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Abstract 

We develop a new method to exploit pairs of ultrasound scans of the same image plane 
with the aim of enhancing the quality of ultrasound imaging. Each image pair is assumed to be 
co-registered with 90° separation between the two insonification directions. The motivation for 
such spatial compounding is the resolution in medical ultrasound imaging, which is significantly 
worse in the lateral (transverse) direction compared to the axial (longitudinal) direction. The 
proposed method seeks a Maximum-Likelihood solution for the identification of the system 
response and the noise variance through the Expectation-Maximization technique, similar to the 
approach of multi-channel image restoration (MCIR). For the following step of image 
reconstruction and compounding we take into account the non-linear operations of envelope 
detection and log-compression that are required for the display of ultrasound images. We show 
that the best ability to separate close small objects is achieved when the compound image is 
produced through first using separate Wiener filtering for each RF image, afterwards performing 
envelope-detection and finally averaging the two envelope-detected images. 
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1 Introduction 

Medical ultrasound images are produced from echoes reflected from biological tissue, and 
are considered as a blurred version of the tissue reflectivity with significantly worse resolution in 
one direction compared to the perpendicular direction. The model that is commonly used in 
ultrasound imaging research for the relation between the received signal and the tissue 
reflectivity is of a linear space-invariant system (LSI). Handling space variations of the Point 
Spread Function (PSF) is usually through partitioning the imaged plane to smaller regions with 
approximately invariant PSF. 

For more than two decades various algorithms have been suggested to sharpen the 
images, either by deconvolution assuming the PSF is known [1], [2] or using blind deconvolution 
[3], [4], [5], [6], [7], [8], [9], [10]. The prevalent approach in researches of blind deconvolution 
for ultrasound images is to use the LSI method of Wiener filter to recover the reflectivity image, 
and therefore most of the effort is concentrated in estimating the PSF. It is worth noting that 
while a few algorithms used the envelope-detected and log-compressed image as their input [1], 
[2], in most of the published work deconvolution is applied to the RF image [3]-[10]. 

In the recent decade several authors [11], [12], [13], [14], [15], [16], [17] developed 
algorithms for compounding of ultrasound images of the same region from different angles. 
These algorithms have a similar structure: First, envelope detection is performed for each scan; 
then, each scan is rotated to align with a reference coordinate system and the original image 
values are interpolated to determine the values on the joint sampling grid; finally the compound 
image is created through combination of the values at each pixel of the joint sampling grid from 
all the separate images. 

In parallel, researchers who sought ways to overcome blur phenomena of photographic 
images developed algorithms for multi-channel image restoration. Ghiglia [18] presented a 
constrained least-squares algorithm for image restoration given several blurred images of the 
same object, each corresponding with a different PSF. Later, Katsaggelos et al. [19] presented a 
systematic framework for performing multi-channel image restoration in the frequency domain. 
In the field of medical imaging this method was applied to dual-radionuclide imaging [20]. Tom 
et al. [21] established a maximum-likelihood formulation for the general problem of multi-
channel image restoration, and utilized the expectation-maximization algorithm to solve it. 

To the best of our knowledge no algorithm was developed to exploit both deconvolution 
and compounding for ultrasound image applications. When considering multi-channel image 
restoration algorithms for the field of ultrasound images, one must note fundamental differences 
from the field of photographic images in several characteristics of the problem: the system 
response has band-pass behavior in one dimension rather than low-pass in both dimensions, the 
sampling intervals are different in each direction, and non-linear operations are involved in the 
display procedure. 

The research that is presented in this paper is a milestone in a long-term research for 
improvement in the quality of ultrasound images by combining the information from imaging of 
the same plane from different view directions. This paper aims at achieving an enhanced 
ultrasound image compared to images from single scans through exploiting pairs of ultrasound 
scans of the same plane. Each pair is assumed to consist of two co-registered images with 90° 
separation between their insonification directions and without deformations due to variations in 
the speed of sound. In order to allow usage of different view directions of a plane within a 3 
dimensional space careful calibration of the transducer’s location is needed, and in addition pre-
processing might be required to accomplish co-registration. 
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Figure 1.1: A simulated pair of ultrasound images of the same plane at 90° separated views. 

This paper is organized as follows. Section 2 is an overview of ultrasound imaging and 
the basic terms in this field. Section 3 describes the mathematical model for image formation that 
is the basis for the development of the main algorithm. The model covers the tissue reflectivity, 
the degradation process, 90° rotation and transformation to the frequency domain. Section 4 
details the algorithm for identification of the system parameters. Section 5 describes methods for 
image restoration and compounding for a given estimation of the system parameters. Section 6 
summarizes the paper and depicts directions for future research that can be based on this paper. 

2 Ultrasound Imaging 

In medical ultrasound imaging short pulses of compressional waves are emitted from a 
transducer that is made of an array of resonant elements [22]. Each element is made of a 
piezoelectric material that vibrates at its resonance frequency, normally in the range of 2-10 
MHz, when a voltage is applied to it. The emitted pulses pass through a coupling gel and travel 
through a biological tissue. The propagation velocity of the ultrasound pulses depends on the 
biological contents such as blood, fat or muscle, and it is usually in the range of 1400-1600 
m/sec. The mean sound velocity in human tissue is usually taken to be 1540 m/sec. 

Acoustic energy returns to the transducer through two main mechanisms related to 
changes in the tissue density or compressibility. Specular reflection takes place if such change is 
across a boundary significantly large in extent with respect to the wavelength of the pulse. If the 
incident wave is not normal to the interface between the two media, the transmitted wave will be 
refracted according to Snell’s law. Scattering occurs when acoustic waves interact with objects of 
size comparable to or less than the wavelength, as they tend to reflect weak waves in all 
directions. A volume of scatterers, like blood cells or organ tissue, will act as a diffuse reflector. 
Since array imaging relies on coherent illumination and detection, the result of such diffuse 
reflections is appearance of random-like bright and dark spots in the image known as speckle. 

There are several types of transducer arrays, and each is suitable for imaging of different 
organs in the body. An annular array consists of concentric piezoelectric rings and requires 
mechanical scanning in order to form an image. A linear array is constructed of a row of 
elements, usually between 48-200, along a straight line. A curved linear array is composed of a 
similar row of elements but along an arc forming a convex probe, giving a wider field of view. 

If all the elements in an array are excited simultaneously, the resulting wave will travel 
perpendicular to the surface of the array. However, if the excitation occurs with certain delays 
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among the elements, the effects of beam steering and transmit focusing can be achieved. In 
addition, the transmission can include apodization, which is a weighting of the contribution of 
the different elements such that the central elements has a higher gain and it is gradually 
attenuated when approaching the outer elements. This allows control of the level of the side lobes 
of the beam. The wave that arrives back at the transducer is converted to electronic signals by the 
piezoelectric elements. Beam steering, receive focusing and apodization can be introduced as part 
of the signal reception in a similar manner as is done for transmission. The resulting signal, 
which is digital at sample rate of about 20 MHz, is called the RF signal. 

The key signal-processing operations that are applied to the received RF signal for each 
beam separately are envelope detection and compression. Envelope detection can be done either 
through Hilbert filtering followed by absolute value calculation or through demodulation 
followed by low-pass filtering and absolute value calculation. Compression is a mapping of the 
signal levels, such as a logarithmic function, which reduces the dynamic range, so that the weak 
echoes can be visualized together with strong ones. A side effect is that fewer bits, usually 8, are 
required for pixel representation. 

Two-dimensional ultrasound images, known as brightness mode or B-mode scans, can be 
achieved in a number of ways. A phased array scan is generated by a linear array with a 
relatively small aperture, e.g. 15 mm, of which all the elements are used such that the ultrasound 
beams are emanating from one point and steered in a sector. Such scans are normally used in 
cardiology applications, where small aperture is needed to access between the ribs, and in deep 
abdominal exams. A linear array scan is generated by a linear array with a larger aperture, 
around 40 mm, of which only a subset of the elements is used to generate a beam, such that the 
subsets are gradually switched and the beam is swept from one side of the array to the other. The 
resulting image has the shape of a rectangle or parallelogram. These scans are used in a variety of 
abdominal, peripheral and small-parts exams. Curved linear array probes can be operated with 
the sweeping technique of linear array scans, but due to the probe curvature the resulting image 
has the shape of a sector resembling that of a phased array scan. 

Except for the case of linear array scan, data is collected in a polar coordinate system. In 
order to prepare the image for display, this requires scan conversion, which is a transform from r-
θ coordinates to Cartesian followed by interpolation to generate samples on a rectangular grid. 

 
 

 

 

Figure 2.1: Elementary signal processing modules of a B-mode scan system. 
 

3 Mathematical Model of the Problem 

3.1 Notation 

A 2-D spatial location in the imaging plane is denoted as (x, z), where x is the coordinate 
in the lateral direction and z is the coordinate in the axial direction. In the frequency domain 
(ωx,� ωz) represents the spatial frequency in radians. Whenever matrix representation is used the 

RF 
Image 

Envelope 
Detection 

Display 
Image 

Log 
Compression 

Scan 
Conversion 



 

5 

 

 

axial direction is column-wise unless stated otherwise. When matrix coordinates appear in 
parentheses the first parameter specifies the horizontal coordinate A(m, n) = Anm in order to keep 
consistency between matrix and 2-D signal or image formulations. 

Here, image and 2-D signal are used as synonyms. The matrix R indicates the unknown 
tissue reflectivity in the imaging plane. The matrix S denotes the observed RF image, which is 
the collection of sampled signals from all the transducer elements during a single scan. 

3.2 Tissue Reflectivity Model 

The tissue reflectivity can be considered as resulting from an assembly of reflectors and 
scatterers [7], [10]. As is mentioned in Section 2, a reflector is an interface, large compared with 
the wavelength of the ultrasonic pulse, typically attributable to boundaries between regions of 
different tissue types. The resulting specular reflections depend on the region boundary 
orientation and the acoustic impedance of each region. On the other hand, scatterers are objects, 
small compared with the wavelength, characteristically diffused within the tissue and induce a 
speckle pattern in B-mode images. 

For that reason, and following [7], the tissue reflectivity is modeled in this work as the 
sum of a deterministic function D representing the specular reflections and a zero-mean Gaussian 
stochastic process U corresponding with the speckle component: 

R(x, z) = D(x, z) + U(x, z) (3.1)  

3.3 Degradation Model 

The interaction of the ultrasonic pressure field with the tissue is 3-dimensional, but its 
observation in B-mode imaging is a 2-D space. Subject to customary assumptions, the formation 
process of the RF image can generally be modeled as a 2-D spatial linear filtering operation with 
a spatially variant point-spread function [5], [6], [7], [23], [24]. It is possible to segment the 
image into regions for which the PSF remains constant and simple convolution describes with 
good accuracy the image formation: 

S(x, z) = P(x, z) ∗ R(x, z) + N(x, z) (3.2)  

where ∗ denotes 2-D convolution, P represents the PSF and N represents additive noise. The 
noise term is modeled as a white zero-mean Gaussian random process that is independent of the 
tissue reflectivity and the PSF [5]-[7]. 

 

(a)       (b) 

 

 

 

 

 

 

 

 
Figure 3.1: Simulated system response using the model in [24] with the axial direction along the vertical axis:  

(a) PSF envelope. (b) Frequency response. In both frequency axes the range is [–π, π] rad. 
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The system response in the frequency domain P(ωx, ωz) is related to the PSF through 2-D 
Fourier transform. In the axial dimension the system response behaves as a band-pass filter, 
while in the lateral dimension it can be considered as a low-pass filter [24], as illustrated in 
Figure 3.1. The resolution in the lateral direction is significantly worse than the axial resolution 
as the PSF has wide extent laterally and narrow support axially. Equivalently, the system 
response has much smaller bandwidth in the lateral dimension than in the axial dimension. 

3.4 90° Rotation in Space and Frequency Domains 

In this paper rotation is treated as positive when its direction is from the positive ray of 
the x-axis toward the positive ray of the z-axis, and as negative when it is in the opposite 
direction. This implies that if conventional matrix coordinates are employed then positive 
rotation is clockwise. 

Let A1 and A2 denote two RF images that were recorded with A2 taken after the 
transducer was turned by –90° relative to its direction during the recording of A1. The superscript 
rot is used to indicate 90° rotation, while inv-rot indicates –90° rotation. Assuming that the tissue 
reflectivity R is the same for both recordings, then: 

A1 = P1 ∗ R + Na 

A2 = P2 ∗ Rinv-rot + Nb 

(3.3)  

where P1, P2 denote the system’s PSF in each case and Na, Nb denote the additive noise. Rotating 
A2 in equation (3.3) by 90° to get: A2

rot = P2
rot ∗ R + Nb

rot, and substituting: SV ≡ A1, SH ≡ A2
rot, 

N1 ≡ Na and N2 ≡ Nb
rot, yields: 

SV = P1 ∗ R + N1 

SH = P2
rot ∗ R + N2 

(3.4)  

In other words, due to the rotation to a joint coordinate system the blur is treated as rotated by 
90° instead of regarding the image as rotated by –90°. Note that for SV the axial direction 
coalesces with the vertical direction, while for SH it is horizontal. Therefore, according to the 
degradation model, R is more blurred horizontally to generate SV and more blurred vertically to 
generate SH. 

The 90° rotation operator in infinite 2-D space rot: 2→ 2 is equivalent to inversion of the 
z-axis followed by axes interchange, specifically given any function f(x, z): 

g(x’, z’) = f rot = f(z’, –x’) (3.5)  

Applying Fourier transform, the same relation holds in the frequency domain as well [24]: 

G(ωx’,  ωz’) = FT{ f rot } = FT{ f } rot = F(ωz’, –ωx’) (3.6)  

where F and G are the Fourier transform (FT) of f and g respectively. 

When dealing with matrices and DFT, rotation should be given special attention as 
straightforward 90° rotation results in a phase shift in the frequency domain.The property in 
equation (3.6) is maintained if the definition of 90° rotation utilizes the periodicity of the DFT: 

B(m’, n’) = Arot ≡ A(n’, [N–m’]  mod N)  , m’ = 0, 1 … N–1 (3.7)  

where A is a matrix with N rows. This is equivalent to column-wise inversion excluding the first 
row followed by transposition or alternatively transposition followed by row-wise inversion. 
Naturally, rotation by –90° is defined as the same set of operations carried out in inverse order. 
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3.5 Sampling Grid 

We assume that the ultrasonic B-mode scan is performed as a linear-array scan. Hence, 
the sampling grid is rectangular, but the sampling intervals are different in each direction. The 
lateral sampling interval dL is a consequent of the spacing between the piezoelectric crystals, 
which is in the region of few hundreds of µm. The axial sampling interval dA is related to the 
sampling frequency fS at the receiver and the speed of sound v within the tissue through: 

dA = ½ v / fS (3.8)  

since the ultrasonic wave travels the distance between the crystal and the imaged object twice. 
For example, if v ≅ 1,540 m/sec and fS = 20 MHz [2]-[4], then dA ≅ 38.5 µm, and assuming dL = 
500 µm [1], the ratio between the lateral and axial sampling intervals is about 13:1. If fS = 10.5 
MHz [8] and the crystal spacing is approximately 200 µm [13], this ratio drops off to around 3:1. 

Taking into account the different sampling intervals and treating the matrices of the 
reflectivity R and the PSF P as samples on a square grid with intervals dA in both directions, the 
discrete-space LSI model for the generation of the 2 source images SV and SH from the tissue 
reflectivity R is: 

SV = (P1 ∗ R) ↓HK + N1 

SH = (P2
rot ∗ R) ↓VK + N2 

(3.9)  

where ↓HK denotes horizontal decimation by factor K and ↓VK stands for vertical decimation. 

3.6 Frequency Domain 

Since multiplication in the discrete frequency domain is related to cyclic convolution in 
the discrete space domain, there is a need for zero padding before performing DFT on an 
expression with linear convolution. For 2 elements of lengths la and lb the length of zero padding 
should be at least lb–1 and la–1 respectively, such that the resulting total lengths are equal and at 
least la+lb–1. 

In order to avoid unnecessary complications to the mathematical expressions we utilized 
the following requirement: If I  is the identity PSF, i.e. a Kronecker delta function at the origin, 
and S = R ∗ I , then in the frequency domain S(ωx, ωz) = R(ωx, ωz) should hold for all ωx and ωz 
without phase shift. Consequently, the non-causal parts of any matrix that represents a PSF are 
folded to the end of that matrix due to the cyclic nature of the DFT. 

For example, let P1 and P2 be rectangular matrices of size lz × lx, let SV and SH be matrices 
of size mz × mx, and let R be a square matrix of size n × n. If the DFT of each of these matrices is 
a square matrix of size NDFT × NDFT (NDFT ≥ max(lz+mz–1, lx+mx–1)), then the following relations 
hold: 

SV = DFT{SV zero-padded at its end with (NDFT–mz) rows and (NDFT–mx) columns} 
SH = DFT{SH zero-padded at its end with (NDFT–mz) rows and (NDFT–mx) columns} 

(3.10)  

 
R = Beginning { IDFT { R } } (3.11)  

where SV, SH and R are respectively the 2-D DFT’s of SV, SH and R, and Beginning{ A }  means 
taking only the first n rows and first n columns of the matrix A. The unfolded PSF, namely with 
the origin at the center of the matrix, is retreived from the corresponding frequency response 
through: 
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P1 = Middle { FFT-Shift { IDFT { P1 } } }  

P2 = Middle { FFT-Shift { IDFT { P2 } } } 

(3.12)  

where P1, P2 are the 2-D DFT’s of P1, P2, FFT-Shift{ A }  means swapping the first ½NDFT 
rows/columns with the last ½NDFT rows/columns of the matrix A, and Middle{ A } means taking 
only lz rows and lx columns from the matrix A where the resulting matrix is co-centric with A. 

DFT of (3.12) with the above-mentioned zero-padding gives: 

SV(ωx, ωz) = P1(ωx, ωz) R(ωx, ωz) + N1(ωx, ωz) 

SH(ωx, ωz) = P2(ωz, –ωx) R(ωx, ωz) + N2(ωx, ωz) 

(3.13)  

where N1 and N2 are the 2-D DFT’s of N1 and N2 correspondingly. Note, that all the elements in 
(3.13) are square matrices of size NDFT × NDFT. 

Using the vector notation sk,l ≡ 





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),(
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zx
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ωω
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S
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rk,l ≡ R(ωx, ωz), and nk,l ≡ 





),(

),(

2

1

zx

zx

ωω
ωω

N

N
, with ωx = 

DFTN

2 kπ
 and ωz = 

DFTN

2 lπ
, (3.13) can be 

compactly written as: 

sk,l = hk,l rk,l + nk,l (3.14)  

Equation (3.14) is schematically described in Figure 3.2. 

The variable rk,l is stochastic with mean dk,l ≡ D(ωx, ωz) and variance λu, and is assumed 
to have Gaussian probability density function (PDF) [7].  The noise term nk,l is a random vector 
with zero mean and a diagonal 2 × 2 covariance matrix Λ, where the diagonal elements are the 
variances λ1 and λ2 of N1(ωx, ωz) and N2(ωx, ωz) respectively. 

 

 

 

 

Figure 3.2: Schematic description of the model. 

4 Maximum Likelihood Parameter Estimation 

As explained in section 5, the band-pass nature of the ultrasonic system response and the 
subsequent envelope detection require separate treatment for the image reconstruction. Thus, the 
blind deconvolution problem is solved in two steps as illustrated in Figure 4.1: 

1. Estimation of the parameters of the ultrasonic system: the system response, the noise 
variance and the speckle variance. 

2. Image reconstruction with the estimated parameters and spatial compounding. 

The estimation of the system response can be viewed as an optimization problem where 
we search for the unknown parameters of a PDF and for which the maximum-likelihood (ML) 
approach can be applied. 

N(dk,l, λu) hk,l sk,l 

N(0, Λ) 
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Figure 4.1: Flow diagram of the algorithm with the tissue reflectivity as the hidden data 
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If the speckle component in equation (3.1) and the noise terms in equation (3.13) are 
uncorrelated white Gaussian random processes, the observed RF image is also Gaussian with sk,l 
having mean hk,l dk,l and covariance matrix (λu hk,l hk,l

† + Λ): 

f(sk,l | θk,l) = |2� (λu hk,l hk,l
† + Λ)|–½

 

exp[–½ (sk,l – hk,l dk,l)
† (λu hk,l hk,l

† + Λ)–1 (sk,l – hk,l dk,l)] 

(4.1)  

The parameter set of this PDF is: θk,l ≡ [hk,l
T, dk,l, λu, λ1, λ2]

T. 

The log-likelihood function is then: 

L(θ) ≡ ∏∏
k l

lklkf )|(ln ,, θs  = ∑∑
k l

lklkf )|(ln ,, θs  = 

= – ½ ∑∑
k l

ln |2� (λu hk,l hk,l
† + Λ)| 

– ½ ∑∑
k l

[ (sk,l – hk,l dk,l)
† (λu hk,l hk,l

† + Λ)–1 (sk,l – hk,l dk,l) ] 

(4.2)  

The ML estimate of the parameter set is the set that maximizes L(θ) in equation (4.2). Employing 
optimization of this direct likelihood function yields a difficult minimization problem, especially 
since the unknown quantities of reflectivity and blur are coupled through multiplication. The 
expectation-maximization (EM) algorithm [25] is an iterative technique that greatly simplifies 
the ML problem. 

4.1 Maximum Likelihood with Expectation Maximization 

According to the EM method, a set y called the complete data is defined such that it is not 
observed directly, but only by means of the observed data s, which is related to y through a non-
invertible linear mapping. Each iteration of the algorithm is composed of two steps: expectation 
(E step) and maximization (M step), as illustrated in Figure 4.1. In the E step the conditional 
expectation of ln{fy(y|θ)} is calculated, using the current estimates of the parameters θ[n] and 
conditioned upon the observed data: 

Q(θ|θ[n]) = E[ln{  fy(y|θ) } | s,θ[n]] (4.3)  

In the M step the expectation Q(θ|θ[n]) is maximized with respect to θ to provide a new 
estimation of the parameters: 

θ[n+1] = 
θ

maxarg Q(θ|θ[n]) (4.4)  

4.2 EM with the Reflectivity Image as the Hidden Data 

4.2.1 The Complete Data 

Let us define the complete data for the problem at hand as yk,l = 
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quantity rk,l within the complete data is referred to as the hidden data. The system response, as 
part of the parameter set θk,l ≡ [hk,l

T, dk,l, λu, λ1, λ2]
T, is the estimation target. 

According to the conditional-probability formula fa,b(a,b) = fa(a) fb|a(b | a): 

fy(yk,l | θ) = fr(rk,l | θ) fs(sk,l | rk,l,θ) = (2� λu)
–½ exp[–½λu

–1|rk,l – dk,l|
2] 

|2� Λ|–½ exp[–½ (sk,l – hk,l rk,l)
† Λ–1 (sk,l – hk,l rk,l)] 

(4.5)  

Due to the assumption that the stochastic terms are white, fy(y|θ) is the product of fy(yk,l|θ) over 
all possible combinations of k and l. Hence the likelihood of the complete data is: 

L(θ) = ln{fy(y|θ)} = ln ∏∏
k l

lkf )|( , θyy = ∑∑
k l

lkf )}|(ln{ , θyy  = ∑∑
k l

lkL )(, θ  

Lk,l(θ) = –3/2 ln(2�) – 1/2 ln(λuλ1λ2) – 1/2λu
–1|rk,l – dk,l|

2 – 

– 1/2 (sk,l – hk,l rk,l)
† Λ–1 (sk,l – hk,l rk,l) 

(4.6)  

4.2.2 Expectation Step 

After (4.6) is substituted for ln{fy(y|θ)} in equation (4.3), it follows that maximization of 
Q(θ|θ[n]) is equivalent to minimization of: 

J(θ|θ[n]) = ∑∑
k l

n
lkJ )|( ][
, θθ  

Jk,l(θ|θ[n]) = ln(λuλ1λ2) + λu
–1| E[rk,l|s,θ[n]] – dk,l |

2 + 

+ (sk,l – hk,l E[rk,l|s,θ[n]])† Λ–1 (sk,l – hk,l E[rk,l|s,θ[n]]) + 

+ Var[rk,l|s,θ[n]] (λu
–1 + hk,l

† Λ–1 hk,l) 

(4.7)  

In order to find the conditional expectation and variance of rk,l given s and θ[n], we need to 
look at the conditional probability density: 

fr(rk,l | s,θ[n]) = fy(yk,l | θ[n]) / fs(sk,l | θ[n]) (4.8)  

Substituting (4.1) for fs(sk,l | θ[n]) and (4.5) for fy(yk,l | θ[n]), it is not difficult to see that 
fr(rk,l | s,θ[n]) is a Gaussian distribution with the following expression in its exponent: 

– ½ λu
–1 |rk,l – dk,l|

2 – ½ (sk,l – hk,l rk,l)
† Λ–1 (sk,l – hk,l rk,l) = 

= – ½ (rk,l bk,l – µk,l)
† Λr

–1 (rk,l bk,l – µk,l) 

(4.9)  

where the following symbols are used: 

bk,l = 





1
k,lh

 µk,l = 






k,l

k,l

d

s
 Λr = 






uλ0

0�
 

(4.10)  

Thus, the conditional expectation is given by: 

E[rk,l|s,θ[n]] = (bk,l
† Λr

–1 µk,l) (bk,l
† Λr

–1 bk,l)
–1 = 

= 
12

2
1

2

2

1
1

1

,
1

H2
1

2V1
1

1

),(),(

),(),(),(),(
−−−

−∗−∗−

+−+

+−+

uxzzx

lkuzxxzzxzx d

λωωλωωλ

λωωωωλωωωωλ

PP

SPSP
 

(4.11)  

Note that this expression is identical to the vector Wiener filter [19]. For each of the parameters 
in equations (4.11) above and (4.12) below the current parameter estimate is substituted, though 
the superscript [n] is suppressed for brevity and clarity. 
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The conditional variance is given by: 

Var[rk,l|s,θ[n]] = (bk,l
† Λr

–1 bk,l)
–1 = 12

2
1

2

2

1
1

1 ),(),(

1
−−− +−+ uxzzx λωωλωωλ PP

 
(4.12)  

and the conditional expectation of |rk,l|
2 is: 

E[|rk,l|
2|s,θ[n]] = | E[rk,l|s,θ[n]] |2 + Var[rk,l|s,θ[n]] (4.13)  

4.2.3 Minimization Step 

Now, we take from equation (4.7) only the terms that involve hk,l: 

Jh(θ|θ[n]) = ∑∑
k l

{ Var[rk,l|s,θ[n]] hk,l
† Λ–1 hk,l + 

+ (sk,l – hk,l E[rk,l|s,θ[n]])† Λ–1 (sk,l – hk,l E[rk,l|s,θ[n]]) } 

(4.14)  

Equation (4.14) can be written in terms of P1, P2, SV and SH explicitly: 

Jh(θ|θ[n]) = ∑∑
k l

{ Var[rk,l|s,θ[n]] { λ1
–1 |P1(ωx, ωz)|

2 + λ2
–1 |P2(ωz, –ωx)|

2} + 

+ λ1
–1 | SV(ωx, ωz) – P1(ωx, ωz) E[rk,l|s,θ[n]] |2 + 

+ λ2
–1 | SH(ωx, ωz) – P2(ωz, –ωx) E[rk,l|s,θ[n]] |2 } 

(4.15)  

The minimum of Jh(θ|θ[n]) is found through zeroing the following 2NDFT
2 derivatives: 

),(1 zx

J

ωω∗∂
∂

P
h = 2λ1

–1 { P1(ωx, ωz) {Var[R(ωx, ωz)|s,θ[n]] + | E[R(ωx, ωz)|s,θ[n]] |2} – 

– E[R(ωx, ωz)|s,θ[n]]* SV(ωx, ωz) } 

),(2 zx

J

ωω∗∂
∂

P
h = 2λ2

–1 { P2(ωx, ωz) {Var[R(−ωz,ωx)|s,θ[n]] + | E[R(−ωz,ωx)|s,θ[n]] |2} – 

– E[R(−ωz,ωx)|s,θ[n]]  * SH(−ωz,ωx) } 

(4.16)  

Thus the update of the estimates of the system responses is: 

P1
[n+1](ωx, ωz) = 

],|),([

),(],|),([
][2

V
][

n
zx

zx
n

zx

E

E

θ

θ

s

s

ωω
ωωωω

R

SR ∗

 

P2
[n+1](ωx, ωz) = 

],|),([

),(],|),([
][2

H
][

n
xz

xz
n

xz

E

E

θ

θ

s

s

ωω
ωωωω

−

−− ∗

R

SR
 

(4.17)  

Next, we take from equation (4.7) only terms related to Λ: 

JΛ(θ|θ[n]) = ∑∑
k l

ln (λ1λ2) + Jh(θ|θ[n]) (4.18)  

Substituting (4.15) for Jh(θ|θ[n]) and (4.17) for P1 and P2, and noting that the minimum of 
f(λ)=lnλ+λ–1g is at λ=g, the values of λ1 and λ2 that minimize JΛ(θ|θ[n]) are: 
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λ1
[n+1] = NDFT

–2 ∑∑
k l

{ Var[rk,l|s,θ[n]] |P1
[n+1](ωx, ωz)|

2 + 

+ | SV(ωx, ωz) – P1
[n+1](ωx, ωz) E[rk,l|s,θ[n]] |2 } 

λ2
[n+1] = NDFT

–2 ∑∑
k l

{ Var[rk,l|s,θ[n]] |P2
[n+1](ωz, –ωx)|

2 + 

+ | SH(ωx, ωz) – P2
[n+1](ωz, –ωx) E[rk,l|s,θ[n]] |2 } 

(4.19)  

Then, we take from equation (4.7) only the terms that depend on dk,l: 

Jd(θ|θ[n]) = λu
–1 ∑∑

k l

|E[rk,l|s,θ[n]] – dk,l |
2 (4.20)  

It is simple to see that the value of dk,l that minimizes Jd(θ|θ[n]) is: 

dk,l
[n+1] = E[rk,l|s,θ[n]] (4.21)  

Finally, we substitute (4.21) for dk,l in (4.7) then take only the terms that depend on λu: 

Ju(θ|θ[n]) = ∑∑
k l

ln (λu) + λu
–1 Var[rk,l|s,θ[n]] (4.22)  

The minimum of Ju(θ|θ[n]) is achieved when the value of λu is: 

λu
[n+1] = NDFT

–2 ∑∑
k l

Var [rk,l|s,θ[n]] (4.23)  

4.2.4 Special Cases 

Same Noise Variance in Both Views 

If we assume that the noise variance is the same in both RF images λ1 = λ2 = λ, then the 
only change in the above EM algorithm is that the average of the 2 expressions in (4.19) should 
be used to update the variance λ[n+1]: 

λ[n+1] = ½ NDFT
–2 ∑∑

k l

{ Var[rk,l|s,θ[n]] {|P1
[n+1](ωx, ωz)|

2 + |P2
[n+1](ωz, –ωx)|

2} + 

+ | SV(ωx, ωz) – P1
[n+1](ωx, ωz) E[rk,l|s,θ[n]] |2 + 

+ | SH(ωx, ωz) – P2
[n+1](ωz, –ωx) E[rk,l|s,θ[n]] |2 } 

(4.24)  

This is a straightforward result when λ1 and λ2 are replaced by λ in equations (4.15) and (4.18). 

Same Blur in Both Views 

If we assume identical system response in both scans P1 = P2 = P, then the minimum of 
Jh(θ|θ[n]) in (4.15) is found through zeroing the following NDFT

2 derivatives: 

),( zx

J

ωω∗∂
∂

P
h  = 2 { λ1

–1 P(ωx, ωz) E[ |rk,l|
2 |s,θ[n]] + λ2

–1 P(ωx, ωz) E[ |r−l,k|
2 |s,θ[n]] + 

– λ1
–1 E[rk,l |s,θ[n]]* SV(ωx, ωz) – λ2

–1 E[r−l,k |s,θ[n]]* SH(−ωz, ωx) } 

(4.25)  

Thus the update of the estimate of the system response becomes: 

P[n+1](ωx, ωz) = 

= 
],|),([],|),([

),(],|),([),(],|),([
][21

2
][21

1

H
][1

2V
][1

1

n
xz

n
zx

xz
n

xzzx
n

zx

EE

EE

θθ
θθ
ss

ss

ωωλωωλ
ωωωωλωωωωλ

−+
−−+

−−

∗−∗−

RR

SRSR
 

(4.26)  
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4.2.5 Initialization and Constraints 

Initialization 

Being highly non-linear the likelihood function L(θ) has multiple maxima, and therefore 
the initial conditions θ[0] have a great effect on the ability of the EM algorithm to converge to a 
good estimation. We found that P1

[0] and P2
[0] should have the same value at all frequencies, that 

is they should be the DFT of an impulse at the origin. The initialization for d[0] should be the 
average of the RF images SV and SH. The rationale for this appears in equation (4.11) when a 
constant value is substituted for the blur. For the noise variance the initial estimate is higher than 
the true value, as it was found in [21] to produce better results. 

Iterations 

In each iteration of the algorithm the E-step is followed by the M-step: 

1. The E-step consists of the evaluation of the expressions in (4.11), (4.12) and (4.13), namely 
the expectation and variance of R(ωx, ωz) are calculated using the estimated values of the 
parameters from the previous M-step. 

2. The M-step consists of the evaluation of the expressions in (4.17) (or alternatively(4.26)), 
(4.19) (or alternatively (4.24)), (4.21) and (4.23), namely a new estimate of the parameters is 
calculated using the expectation and variance of R(ωx, ωz) from the previous E-step. 

These 2 steps can be performed in succession for a pre-defined number of iterations or 
until the change in P1 and P2 is small enough with respect to some distance measure. 

Scaling 

Since the system response and the tissue reflectivity are coupled through multiplication, 
the scaling of their estimations can drift in inverse directions. In order to avoid divergence, 
arbitrary scaling must be enforced every iteration, and we chose to normalize the PSF of the blur 
after it is estimated in the M-step to have a unit total power. In the frequency domain this 
translates into ||P1

[n+1]||2 = ||P2
[n+1]||2 = NDFT

2. 

Limiting the Noise-to-Speckle Ratio 

In the initial iterations the estimation of the variances λ1, λ2 and λu is unreliable. As a 
result the estimation in (4.11) and (4.12) is much improved if λu is limited such that λ1/λu and 
λ2/λu are not too large or small relatively to max|P1(ωx, ωz)|

2 and max|P2(ωx, ωz)|
2 respectively. 

Windowing In the Space Domain 

Given that equation (3.13) requires zero-padding in the space domain, the estimated tissue 
reflectivity and blur PSF’s can be multiplied by limiting window functions 
R(x, z), 
P1(x, z) 
and 
P2(x, z) respectively to suppress unwanted non-zero values. This requires an inverse 
Fourier-transform of the reflectivity and/or system responses prior to windowing and a Fourier-
transform afterwards every prescribed number of iterations. For example, if the same blur is 
assumed in both scans, the estimation in (4.26) can be modified as follows: 

P[n+1](ωx, ωz) = DFT{ IDFT{ P[n+1](ωx, ωz) } 
P
[n+1](x, z) } (4.27)  

The windowing can be hard, i.e. rectangular, or utilize soft limit, e.g. raised-cosine, and 
can change during the iterations. Note that space-domain windowing is equivalent to averaging in 
the frequency domain between estimates at neighbouring frequncies. 
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Windowing In the Frequency Domain 

Prior knowledge about the system response can be utilized in order to reduce the 
sensitivity of the estimation to noise. The estimated frequency response of the system can be 
multiplied by a window function W(ωx, ωz) to suppress out-of-band frequencies that undoubtedly 
result from noise. For example, if the same system response is assumed in both views, the 
estimation in equation (4.26) can be modified as follows: 

P[n+1](ωx, ωz) = P[n+1](ωx, ωz) W[n+1](ωx, ωz) , ∀ωx,ωz  0 ≤ W[n+1](ωx, ωz) ≤ 1 (4.28)  

For example, if W[n+1](ωx, ωz) is separable: W[n+1](ωx, ωz) = W1
[n+1](ωx) W2

[n+1](ωz), the 
window functions W1,2(ω) can be raised-cosine, Hamming or Blackman windows centered 
around the system’s expected peak frequency. The last 2 constraints can be combined, such that 
windowing is performed first in the space domain then in the frequency domain or vice versa. 

4.3 EM with the Blur as the Hidden Data 

4.3.1 The Complete Data 

A different definition of the complete data for the problem at hand is possible by taking 

the system response hk,l to be the hidden data: yk,l = 






k,l

k,l

h

s
 = 
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
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, so the non-

invertible mapping is: sk,l = ( I  0 ) yk,l = 





0010

0001









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
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
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2

1
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xz
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P

S

S

. 

Therefore, in this section 4.3, the reflectivity image is treated as deterministic, while the 
response hk,l is considered as stochastic with mean ηk,l and a diagonal 2 × 2 covariance matrix Λh, 
where the diagonal elements are the variances λP1 and λP2 of P1(ωx, ωz) and P2(ωx, ωz) 
respectively. This approach does not conform to the model in section 3.2, but nevertheless it 
produces results with similar quality as those produced by the approach of the reflectivity image 
as the hidden data. Now, the reflectivity image is the estimation target as part of the parameter set 
θk,l ≡ [ηk,l

T, λP1, λP2, rk,l, λ1, λ2]
T. 

According to the conditional-probability formula: 

fy(yk,l | θ) = fr(hk,l | θ) fs(sk,l | hk,l,θ) = |2� Λh|
–½ exp[–½(hk,l – ηk,l)

† Λh
–1 (hk,l – ηk,l)] 

|2� Λ|–½ exp[–½ (sk,l – hk,l rk,l)
† Λ–1 (sk,l – hk,l rk,l)] 

(4.29)  

Due to the assumption that the stochastic terms are white, fy(y|θ) is the product of fy(yk,l|θ) over 
all possible combinations of k and l. Hence the likelihood of the complete data is: 

L(θ) = ln{fy(y|θ)} = ln ∏∏
k l

lkf )|( , θyy = ∑∑
k l

lkf )}|(ln{ , θyy  = ∑∑
k l

lkL )(, θ  

Lk,l(θ) = –2 ln(2�) – 1/2 ln(λP1λP2λ1λ2) – 1/2(hk,l – ηk,l)
† Λh

–1 (hk,l – ηk,l) – 

– 1/2 (sk,l – hk,l rk,l)
† Λ–1 (sk,l – hk,l rk,l) 

(4.30)  
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4.3.2 Expectation Step 

After (4.30) is substituted for ln{fy(y|θ)} in equation (4.3), it follows that maximization of 
Q(θ|θ[n]) is equivalent to minimization of: 

J(θ|θ[n]) = ∑∑
k l

n
lkJ )|( ][
, θθ  

Jk,l(θ|θ[n]) = ln(λP1λP2λ1λ2) + (E[hk,l|s,θ[n]] – ηk,l)
† Λh

–1 (E[hk,l|s,θ[n]] – ηk,l) + 

+ (sk,l – E[hk,l|s,θ[n]] rk,l)
† Λ–1 (sk,l – E[hk,l|s,θ[n]] rk,l) + 

+ tr{(Λh
–1 + |rk,l|

2 Λ–1) Covar[hk,l|s,θ[n]]} 

(4.31)  

In the above derivation we used the identity 

v† A w = tr(A w v†) (4.32)  

where A is a N × N matrix, v and w are N × 1 vectors, and tr(A) denotes the trace of A. 

Following steps similar to those in section 4.2.2, we find that the conditional expectation 
of hk,l given s and θ[n] is given by: 

E[P1(ωx, ωz)|s,θ[n]] =  
1

1

21
1

,1
1

1V
1

1

),(

),(),(
−−

−∗−

+

+

P

PP

R

SR

λωωλ

ηλωωωωλ

zx

lkzxzx
 

E[P2(ωz,  –ωx)|s,θ[n]] =  
1

2

21
2

,2
1

2H
1

2

),(

),(),(
−−

−
−∗−

+

+

P

PP

R

SR

λωωλ

ηλωωωωλ

zx

klzxzx
 

⇓ 

E[P2(ωx,  ωz)|s,θ[n]] =  
1

2

21
2

,2
1

2H
1

2

),(

),(),(
−−

−∗−

+−

+−−

P

PP

R

SR

λωωλ

ηλωωωωλ

xz

lkxzxz  

(4.33)  

For each of the parameters in equations (4.33) above and (4.34) below the current parameter 
estimate is substituted, though the superscript [n] is suppressed for brevity and clarity. 

The conditional variance is given by: 

Var[P1(ωx, ωz)|s,θ[n]] = (bVk,l
† ΛP1

–1 bVk,l)
–1 = 

1
1

21
1 ),(

1
−− + PR λωωλ zx

 

Var[P2(ωx, ωz)|s,θ[n]] = (bH-l,k
† ΛP2

–1 bH-l,k)
–1 = 

1
2

21
2 ),(

1
−− +− PR λωωλ xz

 

(4.34)  

and the conditional expectation of |P1(ωx, ωz)|
2 and |P2(ωx, ωz)|

2 is: 

E[|P1(ωx, ωz)|
2|s,θ[n]] = | E[P1(ωx, ωz)|s,θ[n]] |2 + Var[P1(ωx, ωz)|s,θ[n]] 

E[|P2(ωx, ωz)|
2|s,θ[n]] = | E[P2(ωx, ωz)|s,θ[n]] |2 + Var[P2(ωx, ωz)|s,θ[n]] 

(4.35)  
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4.3.3 Minimization Step 

Now, we take from equation (4.31) only the terms that involve rk,l and use the identity of 
(4.32): 

Jr(θ|θ[n]) = ∑∑
k l

{ |rk,l|
2 tr{Λ–1 Covar[hk,l|s,θ[n]]} +  

+ (sk,l – E[hk,l|s,θ[n]] rk,l)
† Λ–1 (sk,l – E[hk,l|s,θ[n]] rk,l) } 

(4.36)  

Equation (4.36) can be written in terms of R, SV and SH explicitly: 

Jr(θ|θ[n]) =∑∑
k l

{ |R(ωx, ωz)|
2 {λ1

–1 Var[P1(ωx, ωz)|s,θ[n]] + λ2
–1 Var[P2(ωz, –ωx)|s,θ[n]]} +  

+ λ1
–1 | SV(ωx, ωz) – E[P1(ωx, ωz)|s,θ[n]] R(ωx, ωz) |

2 + 

+ λ2
–1 | SH(ωx, ωz) – E[P2(ωz, –ωx)|s,θ[n]] R(ωx, ωz) |

2 } 

(4.37)  

Minimization of Jr(θ|θ[n]) yields the update of the estimate of the reflectivity image is: 

R[n+1](ωx, ωz) = 

= 
],|),([],|),([

),(],|),([),(],|),([
][2

2
1

2
][2

1
1

1

H
][

2
1

2V
][

1
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xz
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EE

EE
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θθ
ss

ss
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(4.38)  

Next, we take from equation (4.31) only terms related to Λ to construct JΛ(θ|θ[n]), and the 
values of λ1 and λ2 that minimize JΛ(θ|θ[n]) are: 

λ1
[n+1] = NDFT

–2 ∑∑
k l

{ |R[n+1](ωx, ωz)|
2 Var[P1(ωx, ωz)|s,θ[n]] + 

+ | SV(ωx, ωz) – E[P1(ωx, ωz)|s,θ[n]] R[n+1](ωx, ωz) |
2 } 

λ2
[n+1] = NDFT

–2 ∑∑
k l

{ |R[n+1](ωx, ωz)|
2 Var[P2(ωz, –ωx)|s,θ[n]] + 

+ | SH(ωx, ωz) – E[P2(ωz, –ωx)|s,θ[n]] R[n+1](ωx, ωz) |
2 } 

(4.39)  

Then, we compose Jη(θ|θ[n]) from the terms that depend only on ηk,l in equation (4.31), 
and the value of ηk,l that minimizes Jη(θ|θ[n]) is: 

ηk,l
[n+1] = E[hk,l|s,θ[n]] (4.40)  

Finally, we substitute (4.40) for ηk,l in (4.31) then take only terms involving λP1 and λP2 
to form JΛh(θ|θ[n]), and its minimum is achieved when the values of λP1 and λP2 are: 

λP1
[n+1] = NDFT

–2 ∑∑
k l

Var [P1(ωx, ωz)|s,θ[n]] 

λP2
[n+1] = NDFT

–2 ∑∑
k l

Var [P2(ωz, ωx)|s,θ[n]] 

(4.41)  

4.3.4 Special Cases 

Same Noise Variance in Both Views 

If we assume that the noise variance is the same in both RF images λ1 = λ2 = λ, then the 
only change in the above EM algorithm is that the average of the 2 expressions in (4.39) should 
be used to update the variance λ[n+1]: 
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λ[n+1] = ½ NDFT
–2 ∑∑

k l

{ |R[n+1](ωx,ωz)|
2 {Var[P1(ωx,ωz)|s,θ[n]] + Var[P2(ωz,–ωx)|s,θ[n]]} +  

+ | SV(ωx, ωz) – E[P1(ωx, ωz)|s,θ[n]] R[n+1](ωx, ωz) |
2 + 

+ | SH(ωx, ωz) – E[P2(ωz, –ωx)|s,θ[n]] R[n+1](ωx, ωz) |
2 } 

(4.42)  

This is a straightforward result when λ1 and λ2 are replaced by λ in JΛ(θ|θ[n]). 

Same Blur in Both Views 

If we assume identical system response in both scans P1 = P2 = P, then the conditional 
expectation and variance of P are: 

E[P(ωx, ωz)|s,θ[n]] = 

= 
121

2

21
1

,
1

H
1

2V
1

1
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+−−+

P

PP

RR

SRSR

λωωλωωλ

ηλωωωωλωωωωλ

xzzx

lkxzxzzxzx  

(4.43)  

Var[P(ωx, ωz)|s,θ[n]] = 
121

2

21
1 ),(),(

1
−−− +−+ PRR λωωλωωλ xzzx

 
(4.44)  

4.3.5 Initialization and Constraints 

Initialization 

Similar to the case of the reflectivity image as the hidden data as described in section 
4.2.5, the initial conditions θ[0] have a great effect on the ability of the EM algorithm to converge 
to a good estimation. Again, ηP1

[0] and ηP2
[0] should have the same value at all frequencies, the 

initialization for R[0] should be the average of the RF images SV and SH, and for the noise 
variance the initial estimate is higher than the true value. 

Iterations 

In each iteration of the algorithm the E-step is followed by the M-step: 

1. The E-step consists of the evaluation of the expressions in (4.33), (4.34) (or alternatively 
(4.43), (4.44)) and (4.35), namely the expectation and variance of P1(ωx, ωz) and P2(ωx, ωz) 
are calculated using the parameter estimates from the previous M-step. 

2. The M-step consists of the evaluation of the expressions in (4.38), (4.39) (or alternatively 
(4.42)), (4.40), (4.41), namely the new parameter estimates are calculated using the 
expectation and variance of P1(ωx, ωz) and P2(ωx, ωz) from the previous E-step. 

These 2 steps can be performed in succession for a pre-defined number of iterations or 
until the change in E[P1|s,θ[n]] and E[P2|s,θ[n]] is small enough. 

Scaling 

Similar to section 4.2.5 we enforce every iteration ||E[P1|s,θ[n]]||2 = ||E[P2|s,θ[n]]||2 = NDFT
2. 

Limiting the Conditional Variance 

In the initial iterations the estimation of the variances λ1, λ2, λP1 and λP2 is unreliable. As 
a result the estimation in (4.38) is much improved if Var[P1,2(ωx, ωz)|s,θ[n]] are limited such that 
for any frequency pair (ωx, ωz) its value is not too large or small relatively to max| 
E[P1(ωx, ωz)|s,θ[n]] |2 and max| E[P2(ωx, ωz)|s,θ[n]] |2 respectively. 



 

19 

 

 

Windowing In the Space Domain 

Once more, multiplication of the estimated tissue reflectivity and blur PSF’s by limiting 
window functions can suppress unwanted non-zero values. For more details see section 4.2.5. 

Windowing In the Frequency Domain 

Again, the estimated frequency response can be multiplied by a window function 
W(ωx, ωz) to suppress out-of-band frequencies. For example, if the same blur is assumed in both 
views, the conditional expectation in equation (4.43) can be modified as follows: 

E[P(ωx, ωz)|s,θ[n]] = E[P(ωx, ωz)|s,θ[n]] W[n+1](ωx, ωz) , ∀ωx,ωz 0 ≤ W[n+1](ωx, ωz) ≤ 1 (4.45)  

Note that the conditional variance Var[P(ωx, ωz)|s,θ[n]] in equation (4.44) is not multiplied by 
{ W[n+1](ωx, ωz)}

2 otherwise in the following iterations there will be noise enhancement at 
frequencies where W(ω) is relatively small. The window function can be like with the case of the 
reflectivity image as the hidden data as described in section 4.2.5. 

4.4 Simulations 

4.4.1 Simulation Description  

We developed a Matlab simulation that tests the suggested methods under various 
circumstances: an assortment of tissue reflectivity maps, different noise levels and varied 
bandwidth of the system response. 

Tissue Reflectivity Maps 

We tested the algorithm with tissue reflectivity according to its model as the sum of 
deterministic and stochastic components. For the deterministic component we prepared several 
artificial maps; one of them is displayed in Figure 4.2. Their size is 512×512 pixels, which 
corresponds approximately with 20×20 mm for a sampling interval of 40 µm. For the stochastic 
component we added white Gaussian noise independently for each view direction. 

(a)     (b) 

 

 

 

 

 

Figure 4.2: (a) A simulated reflectivity map. The 4 series of dots simulate wire targets that are separated by 0.5, 1, 2 
and 3 mm. The mapping of colors is: black → -0.5, dark gray → 0, bright gray → 0.25 and white → 0.5. 

(b) The reflectivity map after log-compression 

Degradation Process assuming 2-D LPF 

We tested the algorithm first with LPF-type system response in both axial and lateral 
directions. We modeled the response as a two-dimensional separable filter with PSF: 

P(x, z) = sinc2(x/wL) exp(-|z/wA|2/2) (4.46)  

where wL, wA define the PSF width in each direction. 
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In the frequency domain this system response has in the ωx direction a triangular shape 

with 99%-energy at |ωx| ≤ 1.569
L

L

w

dπ  radians, while in the ωz direction it has a Gaussian shape 

with 99%-energy at |ωz| ≤ 0.58
A

A

w

dπ  radians. In the simulation we used the same system 

response for both views, with parameters: dL = dA = 40 µm, wL = 1.25 mm, and wA = 0.115 mm. 

Degradation Process assuming 2-D Ultrasound-Type Blur 

After establishing satisfactory results with the 2-D LPF, we tested the algorithm with a 
system response that is axially BPF and laterally LPF. We simulated this according to the non-
separable model that was presented by Walker and Trahey in [24]. 

Walker and Trahey derived a model for the system response to a point target located in 
either the focus zf or the far field of the transducer. They developed the following expression for 
representation of a typical imaging system with a transmit-receive axial frequency response 
BTR(ωz) and transmit and receive aperture weighting functions LT(x) and LR(x) respectively: 

P(ωx, ωz, 2 zf/v) = 
2

z

G

ω
BTR(ωz) LT(–2 zf ωx/ωz) ∗x LR(–2 zf ωx/ωz) ∗x FTx{ φ(x, ωz, zf)} 

(4.47)  

The symbol ∗x represents convoution in the lateral direction, and FTx{} is the Fourier transform 
taken with respect to x. The term φ(x, ωz, zf) in (4.47) is a quadratic phase curvature term that 
results from the spherical spreading of acoustic waves as they travel outward from the transducer: 

φ(x, ωz, zf) = exp(jωz
f

s

z

x

v

f 2||
) 

(4.48)  

Taking the inverse Fourier transform (FT) of equation (4.47) yields: 

P(x, z) = IFT{
2

z

G

ω
BTR(ωz) LT(–2 zf ωx/ωz) ∗x LR(–2 zf ωx/ωz)} ∗z IFTz{ φ(x, ωz, zf)} 

(4.49)  

IFT{} dentoes 2-D inverse FT, and IFTz{} is the inverse FT taken with respect to z. 

In the simulation we used the same system response for both views, with the parameters: 
dL = dA = 40 µm, zf = 60 mm, rectangular aperture weighting LT(x) and LR(x) having width of 25 
mm, and a Gaussian axial frequency response BTR(ωz) with center frequency 0.4π rad (4 MHz) 
and σ = 0.11π rad (1.1 MHz). The resulting PSF and spectrum are illustrated in Figure 3.1. 

Log-Compression 

For display purpose all the images passed conventional logarithmic compression: 

ACompressed(x, z) = b log2(a A(x, z) + 1) (4.50)  

We used the values a = 10 and b = Ngray / log2(a + 1) = 256 / log2(11) = 74, where Ngray is the 
number of gray levels from black to white. An example of a resulting pair of images appears in 
Figure 1.1. 

4.4.2 Quality Measure 

The above estimation methods of the system response cannot recover its scaling, i.e. the 
estimation can be accurate up to a gain factor. Therefore, in order to compare the estimated 
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response with the true one this factor should be estimated as well. We used the least squares 
method for this purpose: 

J{ g} = ∑∑ −
k l

zxzxg
2

),(),(ˆ ωωωω PP  
(4.51)  
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(4.52)  

We used normalized mean squared error (MSE) as a quality metric to evaluate the 
system-response estimation: 

MSE{P} = 
∑∑

∑∑ −

k l
zx

k l
zxzxg
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(4.53)  

When using the gain according to (4.52) the MSE becomes 

MSE{P} = 1 – 

{ }
∑ ∑∑∑
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(4.54)  

4.4.3 Comparison of the Estimation Methods   

When we simulated the EM methods we found out that the initial conditions have a great 
effect on the ability of the algorithm to converge to a good estimation. Our conclusion are 
described in sections 4.2.5 and 4.3.5. The variance of the noise is initialized as stated there to be 
higher than the true value, which is estimated from the average power of the RF images at a 
frequency range that is far from the pass-band of the imaging system. 

Another important observation is that in both EM methods the use of constraints, 
especially the limiting and frequency-domain windowing, is critical for convergence and have 
significant influence on the estimation quality. 

In the examples below the DFT length NDFT is 1024 samples, and the required number of 
iterations is about 20 for both EM methods with the following constraints in use: 

1. Space-domain window 
P(x, z) that is applied to the blur as in equation (4.27). The window 
is the product of 2 raised cosines – one in the lateral direction having width of 7/16NDFT 
samples and roll-off width of 3/16NDFT samples, and the other in the axial direction having 
width of 1.375 times the axial length of the actual blur and roll-off width of 0.625 times that 
axial length. 

2. Frequency-domain window as in (4.28) and (4.45). Here also 2 raised-cosine windows are 
used – in the lateral direction having 6 dB attenuation at 7/32π rad and roll-off width of 5/16π 
rad, and in the axial direction having 6 dB attenuation at 0.1π rad and 0.75π rad and roll-off 
width of 0.2π rad at its low-frequency end and 0.33π rad at its high-frequency end. 



 

22 

 

 

3. Limiting is enforced every iteration: For the case of the reflectivity as the hidden data – 0.001 
max|P(ωx, ωz)|

2 ≤ λ/λu ≤ 0.25 max|P(ωx, ωz)|
2; For the case of the blur as the hidden data the 

same factors limit Var[P(ωx, ωz)|s,θ] relative to max| E[P(ωx, ωz)|s,θ] |2. 

Figure 4.3 shows an example for the dependence of MSE{P} on the peak-to-speckle ratio 
for the reflectivity map that is displayed in Figure 4.2. The standard deviation of the noise is kept 
6 dB below that of the speckle. 
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Figure 4.3: Dependence of MSE on peak-to-speckle ratio using the EM estimation methods 

Figure 4.4 shows an example for the dependence of MSE{P}on the speckle-to-noise 
ratio. The standard deviation of the speckle is kept 30 dB below the peak value of the 
deterministic component of the tissue reflectivity. The reflectivity map for this example is again 
the map in Figure 4.2. 
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Figure 4.4: Dependence of MSE on speckle-to-noise ratio using the EM estimation methods 
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Figure 4.5 shows an example for the dependence of MSE{P} on the focus depth zf, which 
influences the lateral width of the response through the term LT(–2 zf ωx/ωz) ∗x LR(–2 zf ωx/ωz). 
This dependence is checked at peak-to-speckle ratio of 30 dB and speckle-to-noise ratio of 6 dB. 
The reflectivity map for this example is also the map that is displayed in Figure 4.2. The 
constraints are the same as those for the example in Figures 4.3-4.4, except that the frequency-
domain window is changed such that in the lateral direction its 6 dB bandwidth is in the range 
0.188π-0.375π rad. 
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Figure 4.5: Dependence of MSE on focus depth using the EM estimation methods 

5 Reflectivity-Image Reconstruction and Compounding 

According to the approach of multi-channel image restoration [21] the restored image is 
taken from the last Expectation-Maximization iteration, i.e. from (4.11) or (4.38). However, in 
ultrasound imaging the resulting image would contain oscillations, as is the case with any 
ultrasound RF image, due to the band-pass character of the ultrasonic system. Consequently there 
would be required envelope detection. 

When handling single RF images, where the oscillations are along just one axis, the 
envelope can be detected either through demodulation or through application of a Hilbert filter, 
followed by absolute value calculation. But, the image of (4.11) or (4.38) has oscillations along 
both axes, thus demodulation or Hilbert filtering cannot be utilized. See Figure 5.2. 

5.1 Methods for Reconstruction and Spatial Compounding 

The conclusion is that the compound image should be generated through one of the 
following methods, which are also illustrated in Figure 4.1: 

Method A – Multi-channel reconstruction with envelope-detection 

1. Calculation of the absolute value of the multi-channel restored image from (4.11) or (4.38). 

2. Low-pass filtering of the resulting image. 

3. Log-compression of the filtered image. See Figure 5.2. 
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(a)     (b) 

 

 

 

 

(c)     (d) 

 

 

 

 

Figure 5.1: Simulation of an ultrasound scan of a wire target using the system response model in [24]: 
(a) The RF image (axial direction along the vertical axis). (b) The envelope-detected image. The images in a and b 
are displayed after log-compression. The range of the space axes is [-0.64, 0.64] mm. (c)-(d) The spectrum of a-b 
respectively. The range of the frequency axes is [–π, π] rad. 

(a)        (b)              (c) 

 

 

 

 

(d)        (e)               (f) 

 

 

 

 

Figure 5.2: Multi-channel reconstruction with envelope-detection applied to the ultrasound scan in Figure 5.1: 
(a) The multi-channel reconstruction. (b) The image after absolute value. (c) The image after LPF. The images in a-c 
are displayed after log-compression. The range of the space axes is [-0.64, 0.64] mm. (d)-(f) The spectrum of a-c 
respectively. The range of the frequency axes is [–π, π] rad. 
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Method B – Separate reconstruction with averaging 

1. Calculation of the 2 separate Wiener filter solutions using (4.11) or (4.38) and substituting 0 
for λu and λ1

–1 or λ2
–1 respectively. 

2. Envelope detection of each resulting image. 

3. Averaging (see Figure 5.3), such as: 

a. Averaging of the 2 envelope detected images followed by log-compression. 

b. Log-compression of the 2 envelope detected images followed by averaging. 

(a)     (b) 

 

 

 

 

Figure 5.3: Separate reconstruction with averaging applied to the ultrasound scan in Figure 5.1: 
(a) Averaging before log-compression. (b) Averaging after log-compression. The range of the space axes is  
[-0.64, 0.64] mm. 
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Figure 5.4: Horizontal section through the center of the reconstructed images in Figure 5.2 (f) denoted as “Method 
A”, Figure 5.3 (a) denoted as “Method B.a” and Figure 5.3 (b) denoted as “Method B.b”. 

5.2 Simulations 

We compared 4 types of reconstruction of the reflectivity map: 

1. Multi-channel reconstruction with envelope-detection. This is method A in section 5.1. 

2. Separate reconstructions, then averaging before log-compression. This is method B.a. in 
section 5.1. 
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3. Separate reconstructions, then averaging after log-compression. This is method B.b. in 
section 5.1. 

4. A simple average after log-compression. This is the most naïve way, and it serves as a lower 
bound for the possible quality of reconstruction. 

Figures 5.5 and 5.6 show reconstructed images using these types of reconstruction. Both 
examples are with peak-to-speckle ratio of 25 dB and speckle-to-noise ratio of 6 dB. 

The conclusion from the examples in sections 5.1 and 5.2 is that the method of separate 
reconstruction with averaging after log-compression has the best ability to separate close small 
objects such as wire targets while multi-channel reconstruction with envelope-detection gives the 
greatest suppression of noise and speckle. These two methods have a similar increase in 
sharpness of the display for large or lengthy objects. 

 

(a)        (b) 

 

 

 

 

 

(c)        (d) 

 

 

 

 

 

Figure 5.5: Comparison of methods for image reconstruction and compounding: (a) Multi-channel reconstruction 
with envelope-detection (b) Separate reconstructions, then averaging before  

log-compression (c) Separate reconstructions, then averaging after log-compression.  
(d) A simple average after log-compression. 
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(a)        (b) 

 

 

 

 

 

(c)        (d) 

 

 

 

 

 

Figure 5.6: Comparison of methods for image reconstruction and compounding: (a) Multi-channel reconstruction 
with envelope-detection (b) Separate reconstructions, with averaging before  

log-compression (c) Separate reconstructions, with averaging after log-compression.  
(d) A simple average after log-compression. 

6 Conclusions and Discussion 

In this research we developed a new method to exploit pairs of ultrasound scans of the 
same plane in order to achieve an enhanced ultrasound image compared to images from single 
scans. Each pair is assumed to consist of two co-registered image with 90° separation between 
their insonification directions. Former researches in the field of ultrasound imaging dealt with the 
tasks of blind deconvolution and spatial compounding independently, while this study combines 
these tasks through the approach of multi-channel image restoration that is borrowed from the 
field of photographic imaging. 

The algorithm that we developed performs first blind identification of the ultrasonic 
system parameters and then spatial compounding of the ultrasound scans. For the identification 
task this algorithm adopts the approach of multi-channel image restoration as it can be viewed as 
an individual case with a single source image that passes through 2 different channels. For spatial 
compounding in the case of ultrasound imaging with 90° separated views, we demonstrated that 
averaging after envelope detection can be more suitable for improvement of resolution than using 
the restored image from the multi-channel image restoration algorithm. 

Our experiments show that the parameter identification is robust to changes in the relative 
level of speckle or white noise as well as in the spectral shape of the system response. In order to 
achieve adequate performance the algorithm requires some constraints, such as limiting the 
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noise-to-speckle ratio, windowing in the space and frequency domains [26], [27] and limiting the 
number of iterations. These constraints need to be tuned for the specific ultrasonic system where 
the parameter identification is performed. The simulations also suggest that using the estimated 
parameters for image restoration can enhance the quality of the compound image compared to the 
approach of algebraic average without Wiener filtering. 

Future research can be carried out so as to adjust the algorithm for multiple scans with 
angular separation smaller than 90°. The 2 alternatives are to rotate the transducer around a fixed 
point within the imaged tissue in steps that are smaller than 90° as illustrated in Figure 6.1(a) or 
to steer the ultrasonic beam so as to collect a set of scans at various angles as illustrated in Figure 
6.1(b). The advantage of the second scheme is that it does not have a registration problem since 
the transducer is not moved between scans at different angles. 

(a)           (b) 

 

 

 

 

Figure 6.1: Illustration of compounding schemes with angular separation smaller than 90°:  
(a) Rotating the transducer around a fixed point within the imaged tissue. 

          (b) Steering the ultrasonic beam so as to collect a set of scans at various angles. 

Another interesting option is to modify the algorithm to deal with spatial compounding of 
sector scans instead of linear array scans (polar r-θ coordinates rather than Cartesian x-z 
coordinates), as illustrated in Figure 6.2. A possible advantage of sector scans is improved spatial 
invariance in the polar coordinate representation [5]. 

 

 

 

 

 

 

 

Figure 6.2: Illustration of sector scan compounding. 

Finally, the current algorithm assumes that there are no spatial deformations in the RF 
images due to variations in the speed of sound. In practice there might be cases when such 
deformations cannot be neglected. Therefore, it is desirable to incorporate an algorithm for 
estimation and compensation for the deformation into the process of parameter identification, 
image restoration and compounding [16]. 
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