the remarks below (2.13) and Proposition 6.1. We will construct a system P = (Q,]?, P, 7., B\)
and Y € A(<I> z) such that u(z) > J(z, Y) — ce with a constant ¢ not depending on €. This will
clearly yield the result.
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Consider first the case where u € C} | (X), namely u has compact level sets. Then R, (r) =
ming, u satisfies R, (r) — oo as 7 — oo. Let p € (0,00) and ¢ € X,. Consider the minimization
problem associated with the right-hand side of (6.1) on X,, where r > p. If Y € A,(§) satisfies

Jru(€,Y) < Vi u(€) + 1 then from Proposition 6.1, with o = o(r) (cf. (4.2)),
B9 u(X,)] + E /[0 IHE) < 1) 1
o
where X is the controlled process corresponding to Y. Since X, € 0, we have
(X)) > Ru(r).

Therefore by (7.3),
P(o(r) < 1) < Ry (r) ™ [eu(l + [€]™) + 1].

This shows that:

For every p one can find r = 7(p) > p such that P(o(r) < 1) <1/2, V¢eX,.

Next consider the case where (2.11) is assumed and u € Cpo1,4. By (2.6) and (2.11),

/ e P h(dY;) > ch/ e P5d|Y |y > cpe 7|V,
[0,0] [0,0]

Since u1- & < p and uy- X, = r we have that
]E/ e Ph(dYy) > ¢,| G| Ee PO, GY,
[0,0]

> ep| G| Ele P (r — p — Uy- By)]
> |G| (r = p)Ee™P7 — ¢ |G|T'E[e 77 |B[}],

where |G| > 0 denotes the operator norm of G. Note that
e .
Ele™ |Bl;]1 <) Loepiirne Pe(i+1) < e
i=0
where co does not depend on Y and r. Thus
E/ eB(dYy) > en G~ [(r — p)EeP7 — ).
(0,0]

Combining this with (7.3) we have that (7.5) holds in this case as well.

Define inductively a sequence of domains X, , X, , Uprx =pg<rp < pp<rg< -

relations r, = 7(pp—1), n € Nand p, =7, + 1, n € N. For n € N and § > 0 denote

mp(0) = max{u(&) —u(z) : {,z € X,,,, ¢ — z| < d}.

(7.3)

(7.4)

(7.5)

via the

By assumption, uy € U° (cf. the comment following (2.1)). Hence there is a constant a; > 0 such
that By, (up) C U° N X°. Fix such a;. Fix also k linearly independent unit vectors u; € By, (Up)
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such that, with A = cone(u;,7 = 1,... ,k), one has uyp € A°. Thus there exists a > 0 such that
B, () C A. Let such a be fixed and denote c3 = (1 4+a 1)k'/2. Let o: A — Y be the linear map
of Lemma 9.2 and denote by |g| its operator norm. For n € N, let &,, denote the finite set

Gn = (M ZF) NX,,,
where A, . > 0 are fixed constants, so small that, for n € N,
(1+ |oles)Mne <27 and my(ezAne) < €27 (7.7)
We next show that
VE€ 0, 32eC,st.z—E €A |z—¢ <eshe. (7.8)

Indeed, given £ € 0,, we have £ + C C X, where C' C A denotes the cone generated by B, (uyp).
Since C' can be written as UysoBae(atip), we have

Z =6+ B, (e M\ k) C X

It is easy to see that for every w € RF there exists z € A, .ZF such that |z — w| < k'/2\, .. This
shows that Z contains a point in An,EZk. Choosing g9 = 051, we have |z —£| < c3 A\, - < 1 for every
z € Z and € € (0,g9), and thus for all such ¢, Z C X, ;1. Thus Z contains a point z € &,. By
construction, z — ¢ € A and therefore (7.8) holds.

For n € N let M), : 0,, — &,, denote a measurable map such that, for every £ € 0,,, condition
(7.8) is met by z = M,,(¢). By Lemma 9.2,

Go(Myn(§) = &) = Mn(£) — €. (7.9)

Consider a complete probability space (f\l, F , @) supporting countably many independent (b, ¥)
Brownian motions. In particular, let a (b, ¥) Brownian motion B™* be associated with each n € N
and z € &,,, and let a (b, ¥) Brownian motion B%® be associated with z. For each z € &,, consider
the minimization problem associated with the right-hand side of (6.1), substituting 7,41 for r and
z for z. We write the system (Q F .7-'tn ” IP’ B™#), where ]—'t "7 ig the PP completion of the o-field
generated by B™?, as Pz, PO ig deﬁned similarly.

Using Proposition 6.1, find a Y™* € A4, (2, q)"’z), for which

Tn+4+1

o(Tn+1)

E[ / e PHUXT?)dt 4+ h(dY]"?)) + e Bolrnt)y (X )] < u(z) +€27", (7.10)
[0,0(rn+1)]

where X7 is the controlled process corresponding to Y™?. To account for the dependence of
o(rp+1) on the initial point z € &,, it will be more convenient to write in what follows o™* for
o(rpt1). By construction and by (7.5), for each pair (n, z),

P(o™* < 1) < 1/2. (7.11)
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Define inductively a sequence of processes (B\n, ?n, Xn) as follows. Let B = B ,and 5 = 007,
Let 21 = X%%(¢%%) and note that = € §,,. Let also

Z1 = M, (El), Y = yo= 1[0 00:x] + Q(Zl = )1[00’“”,00)’ (712)

and X, =z+ B, +GY, on [0,51] (we do not define X, on (01,00)). Note that by (7.9) and (7.12),
X, (81) = 71, so by (7.8), |X1 (31) —El| < 03)\1,5. Also note that AY; (31) = AY°7$(81)+Q(ZI —El).
Hence by (4.6), (7.7) and (7.10)
B[ MU0 T 0) + e R )
0,01

u(z) + 271 + |h| |oles At e + mi(csAie)

<
< u(z) + 27t (7.13)

Consider n > 2. On the set {7, 1 = oo} let 7, = oo and (B\n, ?n,fn) = (B\n,l,}/}n,l,)?n,l). Next
consider the set {7,_1 < co}. Let

B\n = B\n—ll[Oﬁn—l] + (anl,Zn r—B"! 7n- 1( _1))1(5n—1a00)
and G, = 0, 1 + o b1, Let B, = X" 1Zn-1(g"1Z%n-1) and

Zy = My(Ey,), S}n = 1//\rn—ll[o,&n] + 0(Zn — En)l[&n,oo)'

Let X, = z+ B, +Y, on [0,5,] (and we have not defined it on (G, 00)). By (7.8), | Xn(6n) —Enl| <
c3An . Denoting the filtration generated by B, as .7-",?, we have from (7.10), in a manner similar to
the proof of (7.13), that

E[ /( . e PO () dt + h(dYo (1)) + e P u(X,(Gn)) | F2 ] < w(Xn(Go1) + 2",
On—1,0n
a.s. Iterating the above inequality and using (7.13) we now have,

B[ PR+ hATA0)) + X 6)
[Oaan}

n
T) + c4 Z 27"
i=1
< u(z) + cqe. (7.14)

To see | that &, Op — 00 as., let Fy = {0,Q}, and for n € N let F,, be the sigma-field generated by F,,_;
and ( (s),Yn( )is€E [0 o0)). Then 7, — 0,1 € F,, and, by (7.11) P(c,, —op_1 > 1|F,_1) > 1/2.
By the second Borel-Cantelli lemma (cf. [13], page 240), 3n — 00 a.8.

Since 0, — 00 a.s., the limits B= lim,, §n, Y = lim,, ?n are well defined outside a null set. Let
X =z+GY+B. By construction, the process Bisa (b, ¥)-Brownian motion, and Y e Alz, @, B\)
Finally, by (7.14), J(z,Y) < u(z) + cse. Hence V(z) < u(z) + cse, and the result follows since
e > 0 is arbitrarily. W
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8 Dynamic programming principles

In this section we prove Propositions 5.1, 5.2 and Lemma 5.1.

Proof of Proposition 5.1. Fix t € (0,00), z € X and Y € A(z). For brevity, we denote 7 At by
0. Note that

E > e PV (Xy), (8.1)

/ e P (U(X,)ds + h(dY))) | Fo
[0,00)

where,
Y1 - Ys if s <@
5 Y, —AYy ifs>0

The proof of (8.1) follows in a straightforward manner on recalling that F; is generated by W and
using the strong Markov property of W. However, for the sake of completeness, we sketch the proof
of this equation in the appendix. This immediately shows that

J(zY) = IE/[O )e‘ﬂs(E(Xs)derh(dYs))

= E

/ e P (U(X,)ds + h(dYy)) + / e P (0(X,)ds + h(dYy))
[0,0) [0,00)

> E

/ e 5 (0(Xs)ds + h(dYy)) + e P (h(AYy) + V(Xg))] :
[0,0)
Taking infimum over Y € A(z) in the above inequality we have that

V(z) > inf E
YeA(x)

/[ }e‘ﬁs(E(Xs)ds + h(dY)) + e (V(Xg))] . (8.2)
0,0

Now we prove the reverse inequality. Once again, fix z € X and Y € A(z). Let 6 € (0,00) be
arbitrary. Then

3Y € A(z) and the corresponding X s.t. Y (s) = Y (s), s € [0,6) and (8.4) holds. (8.3)
e PV (Xy) > E / e P5(0(X,)ds + h(dY;)) — e PPh(AYy) | }‘9] — 4. (8.4)
[0,00)
The proof of (8.3) is provided in the appendix. This shows that
E / &0 (0(X,)ds + h(dYs)) + e (V (X))
[0,6]
= E

/[ ¢ R s+ haT) + e (W(AYs) + V(Xa))]
0,

> E/ B3 (U(X,)ds + h(dV,)) — 0
0,00)
> Vi(x)—4.
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Taking infimum over all Y € A(x), the above inequality and (8.2) establish the result. W

Proof of Proposition 5.2. The proof is adapted from that of Proposition IIL.1.1 of [4 [4]. In view of
Lemma 5.1, it suffices to work with V. Let @ be a system, ¢ be a Fo measurable R* valued random
variable w1th probability distribution x, Y € .A(<I> ¢) and X; = ¢ + By + GY; be the corresponding
controlled process. From arguments in Theorem I.1.6 of [4] it follows that, the conditional law
of X given ¢ = z is p-almost surely the law of a controlled process X® corresponding to some
Y® € A(®%,z) and some system 7. Furthermore,

/J(z,(f)’”,f””),u(dm) = J(D,(,Y).

Also, following Lemma III.1.1 of [4] we have that given € > 0 there exists and extended system
(D, C) and Y € A(®, () such that Y7 defined as above is e-optimal for V (z), for p a.e. z. Le.

J(z, %Y%) < 17(:1:) +e¢, pae. .

We call such a Y as an e-optimal control for (®,¢). Now fix z € X. Let Y! € A(®,z) and let X' be
the corresponding controlled process and 7 = 7y1 be defined via (5.1). Once more we will denote
t A7 by 0. Let p now denote the probability distribution of X1(0) and let Y € ,Z[\(Q, () be an e-
optimal control given on some extended system (®, (), with probability law of ( equal to pi. Let X be
the corresponding controlled process. By augmenting ® suitably, one can construct on it processes
X and Y such that Y € A(®,2), X =2+ B+GY, X'(s) = X(s), Y'(s) = Y (s) for s € [0,0) and
the conditional distribution of (X (0 +-),Y (0 4-) —Y'(0)) given .7-"9 is, for almost every w, the same
as the distribution of (X#(-),Y?(-)), with z = X' (f(w),w). Here F; = o{X'(s),Y(s),s < t}. For
details on this construction we refer the reader to the proof of Theorem III.1.1 of [4]. Next setting
Y(s) = Y(s +6) — Y'(6), we have

V()

IN

E / e P (0(X)ds + h(dYy)) +/ e 75 (0(X,)ds + h(dYy))
[0,0] (0,00)

IN

E / 05 (0(X)ds + h(dYD)) + e PO h(V (0)
00

+E | e PR

/ e~ P5(0(Xpys)ds + h(dYs) | fgl
(0,00)

= B[ et + b@YH) + B [ T, 5,5 g
[0,0]

IN

E

€,

/ e 25 (0(X Y ds + n(dY))) + e PV (X))
[0,0]

where the second inequality follows on observing that h(AYy) < h(AY}') —i—h(?(O)). Taking infimum
over all Y! € A(®, ) and over all systems ® and letting ¢ — 0, we obtain

V(z)<inf inf E

8.5
o YIG.Z(CIH,:E) ( )

/ e 05 (0(XY)ds + R(dYL)) + e POT (X}
0.0

37



Next, let ®! be a system and Y'! € le\(q)l,m) be e-optimal for 17(:1:) Then

Viz)+e > E/ e P (X Y)ds + h(dY}))
[0,0]
+E / e P (0(XY)ds + n(dY})). (8.6)
(0,00)

Once more, the arguments in Theorem I. 1.6 of [4] yield that the probability law of (X LO+), YO+
) —Y(0)) given Fy is, for almost all w, the law of (X],Y,!), where Y,! € A(®%,z), AY,}(0) = 0
a.s., ®* is some system, X! is the corresponding controlled process and z = X!(f(w),w). This

shows that

E z=X1"(0(w),w)"

/ e (X )ds + h(dY)) | fa] > e (2,07, Y;))|
(0,00)
Thus
B[ e teeds + b)) = Be )
(6,00)
Substituting the above in (8.6) and taking ¢ — 0 yields

17(:1:) >inf inf E
® Y1icA(®:,z)

/ e P (U(XDds + h(dYD)) + e PV (X)) | . (8.7)
[0,0]

The result follows on combining (8.5) and (8.7). W

Proof of Lemma 5.1. Fix z € X, a system ® and Y € A(®,z) such that J(z,®,Y) < co. In
view of Lemmas 4.7 and 4.8, we can assume without loss of generality (cf. (4.44)) that

e P'E|GY;| — 0, ast — oo and ]E/ e P GQY;|dt < oco. (8.8)
[0,00)

Write V; = Y + Y, where Y& = Y .., AY; and Y = Y; — Y%, Note that both Y¢ and Y¢

are RCLL, F,; adapted and have increments in Y. Furthermore, the measures d|Y¢| and d|Y?| are

singular and therefore from Lemma 4.2,

J(®,2,Y)=FE / e PS[0(X,)ds + h(dY,2) + h(dYY)],
[0,00)
where X is the controlled process corresponding to Y. Fix § > 0 and define

e 1 ¢ c
YY) =Y )+ sk =D)(YG1)s = Yia-2ys), tE€[(k—-1)5kd), k=23, (8.9)

Set Y = Y¢ =0 for t € [0,6). Note that Y? is continuous F; adapted and has increments in Y.
Also let

X} = T(z+B+GY° +GYY(t)
= z+ B+ GY? + QY + Gjpd?, (8.10)
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where 99 = I'(z + B+ GY? + GY?)(t). Define
& = X) - Gjp9? =z + By + GY! + GY,.
Note that A¢) = GAY;? = GAY;. Thus

gl = GE (v | Ag).

Define B
V=3 EAY, | AL).
0<s<t
Clearly Y is adapted to the filtration o{X?,9%,s < t}. Furthermore using the convexity of h
E / e Mh(dy?) = E Y e h(AY)
[0,00) 0<t<o0
= E ) < "nEQAY; | Ag)
0<t<oo
< E ) e MEAY) [ Ag)
0<t<o0o
= E ) eﬂth(AYt):E/ e Plh(dy?). (8.11)
0<t<oo [0,00)

Also, it is easy to check that GlN/td = GY. Now let
t
n =z + B +GY} ::1:+Bt+/ GY2ds,
0

where Y = (Y(‘l;’C 1) - Y 2)5)1 €l(k=1)5,k9) and Y = 0 for s € [0,6). Note that n! = &) — G?t‘s

and therefore it is F; adapted, where ]—'t = o{X? 9 : s < t}. Thus, from Theorem 4.2 of [32], there

S S
exists a (b, X)- Z;-Brownian motion B; such that

~ t . A
nd =z + B+ G/ E(Y? | Fy)ds, (8.12)

Note that Y5 fo Y5 | .7-" ds is continuous, Fi adapted and has increments in Y. Once more,
using the radial homogeneity and convexity of h we have

E / e Ph(dY?) = E / e PUh(E(Y, | Fp))dt
[0,00) [0,00)
< E / e PUR(W(Y,0) | Fy)dt
[0,00)
= E/ e Ph(dYy). (8.13)
[0,00)
Thus defining Y = Y + Y%, we have by (8.10) and (8.12)

X =2+ B, + GY + Gijpd)!
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and therefore s~ .
Y, =Y +500) € A(®,x),
where & = (Q, F, (Fy),P, E) In order to prove the proposition it now suffices to show that

limsup J(z,3,Y°) < J(z,3,Y). (8.14)
6—0

From (8.10) it follows that for all T' € (0, 0o)

sup || X°(¢) — X (¢)] —1—195(15)] <e¢ sup |GYP(t) —GYC(t)| < e sup |YO(t) —Y(t)| (8.15)
0<t<T 0<t<T 0<t<T

and due to the sample path continuity of Y¢, the last term approaches 0 as 6 — 0. This along with
continuity of £ and the Lipschitz continuity of A shows that for all ¢ € (0, c0)

UX?) = £(Xy), and sup (92 +|h(Y2) — h(YE)|) = 0, a.s. as § — 0. (8.16)
0<s<t

Also using (2.8) and (2.2)

0(X?) co3(|X2™ +1)

a1 4 |B|™ + |GY,|™ +|GYL — GY2 ™ + |93)™)
(L+ (IGY )™ + (|GY“[)™ + (|B[5)™)

ca(1+ | Xs[™ + (|B[5)™)
(1 +£(X5) + (IB[5)™)-

€3

VAN VAN VAN VAN VA

C5
Thus recalling that Ef[o 00) e PtY(X,)ds < J(z,®,Y) < oo, we have from (8.16) and an application

of dominated convergence theorem that, as 6 — 0,

E / e PY(X%)ds - E / e PLo(X,)ds. (8.17)
[0,00) [0,00)
Next combining (8.11) and (8.13) we have
E / e PhdY)) < E / e P h(dy?) +E / e B h(dY?)
[0,00) [0,00) [0,00)

+h(G7o)E / e P5dyd

[0,00)
< E / e Ph(dy?d) + E / e P h(dY?)
[0,00) [0,00)

+h(GTo)E / e 05 d0. (8.18)

[0,00)

By (8.9) and (8.15),
99 < ¢ sup |GY°(t) — GY°(t)| < 2¢1 sup |GY(s)| < c|GY (¢)], (8.19)
0<s<t 0<s<t
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where (2.2) is used in the last inequality. Combining this observation with (8.8) we obtain
e PRY? — 0 as t — co. Thus

1
E / e Pdy) = —E / e~Ps90ds. (8.20)
[0,00) B J,0)
Combining (8.19), (8.8) we have by dominated convergence
IE/ e P5d90 =0, asd — 0. (8.21)
[0,00)
Next we show that
E / e P h(dY?) <E / e Ph(dYY). (8.22)
[0,00) [0,00)

Note that

E / e P h(dY?) =E) / e P (YY) (8.23)
[0,00)

= e (+1)9)
Also, for j =1,2,---
/ e Phdy?) = / e P h(Y)ds < h(Yj,), (8.24)
[56,(j+1)9) [6,(j+1)9)

where Yj 5 = e 799(Y¢(j6) — Y ¢((5 —1)d)) and the last inequality follows upon observing that on the

interval [j6, (j+1)6), Y equals 6~ 1(Y¢(j8) =Y ¢((j—1)d)). Using convexity and radial homogeneity
of h we see that

B(Y(j6) — V(= 1)9)) < /[( oy MY
J— 5]

where Y = dY°/d|Y*|. Thus

/ e Ph(dyf) > e P10 / h(dYY)

e PP R(Y(j8) = Y((j — 1)9))
h(Y;s)

Using the above inequality in (8.24) yields that
/ e P hdY?) < / e P h(dYy).
[70,(i+1)0) [(1—1)0,50)
Combining this observation with (8.23) gives (8.22). Using (8.21) and (8.22) in (8.18) we get
limsupE / e BhdY) < E / e P hdyd) + E / e Phdyy)
6—0 [0,00) [0,00) [0,00)

= ]E/ e P h(dY;). (8.25)
[0,00)

Combining (8.25) and (8.17) we obtain (8.14) and the result follows. B
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9 Appendix

Lemma 9.1 Let Y; be an F;-adapted RCLL process with increments in Y. One can find an Fi-
progressively measurable process Y,° with values in Y N SP~1 such that f[o 1 YodY|s =Y, t >0,
a.s.

Proof. Since F; satisfies the usual conditions, it is right continuous. Moreover, since Y is F-
adapted and RCLL, it is JF;-progressively measurable (see Proposition 1.13 of [24]). Hence by
Appendix D of [15], there exists a progressively measurable process Y, such that |Y,°| <1, ¢ > 0,
and Y; = f[o,t] Y,,d|Y|; a.s. (in [15] Y} is left continuous and the integral is over [0,¢), but the

adaptation is clear). It remains to show that
P(|Y,’| =1, d|Y]-a.e.) = 1. (9.1)

If y is a deterministic RCLL path with increments in Y and I is a finite interval of R, ,

/ d|y|t=supz\ [ vl <sw S [ lutlalsle = [ 1otlalyl

where the suprema range over partitions (I) of I. The above inequality for intervals implies the
same for Borel sets S of Ry, thus

/ dlyl, < / yeldlyle. (9.2)
S S

Fix T > 0. Given ¢ > 0, (9.2) implies
/ Lyoj<1cdlY] < / Lyojc1—|YOldY] < (1 - 5)/ Lyyoci—edlY],  as.
[0,7] [0,7] 0,71

and therefore Ef[o,T} Liyoj<1—d|Y| = 0. Since lim. o f[O,T] Lyojci—ed|Y| = f[o,T} Ljyo|<1d]Y] for
a.e. w, we have by Fatou’s lemma, that Ef[o 7] Ljyo|<1d|Y| = 0, proving (9.1). B

For the result below, note that G has full row rank, i.e. k£, and Y has nonempty interior, and
therefore one can find k linearly independent elements of U.

Lemma 9.2 Letu; € U, i = 1,... ,k be linearly independent unit vectors. Let A = cone(u; : 1 =
1,...,k). Then there exists a linear map ¢ : A — Y such that v = Go(u) for all u € A.

Proof. For ¢ =1,... ,k fix y; € Y such that Gy; = u;. Every u € A can be written as Zle ;U
where a; = «a;(u) > 0. Also, o;(u) are uniquely determined by and depend linearly on u € A.
Setting

k
o(w) =Y ai(w)y;, ueAh
i=1

yields the result. W
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Proof of Inequality (8.1). Using Exercise 1.5.6 of [31], one can find a sequence {¢;} C [0,00) and
a measurable function F : [0, 00) x (RF)Z+ — Y such that

F(S, {B(tl A\ 3)}1’21) = Yl(s), S E [0, OO)
Let F : [0,00) x (RF)Z+ x (R¥)Z+ — Y be defined as F(s, (1, (2) = F(s, (1 — C2). Then, clearly,
Yl(s) = ﬁ(s, {B(tl A 8) — B(0 A ti)}iZIa {B(9 VAN ti)}iZI)a S € [0, OO)

Let B be a (E _) Brownian motion on a complete probability space ®; = (Q,F, P). Define for
w€eQ, B,: (NF,P)— (C([0,00) : R¥), B(C([0,00) : RF))) as

B,(s,w) = B(0(w) + 5,w) — B(0(w),®)

and define

£i(s,w, @) = Ljg () (8)(B(s Atiyw) — B(O(w) Atiyw)) + Lig(w),00)(8) (Bu(s A ti,w)).

Then using the strong Markov property of Brownian motion, we have that if

Zw(s,w) = ﬁ(s + 0((4)), {fi(s,w,w)}izl, {B(H(w) A tiaw)}iZI)

and Y, (s,0) = Zy(s,®) — Z,(0,@), then Y,, € A(X(0(w)), ®1,B,), ae. w ~ [P and X, =
X(0(w)) + B, + GY,, is the corresponding controlled process. This shows that

J(X(0(w)), ®1,B,) > V(X(0(w))), ae. w~ [Pl. (9.3)

Also note that the left-hand side of (8.1) can be written as

e PR

| e s+ nay2) | 7l
[0,00)
where Y2 = Y51+0 — Ygl. Once more using the strong Markov property, the above equals, a.e.
w ~ [P,
eI / e 03 (0( X,y (5))ds + BV (s))).
[0,00)
Combining the above observation with (9.3), we have (8.1) W

Proof of Claim (8.3). From Lemma 4.5 we know that V' is continuous and so uniformly continuous
on By, (z) N X. Thus there exists a ¢ € (0,00) such that

|V(z1) — V(z2)| < d/3, for all x1, 29 € Ba:(z) N X s.t. |21 — 22| <. (9.4)

Let the polyhedral cone A C U and the linear map p be as in Lemma 9.2, and denote by |g| the
operator norm of p. By making ¢ smaller if necessary, we can assume that ¢|o| < /3. Now let
Z, = By.(r) N XN n~'ZF. Note that Z, is a finite set and for n sufficiently large we can find a
measurable map 9, : B.(z) N X — Z,, such that

Un(€) =€ € Aand |9,(&) —¢&| <, forallé e B.(z) NX. (9.5)
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Fix such n and suppress it from the notation. For each £ € Z, find Y € A(¢) such that

V() > E /[ ¢ K ds Y )) 073, (9.6)

where X is the controlled process corresponding to Y¢. Note that for each § € Z, as in the proof
of (8.1), we can find measurable function F : [0,00) x (R¥)Z+ — Y such that

Fe(s,{B(ti A s)}iz1) = Ye(s), s € [0,00).

Now define for s > 0 Y*(s) = Fy(x(g)) (s, {B((ti A s) +0) — B(0)}i>1). Finally, define

Y, =

~ Ys, 5 <0,
Ys* +Yy + Q(ﬁ(Xg) — Xg), s>0

and let X be the corresponding controlled process. By construction, using (4.6),

E

/[ )e—ﬁS(e()?s)ds + h(dY,)) — e P h(AYy) | Fa]
0,00

< e PR

/[0 TP Rsa)ds + h(aY) e h(e0(Xo) ~ X)) H]
e PV (9(Xyg)) +20/3
e PV (Xyg) + 0.
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