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Abstract

The Gaussian MIMO broadcast channel is considered and the dirty paper coding rate re-

gion is shown to coincide with the capacity region. To that end, a new notion of an enhanced

broadcast channel is introduced and is used jointly with the entropy power inequality, to

show that Gaussian coding is optimal for the degraded vector broadcast channel. Further-

more, the capacity region is characterized under a wide range of input constraints, as long as

the input has a covariance matrix which is limited to a compact set, accounting, as special

cases, the total power and the per-antenna power constraints.

1. Introduction

We consider a Gaussian Multiple Input Multiple Output (MIMO) Broadcast Channel

(BC) and find the capacity region for that channel. The transmitter is required to send

independent messages to m receivers. We assume that the transmitter has t transmit anten-

nas and each of the users is equipped with ri , i = 1,2, . . . ,m receive antennas. Initially, we

assume that there is an average total power limitation, P , at the transmitter. However, as

will be made clear in the following section, our capacity results can be easily extended to a

much broader set of input constraints and in general, we can consider any input constraint

such that the input covariance matrix belongs to some compact set of positive semi-definite

matrices. The BC is an additive noise channel and each time sample can be represented

using the following expression:

yi = Hix + ni , i = 1, 2, . . . ,m (1-1)

where
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• x is a real input vector of size t× 1. Under an average total power limitation, P , at

the transmitter, we require that E[xTx] ≤ P . Under an input covariance constraint,

we will require that E[xxT ] ¹ S for some S º 0 (where ≺, ¹, Â and º denote partial

ordering between symmetric matrices such that if B º A, then (B −A) is a positive

semi-definite matrix).

• yi , i = 1,2, . . . ,m - are real output vectors received by user i. This is a vector of size

ri × 1 (the vectors, yi, are not necessarily of the same size).

• Hi is a fixed, real gain matrix imposed on user i. This is a matrix of size ri × t. The

gain matrices are fixed and are perfectly known at the transmitter and at all receivers.

• and ni is a real Gaussian random vector with zero mean and a covariance matrix

Ni = E[nin
T
i ] Â 0. No special structure is imposed on Hi or Ni, except that Ni must

be positive definite.

Note that complex MIMO BCs can be easily accommodated by representing all complex

vectors and matrices using real vectors and matrices having twice the number of elements,

corresponding to real and imaginary entries.

In this paper, we find the capacity region of the BC in expression (1-1) under various

input constraints. In particular, we will consider the average total input power and the input

covariance constraints. This model and our results are quite relevant to many applications

in wireless communications such as cellular systems [15], [20], [13].

In general, the capacity region of the BC is still unknown. There is a single-letter

expression for an achievable rate region due to Marton [12] but it is unknown if it coincides

with the capacity region. Nevertheless, for some special cases, a single letter formula for

the capacity region does exist [7], [11], [8] and coincides with the Marton region [12]. One

such case is the degraded BC [7] where the channel input and outputs form a Markov
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chain. It turns out that when the BC given by (1-1) is scalar (t = r1 = · · · = rm = 1), it is

a degraded BC. Furthermore, it was shown by Bergmans [1] that for the scalar Gaussian

BC, coding using a superposition of random Gaussian codes is optimal. Interestingly, the

optimality of Gaussian coding for this case was not deduced directly from the informational

formula, as the optimization over all input distributions is not trivial. Instead, the Entropy

Power Inequality (EPI) [3], [1] came into bare. Unfortunately, in general, the channel given

by expression (1-1) is not degraded. To make matters worse, even when this channel is

degraded but not scalar, Bergmans’ proof does not directly extend to the vector case. In

Section 3 we recount Bermans’ proof for the vector channel and show that this extension

fails due to Minkowski inequality.

Recent years have seen intensive work on the Gaussian MIMO BC. Caire and Shamai [5]

were among the first to pay attention to this channel and were the first to suggest using Dirty

Paper Coding (DPC) for transmitting over this channel. DPC is based on costa’s [9], [6],

[24] results for coding for a channel with both additive Gaussian noise and additive Gaussian

interference, where the interference is non-causally known at the transmitter but not at the

receiver. Costa observed that under an input power constraint, the effect of the interference

can be completely cancelled out. Using this coding technique, each user can pre-code its

own information, based on the signals of the users following it [5], [19], [17], [23] (for some

arbitrary ordering of the users) and treating their respective signals as non-causally known

interference.

Caire and Shamai [5] investigated a two user MIMO BC with an arbitrary number of

antennas at the transmitter and one antenna at each of the receivers. For that channel, it

was shown through direct calculation that DPC achieves the sum rate capacity (or maximum

throughput as it was called in [5]). Hence, it was shown that at least for rate pairs that
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obtain the channel’s sum capacity, DPC is optimal. Their main tool was the Sato upper

bound [14] (or the cooperative upper bound).

Following the work by Caire and Shamai, new papers appeared [19], [17], [23] which

expanded the maximum throughput claim in [5] to the case of any number of users and

arbitrary number of antennas at each receiver. Again, the Sato upper bound played a major

role. In [23], Yu and Cioffi construct a coding and decoding scheme for the cooperative chan-

nel relying on the ideas of DPC and generalized decision feedback equalization. A different

approach is taken in [19], [17]. To overcome the difficulty of expanding the calculations of

the maximum throughput in [5] to more than two users, with more than one antenna, the

idea of BC MAC duality [19], [10], [17] has been introduced.

Another step towards characterizing the capacity region of the MIMO BC is reported in

[18] and [16]. Both works show that if Gaussian coding is optimal for the Gaussian degraded

vector BC, then the DPC rate region is also the capacity region. To substantiate this claim,

the Sato upper-bound was replaced with the Degraded Same Marginals (DSM) bound in

[18]. Furthermore, the authors conjecture that indeed, Gaussian coding is optimal for the

Gaussian degraded vector BC. However, as indicated above, the proof of this conjecture is

not trivial, as Bergmans’ [1] proof can not be directly applied.

In a conference version of this work [21], we reported a proof of this conjecture and thus,

along with the DSM bound [18], [16], we have shown that the DPC rate region is indeed

the capacity region of the MIMO BC. Here, we provide a more cohesive view and are able

to derive the results on first principle properties and we do not hinge on any of the above

existing results (the MAC-BC duality [19], [17] and the DSM upper bound [18], [16]). This

not only provides a more complete and self-contained view, but it significantly enhances the

insight into this problem and its associated properties.
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The main contribution of this work is the notion of an enhanced channel. The introduc-

tion of an enhanced channel allowed us to use the entropy power inequality, as done for the

scalar case by Bergmans’, to prove that Gaussian coding is optimal for the vector degraded

BC, despite the Minkowski inequality. We show that instead of proving the optimality of

Gaussian coding for the degraded vector channel, we can prove it for a set of enhanced

degraded vector channels, for which, unlike the original degraded vector channel, we can

directly extend Bergmans’ [1] proof, and in this setting, the Minkowski inequality is satisfied

with equality.

Another unique result is our ability to characterize the capacity region of the MIMO

BC under channel input constraints other than the total power constraint. In particular,

in Section 2, we show that we can characterize the capacity region of the MIMO BC which

input covariance matrix is limited to some compact set. This parallels a result reported in

[22] for the sum capacity of the MIMO BC under per-antenna power constraints.

In Section 2 we give preliminary results and show that instead of characterizing the

capacity region of the MIMO BC under a total power constraint, we can characterize the

capacity region under an input covariance matrix constraint. In Section 3, we find the

capacity region of a sub class of the degraded vector BC, which we refer to as the aligned

degraded MIMO BC. In Section 4 we broaden our scope to a sub-class of the MIMO BC

similar to that treated in Section 3 but which is not degraded. Finally, in Section 5 we find

the capacity region of the general Gaussian MIMO BC as given in (1-1).

2. Preliminaries

2.1 Subclasses of the Gaussian MIMO BC (the ADBC and AMBC)

Equation (1-1) represents the Gaussian MIMO broadcast channel. We shall refer to that

channel as the General MIMO BC (GMBC). However, we will initially find it simpler to
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contend with two subclasses of this channel and then broaden the scope of our results and

write the capacity for the GMBC.

The first subclass we will deal with is the Aligned Degraded MIMO Broadcast Channel

(ADBC). We say that the MIMO BC is aligned if the number of transmit antennas is equal

to the number of receive antennas at each of the receivers (t = r1 = · · · = rm) and if the gain

matrices are all identity matrices (H1 = · · · = Hm = I). Furthermore, we require that this

subclass will be degraded and assume that the additive noise vectors covariance matrices at

each of the receivers are ordered such that 0 ≺ N1 ¹ N2 ¹ ·· · ¹ Nm (where ≺, ¹, Â and º

denote partial ordering between symmetric matrices such that if B º A, then (B −A) is a

positive semi-definite matrix). Taking into account the fact that the capacity region of BCs

(in general) depend only on the marginal distributions, PYi|X , we may assume without loss

of generality that a time sample of an ADBC is represented by the following expression:

yi = x +
i

∑

j=1

ñj , i = 1, 2, . . . ,m (2-1)

where yi and x are real vectors of size t× 1 and where ñi, i = 1, . . . ,m are independent and

memoryless real Gaussian noise increments such that Ñi = E[ñiñ
T
i ] = Ni −Ni−1 (where we

define N0 = 0).

The second subclass we address is a generalization of the ADBC which we will refer to

as the Aligned MIMO BC (AMBC). The AMBC is also aligned (that is, t = r1 = · · · = rm

and H1 = · · · = Hm = I), but we do not require that the channel will be degraded. In other

words, we no longer require that the additive noise vectors covariance matrices, Ni, will

exhibit any order between them. A time sample of an AMBC is represented by the following

expression:

yi = x + ni , i = 1, 2, . . . ,m (2-2)

where yi and x are real vectors of size t× 1 and where ni, i = 1, . . . ,m are memoryless real
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Gaussian noise vectors such that E[nin
T
i ] = Ni Â 0.

In the case where the gain matrices of the GMBC (the channel given in (1-1)), Hi, are

square and invertible, it is readily shown that the capacity region of the GMBC can be

inferred from that of the AMBC by multiplying each of the channel outputs, yi, by H−1
i .

However, a problem arises when the gain matrices are no longer square or invertible. In other

words, when the number of transmit and receive antennas are not the same. In Section 5

(proof of Theorem 5.1), we show that the capacity region of the GMBC with non-square

or non-invertible gain matrices can be obtained from a limit process on the capacity region

of an AMBC along the following steps. First, we decompose the channel using singular

value decomposition (SVD), into a channel with square gain matrices. Then, we add a small

perturbation to some of the gain entries and take a limit process on those entries. Thus,

we simulate the fact that the gain matrices of the original channel were not square or not

invertible. After adding the perturbations, the gain matrices are invertible and an equivalent

AMBC can be readily established. Therefore, the greater part of this paper (Sections 3 and

4) will be devoted to characterizing the capacity regions of the ADBC and AMBC.

2.2 The covariance matrix constraint

2.2.1) Substituting the total power constraint with the matrix covariance constraint

As mentioned in the introduction, our final goal is to give a characterization of the

capacity region of the GMBC under a total power constraint, P . Nonetheless, our initial

characterization of the capacity region will be given for a covariance matrix constraint,

S º 0, such that E[xxT ] ¹ S. For a given total power constraint E[xTx] ≤ P , we denote

by C(P,N1...m,H1...m) the capacity region of the GMBC given in (1-1) under a total power

constraint, P . For a given covariance matrix constraint S, we denote by C(S,N1...m,H1...m)

the capacity region of the same broadcast channel under a covariance matrix constraint, S.
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The justification for characterizing the capacity regions under a covariance matrix constraint

instead of a total power constraint is made clear by the next proposition. However, prior to

giving this proposition we must first give the following definition:

Definition 2.1 (Contiguity of the capacity region with respect to S) We say that the ca-

pacity region, C(S,N1...m,H1...m), is contiguous w.r.t S if for every ε > 0, we can find a δ > 0

such that every ε-ball around a rate vector R ∈ C(S + δ′I,N1...m,H1...m) also contains a rate

vector R
∗ ∈ C(S,N1...m,H1...m) for all 0 ≤ δ′ ≤ δ.

As one might expect, the capacity regions that will be defined in the following sections,

will all be contiguous in S.

Proposition 2.1: Assume that P is a non-negative scalar and S is a positive semi-definite

matrix. If C(S,N1...m,H1...m) is contiguous in S, then

C(P,N1...m, H1...m) =
⋃

tr{S}¹P

C(S,N1...m, H1...m)

Proof: We will prove that every rate vector R = (R1, . . . ,Rm) ∈ C(P,N1...m,H1...m) also

lies in C(S,N1...m,H1...m) for some S such that tr{S} ¹ P . We use C(n,R, ε) to denote a

codebook that maps a set of m message indexes, W1, . . . ,Wm, Wi ∈ {1, . . . , enRi}, i = 1, . . . ,m,

onto a channel input word (a real matrix of size t× n) and allows the ML decoder at each

of the receivers to decode the appropriate message index with an average probability of

decoding error, no greater than ε. If indeed R ∈ C(P,N1...m,H1...m), then there exists an

infinite sequence of codebooks, C(ni,R, εi), i = 1,2, . . .∞, with increasing lengths, ni, rate

vectors R and decreasing probabilities of error, εi, such that εi → 0 and ni →∞ as i →∞.

Denote by Si, the average codeword covariance matrix of the i’th codebook such that

Si = 1
ni·eni

∑

Ri

∑

X∈C(ni,R,εi)
X ·X

T

. As a result of the total power constraint, P , it is clear

that tr{Si} ≤ P, ∀i. We now make use of the fact that the set of positive semi-definite

matrices, S(P ) = {S|S º 0, tr{S} ≤ P}, is compact and therefore, for any infinite sequence
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of points in S(P ) there must be a subsequence that converges to a point S0 ∈ S(P ). Hence,

for any arbitrarily small δ > 0, we can find an increasing subsequence, i(k), such that Si(k) ¹

S0 + δI, ∀k > 0.

In other words, If R ∈ C(P,N1...m,H1...m), for any δ > 0, we can find a sequence of

codebooks, C(nk, R, εk), which achieve arbitrarily small error probabilities and follow a

covariance matrix constraint, S0 + δI, for some S0 ∈ S(P ). Therefore, for every δ > 0,

R ∈ C(S0 + δI,Hi,Ni). By the contiguity of C(S,N1...m,H1...m) with respect to S, we con-

clude that every ε-ball around R contains vectors which lie in C(S0,Hi,Ni) and therefore, R

must be a convergence point of C(S0,Hi,Ni). As C(S0,Hi,Ni) is a closed set by definition,

we conclude that R ∈ C(S0,Hi,Ni).

With minor modifications to the above proof, Proposition 2.1 can be extended to a more

general constraint on the channel inputs, as stated bellow:

Corollary 2.1: Assume that there exists a power constraint on the average codeword

covariance matrix, S = 1
n·en

∑

Ri

∑

X∈C(n,R,ε)
X ·X

T

, such that S ∈ S and where S is a compact

set. If C(S,N1...m,H1...m) is contiguous in S, then the capacity region of the GMBC under

this power constraint is given by:

C(S, Hi, Ni) =
⋃

S∈S

C(S,N1...m, H1...m)

2.2.2) The capacity region under a non-invertible covariance matrix constraint

We differentiate between the case where the covariance matrix constraint, S, is strictly

positive definite (and hence invertible and full ranked), and the case where it is positive

semi-definite but non-invertible, |S| = 0. It turns out that for an aligned MIMO BC (either

an ADBC or an AMBC) with a non-invertible covariance matrix constraint, |S| = 0, we can

define an equivalent aligned MIMO BC (either an ADBC or an AMBC), with a smaller

number of transmit and receive antennas and with a covariance matrix constraint which
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is strictly positive definite. Thus, when proving the converse of the capacity regions of the

ADBC and AMBC, we will need only to concentrate on the cases where S is strictly positive.

A formal presentation of the above argument is given in the following proposition:

Proposition 2.2: Consider an AMBC with t transmit antennas, noise covariance matri-

ces, N1, . . . ,Nm, and a covariance matrix constraint, S, such that rank(S) = rS < t. Then,

1. There exists an AMBC, with rS transmit antennas (and rS receive antennas at each

of the receivers) and with noise covariance matrices N̂1, . . . , N̂m, which has the same

capacity region under a covariance matrix constraint, Ŝ, of rank rS. Furthermore, if

N1 ¹ ·· · ¹ Nm (the channel is an ADBC), then N̂1 ¹ ·· · ¹ N̂m (i.e. the equivalent

channel is also an ADBC).

2. In the equivalent channel we have:

Ŝ = E ′ΛSE ′T and N̂i = NC
i −

(

NB
i

)T (

NA
i

)−1 (

NB
i

)

, i = 1, 2, . . . ,m

where ΛS and US are defined as the eigenvalues and eigenvectors matrices (unitary

matrices) of S = USΛSUT
S such that ΛS has all its non-zero values on the bottom right

of the diagonal. NA
i , NB

i and NC
i are matrices of sizes (t− rS)× (t− rS), (t− rS)× rS

and rS × rS such that UT
S NiUS =





NA
i NB

i

(NB
i )T NC

i



 and E ′ =
[

0rS×(t−rS) IrS×rS

]

.

The proof is deferred to Appendix II.

3. The capacity region of the ADBC

In this section we characterize the capacity region of the ADBC. As mentioned in the

introduction, even though this channel is degraded, and we have a single letter formula for

the capacity region of this channel, proving that Gaussian inputs are optimal is not trivial.

In the following subsections we will state and prove our result for the capacity region of the

ADBC.
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3.1 ADBC - Main Result

We begin by defining the achievable rate region due to Gaussian coding under a covari-

ance matrix constraint, S º 0. Note that as the channel is degraded, there is no point in

using Dirty Paper Coding (DPC) [6], [5], [23], [19], [17].

It is well known that for any covariance matrix input constraint, S, and a set of semi-

definite matrices Bi º 0, i = 1, . . .m such that
∑m

i=1 Bi ¹ S, it is possible to achieve the

following rates:

Rk ≤ RG
k (B1...m, Ñ1...m) , ∀k ∈ 1, . . . ,m (3-1)

where

RG
1 (B1...m, Ñ1...m) =

1

2
log |Ñ−1

1 (B1 + Ñ1)|,

RG
k (B1...m, Ñ1...m) =

1

2
log

∣

∣

∣

(

∑k

i=1 Bi +
∑k

i=1 Ñi

)∣

∣

∣

∣

∣

∣

(

∑k−1
i=1 Bi +

∑k

i=1 Ñi

)∣

∣

∣

, k = 2,3, . . . ,m
(3-2)

The coding scheme that achieves the above rates uses a super-position of Gaussian codes

with covariance matrices, Bi, and successive decoding at the receivers. The Gaussian rate

region is defined as follows:

Definition 3.1 (Gaussian rate region of an ADBC) Let S be a positive semi-definite ma-

trix. Then, the Gaussian rate region of an ADBC under a covariance matrix constraint, S,

is given by:

RG(S, Ñ1...m) =























(

RG
1 (B1...m, Ñ1...m), . . . ,RG

m(B1...m, Ñ1...m)
)

∣

∣

∣

∣

∣

s.t. S −
m

∑

i=1

Bi º 0 , Bi º 0 ∀i = 1, . . . ,m























(3-3)

We now give the main result of this section:

Theorem 3.1: Let C(S,Ñ1...m) denote the capacity region of the ADBC under a covariance

matrix constraint, S º 0, then C(S,Ñ1...m) = RG(S,Ñ1...m).
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Note that C(S, Ñ1...m) is an operational definition of a rate region while RG(S, Ñ1...m) is a

functional definition of a rate region.

As RG(S,Ñ1...m) is contiguous w.r.t S (for proof, see Proposition III.1 in Appendix III),

the following corollary follows immediately by Proposition 2.1.

Corollary 3.1: Let C(P, Ñ1...m) denote the capacity region of the ADBC under a total

power constraint, P ≥ 0, then

C(P, Ñ1...m) =
⋃

Sº0
s.t.

tr{S}≤P

RG(S, Ñ1...m)

3.2 Direct application of Bergmans’ proof to the ADBC and its pitfalls

Before plunging into the proof of Theorem 3.1, we explain why Bergman’s [1] proof for

the scalar Gaussian BC, does not directly extend to the MIMO channel. This subsection is

intended to give the reader an idea of why and where the direct application of Bergmans’

proof fails and how we intend to overcome this problem. As this subsection is only intended

to motivate the reader, only a sketch (with no proofs) of Bergman’s result will be given, in

contrast to the rest of this paper.

We consider a t-antenna ADBC with two users and noise increment covariance matrices

Ñ1, Ñ2 and with a covariance matrix constraint, S. We wish to show that RG(S,Ñ1,2) is also

the capacity region.

Assume, in contrast, that there is an achievable rate pair, (R1,R2), which lies outside

RG(S,Ñ1,2). Then, we can find a set of matrices B1 and B2 = S −B1 such that

R1 ≥ RG
1 (B1,2, Ñ1,2) and R2 > RG

2 (B1,2, Ñ1,2). (3-4)

Let W1 and W2 denote the massage indexes of the users. Furthermore, let X, Y 1 and

Y 2 denote the channel input and channel outputs matrices over a block of n samples. Then,
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by the fact that W1 and W2 are independent and by Fano’s inequality, we may write:

R1 ≤
1

n
I(W1; Y 1|W2) and R2 ≤

1

n
I(W2; Y 2) (3-5)

where, for the sake of brevity, we ignored the contribution of the decoding errors to the right

hand side of the equations. In the rigorous proof given in the following subsections we will

not ignore these contributions.

Therefore, by Fano’s inequality (3-5) and by (3-4), we may write:

1

n
I(W1;

¯̄Y1|W2) =
1

n
H( ¯̄Y1|W2)−

1

n
H( ¯̄Y1|W1,W2) =

1

n
H( ¯̄Y1|W2)−

1

2
log

(∣

∣

∣
2πeÑ1

∣

∣

∣

)

≥ R1 ≥ RG
1 (B1,2, Ñ1,2) =

1

2
log

(∣

∣

∣
2πe

(

B1 + Ñ1

)∣

∣

∣

)

− 1

2
log

(∣

∣

∣
2πeÑ1

∣

∣

∣

)

and hence,

1

n
H( ¯̄Y1|W2) ≥

1

2
log

(∣

∣

∣2πe
(

B1 + Ñ1

)∣

∣

∣

)

Next, we lower bound 1
n
H( ¯̄Y2|W2) using the Entropy Power Inequality. The EPI lower

bounds the entropy of the sum of two independent vectors with a function of the entropies

of each of the vectors. Bergmans slightly generalized the EPI to allow conditioning on the

message indexes (see Corollary I.1 in Appendix I). As ¯̄Y2 = ¯̄Y1 + ¯̄Z2, where ¯̄Z2 is a t× n

random matrix which columns are independent Gaussian random vectors with covariance

matrices, Ñ2, we can use Bergmans’ version of the EPI (Corollary I.1) to bound 1
n
H( ¯̄Y2|W2),

in the following manner:

1

t ·nH( ¯̄Y2|W2) =
1

t ·nH( ¯̄Y1 + ¯̄Z2|W2) ≥
1

2
log

(

e
2

t·n
H( ¯̄Y1|W2) + e

2

t·n
H( ¯̄Z2)

)

≥ 1

2
log

(

∣

∣

∣
2πe

(

B1 + Ñ1

)∣

∣

∣

1

t

+ |2πeÑ2|
1

t

)

As |K1|
1

t +|K2|
1

t ≤ |K1+K2|
1

t for any t×t positive semi-definite matrices, K1,K2 (Minkowski’s

inequality - see Proposition I.5), we have

1

t · nH( ¯̄Y2|W2) ≥
1

2
log

(

∣

∣

∣2πe
(

B1 + Ñ1

)∣

∣

∣

1

t

+ |2πeÑ2|
1

t

)

≤ 1

2
log

(

∣

∣

∣2πe
(

B1 + Ñ1 + Ñ2

)∣

∣

∣

1

t

)
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with equality, if and only if B1 + Ñ1 and Ñ2 are proportional.

If B1 + Ñ1 is proportional to Ñ2, we can rewrite the above result such that

1

n
H( ¯̄Y2|W2) ≥

1

2
log

(∣

∣

∣
2πe

(

B1 + Ñ1 + Ñ2

)∣

∣

∣

)

(3-6)

and by (3-5), (3-4) and (3-6), we can write:

1

n
H( ¯̄Y2) =

1

n
I(W2;

¯̄Y2) +
1

n
H( ¯̄Y2|W2) ≥ R2 +

1

n
H( ¯̄Y2|W2)

> RG
2 (B1,2, Ñ1,2) +

1

n
H( ¯̄Y2|W2)

=
1

2
log

(∣

∣

∣
2πe

(

S + Ñ1 + Ñ2

)∣

∣

∣

)

− 1

2
log

(∣

∣

∣
2πe(B1 + Ñ1 + Ñ2)

∣

∣

∣

)

+
1

n
H( ¯̄Y2|W2)

≥ 1

2
log

(∣

∣

∣2πe
(

S + Ñ1 + Ñ2

)∣

∣

∣

)

However, the above result contradicts the upper bound on the entropy of a power limited

random variable. Therefore, if we can find matrices B1 and B2 = S −B1 such that B1 + Ñ1

is proportional to Ñ2 and such that RG
1 ≤ R1 and RG

2 < R2, then (R1,R2) can not be an

achievable pair. Yet, we can’t always find such matrices, B1 and B2.

In the scalar case, B1 + Ñ1 is always proportional to Ñ2 and therefore, by Bergmans’

proof we see that all points that lie outside the Gaussian rate region can not be attained. Yet,

for the MIMO case this is no longer true and therefore, we can not directly apply Bergmans’

proof in the MIMO case.

In order to circumvent this problem, we will introduce a new ADBC that we will refer

to as the enhanced channel. For every rate pair (R1,R2) which lies outside the Gaussian rate

region of the original channel, we will define a different enhanced channel. The enhanced

channel will be defined such that its capacity region will contain that of the original channel

(hence the name) and such that (R1,R2) will also lie outside the Gaussian region of the

enhanced channel. Yet, we will show that for the enhanced channel, we can find B1 and B2

such that the proportionality condition will hold. Therefore, we will be able to show that

July 14, 2004—4 : 54 am DRAFT



THE CAPACITY REGION OF THE GAUSSIAN MIMO BROADCAST CHANNEL 15

every rate pair, (R1,R2), that lies outside the Gaussian rate region, is not achievable in its

respective enhanced channel, and therefore, neither in the original channel.

3.3 ADBC - Definitions and Observations

Before turning to prove Theorem 3.1, we will first need to give some definitions and

intermediate results. We begin with the definition of an optimal Gaussian rate vector and

solution point.

Definition 3.2: We say that the rate vector R = (R1, . . . ,Rm) is an optimal Gaussian

rate vector under a covariance matrix constraint, S, if R ∈ RG(S, Ñ1...m) and if there is

no other rate vector R
∗ ∈ RG(S, Ñ1...m) such that R∗

i ≥ Ri, ∀i = 1, . . . ,m and such that

at least one of the inequalities is strict. We say that the set of positive semi-definite

matrices B1, B2, . . . , Bm such that
∑m

i=1 Bi ¹ S, is an optimal Gaussian solution point if
(

RG
1 (B1...m, Ñ1...m),RG

2 (B1...m, Ñ1...m), . . . ,RG
m(B1...m, Ñ1...m)

)

is an optimal Gaussian rate vec-

tor.

The following proposition allows us to associate points that do not lie in the Gaussian

rate region with optimal Gaussian rate vectors.

Proposition 3.1: The following statements hold.

1. The set of boundary points of RG(S,Ñ1...m) coincides with the set of optimal Gaussian

rate vectors.

2. Let R = (R1,R2, . . . ,Rm) be a rate vector satisfying:

R /∈RG(S,Ñ1...m)

Ri ≥ 0, ∀i = 1, . . . ,m− 1

Rm > 0.

Then there is a strictly positive scalar, b > 0, and an optimal Gaussian solution point

July 14, 2004—4 : 54 am DRAFT



THE CAPACITY REGION OF THE GAUSSIAN MIMO BROADCAST CHANNEL 16

B∗
1 , . . . ,B

∗
m such that

Ri ≥ RG
i (B∗

1...m, Ñ1...m), i = 1, . . . ,m− 1

Rm ≥ RG
m(B∗

1...m, Ñ1...m) + b

(3-7)

The proof of the proposition is deferred to Appendix IV. It should be noted that when we

refer to the boundary points of RG(S,Ñ1...m) we refer to those points that do not lie strictly

on one of the axes or to be more precise, we refer to the non-negative (element-wise) boundary

points of the set RG(S,Ñ1...m)+R
m
− (where R

m
− = {(R1, . . . ,Rm) ∈Rm | Ri ≤ 0, ∀i = 1, . . . ,m}

and where A+B is the set of all possible additions between vectors in A and vectors B).

To get a better understanding of the first statement of Proposition 3.1, we can consider

the two user channel. The first statement implies that no section of the boundary of the

Gaussian rate region lies parallel to either the horizontal or vertical axes.

In general, there is no known closed form solution for the optimal Gaussian solution

points. However, we can state the following simple result:

Proposition 3.2: Let B∗
1 , . . . ,B

∗
m be an optimal Gaussian solution point under a covari-

ance matrix constraint, S º 0. Then, S =
∑m

i=1 B∗
i .

Proof: We note that of all users, only the Gaussian achievable rate of user m,

RG
m(B1...m, Ñ1...m), is a function of Bm such that

RG
m(B1...m, Ñ1...m) =

1

2
log

∣

∣

∣Bm +
∑m−1

i=1 Bi +
∑m−1

i=1 Ñi

∣

∣

∣

∣

∣

∣

∑m−1
i=1 Bi +

∑m−1
i=1 Ñi

∣

∣

∣

.

Therefore, as B∗
1 , . . . ,B

∗
m is an optimal Gaussian solution point, given the set of m−1 matrices

Bi = B∗
i , i = 1, . . . ,m− 1, B∗

m is the choice of Bm which maximizes RG
m(B1...m, Ñ1...m). How-

ever, as Bm ¹ S −
∑m−1

i=1 B∗
i and as |B| > |A| when B º A Â 0 and B 6= A (see Proposition

I.2), RG
m is maximized when Bm = S −∑m−1

i=1 B∗
i .

Next, we introduce the notion of the enhanced channel. This definition and the obser-

vation following it, are the main contributions of this paper.
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Definition 3.3: (Enhanced Channel) We say that an ADBC with noise increment covari-

ance matrices (Ñ ′
1, Ñ

′
2, . . . , Ñ

′
m) is an enhanced version of another ADBC with noise increment

covariance matrices (Ñ1, Ñ2, . . . , Ñm) if

i
∑

j=1

Ñ ′
j ¹

i
∑

j=1

Ñj , ∀i = 1, . . . ,m

Similarly, we say that an AMBC with noise covariance matrices (N ′
1,N

′
2, . . . ,N

′
m) is an en-

hanced version of another AMBC with noise covariance matrices (N1,N2, . . . ,Nm) if

N ′
i ¹ Ni , ∀i = 1, . . . ,m

Note that our definition holds for both AMBCs and ADBCs. Clearly, the capacity region

of the original channel is contained within that of the enhanced channel. Furthermore,

as |A+B+∆|
|B+∆|

≤ |A+B|
|B|

when A º 0, ∆ º 0 and B Â 0 (Proposition I.4), RG
i (B1...m, Ñ1...m) ≤

RG
i (B1...m, Ñ ′

1...m) ∀i and therefore, RG(S,Ñ1...m) ⊆RG(S,Ñ ′
1...m).

We can now state a crucial observation, connecting between the definition of the optimal

Gaussian rate vector and the enhanced channel.

Theorem 3.2: Consider an ADBC with positive semi-definite noise increment covariance

matrices (Ñ1, . . . , Ñm) such that Ñ1 Â 0. Let B1, . . . ,Bm be an optimal Gaussian solution

point under an average transmit covariance matrix constraint, S Â 0. Then, there exists

an enhanced ADBC with noise increment covariances (Ñ ′
1, . . . , Ñ

′
m) such that the following

properties hold:

1. Enhanced channel:

0 ≺
k

∑

i=1

Ñ ′
i ¹

k
∑

i=1

Ñi, ∀k = 1, . . . ,m (3-8)

2. Proportionality: There exit αk ≥ 0 k = 1, . . . ,m− 1 such that

αk

(

k
∑

i=1

Bi +
k

∑

i=1

Ñ ′
i

)

= Ñ ′
k+1, ∀k = 1, . . . ,m − 1 (3-9)
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3. Rate preservation and Optimality preservation:

RG
k (B1...m, Ñ1...m) = RG

k (B1...m, Ñ ′
1...m), ∀k = 1, . . . ,m (3-10)

and B1, . . . ,Bm is an optimal Gaussian solution point for the enhanced channel as

well.

The proof is deferred to Subsection 3.5.

In words, the above theorem states that for every optimal Gaussian rate vector, (RO
1 , . . . ,

RO
m), we can find an enhanced channel whose Gaussian rate region upper bounds RG(S,Ñ1...m)

but at the same time is tangential to (RO
1 , . . . ,RO

m) (it might be tangential to more than a

single point). Moreover, at the point where the two regions intersect, a unique property of

proportionality holds (3-9). An illustrative example appears in Subsection 3.6.

In the next subsection, we will prove Theorem 3.1 using the above observation. Our

approach will be similar to Bergmans’ but this time we will be able to circumvent the

pitfalls that we encountered in the direct application of Bergmans’ proof (Subsection 3.2) by

applying his proof to the enhanced channel, and utilizing the proportionality property which

holds for that channel. That is, we will no longer be limited by the Minkowski inequality

since, due to the proportionality property, it will hold with equality for the enhanced channel.

3.4 Proof of Theorem 3.1

Proof: As RG(S,Ñ1...m) is a set of achievable rates, then RG(S,Ñ1...m) ⊆ C(S,Ñ1...m).

Therefore, we need to show that C(S, Ñ1...m) ⊆ RG(S, Ñ1...m). We will treat separately the

cases where the covariance matrix constraint, S, is strictly positive definite, S Â 0, and the

case where S is positive semi-definite (S º 0) such that |S| = 0. We will first consider the

case, S Â 0.

S Â 0:
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We shall use a contradiction argument and assume that there exists an achievable rate

vector R = (R1, . . . ,Rm) /∈ RG(S, Ñ1...m). We will initially assume that Ri > 0, ∀i = 1 . . .m

and later, we will use a simple argument to augment the proof for all non-negative rates

Ri ≥ 0, ∀i = 1 . . .m.

S Â 0, Ri > 0 ∀i:

Since R /∈ RG(S,Ñ1...m) and Rm > 0 (by our assumption), we know by Proposition 3.1

that there exists an optimal Gaussian solution point, B∗
1 , . . . ,B

∗
m, such that

R1 ≥ RG
1 (B∗

1...m, Ñ1...m), i = 1, . . . ,m− 1

Rm ≥ RG
m(B∗

1...m, Ñ1...m) + b

for some b > 0. Since we assume that S Â 0 we know by Theorem 3.2 that for every optimal

Gaussian solution point, B1, . . . , Bm, there exists an enhanced ADBC, Ñ ′
1, . . . , Ñ

′
m, such

that the proportionality and rate preservation properties hold. By the rate preservation

property we have RG
i (B1...m, Ñ1...m) = RG

i

′
(B1...m, Ñ1...m). Therefore, we can rewrite the above

expression as follows,

R1 ≥ RG
1 (B∗

1...m, Ñ1...m) = RG
1 (B∗

1...m, Ñ ′
1...m)

...

Rm−1 ≥ RG
m−1(B

∗
1...m, Ñ1...m) = RG

m−1(B
∗
1...m, Ñ ′

1...m)

Rm ≥ RG
m(B∗

1...m, Ñ1...m) + b = RG
m(B∗

1...m, Ñ ′
1...m) + b

(3-11)

Let Wi , i = 1, . . . ,m denote the index of the message sent to user i and let ¯̄Yi be a

matrix of size t× n denoting the signal received by user i (in n time samples). By Fano’s

inequality and the fact that the Wi’s are independent, we know that there is a sufficiently

large n such that we can find a code-book of length-n codewords and for which

Ri ≤
1

n
I(Wi;

¯̄Yi) +
1

2 ·mb ≤ 1

n
I(Wi;

¯̄Yi|Wi+1, . . . ,Wm) +
1

2 ·mb , i = 1, . . . ,m− 1

Rm ≤ 1

n
I(Wm; ¯̄Ym) +

1

2 ·mb

(3-12)
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Let ¯̄Y ′
i , i = 1, . . .m denote the enhanced channel outputs of each of the receiving users. ¯̄Y ′

i

is a matrix of size t× n. By the information processing theorem we can rewrite (3-12) as

follows:

Ri ≤
1

n
I(Wi;

¯̄Y ′
i |Wi+1, . . . ,Wm) +

1

2 ·mb , i = 1, . . . ,m− 1

Rm ≤ 1

n
I(Wm; ¯̄Y ′

m) +
1

2 ·mb

(3-13)

Thus, in (3-11) and (3-13), we have shifted the problem from the original channel to the

enhanced channel. However, as the proportionality property holds for the enhanced channel,

we can use Bergmans’ approach to prove a contradiction.

By (3-13) and (3-11) we can write

1

n
I(W1;

¯̄Y ′
1 |W2, . . . ,Wm) +

1

2 ·mb =
1

n
H( ¯̄Y ′

1 |W2, . . . ,Wm)− 1

n
H( ¯̄Y ′

1 |W1, . . . ,Wm) +
1

2 ·mb

=
1

n
H( ¯̄Y ′

1 |W2, . . . ,Wm)− 1

2
log

(∣

∣

∣2πeÑ ′
1

∣

∣

∣

)

+
1

2 ·mb

≥ RG
1 (B∗

1...m−1,S,Ñ ′
1...m)

=
1

2
log

(∣

∣

∣2πe
(

B∗
1 + Ñ ′

1

)∣

∣

∣

)

− 1

2
log

(∣

∣

∣2πeÑ ′
1

∣

∣

∣

)

Thus,

1

n
H( ¯̄Y ′

1 |W2, . . . ,Wm) ≥ 1

2
log

(∣

∣

∣
2πe

(

B∗
1 + Ñ ′

1

)∣

∣

∣

)

− 1

2 · mb (3-14)

We may write ¯̄Y ′
2 = ¯̄Y ′

1 + ¯̄Z ′
2 where ¯̄Z ′

2 is a random Gaussian matrix with independent

columns and independent of both ¯̄Y ′
1 and the messages (W1, . . . ,Wm). Each column in ¯̄Z ′

2 has

Normal distribution with zero mean and a covariance matrix, Ñ ′
2. Next, we use the Entropy

Power Inequality to lower bound the entropy of the sum of two independent vectors with a

function of the entropies of each of the vectors. Thus, using a slightly modified version of the

EPI (Corollary I.1 in Appendix I), modified to allow conditioning on the message indexes,

July 14, 2004—4 : 54 am DRAFT



THE CAPACITY REGION OF THE GAUSSIAN MIMO BROADCAST CHANNEL 21

we may write (relying on (3-14)):

1

t ·nH( ¯̄Y ′
2 |W2, . . . ,Wm) =

1

t ·nH( ¯̄Y ′
1 + ¯̄Z ′

2|W2, . . . ,Wm)

≥ 1

2
log

(

e
2

t·n
H( ¯̄Y1|W2,...,Wm) + e

2

t·n
H( ¯̄Z2)

)

≥ 1

2
log

(

∣

∣

∣
2πe

(

B∗
1 + Ñ ′

1

)∣

∣

∣

1

t

e−
2

2·m·t
b + |2πeÑ ′

2|
1

t

)

≥ 1

2
log

(

∣

∣

∣2πe
(

B∗
1 + Ñ ′

1

)∣

∣

∣

1

t

+ |2πeÑ ′
2|

1

t

)

− 1

2 ·m · tb

(3-15)

But by the proportionality property in Theorem 3.2, we know that Ñ ′
2 is proportional to

(B∗
1 + Ñ ′

1) and therefore,

∣

∣

∣2πe
(

B∗
1 + Ñ ′

1

)∣

∣

∣

1

t

+ |2πeÑ ′
2|

1

t =
∣

∣

∣2πe
(

B∗
1 + Ñ ′

1 + Ñ ′
2

)∣

∣

∣

1

t

Thus, we may write,

1

n
H( ¯̄Y ′

2 |W2, . . . ,Wm) ≥ 1

2
log

(∣

∣

∣
2πe

(

B∗
1 + Ñ ′

1 + Ñ ′
2

)∣

∣

∣

)

− 1

2 · mb (3-16)

Again, we can use (3-13) and (3-11) and write:

1

n
I(W2;

¯̄Y ′
2 |W3, . . . ,Wm) +

1

2 ·mb =
1

n
H( ¯̄Y ′

2 |W3, . . . ,Wm)− 1

n
H( ¯̄Y ′

2 |W2, . . . ,Wm) +
1

2 ·mb

≥ RG
2 (B∗

1...m−1,S,Ñ ′
1...m)

=
1

2
log

(∣

∣

∣2πe
(

B∗
1 + B∗

2 + Ñ ′
1 + Ñ ′

2

)∣

∣

∣

)

− 1

2
log

(∣

∣

∣2πe
(

B∗
1 + Ñ ′

1 + Ñ ′
2

)∣

∣

∣

)

Combining the expression above and (3-16) we get:

1

n
H( ¯̄Y ′

2 |W3, . . . ,Wm) ≥ 1

2
log

(∣

∣

∣
2πe

(

B∗
1 + B∗

2 + Ñ ′
1 + Ñ ′

2

)∣

∣

∣

)

− 2

2 · mb

We can continue to calculate 1
n
H( ¯̄Y ′

i |Wi+1, . . . ,Wm) for i > 2 by using the above argu-

mentation and by alternating between the EPI and Fano’s inequality we will get in the m’th

iteration:

1

n
H( ¯̄Y ′

m) ≥ 1

2
log

(∣

∣

∣

∣

∣

2πe

(

m
∑

i=1

B∗
i +

m
∑

i=1

Ñ ′
i

)∣

∣

∣

∣

∣

)

− m

2 ·mb + b

=
1

2
log

(∣

∣

∣

∣

∣

2πe

(

S +
m

∑

i=1

Ñ ′
i

)∣

∣

∣

∣

∣

)

+
1

2
b
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where the equality follows from the fact that
∑m

i=1 B∗
i = S (Proposition 3.2). However, the

above expression can not be true, because:

1

n
H( ¯̄Y ′

m) ≤ 1

n

n
∑

i=1

H( ¯̄Y ′
m,i) ≤

1

n

n
∑

i=1

1

2
log

(∣

∣

∣
2πe ·E[ ¯̄Y ′

m,i
¯̄Y ′
m,i

T
]
∣

∣

∣

)

≤ 1

2
log

(∣

∣

∣

∣

2πe · 1

n
E[ ¯̄Y ′

m
¯̄Y ′
m

T
]

∣

∣

∣

∣

)

≤ 1

2
log

(∣

∣

∣

∣

∣

2πe ·
(

S +
m

∑

i=1

Ñ ′
i

)∣

∣

∣

∣

∣

)

where ¯̄Y ′
m,i is the i’th column of the random matrix ¯̄Y ′

m. The second inequality is due to

the optimality of the Entropy of the Gaussian distribution. The third inequality is due

to the concavity (∩) of the logdet function and the last inequality is due to the fact that

1
n
E[ ¯̄Y ′

m
¯̄Y ′T
m ] ¹ S +

∑m

i=1 Ñ ′
i and the fact that |B| ≥ |A| if B º A Â 0 (Proposition I.2 in

Appendix I).

Thus, we have contradicted our initial assumption and proved that all rate vectors

R = (R1, . . . ,Rm) /∈ RG(S, Ñ1...m) such that Ri > 0, ∀i = 1, . . . ,m, are not achievable. To

complete the proof for S Â 0, we now treat the case where the requirements on the rates are

Ri ≥ 0, i = 1, . . . ,m in place of strict inequalities.

S Â 0, Ri ≥ 0 ∀i:

Assume that R /∈ RG(S, Ñ1...m) such that Ri ≥ 0, ∀i = 1, . . . ,m is an achievable rate.

Let n < m denote the number of strictly positive elements in R and let k(i), i = 1, . . . ,n be

the index function of those elements such that k(i + 1) > k(i), i = 1 . . .n− 1. We define the

compact rate vector R
C

= (Rk(1), . . . ,Rk(n)). Similarly, we define a compact, n-user ADBC,

with noise increment covariance matrices ˆ̃Ni =
∑k(i)

j=k(i−1)+1 Ñj, ∀i = 1, . . . ,n (where we assign

k(0) = 0) and the same covariance matrix constraint. Clearly, as R was achievable in the

original ADBC, so is the compact rate vector, R
C
, achievable in the compact ADBC. Fur-

thermore, since R /∈ RG(S,Ñ1...m), then also R
C

/∈ RG(S, ˆ̃N1...n). Therefore, in the compact

channel we have an ”alleged” achievable rate vector which lies outside the Gaussian rate
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region. However, in the compact channel, this vector is element-wise strictly positive and

we can apply the above proof to contradict our initial argument.

To complete the proof, we proceed and consider the case where the covariance matrix

constraint, S, is such that S º 0 and |S| = 0.

S º 0, |S| = 0:

If S is not (strictly) positive definite, by Proposition 2.2 we know that there exists an

equivalent ADBC with less transmit antennas, noise increment covariance matrices ˆ̃N1, . . . ,
ˆ̃Nm,

and an input covariance matrix constraint, Ŝ Â 0, with the exact same capacity region. Be-

cause Ŝ is strictly positive definite, the above proof could be applied to the equivalent channel

to show that its capacity region coincides with its Gaussian rate region, i.e.

C(S, Ñ1...m) = C(Ŝ, ˆ̃N1...m) = RG(Ŝ, ˆ̃N1...m).

Moreover, it is possible to show that when S is not strictly positive definite,

RG(S, Ñ1...m) = RG(Ŝ, ˆ̃N1...m).

Therefore, we have shown that the functional rate region, RG(S,Ñ1...m), coincides with the

operational rate region, C(S,Ñ1...m) for all S º 0.

3.5 Proof of Theorem 3.2

In order to prove the theorem, we investigate the properties that the gradients of the

Gaussian rate functions, RG
i , must possess at an optimal Gaussian solution point. Therefore,

before proceeding to prove Theorem 3.2, we present a generalized optimization problem and

a proposition which states KKT-like necessary conditions on the gradients of the problem’s

functions. The optimization problem that follows, is slightly more general than is needed

for the proof of Theorem 3.2. This will allow us to use the same results in the proof of the

capacity region of the AMBC, as well.
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In the following, we reuse the letters B1, . . . ,Bm−1 and assume that these are symmetric

matrices of size t× t. We define the following optimization problem:

maximize f0(B1, . . . ,Bm−1)

B1, . . . ,Bm−1

such that fi(B1, . . . ,Bm−1) ≥ 0, i = 1, . . . ,k

Bj º 0, j = 1, . . . ,m− 1
∑m−1

l=1 Bl ¹ S

(3-17)

where fi(B1, . . . ,Bm−1), i = 1, . . . ,k are differentiable real functions over the region

D =

{

(B1, . . . , Bm−1)
∣

∣ B1 º 0, . . . , Bm−1 º 0,
m−1
∑

j=1

Bj ¹ S

}

(3-18)

Before stating the KKT-like conditions, we give some notations and definitions. We

denote the partial gradient of a function fi(B1, . . . ,Bm−1) with respect to a matrix Bj by

∇Bj
fi. The elements of this gradient are the partial derivatives of the function fi with respect

to each of the elements in Bj and are organized in a matrix such that (∇Bj
fi)m,n = ∂fi

∂(Bj)m,n
.

The gradient of the function fi is simply the matrix created by the concatenation of the

partial gradients such that ∇fi =
[

∇B1
fi, . . . ,∇Bm−1

fi

]

. A direction is given by a set of

m− 1 matrices of size t× t, (L1, . . . ,Lm−1). The directional derivative is defined by:

ḟi(B1...m−1, L1...m−1) = lim
α↓0

fi(B1 + αL1, . . . , Bm−1 + αLm−1) − fi(B1, . . . , Bm−1)

α

As the functions, fi, are differentiable, the directional derivative is equal to tr{∇fi ·(L1, . . . ,Lm−1)
T}.

Definition 3.4 (Strict Direction) Let rBi
denote the number of null eigenvalues in Bi (i.e.

rBi
= t− rank(Bi)) and let VBi

, i = 1, . . . ,m− 1 be matrices of size t× rBi
which columns

are orthogonal unit-length eigenvectors of Bi that correspond to null eigenvalues. Similarly,

VBm
and rBm

are defined for the matrix, Bm = S −∑m−1
i=1 Bi. We say that (L1, . . . ,Lm−1) is

a strict direction at point B1, . . . ,Bm−1 if the following conditions hold:

1. V T
Bi

LiVBi
Â 0, ∀i ∈ {1, . . . ,m− 1} for which rBi

> 0.
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2. If rBm
> 0, then V T

Bm

(

∑m−1
j=1 Lj

)

VBm
≺ 0.

3. tr{∇fi(B1, . . . ,Bm) · (L1, . . . ,Lm−1)
T} > 0, ∀i = 1, . . . ,k.

The intuition behind the definition of a strict direction, and the mathematical reason

for defining it, will become evident in the proof of the next proposition.

Proposition 3.3: Let B∗
1 , . . . ,B

∗
m−1 be an optimal solution of the optimization problem

given by (3-17). If the functions fi, i = 0, . . . , k are differentiable, and there exists a strict

direction at B∗
1 , . . . ,B

∗
m−1, the following KKT-like necessary conditions must hold:

0t×t = ∇Bj
f0(B

∗
1 , . . . ,B

∗
m−1) +

k
∑

i=1

(

γi ·∇Bj
fi(B

∗
1 , . . . ,B

∗
m−1)

)

+ Oj −Om,

∀j = 1 . . .m− 1

(3-19)

for some γi ≥ 0, i = 1, . . . , k and some Oi such that if rB∗
i

> 0, Oi = VBi
ΛiV

T
Bi

for some

Λi º 0rB∗
i
×rB∗

i

, and if rB∗
i

= 0, then Oi = 0t×t.

The proof is deferred to Appendix VI. Note that we did not assume that the functions, fi,

are convex. Therefore, standard results that appear in [4] and [2] were not used and a proof

was needed.

We can now turn to prove Theorem 3.2.

The idea behind the proof is to utilize Equation (3-19) in Proposition 3.3 to investigate

the properties of the optimal Gaussian solution point. Assume that B∗
1 , . . . ,B

∗
m is an optimal

Gaussian solution point under a strictly positive definite covariance matrix constraint, S Â 0.

If B∗
1 , . . . ,B

∗
m are all strictly positive (B∗

i Â 0), it is possible to show, using Equation (3-19),

that the proportionality property already holds for our original channel and hence the proof

of Theorem 3.2 is almost trivial for this case.

For the more general case, where B∗
i º 0, we can create an enhanced channel by sub-

tracting a matrix ∆i º 0 from the noise increment covariance matrix of that user. However,

∆i is chosen such ∆i ·Bi = 0t×t. This choice of ∆i ensures that using the same power alloca-
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tion matrices, B∗
i , the rate of user i remains the same in the enhanced channel as well, since

the noise increment covariance was only modified in those directions where no information

is being sent to that user. To make sure that the rates to the following users remain the

same, we add ∆i to the noise increment covariance of user i + 1. This process is repeated

recursively for the following users. Using Equation (3-19), it is possible to show that there

exists a choice of matrices ∆i such that the resultant channel is a valid ADBC and such that

the proportionality property holds. In the following we present a rigorous proof of Theorem

3.2.

Proof of Theorem 3.2: Assume that B∗
1 , . . . ,B

∗
m is an optimal Gaussian solution

point under a strictly positive definite covariance matrix constraint, S Â 0. We will divide

our proof into two. Initially, we will assume that B∗
i 6= 0, ∀i = 1, . . . ,m (note that the

matrices B∗
i can still have null eigenvalues). In this case, we actually assume that there is

a strictly positive rate to each of the users (this is a simple observation from the Gaussian

rate functions, (3-2) and Proposition I.2). Later, we give a simple argument that will allow

us to expand the proof to any possible optimal Gaussian solution point.

B∗
i 6= 0, ∀i = 1, . . . ,m:

We start with the assumption that B∗
i 6= 0, ∀i = 1, . . . ,m. By Proposition 3.2, we know

that B∗
m = S −∑m−1

i=1 B∗
i . Therefore, the Gaussian rates of all optimal Gaussian solution

points may be written as a function of only m− 1 variable matrices, B1, . . . ,Bm−1, and the

covariance matrix constraint, S. For this reason, we modify our notation of the rate functions

RG
i , and write RG

i (B1...m−1,S, Ñ1...m) instead of RG
i (B1...m, Ñ1...m). The rates are calculated

using the same equations, (3-2), and assigning Bm = S −∑m−1
i=1 Bi.

Given an optimal Gaussian rate vector R
∗
= (R∗

1, . . . ,R
∗
m) = (RG

1 (B∗
1...m−1,S, Ñ1...m), . . . ,

RG
m(B∗

1...m−1,S,Ñ1...m)), we can easily see that the optimal Gaussian solution point optimizes
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the following problem:

maximize RG
m(B1...m−1,S,Ñ1...m)

B1, . . . ,Bm−1

such that RG
i (B1...m−1,S,Ñ1...m)−R∗

i ≥ 0, i = 1, . . . ,m

Bj º 0, j = 1, . . . ,m− 1
∑m−1

l=1 Bl ¹ S

(3-20)

The above problem corresponds to the more general one presented in (3-17) with m func-

tions altogether and with RG
i −R∗

i , i = 1, . . . ,m replacing equations fi, i = 1, . . . , k and RG
m

replacing f0. The functions, RG
i , are differentiable w.r.t Bi º 0, ∀i and by the fact that

∇B logdet(B) = B−1 for all B such that det(B) > 0, it follows that the partial gradients are

given by

∇Bj
RG

l (B1...m−1,S,Ñ1...m)

=



















































1
2

(

∑l

i=1(Bi + Ñi)
)−1

− 1
2

(

∑l−1
i=1 Bi +

∑l

i=1 Ñi

)−1

1 ≤ j < l < m

1
2

(

∑l

i=1(Bi + Ñi)
)−1

1 ≤ j = l < m

0 1 ≤ l < j < m,

−1
2

(

∑l−1
i=1 Bi +

∑l

i=1 Ñi

)−1

1 ≤ j < m, l = m

(3-21)

In Appendix VII we show that there is a strict direction at B∗
1 , . . . ,B

∗
m−1 for this optimiza-

tion problem (Proposition VII.1) and thus, by Proposition 3.3, we can write the following

m− 1 equations on the gradients of the rates:

0t×t =
m

∑

i=1

(

γi ·∇Bk
RG

i (B∗
1...m−1,S,Ñ1...m)

)

+
1

2
Ok −

1

2
Om, ∀k = 1 . . .m− 1

where γi ≥ 0, i = 1, . . . ,m− 1 and γm = 1 and where Ok are such that if rB∗
k

> 0, Ok =

VBk
ΛkV

T
Bk

for some Λk º 0rB∗
k
×rB∗

k

, and if rB∗
k

= 0, then Ok = 0t×t. Note that in the above

expression we have written 1
2
Ok instead of just Ok, as it appears in Proposition 3.3. Clearly,
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this doesn’t affect the result of the proposition but allows us to cancel out the constant, 1
2
,

which appears in the expression for the partial gradients (3-21). Furthermore, note that Ok

and B∗
k are related by:

1. rank(Ok) ≤ t− rank(B∗
k), ∀k = 1, . . . ,m.

2. B∗
k ·Ok = 0t×t, ∀k = 1, . . . ,m

By plugging in the expression for the partial gradients (3-21) into the above m − 1

equations and subtracting equation k+1 from the k’th equation (except for k = m−1 where

the expression is taken as is), we obtain the following m− 1 equations

γk+1

(

k
∑

i=1

B∗
i +

k+1
∑

i=1

Ñi

)−1

+ Ok+1 = γk

(

k
∑

i=1

B∗
i +

k
∑

i=1

Ñi

)−1

+ Ok , k = 1, . . . ,m− 1 (3-22)

We now use the assumption that B∗
i 6= 0, i = 1, . . . ,m to show that γi are strictly positive

and that 0 < γk

γk+1
≤ 1 , ∀k = 1, . . . ,m− 1. Since we defined γm = 1 > 0, we can see that for

k = m− 1, the left hand side of (3-22) is strictly positive definite. Furthermore, since we

assume that B∗
m−1 6= 0, rank(Om−1) < t (see note above) and therefore, the matrix Om−1

must have a zero eigenvalue. In that case, γm−1 must be strictly positive because, as the

left hand side and the right hand side of (3-22) are equal and as the left hand side has no

zero eigenvalues, we must have γm−1 > 0 to compensate for the fact that Om−1 has a zero

eigenvalue. We can repeat the above arguments for all k = 1, . . . ,m− 1 in expression (3-22)

and conclude that γi > 0 , ∀i = 1, . . . ,m− 1. Next, let z be an eigenvector corresponding

to a zero eigenvalue of Ok+1 (which has some zero eigenvalues because we assume that

B∗
i 6= 0 , ∀i = 1, . . . ,m). We have,

zT



γk+1

(

k
∑

i=1

B∗
i +

k+1
∑

i=1

Ñi

)−1

+ Ok+1



z = γk+1z
T

(

k
∑

i=1

B∗
i +

k+1
∑

i=1

Ñi

)−1

z

= zT



γk

(

k
∑

i=1

B∗
i +

k
∑

i=1

Ñi

)−1

+ Ok



z

(3-23)

July 14, 2004—4 : 54 am DRAFT



THE CAPACITY REGION OF THE GAUSSIAN MIMO BROADCAST CHANNEL 29

But as B−1 ¹ A−1 when B º A Â 0 (Proposition I.3), we know that

(

k
∑

i=1

B∗
i +

k+1
∑

i=1

Ñi

)−1

¹
(

k
∑

i=1

B∗
i +

k
∑

i=1

Ñi

)−1

which means that (3-23) can hold only if 0 < γk

γk+1
≤ 1 , ∀k = 1, . . . ,m− 1.

Taking into account the fact that γi in (3-22) are strictly positive such that 0 < γk

γk+1
≤

1 , ∀k = 1, . . . ,m− 1, and the fact the Oi are defined such that B∗
i ·Oi = 0 (see note above

regarding the relation between B∗
i and Oi), we can prove by induction (see Proposition VIII.1

in Appendix VIII), the existence of an enhanced channel with noise increment covariance

matrices Ñ ′
1, . . . , Ñ

′
m, such that

γk+1

(

k
∑

i=1

B∗
i +

k+1
∑

i=1

Ñi

)−1

+ Ok+1 = γk+1

(

k
∑

i=1

B∗
i +

k+1
∑

i=1

Ñ ′
i

)−1

= γk

(

k
∑

i=1

B∗
i +

k
∑

i=1

Ñ ′
i

)−1

= γk

(

k
∑

i=1

B∗
i +

k
∑

i=1

Ñi

)−1

+ Ok

(3-24)

and such that

|∑k

i=1 B∗
i +

∑k

i=1 Ñi|
|∑k−1

i=1 B∗
i +

∑k

i=1 Ñi|
=

|∑k

i=1 B∗
i +

∑k

i=1 Ñ ′
i |

|∑k−1
i=1 B∗

i +
∑k

i=1 Ñ ′
i |

, ∀k = 1, . . . ,m (3-25)

The proof for expressions (3-24) and (3-25) is found in Appendix VIII.

By equation (3-24) we can write:

Ñ ′
k+1 =

γk+1 − γk

γk

(

k
∑

i=1

Bi +
k

∑

i=1

Ñ ′
i

)

, k = 1, . . . ,m − 1,

and therefore, the proportionality property holds for the enhanced channel. By equation

(3-25), we may write,

RG
i (B∗

1...m, Ñ1...m) =
1

2
log

|
∑k

i=1 B∗
i +

∑k

i=1 Ñi|
|
∑k−1

i=1 B∗
i +

∑k

i=1 Ñi|
=

1

2
log

|
∑k

i=1 B∗
i +

∑k

i=1 Ñ ′
i |

|
∑k−1

i=1 B∗
i +

∑k

i=1 Ñ ′
i |

= RG
i (B∗

1...m, Ñ ′
1...m), ∀i = 1, . . . ,m
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and therefore, the rate preservation property holds.

To complete the proof for the case where Bi Â 0, ∀i, we still need to show that B∗
1 , . . . ,B

∗
m

is also an optimal Gaussian solution point for the enhanced channel. For that purpose, we

observe that it is sufficient to show that

R∗
m = sup{Rm ∈ R|(R∗

1, . . . , R
∗
m−1, Rm) ∈ RG(S, Ñ ′

1...m)}. (3-26)

To show that this is indeed a sufficient condition for optimality, we note that if there was

another vector (R1, . . . ,Rm−1,Rm) ∈RG(S,Ñ ′
1...m) such that Ri ≥ R∗

i ∀i = 1, . . . ,m where the

inequality is strict for at least one of the elements, then by Proposition IV.1 we could find a

rate vector (R∗
1, . . . ,R

∗
m−1,R

∗
m + ε) ∈RG(S,Ñ ′

1...m) for some ε > 0, contradicting (3-26).

We proceed to show that indeed (3-26) holds. As
∑m

i=1 B∗
i = S and as

RG
m(B1...m, Ñ ′

1...m) =
1

2
log

∣

∣

∣

∑m

i=1 Bi +
∑m

i=1 Ñi

′
∣

∣

∣

∣

∣

∣

∑m−1
i=1 Bi +

∑m

i=1 Ñi

′
∣

∣

∣

≤ 1

2
log

∣

∣

∣
S +

∑m

i=1 Ñi

′
∣

∣

∣

∣

∣

∣

∑m−1
i=1 Bi +

∑m

i=1 Ñi

′
∣

∣

∣

,

it is enough to show that given R∗
1, . . . ,R

∗
m−1, B∗

1 , . . . ,B
∗
m minimizes

∣

∣

∣

∑m−1
i=1 Bi +

∑m

i=1 Ñi

′
∣

∣

∣

over all sequences of semi-definite matrices, B1, . . . ,Bm such that
∑m

i=1 Bi ¹ S. Using the

July 14, 2004—4 : 54 am DRAFT



THE CAPACITY REGION OF THE GAUSSIAN MIMO BROADCAST CHANNEL 31

Minkowski inequality (Proposition I.5 in Appendix I), we may write:

∣

∣

∣

∣

∣

m−1
∑

i=1

Bi +
m

∑

i=1

Ñ ′
i

∣

∣

∣

∣

∣

1

t

≥
∣

∣

∣

∣

∣

m−1
∑

i=1

Bi +
m−1
∑

i=1

Ñ ′
i

∣

∣

∣

∣

∣

1

t

+
∣

∣

∣
Ñ ′

m

∣

∣

∣

1

t

= e
2

t
R∗

m−1

∣

∣

∣

∣

∣

m−2
∑

i=1

Bi +
m−1
∑

i=1

Ñ ′
i

∣

∣

∣

∣

∣

1

t

+
∣

∣

∣Ñ ′
m

∣

∣

∣

1

t

≥ e
2

t
R∗

m−1





∣

∣

∣

∣

∣

m−2
∑

i=1

Bi +
m−2
∑

i=1

Ñ ′
i

∣

∣

∣

∣

∣

1

t

+
∣

∣

∣
Ñ ′

m−1

∣

∣

∣

1

t



 +
∣

∣

∣
Ñ ′

m

∣

∣

∣

1

t

= e
2

t
R∗

m−1



e
2

t
R∗

m−2

∣

∣

∣

∣

∣

m−3
∑

i=1

Bi +
m−2
∑

i=1

Ñ ′
i

∣

∣

∣

∣

∣

1

t

+
∣

∣

∣Ñ ′
m−1

∣

∣

∣

1

t



 +
∣

∣

∣Ñ ′
m

∣

∣

∣

1

t

≥ e
2

t
R∗

m−1



e
2

t
R∗

m−2





∣

∣

∣

∣

∣

m−3
∑

i=1

Bi +
m−3
∑

i=1

Ñ ′
i

∣

∣

∣

∣

∣

1

t

+
∣

∣

∣Ñ ′
m−2

∣

∣

∣

1

t



 +
∣

∣

∣Ñ ′
m−1

∣

∣

∣

1

t



 +
∣

∣

∣Ñ ′
m

∣

∣

∣

1

t

...

≥
m

∑

i=1

exp

{

2

t

m−1
∑

j=i

R∗
j

}

∣

∣

∣
Ñ ′

i

∣

∣

∣

1

t

where the inequalities hold with equality if and only if Ñ ′
k+1 is proportional to

(
∑k

i=1 Bi+

∑k

i=1 Ñ ′
i

)

for all k = 1, . . . ,m− 1. However, this is impled by the proportionality property,

for the sequence B∗
1 , . . . ,B

∗
m, and therefore, we have shown that indeed B∗

1 , . . . ,B
∗
m minimizes

∣

∣

∑m−1
i=1 Bi +

∑m

i=1 Ñi

′∣
∣ and therefore, is an optimal Gaussian solution point of the enhanced

channel.

B∗
i º 0, ∀i = 1, . . . ,m:

Finally, we expand the proof to all possible choices of optimal Gaussian solution points,

B∗
1 , . . . ,B

∗
m, some of which matrices may be zero. Let n < m denote the number of non-zero

matrices, B∗
i , i = 1, . . . ,m, and let k(i), i = 1, . . . ,n be the index function of those elements

such that k(i + 1) > k(i), i = 1 . . .n− 1. We can define a compact channel which is also an

ADBC with the same covariance matrix constraint, S, and with noise increment covariance
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matrices, N̂1, . . . , N̂n such that:

N̂i =

k(i)
∑

j=k(i−1)+1

Ñj , i = 1, . . . , n

where we define, k(0) = 0. Similarly, we define a compact solution point B̂1, . . . , B̂n such that

B̂i = B∗
k(i) , i = 1, . . . , n

Note that B̂1, . . . , B̂n must be an optimal Gaussian solution point of the compact channel

and achieves the same rates (non-zero rates) as in the original channel. Since B̂i 6= 0 , i =

1, . . . , n and S Â 0, we can use the above proof to show that Theorem 3.2 holds for the

compact channel.

We can now define an enhanced channel for the original channel using the enhanced

channel of the compact channel implied by Theorem 3.2. Because Theorem 3.2 holds for the

compact channel, we know that there exists an enhanced channel N̂ ′
1, . . . , N̂

′
n for which the

results of the theorem hold. We now define an enhanced channel Ñ ′
1, . . . , Ñ

′
m for the original

channel as follows:

Ñ ′
i =































βiN̂
′
1 i ≤ k(1)

N̂ ′
k−1(i) ∀i ∈ {k(2), . . . ,k(n)}

0 Otherwise

where k(k−1(i)) = i (if i ∈ {k(j), j = 1, . . . , n}) and where βi ≥ 0, i = 1 . . . k(1) are chosen

such that
∑k(1)

i=1 βi = 1 and such that 0 ≺
(

∑j

i=1 βi

)

· N̂ ′
1 ¹

∑j

i=1 Ñi, ∀j = 1 . . . k(1)− 1. As

∑j

i=1 Ñi Â 0, ∀j = 1, . . . ,m, it is possible to find such βi. One can verify that the results of

Theorem 3.2 hold for the enhanced channel we just defined.

¥
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3.6 ADBC Example

The following example illustrates the result stated in Theorem 3.2. In this example, we

consider a two user ADBC under a covariance matrix input constraint, where the transmitter

and each of the receivers have two antennas such that:

Ñ1 =





0.5 0.18

0.18 0.7



 , Ñ2 =





0.2 −0.1

−0.1 10





and S =





1 0.6

0.6 2



 .

The boundary of the Gaussian region, RG(S,Ñ1,2) is plotted by a solid curve in Figure

1. Two additional curves (RG(S,Ñ ′
1,2) and RG(S,Ñ ′′

1,2)) were plotted, each corresponding to

boundaries of Gaussian regions of different enhanced channels, which were obtained for two

different points on the solid curve.

The first curve, the boundary of RG(S, Ñ ′
1,2) illustrated by the dashed curve, was cal-

culated with respect to point (R′
1,R

′
2) ≈ (0.08992, 0.51314) on the solid curve. The power

allocation that achieves this point is given by,

B′
1 ≈





0.00004 −0.00217

−0.00217 0.12353



 and B′
2 = S − B′

1.

The dashed line corresponds to the boundary of a Gaussian region of an enhanced version

of the original channel, RG(S,Ñ ′
1,2), which noise increment covariances are given by

Ñ ′
1 ≈





0.04896 0.00762

0.00762 0.63412



 and Ñ ′
2 = Ñ1 + Ñ2 − Ñ ′

1.

As predicted by Theorem 3.2, we can see that for the point (R′
1,R

′
2) ≈ (0.08992, 0.51314)

on the boundary of RG(S, Ñ1,2), there exists an enhanced version of the original channel

which is also an ADBC and such that the boundary of its Gaussian region is tangential to that
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Gaussian rate region, RG(S,Ñ1,2), (= capacity region) of a two user 2× 2 ADBC

RG(S,Ñ ′′
1,2)

RG(S,Ñ ′
1,2)

RG(S,Ñ1,2)

Fig. 1. Illustration of the results in Theorem 3.2

of the original channel at (R′
1,R

′
2). In fact, in this case, the dashed line intersects with the

solid line for all rates R1 ≤ R′
1 and upper bounds the solid line for all R1 > R′

1. Furthermore,

one can easily check that the proportionality property holds, such that (B′
1 + Ñ ′

1) ∝ Ñ ′
2.

The second curve, the boundary of RG(S,Ñ ′′
1,2) given by the dotted line, was computed

with respect to point (R′′
1,R

′′
2) ≈ (0.63773, 0.44765) on the solid curve. The power allocation

that achieves this point is given by,

B′′
1 ≈





0.00000 −0.00196

−0.00196 1.63764



 and B′′
2 = S − B′′

1 .

The dotted line corresponds to the boundary of a Gaussian region of an enhanced version of
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the original channel, RG(S,Ñ ′′
1,2), which noise increment covariances are given by

Ñ ′′
1 ≈





0.25033 0.08974

0.08974 0.66737



 and Ñ ′′
2 ≈





0.44504 0.15605

0.15605 4.09780



 .

Again, we see that the prediction of Theorem 3.2 holds. The solid and the dotted curves

are tangential at(R′′
1,R

′′
2) ≈ (0.63773, 0.44765) and one can easily check that (B′′

1 +Ñ ′′
1 ) ∝ Ñ ′′

2 .

4. The capacity region of the AMBC

In this section, we build on Theorem 3.1 in order to characterize the capacity region of

the aligned (not necessarily degraded) MIMO BC. This result is particularly interesting in

light of the fact that there is no single letter formula for the capacity region, as the AMBC

is not necessarily degraded. In addition, a coding scheme consisting of a superposition

of Gaussian codes along with successive decoding can not work when the channel is not

degraded. Therefore, following the work of Caire and Shamai [5], we suggest an achievable

rate region based on dirty paper coding. In [5], [23], [19], [17], it was shown that DPC

achieves the sum capacity of the channel. In this section we show that DPC along with time

sharing, covers the entire capacity region of the AMBC.

In [18], [16], it was shown that if Gaussian coding is optimal for the vector degraded BC,

then the DPC rate region is also the capacity region of the GMBC. In the previous section,

we have shown that Gaussian coding is optimal for the ADBC. This result can be generalized

to the general vector degraded BC using a limit process on the noise variances of some of

the receive antennas of some of the users, in a similar manner to what is done in the next

section. In [21], we presented this approach to prove the converse of the GMBC. However,

in this paper, we take a different approach which is a natural extension of Theorem 3.1, and

which does not rely on the degraded same marginals bound presented in [18], [16].

In the following subsection, we characterize the capacity region of the AMBC and in
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later subsections we give a proof of the converse as well as some intermediate results.

4.1 AMBC - Main Result

The dirty paper encoder, performs successive precoding of the users information in a pre-

determined order, which allows a given set of rates. In order to define this order, we use π as

a permutation function which permutes the set {1, . . . ,m} such that π(i) ∈ {1, . . . ,m} , ∀i =

1, . . . ,m and π(i) 6= π(j) , ∀i 6= j.

Given an average transmit covariance matrix limitation, E[xxT ] ¹ S, and a set of positive

semi-definite matrices, B1,B2, . . . ,Bm (Bk º 0 ∀k ∈ 1 . . .m), such that
∑m

i=1 Bi ¹ S, and a

permutation function π, the following rates are achievable in the AMBC using a DPC scheme

[5], [23], [19], [17]:

Rk ≤ RDPC
π−1(k)(π,B1...m,N1...m) , ∀k ∈ 1, . . . ,m

where

RDPC
l (π,B1...m,N1...m) =

1

2
log

∣

∣

∣

((

∑l

i=1 Bπ(i)

)

+ Nπ(l)

)∣

∣

∣

∣

∣

∣

((

∑l−1
i=1 Bπ(i)

)

+ Nπ(l)

)∣

∣

∣

l = 1,2, . . . ,m (4-1)

and where π−1 is the inverse permutation such that π−1(π(i)) = i. We can now define the

DPC achievable rate region of an AMBC :

Definition 4.1 (DPC rate-region of an AMBC) Let S be a positive semi-definite matrix,

then, we define the DPC rate region, RDPC(S,N1...m), of the AMBC with a covariance matrix

constraint, S, as the following convex closure:

RDPC(S,N1...m) = conv

{

⋃

π∈Π

RDPC(π, S,N1...m)

}

(4-2)

where Π is the set of all possible permutations of the set {1, . . . ,m}, conv is the convex
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closure operator and

RDPC(π, S,N1...m) =









































RDPC
1 (π,B1...m,N1...m), . . . ,

RDPC
m (π,B1...m,N1...m)







∣

∣

∣

∣

∣

s.t. S −
m

∑

i=1

Bi º 0, Bi º 0 ∀i = 1, . . . ,m



































(4-3)

Note that for an ADBC, RDPC(πI ,S,N1...m) = RG(S, Ñ1...m), where πI is the identity per-

mutation such that πI(i) = i and where Ñi = Ni −Ni−1, i = 1, . . . ,m (and where N0 = 0).

Theorem 4.1: Let C(S,N1...m) denote the capacity region of the AMBC under a covari-

ance matrix constraint, S º 0, then C(S,N1...m) = RDPC(S,N1...m).

As RDPC(S,N1...m) is contiguous w.r.t S (see Proposition III.2 in Appendix III), the

following corollary follows immediately by Proposition 2.1.

Corollary 4.1: Let C(P,N1...m) denote the capacity region of the AMBC under a total

power constraint, P ≥ 0, then

C(P,N1...m) =
⋃

Sº0
s.t.

tr{S}≤P

RDPC(S,N1...m)

4.2 Proof of Theorem 4.1

To prove Theorem 4.1, we will show that for every rate vector, R
a
, which lies outside

RDPC(S,N1...m), we can find an enhanced ADBC, whose capacity region doesn’t contain

R
a
. However, the capacity region of the enhanced channel outer bounds that of the original

channel, and therefore, R
a
, can not be an achievable rate vector. In the following, we give

some important intermediate results before proving the theorem.

Given a sequence γ = (γ1, . . . γm) and a scalar b, we say that {R = (R1, . . . , Rm) |
∑m

i=1 γiRi = b} is a supporting hyperplane of a closed and bounded set X ⊂ R
m, if

∑m

i=1 γiRi ≤

b, ∀(R1, . . . ,Rm) ∈ X where for at least one rate vector, (R1, . . . ,Rm) ∈ X , we have
∑m

i=1 γiRi =
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b. Note that as X is closed and bounded, maxR∈X

∑m

i=1 γiRi exists for all vectors γ =

(γ1, . . . ,γm). Hence, we can find a supporting hyperplane for the set X for all vectors γ.

Proposition 4.1: Let R
a
= (Ra

1, . . . ,R
a
m) be a rate vector which lies outside the DPC rate

region, RDPC(S,N1...m). Since Ra
i ≥ 0, ∀i = 1, . . . ,m, then, there exists a constant b ≥ 0 and a

vector γ = (γ1, . . . ,γm) such that γi ≥ 0, ∀i = 1, . . . ,m and where not all γi are zero, such that

the hyperplane {(R1, . . . ,Rm) | ∑m

i=1 γiRi = b} is a supporting and separating hyperplane for

which
m

∑

i=1

γiRi ≤ b, ∀(R1, . . . , Rm) ∈ RDPC(S,N1...m) (4-4)

and for which
m

∑

i=1

γiR
a
i > b (4-5)

where (4-4) holds with equality for at least one point in RDPC(S,N1...m).

Proof: As RDPC(S,N1...m) is a closed and convex set and (Ra
1, . . . , R

a
m) is a point

which lies outside that set, we can use the separating hyperplane theorem (see Section 2,

Chapter 1 in [4]) to show that there exists a supporting hyperplane which strictly separates

RDPC(S,N1...m) and (Ra
1, . . . ,R

a
m). In other words, there is a vector γ = (γ1, . . . , γm)T , and

a constant b such that equations (4-4) and (4-5) hold. We need to show that we can find a

vector γ with non-negative elements and a non-negative scalar, b.

Assume, in contrast, that γk < 0 for some k ∈ {1, . . . ,m} and that R
∗
= (R∗

1, . . . ,R
∗
m) max-

imizes
∑m

i=1 γiRi over all R = (R1, . . . ,Rm) ∈ RDPC(S,N1...m). We note that for all vectors

R ∈ RDPC(S,N1...m), also (R1, . . . , Rk−1, 0, Rk+1, . . . , Rm) ∈ RDPC(S,N1...m) (see Corollary

V.1). Therefore, as γk < 0, the vector which optimizes
∑m

i=1 γiRi must be such that Rk = 0.

Thus, we conclude that R∗
k = 0. Consequently, choosing γk = 0, will also lead to a supporting

and separating hyperplane since it can only increase
∑m

i=1 γiR
a
i (as Ra

i are all non-negative),

and does not affect the optimization of
∑m

i=1 γiRi over all (R1, . . . ,Rm) ∈ RDPC(S, N1...m),
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as otherwise, by Corollary V.1 we know that R
∗

wouldn’t have been optimal for the original

choice of γk. Moreover, we know that at least one of the elements of γ is strictly positive

because of the strict separation. Finally, as we have shown that we can find a supporting

and separating hyperplane with a vector γ that contains only non-negative elements, and as

RDPC(S,N1...m) contains only non-negative vectors, b = maxR∈RDPC

∑m

i=1 γiRi ≥ 0.

The following proposition brings to bare a relation between the ideas of a supporting

hyperplane and the enhanced channel. This proposition is a natural extension of Theorem

3.2 to the AMBC.

Proposition 4.2: Consider an AMBC with noise covariance matrices, (N1, . . . ,Nm), and

an average transmit covariance matrix constraint, S Â 0. Define πI to be the identity per-

mutation, πI(i) = i, i = 1 . . .m. If {(R1, . . . ,Rm) | ∑m

i=1 γiRi = b} is a supporting hyperplane

of the rate region, RDPC(πI ,S,N1...m), such that 0 ≤ γ1 ≤ ·· · ≤ γm, γm > 0 and b ≥ 0, then,

there exists an enhanced ADBC with noise increment covariances, (Ñ ′
1, . . . , Ñ

′
m), such that

the following properties hold:

1. Enhanced channel:

0 ≺
k

∑

i=1

Ñ ′
i ¹ Nk, ∀k = 1, . . . ,m

2. Supporting hyperplane preservation:

{(R1, . . . , Rm) | ∑m

i=1 γiRi = b} is also a supporting hyperplane of the rate region

RG(S,Ñ ′
1...m).

The proof is deferred to Subsection 4.3. We can now turn to prove Theorem 4.1.

Proof of Theorem 4.1: Just as in the proof of Theorem 3.1, we treat separately the

cases S Â 0 and S º 0, |S| = 0. We first treat the case where S Â 0 and then broaden the

scope of the proof to all S º 0.

S Â 0:
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Let (Ra
1, . . . , R

a
m) be a rate vector with non-negative elements which lies outside the

rate region RDPC(S,N1...m). By Proposition 4.1, we know that there is a supporting and

separating hyperplane {(R1, . . . ,Rm) ∈ R
m | ∑m

i=1 γiRi = b} where γi, i = 1, . . . ,m are non-

negative and at least one of the elements is positive.

Let πγ be a permutation on the set {1, . . . ,m} that orders the elements of γ such that

γπγ(i+1) ≥ γπγ(i) ∀i = 1, . . . ,m− 1. We observe that as RDPC(πγ,S,N1...m) ⊆RDPC(S,N1...m)

and as {(R1, . . . ,Rm) ∈ R
m | ∑m

i=1 γiRi = b} is a supporting hyperplane of RDPC(S,N1...m),

we can write

b′ = max
(R1,...,Rm)∈
RDPC(πγ ,S,N1...m)

m
∑

i=1

γiRi ≤ max
(R1,...,Rm)∈

RDPC(S,N1...m)

m
∑

i=1

γiRi = b

Furthermore, as {(R1, . . . ,Rm) ∈ R
m | ∑m

i=1 γiRi = b} is also a separating hyperplane, we can

also write
m

∑

i=1

γiR
a
i > b ≥ b′

and therefore, {(R1, . . . ,Rm) ∈ R
m | ∑m

i=1 γiRi = b′} is a supporting and separating hyper-

plane for the rate region RDPC(πγ,S,N1...m).

Note that in general, πγ, may be any one of the possible permutations. Therefore, to

prove the last statement, we exploited the fact that RDPC(S,N1...m) is the convex hull of

the union over all DPC rate regions RDPC(π,S,N1...m), where the union is taken over all

possible DPC pre-coding orders.

For brevity, we will assume in the following that γ1 ≤ ·· · ≤ γm or alternatively, that

πγ = πI . If that is not the case, we can always reorder the users such that this relation will

hold. From the above, we know that {(R1, . . . ,Rm) ∈ R
m |

∑m

i=1 γiRi = b′} is a supporting

and separating hyperplane of RDPC(πγ = πI , S,N1...m). By Proposition 4.2 we know that

there exists an enhanced ADBC whose Gaussian rate region, RG(S, Ñ ′
1...m), lies under the
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supporting hyperplane and hence, (Ra
1, . . . ,R

a
m) /∈ RG(S, Ñ ′

1...m). However, by Theorem 3.1

we know that the Gaussian rate region of the enhanced ADBC is also the capacity region.

Therefore, we conclude that (Ra
1, . . . ,R

a
m) must lie outside the capacity region of the enhanced

ADBC.

To complete the proof for the case S Â 0, we recollect that the capacity region of the

enhanced ADBC contains that of the original channel and therefore, (Ra
1, . . . , R

a
m), must

lie outside the capacity region of the original AMBC. As this is true for all rate vectors

which lie outside RDPC(S,N1...m), we conclude that C(S,N1...m) ⊆RDPC(S,N1...m). However,

RDPC(S,N1...m), is a set of achievable rates and therefore, C(S,N1...m) ⊇RDPC(S,N1...m).

S º 0:

Following the same ideas that appeared in the proof of Theorem 3.1, we broaden the

scope of our proof to the case of any S º 0. If S is not (strictly) positive definite, by Propo-

sition 2.2 we know that there exists an equivalent AMBC with less transmit antennas, noise

covariance matrices N̂1, . . . , N̂m, and an input covariance matrix constraint, Ŝ Â 0, with the

exact same capacity region. Because Ŝ is strictly positive definite, the above proof (for the

S Â 0 case) could be applied to the equivalent channel to show that its capacity region is

equal to its DPC rate region, RDPC(Ŝ, N̂1...m). Moreover, it is possible to show that when S

is not strictly positive definite, RDPC(S,N1...m) = RDPC(Ŝ, N̂1...m). Hence, RDPC(S,N1...m)

coincides the the capacity region of the AMBC for all S º 0. ¥

4.3 Proof of Proposition 4.2

Before turning to prove Proposition 4.2, we first prove an auxiliary proposition.

Proposition 4.3: Let γ = (γ1, . . . , γm) be a vector of non-negative scalars and let n, 1 ≤

n < m be the number of strictly positive elements in the vector. Furthermore, let k(i), i =
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1, . . . , n denote the index function of those elements such that k(i), i = 1, . . . , n points to

strictly positive entries of the vector γ and such that k(i+1) > k(i) ∀i = 1, . . . ,n−1. Consider

an AMBC with m users and noise covariance matrices N1, . . . ,Nm and define a compact

AMBC with n users and noise covariance matrices given by N̂i = Nk(i), i = 1, . . . ,n. Then,

max
B1...m∈D

m
∑

i=1

γiR
DPC
i (πI , B1...m, N1...m) = max

B̂1...n∈D̂

n
∑

i=1

γk(i)R
DPC
i (π̂I , B̂1...n, N̂1...n) (4-6)

where D = {(B1, . . . ,Bm)| Bi º 0, i = 1, . . . ,m and
∑m

i=1 Bi ¹ S} and D̂ = {(B̂1, . . . , B̂n)| B̂i º

0, i = 1, . . . ,n and
∑n

i=1 B̂i ¹ S} and where π̂I is an identity permutation function over the

set {1, . . . ,n}.

Proof: Let B∗
i , i = 1, . . . ,m be the optimizing matrices, Bi, of the optimization prob-

lem on the left hand side of (4-6). Furthermore, let R∗
i = RDPC

i (πI , B
∗
1...m, N1...m), i =

1, . . . ,m. We claim that R∗
i and B∗

i are such that R∗
i = 0 and B∗

i = 0t×t ∀i s.t. γi = 0.

To show this we observe that we can always modify the choice of Bi’s to increase the

DPC rates, RDPC
i (πI , B1...m,N1...m), for i’s which correspond to γi > 0 at the expense of

DPC rates for users, i, which correspond to γi = 0, without violating the matrix con-

straint, S (see Proposition V.1 in Appendix V). This will only increase the target function,

∑m

i=1 γiR
DPC
i (πI ,B1...m,N1...m), since the rates we reduce are multiplied by γi = 0 and the

rates we increase are multiplied by γi > 0. Thus, we have shown that R∗
i = 0 ∀i s.t. γi = 0.

Furthermore, by the definition of the rates RDPC
i (πI ,B1...m,N1...m), it is easy to show that as

Bj º 0 ∀j, RDPC
i (πI ,B1...m,N1...m) = 0 if an only if Bi = 0. Therefore, B∗

i = 0t×t ∀i s.t. γi = 0.

We can now define, B̂∗
i = B∗

k(i), i = 1, . . . ,n. It is easy to see that RDPC
i (πI ,B

∗
1...m,N1...m) =

RDPC
i (π̂I , B̂

∗
1...n, N̂1...n) and therefore,

max
B1...m∈D

m
∑

i=1

γiR
DPC
i (πI , B1...m, N1...m) ≤ max

B̂1...n∈D̂

n
∑

i=1

γk(i)R
DPC
i (π̂I , B̂1...n, N̂1...n)

On the other hand, we can show that the opposite inequality also holds for the above

expression. Let B̂∗∗
i , i = 1, . . . ,n be the optimizing solution of the optimization problem on
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the right hand side of (4-6). Define

B∗∗
i =















B̂∗∗
k−1(i) i ∈ {k(1), . . . ,k(n)}

0 otherwise

where k−1 is the inverse of the index function such that k−1(k(i)) = i. It is easy to see that

RDPC
i (πI ,B

∗∗
1...m,N1...m) = RDPC

i (π̂I , B̂
∗∗
1...n, N̂1...n) and therefore,

max
B1...m∈D

m
∑

i=1

γiR
DPC
i (πI , B1...m, N1...m) ≥ max

B̂1...n∈D̂

n
∑

i=1

γk(i)R
DPC
i (π̂I , B̂1...n, N̂1...n)

Thus, the proof is completed.

Proof of Proposition 4.2: To prove the proposition, we will investigate the properties

of the gradients of the DPC rates, RDPC
i (πI , B1...m, N1...m), at the point where the rate

region RDPC(πI ,S,N1...m) and the hyperplane, {(R1, . . . ,Rm) | ∑m

i=1 γiRi = b}, touch. By the

assumptions of the proposition, {(R1, . . . ,Rm) | ∑m

i=1 γiRi = b} is a supporting hyperplane

and therefore, there must be such a common rate vector. Let R
∗

= (R∗
1, . . . ,R

∗
m) be that

rate vector and let B∗
1 , . . . ,B

∗
m be a sequence of positive semi-definite matrices such that

∑m

i=1 B∗
i ¹ S and such that RDPC

i (πI ,B
∗
1...m,N1...m) = R∗

i , i = 1, . . . ,m. By the definition

of the supporting hyperplane, we know that the scalar b and the sequence of matrices,

B∗
1 , . . . ,B

∗
m, are the solution and optimizing variables of the following optimization problem

maximize
∑m

i=1 γiR
DPC
i (πI ,B1...m,N1...m)

B1, . . . ,Bm

such that Bi º 0, ∀i = 1, . . . ,m
∑m

i=1 Bi ¹ S

We now note that of all i = 1, . . . ,m, only RDPC
m (πI ,B1...m,N1...m) is a function of Bm

and is given by:

RDPC
m (πI , B1...m, N1...m) =

1

2
log

∣

∣Bm +
(
∑m−1

i=1 Bi

)

+ Nm

∣

∣

∣

∣

(
∑m−1

i=1 Bi

)

+ Nm

∣

∣
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Therefore, for any given sequence of m− 1 matrices, B1, . . . ,Bm−1, in order to maximize the

weighted sum,
∑m

i=1 γiR
DPC
i (πI ,B1...m,N1...m), we need to maximize RDPC

m (πI ,B1...m,N1...m)

over all choices of Bm such that Bm ¹ S − ∑m−1
i=1 Bi. From the explicit expression for

RDPC
m (πI ,B1...m, N1...m), given above, and the fact that |B| > |A| if B º A Â 0 and B 6= A

(see Proposition I.2), it is clear that choosing Bm = S −∑m−1
i=1 Bi is the best choice. There-

fore, B∗
m = S −∑m−1

i=1 B∗
i and the matrices B∗

1 , . . . ,B
∗
m−1 are the optimizing variables of the

following optimization problem,

maximize
∑m

i=1 γiR
DPC
i (πI ,B1...m−1,S,N1...m)

B1, . . . ,Bm−1

such that Bi º 0, ∀i = 1, . . . ,m− 1
∑m−1

i=1 Bi ¹ S

(4-7)

where RDPC
i (πI ,B1...m−1,S,N1...m) = RDPC

i (πI ,B1...m,N1...m) and where Bm = S −∑m−1
i=1 Bi.

Note that the above optimization problem differs from the previous one in that the opti-

mization is done over m− 1 matrices instead of m matrices.

Optimization problem (4-7) corresponds to the more general one presented in (3-17) with

only one function such that
∑m

i=1 γiR
DPC
i (πI ,B1...m−1,S,N1...m) replaces f0. This function,

is differentiable over Bi º 0, ∀i and its partial gradients are given by

∇Bk

(

m
∑

i=1

γiR
DPC
i (πI ,B1...m−1,S,N1...m)

)

=
1

2

m−1
∑

j=k

γj ·
(

j
∑

i=1

Bi + Nj

)−1

− 1

2

m
∑

j=k+1

γj ·
(

j−1
∑

i=1

Bi + Nj

)−1

, ∀k = 1, . . . ,m− 1

(4-8)

In Appendix VII, Proposition VII.2, we show that there is a strict direction for this

optimization problem and thus, by proposition 3.3 and equation (4-8), we can write the
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following m− 1 equations on the gradients of the DPC rates at B∗
1 , . . . ,B

∗
m−1:

0t×t =
1

2

m−1
∑

j=k

γj ·
(

j
∑

i=1

B∗
i + Nj

)−1

− 1

2

m
∑

j=k+1

γj ·
(

j−1
∑

i=1

B∗
i + Nj

)−1

+
1

2
Ok −

1

2
Om,

∀k = 1 . . .m− 1

where Ok are such that if rB∗
k
> 0, Ok = VBk

ΛkV
T
Bk

for some Λk º 0rB∗
k
×rB∗

k

(rB∗
k

is the number

of zero eigenvalues in B∗
k), and if rB∗

k
= 0, then Ok = 0t×t. Recall that VBk

is a matrix of size

(t× rB∗
k
) which columns are orthogonal unit-length eigenvectors of B∗

k that correspond to

null eigenvalues. By subtracting equation k+1 from the k’th equation (except for k = m−1

where the expression is taken as is), we obtain the following m− 1 equations

γk+1

(

k
∑

i=1

B∗
i + Nk+1

)−1

+ Ok+1 = γk

(

k
∑

i=1

B∗
i + Nk

)−1

+ Ok , k = 1, . . . ,m− 1 (4-9)

We treat separately the case where γi > 0 for all i = 1, . . . ,m and the case where for some

i = 1, . . . ,m, γi = 0. Once we have proved the proposition under the assumption that γi > 0

for all i = 1, . . . ,m we will be able to use a simple argument to generalize this result to the

more general case.

γi > 0, ∀i = 1, . . . ,m:

We now assume that γi > 0, ∀i = 1, . . . ,m. Therefore, since we also assumed that

γ1 ≤ ·· · ≤ γm (this assumption was made in Proposition 4.2) and since Oi are defined such

that Bi ·Oi = 0, we can prove by induction (see Proposition VIII.1 in Appendix VIII), the

existence of an enhanced ADBC with noise increment covariance matrices Ñ ′
1, . . . , Ñ

′
m, such

that

γk+1

(

k
∑

i=1

Bi + Nk+1

)−1

+ Ok+1 = γk+1

(

k
∑

i=1

Bi +
k+1
∑

i=1

Ñ ′
i

)−1

= γk

(

k
∑

i=1

Bi +
k

∑

i=1

Ñ ′
i

)−1

= γk

(

k
∑

i=1

Bi + Nk

)−1

+ Ok

(4-10)
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and such that

|
∑k

i=1 Bi + Nk|
|∑k−1

i=1 Bi + Nk|
=

|
∑k

i=1 Bi +
∑k

i=1 Ñ ′
i |

|∑k−1
i=1 Bi +

∑k

i=1 Ñ ′
i |

, ∀k = 1, . . . ,m (4-11)

The proof of expressions (4-10) and (4-11) is found in Appendix VIII.

By the expressions of RDPC
k (4-1) and RG

k (3-2), and (4-11), we can see that

R∗
k = RDPC

k (πI , B
∗
1...m, N1...m) = RG

k (B∗
1...m, Ñ ′

1...m), ∀k = 1, . . . ,m. (4-12)

We now complete the proof for the case where γi > 0, ∀i = 1, . . . , m, by showing that

{(R1, . . . ,Rm) |
∑m

i=1 γiRi = b} is also a supporting hyperplane of the rate region, RG(S,

Ñ ′
1...m), and intersects with it at R

∗
. For that purpose, it is sufficient to show that

∑m

i=1 γi·

RG
i (B1...m, Ñ ′

1...m) is maximized when Bi = B∗
i , i = 1, . . . ,m. For that reason, we define:

∆k =
k

∑

i=1

(Bi −B∗
i ), Kk =

k
∑

i=1

B∗
i +

k
∑

i=1

Ñ ′
i , Tk =

k
∑

i=1

B∗
i +

k+1
∑

i=1

Ñ ′
i

and rewrite the difference between the weighted sums as follows,

m
∑

i=1

γiR
G
i (B1...m, Ñ ′

1...m)−
m

∑

i=1

γiR
G
i (B∗

1...m, Ñ ′
1...m)

=
m

∑

k=1

γk ·
1

2
log

∣

∣

∣

∑k

i=1 Bi +
∑k

i=1 Ñ ′
i

∣

∣

∣

∣

∣

∣

∑k−1
i=1 Bi +

∑k

i=1 Ñ ′
i

∣

∣

∣

−
m

∑

k=1

γk ·
1

2
log

∣

∣

∣

∑k

i=1 B∗
i +

∑k

i=1 Ñ ′
i

∣

∣

∣

∣

∣

∣

∑k−1
i=1 B∗

i +
∑k

i=1 Ñ ′
i

∣

∣

∣

≤
m−1
∑

k=1



γk ·
1

2
log

∣

∣

∣

∑k

i=1 Bi +
∑k

i=1 Ñ ′
i

∣

∣

∣

∣

∣

∣

∑k

i=1 B∗
i +

∑k

i=1 Ñ ′
i

∣

∣

∣

− γk+1 ·
1

2
log

∣

∣

∣

∑k

i=1 Bi +
∑k+1

i=1 Ñ ′
i

∣

∣

∣

∣

∣

∣

∑k

i=1 B∗
i +

∑k+1
i=1 Ñ ′

i

∣

∣

∣





=
m−1
∑

k=1

(

γk ·
1

2
log

|∆k + Kk|
|Kk|

− γk+1 ·
1

2
log

|∆k + Tk|
|Tk|

)

=
m−1
∑

k=1

(

γk ·
1

2
log

∣

∣

∣

∣

K
− 1

2

k ∆kK
− †

2

k + I

∣

∣

∣

∣

− γk+1 ·
1

2
log

∣

∣

∣

∣

T
− 1

2

k ∆kT
− †

2

k + I

∣

∣

∣

∣

)

(4-13)

where the inequality results from the fact that |∑m

i=1 Bi +
∑m

i=1 Ñ ′
i | ≤ |∑m

i=1 B∗
i +

∑m

i=1 Ñ ′
i |

because
∑m

i=1 Bi ¹
∑m

i=1 B∗
i = S (Proposition I.2). By (4-10), we know that T−1

k = γk

γk+1
K−1

k .
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Therefore, we may write,
m

∑

i=1

γiR
G
i (B1...m, Ñ ′

1...m)−
m

∑

i=1

γiR
G
i (B∗

1...m, Ñ ′
1...m)

≤
m−1
∑

k=1

(

γk ·
1

2
log

∣

∣

∣

∣

K
− 1

2

k ∆kK
− †

2

k + I

∣

∣

∣

∣

− γk+1 ·
1

2
log

∣

∣

∣

∣

γk

γk+1

K
− 1

2

k ∆kK
− †

2

k + I

∣

∣

∣

∣

)

=
m−1
∑

k=1

1

2
· γk+1 ·









(

γk

γk+1

log

∣

∣

∣

∣

K
− 1

2

k ∆kK
− †

2

k + I

∣

∣

∣

∣

+

(

1− γk

γk+1

)

log |I|
)

−
(

log

∣

∣

∣

∣

γk

γk+1

(K
− 1

2

k ∆kK
− †

2

k + I) +

(

1− γk

γk+1

)

· I
∣

∣

∣

∣

)









(4-14)

As 0 < γk

γk+1
≤ 1, by the concavity (

⋂

) of the logdet function and Jensen’s inequality, each

of the summands in the last equality are negative and therefore, we may write:

m
∑

i=1

γiR
G
i (B1...m, Ñ ′

1...m) −
m

∑

i=1

γiR
G
i (B∗

1...m, Ñ ′
1...m) ≤ 0

for all positive semi-definite matrices Bi with power covariance constraint, S. This completes

the proof of the proposition for the case γi > 0 ∀i.

γi ≥ 0, ∀i = 1, . . . ,m:

Finally, we expand the proof to the case of any set of non-negative scalars, γ1, . . . , γm

where at least one of them is strictly positive. The method we will apply here is very similar

to the one used in the proof of Theorem 3.2. Let n, 1 ≤ n < m denote the number of

strictly positive scalars, γi, i = 1, . . . ,m. Since we assume that γ1 ≤ ·· · ≤ γm, it is clear that

γi = 0, ∀i = 1, . . . ,m− n and γi > 0, ∀i = m− n + 1, . . . ,m. We can now define a compact

channel which is also an AMBC with the same covariance matrix constraint, S, and with

noise covariance matrices, N̂1, . . . , N̂n such that:

N̂i = Ni+m−n , i = 1, . . . , n

Similarly, we define a compact hyperplane, {(R̂1, . . . , R̂n) ∈ R
n | ∑n

i=1 γi+m−nR̂i = b}. By

Proposition 4.3, we conclude that
{

(R̂1, . . . , R̂n) ∈ R
n

∣

∣

n
∑

i=1

γi+m−nR̂i = b

}

is a supporting hyperplane of RDPC(π̂I , S, N̂1...n)
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where π̂I is now the identity permutation over the set {1, . . . ,n}. Therefore, we can use the

above proof for the case where γi are strictly positive to show that the proposition holds

for the compact channel. That is, we can find an enhanced ADBC, with noise increment

covariance matrices, ˆ̃N ′
1, . . . ,

ˆ̃N ′
n, such that

{

(R̂1, . . . , R̂n) ∈ R
n

∣

∣

n
∑

i=1

γi+m−nR̂i = b

}

is a supporting hyperplane of RG(S, ˆ̃N ′
1...n)

We now define an enhanced ADBC for the original channel using the enhanced ADBC

of the compact channel. The noise increment covariance matrices, Ñ ′
1, . . . , Ñ

′
m, are defined

as follows:

Ñ ′
i =















βi
ˆ̃N ′

1 i ≤ m−n

ˆ̃N ′
i−(m−n) ∀i > m−n

where βi ≥ 0, i = 1 . . . k(1) are chosen such that
∑k(1)

i=1 βi = 1 and such that 0 ≺
(

∑j

i=1 βi

)

·
ˆ̃N ′

1 ¹ Nj, ∀j = 1, . . . ,m−n. As Nj Â 0, ∀j = 1, . . . ,m, it is possible to find such βi. Clearly,

we have defined an enhanced ADBC for the original channel. Furthermore, as {(R̂1, . . . , R̂n) ∈

R
n | ∑n

i=1 γi+m−nR̂i = b} is a supporting hyperplane of RG(S, ˆ̃N ′
1...n), we can use Proposition

4.3 to show that

{

(R1, . . . , Rm) ∈ R
m

∣

∣

m
∑

i=1

γiRi = b

}

is a supporting hyperplane of RG(S, Ñ ′
1...m).

¥

4.4 AMBC Example

The following example illustrates the statements of Proposition 4.2. In this example, we

consider a two user non-degraded AMBC under a covariance matrix input constraint, where
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the transmitter and each of the receivers have four antennas such that:

N1 ≈















5.20425 2.96515 3.31237 −0.67287

2.96515 8.40350 2.15397 0.51274

3.31237 2.15397 4.01902 −1.23370

−0.67287 0.51274 −1.23370 1.15827















,

N2 ≈















5.24564 −3.80767 −1.49311 3.69896

−3.80767 8.28347 2.97520 −5.87397

−1.49311 2.97520 2.39828 −4.53655

3.69896 −5.87397 −4.53655 10.10308















and S ≈















4.93783 −0.78695 −3.16956 3.35222

−0.78695 3.32543 −2.51664 −0.12348

−3.16956 −2.51664 5.08241 −2.40199

3.35222 −0.12348 −2.40199 2.92163















.

The boundary of the dirty paper coding region, RSPC(S,N1,2), is plotted by a solid

curve in Figure 2. The dotted line, in the same graph, corresponds to the hyperplane

{(R1,R2) | 1
2
·R1 + 1 ·R2 = 2.01574}. In addition, we plotted a dashed curve, corresponding

to the boundary of the Gaussian region of an enhanced and degraded version of the above

AMBC with noise increment covariances

Ñ ′
1 ≈















1.41956 −0.68733 0.01387 0.03833

−0.68733 1.66279 −0.03823 0.29121

0.01387 −0.03823 0.25974 −0.27691

0.03833 0.29121 −0.27691 0.76268















and Ñ ′
2 ≈















3.37933 −1.71534 −0.64685 1.92184

−1.71534 2.20204 0.30836 −0.69681

−0.64685 0.30836 0.48250 −0.91193

1.92184 −0.69681 −0.91193 2.57291















.

As predicted by Proposition 4.2, we can see from Figure 2 that for the given hyperplane,

we can find an enhanced and degraded version of the channel such that its Gaussian region is
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0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

R1

R
2

Gaussian rate region, RDPC(S,N1,2), (= capacity region) of a two user 4× 4 AMBC

RG(S,Ñ ′
1,2)

Supporting Hyperplane

RDPC(S,N1,2)

Fig. 2. Illustration of the results of Proposition 4.2

supported by the same hyperplane. Furthermore, in relation to the proof of this proposition,

we note that the hyperplane and both curves intersect at (R1,R2) ≈ (0.79656,1.61746).

5. Extension to the General MIMO BC

We now consider the GMBC (expression (1-1)) which, unlike the ADBC and AMBC,

is characterized by both the noise covariance matrices, N1, . . . , Nm, and gain matrices,

H1, . . . ,Hm. We will prove that the DPC rate region [5], [23], [19], [17] of this channel,

coincides with the capacity region.

July 14, 2004—4 : 54 am DRAFT



THE CAPACITY REGION OF THE GAUSSIAN MIMO BROADCAST CHANNEL 51

5.1 GMBC - Main Results

We begin by characterizing the DPC rate region of the GMBC. Given an average trans-

mit covariance matrix limitation, E[xxT ] ¹ S, and a set of positive semi-definite matrices,

B1,B2, . . . ,Bm (Bk º 0 ∀k ∈ 1 . . .m), such that
∑m

i=1 Bi ¹ S, and a permutation function π,

the following rates are achievable in the GMBC using a DPC scheme [5], [23], [19], [17]:

Rk ≤ RDPC
π−1(k)(π,B1...m,N1...m,H1...m) , ∀k ∈ 1, . . . ,m

where

RDPC
l (π,B1...m,N1...m,H1...m) =

1

2
log

∣

∣

∣

(

Hπ(l)

(

∑l

i=1 Bπ(i)

)

HT
π(l) + Nπ(l)

)∣

∣

∣

∣

∣

∣

(

Hπ(l)

(

∑l−1
i=1 Bπ(i)

)

HT
π(l) + Nπ(l)

)∣

∣

∣

l = 2,3, . . . ,m

(5-1)

We now define the DPC achievable rate region of a GMBC:

Definition 5.1 (DPC rate-region of a GMBC) Let S be a positive semi-definite matrix,

then, we define the DPC rate region, RDPC(S,N1...m,H1...m), for the GMBC with a covariance

matrix constraint, S, as the following convex closure:

RDPC(S,N1...m, H1...m) = conv

{

⋃

π∈Π

RDPC(π, S,N1...m, H1...m)

}

(5-2)

where

RDPC(π, S,N1...m, H1...m) =









































RDPC
1 (π,B1...m,N1...m,H1...m), . . . ,

RDPC
m (π,B1...m,N1...m,H1...m)







∣

∣

∣

∣

∣

s.t. S −
m

∑

i=1

Bi º 0, Bi º 0 ∀i = 1, . . . ,m



































(5-3)

Theorem 5.1: Let C(S,N1...m,H1...m) denote the capacity region of the GMBC under a

covariance matrix constraint, S º 0, then C(S,N1...m,H1...m) = RDPC(S,N1...m,H1...m).

As RDPC(S,N1...m,H1...m) is contiguous in S (for proof, see Proposition III.3 in Appendix

III), the following corollary follows immediately by Proposition 2.1.
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Corollary 5.1: Let C(P,N1...m,H1...m) denote the capacity region of the GMBC under a

total power constraint, P ≥ 0, then

C(P,N1...m, H1...m) =
⋃

Sº0
s.t.

tr{S}≤P

RDPC(S,N1...m, H1...m)

5.2 Proof of Theorem 5.1

As RDPC(S,N1...m,H1...m) ⊆ C(S,N1...m,H1...m), we need only to show that C(S,N1...m,

H1...m) ⊆RDPC(S,N1...m,H1...m). We do that in two steps. In the first step, we use SVD to

rewrite the original MIMO BC (1-1) as a MIMO BC with square gain matrices of sizes t× t.

In the second step, we add a small perturbation to some of the entries of the gain matrices

such that they will be invertible and such that their capacity region is enlarged. As the

gain matrices are invertible, we will be able to infer the capacity region of the new channel

from that of an equivalent AMBC. We will complete the proof by showing that the capacity

region of the original MIMO BC can be obtained by a limit process on the capacity region

of the perturbed MIMO BC.

For the first step of our proof, we will consider a sequence of variants of the GMBC

which preserve both the DPC rate region and the capacity region of the original GMBC.

As a reminder, the channel we are considering is given by:

yi = Hix + ni = UiΛiVix + ni , i = 1, 2, . . . ,m (5-4)

where UiΛiVi is the singular value decomposition of Hi and where Ui and Vi are unitary

matrices of sizes ri × ri and t× t and Λi is a diagonal matrix of size ri × t. We assume

without loss of generality that the singular values of Λi are arranged in rising order such

that all non-zero singular values are located on the lower right corner of Λi. That is, if we

define rΛi
= rank(Λi), then Λi(m−t+ri,m) > 0, ∀m = t− rΛi

+ 1, . . . , t and all other elements of

Λi are zero. Thus, the first (ri − rΛi
) rows of Λi are zero.
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We multiply the channel outputs at each of the users by UT
i . As this manipulation is a

reversible one, it has no effect on the capacity region of the channel. Furthermore, the DPC

rate-region remains the same. We now get the following channel:

y′
i = ΛiVix + n′

i , i = 1, 2, . . . ,m (5-5)

where E[n′
in

′
i
T ] = UT

i NiUi = N ′
i . Next, we rewrite N ′

i such that

N ′
i =





N ′
i
A N ′

i
B

(N ′
i
B)T N ′

i
C



 , i = 1, . . . ,m

where N ′
i
A,N ′

i
B and N ′

i
C are of sizes (ri − rΛi

)× (ri − rΛi
), rΛi

× (ri − rΛi
) and rΛi

× rΛi
. We

define,

Di =





I(ri−rΛi
)×(ri−rΛi

) 0(ri−rΛi
)×rΛi

−(N ′
i
B)T (N ′

i
A)−1 IrΛi

×rΛi





We now create a new variation of the channel by multiplying the received vector of each

user by its appropriate Di.

y′′
i = DiΛiVix + Din

′
i = ΛiVix + Din

′
i = H ′′

i x + n′′
i , i = 1, 2, . . . ,m (5-6)

where the second equality is a consequence of having (ri − rΛi
) zero rows at the top of Λi.

As Di is a reversible transformation, the capacity and DPC rate regions remain unchanged

for this new channel. Furthermore,

N ′′
i = E[n′′

i n
′′
i
T
] = DiN

′
iD

T
i =





N ′
i
A 0

0 N ′′
i

C



 (5-7)

is block diagonal with N ′
i
A and N ′′

i
C of sizes (ri − rΛi

) × (ri − rΛi
) and rΛi

× rΛi
on the

diagonal and therefore, as n′′
i is a Gaussian vector, the noise at the first (ri − rΛi

) antennas

is independent of the noise at the other rΛi
-antennas.

As the first ri−rΛi
rows in H ′′

i are all zero, H ′′
i =





0(ri−rΛi
)×t

H ′′
i

B



, it is clear that the first

ri−rΛi
receive antennas at each user are not affected by the transmitted signal. Furthermore,
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as the noise vector at these antennas is independent of the noise at the other rΛi
-antennas (by

the structure of the covariance matrix N ′′
i (5-7)), it is clear that the first ri − rΛi

antennas

(in (5-6)) do not play a role in the ML receiver. Hence, we may remove these antennas

altogether, without any effect on the capacity region. In addition, due to the block diagonal

structure of the matrix, N ′′
i , removing the first r− rΛi

antennas will not affect the DPC rate

region as well, as is shown in the following equation:

RDPC
i (π,B1...m,N ′′

1...m,H ′′
1...m)

=
1

2
log

∣

∣

∣
H ′′

π(i)

(

∑i

j=1 Bπ(j)

)

H ′′
π(i)

T + N ′′
π(i)

∣

∣

∣

∣

∣

∣
H ′′

π(i)

(

∑i−1
j=1 Bπ(j)

)

H ′′
π(i)

T + N ′′
π(i)

∣

∣

∣

=
1

2
log

∣

∣

∣
N ′

π(i)
A
∣

∣

∣

∣

∣

∣
N ′

π(i)
A
∣

∣

∣

·

∣

∣

∣
H ′′

π(i)
B

(

∑i

j=1 Bπ(j)

)

H ′′
π(i)

BT
+ N ′′

π(i)
C
∣

∣

∣

∣

∣

∣
H ′′

π(i)
B

(

∑i−1
j=1 Bπ(j)

)

H ′′
π(i)

BT
+ N ′′

π(i)
C
∣

∣

∣

= RDPC
i (π,B1...m,N ′′C

1...m,H ′′B
1...m)

Alternatively, adding zero rows to H ′′
i at its top (or alternatively, adding zero rows at

the top of Λi) and appropriately adding receive antennas with independent (of the other

antennas) Gaussian noise will also preserve the capacity and DPC rate regions.

Therefore, we may write yet another variant of the channel, this time with t transmit

antennas and t receive antennas for each user.

ŷi = Ĥix + n̂i , i = 1, 2, . . . ,m (5-8)

where Ĥi = Λ̂iVi and where Λ̂i is a t× t diagonal matrix with the first t− rΛi
elements equal

to zero and the other rΛi
equal to the rΛi

-elements on the lower right diagonal of Λi such

that

Λ̂i(m,m) =















0 1 ≤ m ≤ t− rΛi

Λi(m−t+ri,m) t− rΛi
< m ≤ t

Again, N̂i =





N̂A 0

0 N ′′
i

C



 is block diagonal where N̂A is of size (t− rΛi
)× (t− rΛi

) and
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again both the capacity and DPC regions are preserved.

To complete the proof of Theorem 5.1, it is sufficient to show that

C(S, N̂1...m, Ĥ1...m) ⊆ RDPC(S, N̂1...m, Ĥ1...m).

To that end, we proceed with the second step of our proof and define a new channel, which

this time, does not preserve the capacity region.

y̆i = H̆ix + n̆i , i = 1, 2, . . . ,m (5-9)

where H̆i = (λ̂i + αĬi)Vi and Ĭ is a t× t diagonal matrix such that

Ĭi(m,n) =















1 m = n ≤ t− rΛi

0 Otherwise

and some α > 0.

Note that the last rΛi
rows of H̆i are identical to those of Ĥi. Therefore, as the ML

receiver of the channel in (5-8) only observes that lower rΛi
antennas, any code-book and

ML receiver, designed for the channel in (5-8) will achieve the exact same results in the

channel given in (5-9). Thus, it is clear that:

C(S, N̂1...m, Ĥ1...m) ⊆ C(S, N̆1...m, H̆1...m) ∀α > 0

Additionally, note that H̆i is invertible and multiplying each receive vector by H̆−1
i will

yield an AMBC with the same DPC and capacity regions as that of the channel in (5-9). As

the DPC and capacity regions of an AMBC coincide (Theorem 4.1), we can write:

C(S, N̂1...m, Ĥ1...m) ⊆ RDPC(S, N̆1...m, H̆1...m) ∀α > 0 (5-10)

We now make use of the fact that we can choose α arbitrarily and note that due to the

contiguity of the logdet function over positive definite matrices, we have

lim
α→0

RDPC
k (π,B1...m, N̆1...m, H̆1...m) = RDPC

k (π,B1...m, N̂1...m, Ĥ1...m) k = 1 . . . m
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where the convergence is uniform over all positive semi-definite matrices Bi s.t.
∑

Bi ¹ S.

Thus, by the uniform convergence property and by (5-10), it is clear that for every ε > 0

and every rate vector R ∈ C(S, N̂1...m, Ĥ1...m), the ε-ball around R contains a vector R
′ ∈

RDPC(S,N̂1...m, Ĥ1...m). Therefore, C(S,N̂1...m, Ĥ1...m) ⊆ closure{RDPC(S,N̂1...m, Ĥ1...m)}. How-

ever, as RDPC(S,N̂1...m, Ĥ1...m)} is closed, C(S,N̂1...m, Ĥ1...m) ⊆RDPC(S,N̂1...m, Ĥ1...m).

6. Summary

We have characterized the capacity region of the Gaussian MIMO broadcast channel

(BC) and proved that it coincides with the dirty paper coding (DPC) rate region. We have

shown this for a wide range of input constraints such as the average total power and the

input covariance constraints. In general, our results apply to any input constraint such that

the input covariance matrix lies in a compact set of positive semi-definite matrices.

For that purpose we have introduced a new notion of an enhanced channel. Using the

enhanced channel, we were able to modify Bergmans’ proof [1] to give a converse for the

capacity region of an aligned and degraded Gaussian vector BC (ADBC). The modification

was based on the fact that Bergmans’ proof could be directly extended to the vector case

when the enhanced channel was considered instead of the original one. By associating an

ADBC with points on the boundary of the DPC region of an aligned (and not necessarily

degraded) MIMO BC (AMBC), we were able to extend our converse to the AMBC and then,

to the general Gaussian MIMO BC.
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Appendix

I. Basic Inequalities

A The Entropy Power Inequality

Proposition I.1 (Entropy Power Inequality (EPI) [3]) Let x and y be statistically inde-

pendent vectors of length n. Then, we may write the following inequality:

e
2

n
H(x+y) ≥ e

2

n
H(x) + e

2

n
H(y)

with equality if, and only if, x and y are normally distributed with proportional covariances.

Corollary I.1: Let x and y be statistically independent vectors of length n. in addition,

let W be a random variable which takes it values from a finite set. Further more assume

that y is independent of the pair (x,W ). Then, we can write:

H(x + y|W ) ≥ n

2
log

(

e
2

n
H(x|W ) + e

2

n
H(y)

)

Proof:

H(x+y|W ) =
∑

w

P (W = w)H(x+y|W = w)

≥
∑

w

P (W = w)
n

2
log

(

e
2

n
H(x|W=w) + e

2

n
H(y)

)

≥ n

2
log

(

e
2

n
H(x|W ) + e

2

n
H(y)

)

where the first inequality is due to the EPI and the fact that y is independent of both x

and W . The second inequality is due to Jensen inequality and the fact that log(ex + c) is a

convex (U) function in x.
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B Matrix Inequalities

Proposition I.2: Let A Â 0 and B Â 0 be positive definite Hermitian matrices such that

B º A and such that B 6= A. Then,

|B| > |A|

Proof: B can be written as A+∆ where ∆ º 0 such that ∆ 6= 0. Therefore, |B| = |A| ·

|I +A− †
2 ∆A− 1

2 |. Since A− †
2 ∆A− 1

2 6= 0 is positive semi-definite, we have |I +A− †
2 ∆A− 1

2 | > 1.

Proposition I.3: Let A Â 0 and B Â 0 be positive definite Hermitian matrices such that

B Â A (B º A). Then,

B−1 ≺ A−1
(

B−1 ¹ A−1
)

Proof: B can be written as A + ∆ where ∆ º 0. Therefore,

B−1 = A− 1

2 (I + A− †
2 ∆A− 1

2 )−1A− †
2

Hence,

A−1 − B−1 = A− 1

2

(

I − (I + A− †
2 ∆A− 1

2 )−1
)

A− †
2

Since the eigenvalues of (I + A− †
2 ∆A− 1

2 )−1 are all smaller than (or equal to) 1, I − (I +

A− †
2 ∆A− 1

2 )−1 Â 0 (or º) and therefore, A−1 −B−1 Â 0 (or º).

Proposition I.4: Let A, B and ∆ be Hermitian matrices such that A º 0, B Â 0 and

∆ º 0, then

|A + B + ∆|
|B + ∆| ≤ |A + B|

|B|
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Proof:

|A + B + ∆|
|B + ∆| = |(B + ∆)−

†
2 A(B + ∆)−

1

2 + I|

= |A 1

2 (B + ∆)−1A
†
2 + I|

≤ |A 1

2 B−1A
†
2 + I|

= |B− †
2 AB− 1

2 + I| = |A + B|
|B|

where the inequality is a result of Proposition I.3 and I.2 (the inequality is not strict since

we might have A
1

2 (B + ∆)−1A
†
2 = A

1

2 B−1A
†
2 ).

C The Minkowski Inequality

Proposition I.5 (Minkowski’s Inequality) Let K1 and K2 be two n × n positive semi-

definite matrices. Then,

|K1 + K2|
1

n ≥ |K1|
1

n + |K2|
1

n

with equality iff K1 and K2 are proportional.

II. Proof of Proposition 2.2

Proof: Let us first define an intermediate and equivalent channel with t antennas

at the transmitter and each of the receivers by multiplying each of the receive vectors,

yi, i = 1, . . . ,m by UT
S . The new channel takes the following form:

UT
S yi = UT

S x + UT
S ni = x′ + n′

i = y′
i, i = 1, . . . ,m (II-1)

where there is a matrix power constraint, S ′ = UT
S SUS = ΛS on the input vector, x′, and

additive real Gaussian noise vectors with a covariance matrices, N ′
i = E[n′

in
′
i
T ] = UT

S NiUS.

Since the transformation that was done on channel outputs is reversible, any codebook
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designed for the channel in (II-1) can be modified to work in the original AMBC (and vice-

versa) with the same probability of error. Therefore, the capacity region of the intermediate

channel is exactly the same as that of the original BC.

To accommodate future calculations, we define the sub matrices: NA, NB and NC of

sizes (t− rS)× (t− rS), (t− rS)× rS and rS × rS, such that

N ′
i = UT

S NiUS =





NA
i NB

i

(NB
i )T NC

i



 , i = 1, . . . ,m

Note that NA
i and NC

i are symmetric and positive semi-definite.

We now recollect that we assumed that S is not full ranked and that the first t− rS

values on the diagonal of ΛS are zero and the rest are strictly positive. Therefore, no signal

will be transmitted through the first t−rS input elements of the intermediate channel (II-1).

Notice that the users on the receiving ends, receive pure channel noise on the first t− rS

receiving antennas. Hence, each user can use the signal on first t−rS antennas to cancel out

the effect of the noise on the rest of the antennas such that the resultant accumulated noise

in the first t− rS antennas will be de-correlated from that of the other rS antennas. Hence,

we can define a second intermediate channel such that:

y′′
i = Diy

′
i = Dix

′ + Din
′
i = x′ + n′′

i = x′′ + n′′
i , i = 1, . . . ,m (II-2)

where

Di =





I(t−rS)×(t−rS) 0(t−rS)×rS

−(NB
i )T (NA

i )−1 IrS×rS





and where the third equality follows from the fact that no signal is sent through the first

t−rS transmit antennas. Again, since the transformation was reversible, the capacity region

of the channel in (II-2) is identical to that of (II-1) and to that of the original AMBC.

Furthermore, the noise is still Gaussian and the matrix power constraint remains ΛS.
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One can verify that the resultant noise covariance at output, i, of channel (II-2) is given

by

N ′′
i = DiN

′
iD

T
i =





NA
i 0

0 NC
i −

(

NB
i

)T (

NA
i

)−1 (

NB
i

)





However, because the noise vectors are Gaussian, the fact that the noise at the first t− rS

receive antennas (at each user) is uncorrelated with the noise at the other rS antennas means

that the first t−rS channel output signals are statistically independent of the other rS output

signals (since the former outputs carry no information signal). Moreover, since only the

latter rS carry the information signal, the decoder can disregard the first 1, . . . , t− rS receive

antenna signals for each user without suffering any degradation in the code’s performance

(because these signal have no effect on the decision made by the ML or MAP decoder).

Thus, we define a new equivalent AMBC with only rS transmit antennas such that

ŷi = E ′y′′
i = E ′x′′ + E ′n′′

i = x̂ + n̂i, i = 1, . . . ,m (II-3)

where E ′ =
[

0rS×(t−rS) IrS×rS

]

and where x̂ is a vector of size rS × 1 and a full ranked input

covariance constraint Ŝ = E ′
iΛSE ′T

i . The additive noise n̂i is a real Gaussian vector with a

covariance matrix, N̂i = NC
i −

(

NB
i

)T (

NA
i

)−1 (

NB
i

)

.

As removing the first t− rS receive antennas did not cause any degradation in perfor-

mance, it is clear that any codebook that was designed for channel (II-2) can be modified

(chop off the first rS channel inputs) to work in channel (II-3) with the same results. It

is also clear that every codebook that was designed to work in (II-3), will also work, with

some minor modifications (pad with zeros the first t−rS inputs), in the intermediate channel

(II-2) with the exact same results. Therefore (II-3) and (II-2) have the same capacity region

and hence our equivalent channel (II-3) will have the same capacity region as the original

AMBC.

July 14, 2004—4 : 54 am DRAFT



THE CAPACITY REGION OF THE GAUSSIAN MIMO BROADCAST CHANNEL 62

Finally, we need to show that if N1 ¹ ·· · ¹ Nm, then N̂1 ¹ ·· · ¹ N̂m (noise covariance

matrices of the channel in (II-3)). Assume that indeed N1 ¹ ·· · ¹ Nm. It is easily shown

that N ′
1 ¹ ·· · ¹ N ′

m where N ′
i are the noise covariances of the intermediate channel (II-1).

We will need to show that N̂i+1 − N̂i º 0, i = 1, . . . ,m− 1. For that purpose, we define

D′
i = E ′Di. Note that D′

in
′
i is the estimation error of the optimal MMSE estimator of the

last rS elements of the noise vector given the first t− rS elements of the vector n′
i. We now

write N̂i+1 − N̂i as follows:

N̂i+1 − N̂i = D′
iN

′
i(D

′
i)

T −D′
i−1N

′
i−1(D

′
i−1)

T

= D′
iN

′
i−1(D

′
i)

T −D′
i−1N

′
i−1(D

′
i−1)

T + D′
i(N

′
i −N ′

i−1)(D
′
i)

T

As N ′
1 ¹ ·· · ¹ N ′

m, the last summand in the last equality is semi-definite positive. Fur-

thermore, D′
i−1N

′
i−1(D

′
i−1)

T is the covariance matrix of the estimation error of the optimal

estimator of the last rS elements of the noise vector n′
i−1 given the first t− rS elements of

the vector n′
i−1 while D′

iN
′
i−1(D

′
i)

T is a covariance matrix of an estimation error of a non-

optimal estimator. Therefore, D′
iN

′
i−1(D

′
i)

T −D′
i−1N

′
i−1(D

′
i−1)

T º 0 and we conclude that if

N1 ¹ ·· · ¹ Nm, then N̂i+1 − N̂i º 0, i = 1, . . . ,m− 1.

III. Contiguity of the capacity region with respect to S

Proposition III.1: The rate region RG(S,Ñ1...m) is contiguous with respect to S.

Proof: It is sufficient to show that if N Â 0, then, for every ε > 0, we can find a δ > 0

such that (log |B + δ′I + N | − log |B + N |) < ε for any given positive semi-definite matrix

B º 0 and every 0 ≤ δ′ ≤ δ. We write the following equality:

log |B + δ′I + N | − log |B + N | = log |I + δ′(B + N)−1| ≤ n log(1 + δ′
1

ψ
) ≤ nδ′

1

ψ

where n is the dimension of the matrices B and N , and ψ is the smallest eigenvalue of N .
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The first inequality is due to the fact that (B + N)−1 ¹ N−1 and the fact that 1
ψ

is the

largest eigenvalue of N−1. The second inequality follows from log(1 + x) ≤ x. As N Â 0,

ψ > 0. This completes our proof since for any ε > 0, we can find a δ > 0 such that nδ′ 1
ψ
≤ ε

for all 0 ≤ δ′ ≤ δ.

Proposition III.2: The rate region RDPC(S,N1...m) is contiguous with respect to S.

Proof: The proof follows the exact same lines as in the proof of Proposition III.1

Proposition III.3: The rate region RDPC(S,N1...m,H1...m) is contiguous with respect to

S.

Proof: Just as in the proof of Proposition III.1, it is sufficient to show that if N Â 0,

then, for every ε > 0, we can find a δ > 0 such that (log |HBHT + δ′I + N | − log |HBHT +

N |) < ε for any given positive semi-definite matrix B º 0 and every 0 ≤ δ′ ≤ δ. Replacing

HBHT with B′ º 0, we get the exact same expression as in the proof of Proposition III.1,

and the proof follows immediately.

IV. Proof of Proposition 3.1

We first note that both statements will hold only if RG(S,Ñ1...m) is a closed set. However,

as the space of sequences of matrices B1, . . . ,Bm such that Bi º 0, i = 1, . . . ,m and such that

∑m

i=1 Bi ¹ S is compact and the functions RG
i (B1...m, Ñ1...m) are contiguous, RG(S,Ñ1...m) is

indeed a closed set.

Before turning to prove the proposition, we shall give two supporting propositions and

corollaries. But first, for the sake of clarity, we shall restate the definition of the Gaussian

region of an ADBC but with slight notational modifications. This allows us to extend some of

the results in this appendix to the AMBC as well. For this reason, we replace the covariance

matrices of the noise increments, Ñk, with those of the accumulated noise at each of the
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receivers, Nk, such that Nk =
∑k

i=1 Ñi.

For a given set of positive semi-definite matrices, B1, . . . ,Bm, the following rates are

achievable:

Rk ≤ RG
k (B1...m, N1...m) =

1

2
log

|Nk +
∑k

i=1 Bi|
|Nk +

∑k−1
i=1 Bi|

, k = 1, . . . ,m

The Gaussian rate region is given by

RG(S,N1...m) =























(

RG
1 (B1...m,N1...m), . . . ,RG

m(B1...m,N1...m)
)

∣

∣

∣

∣

∣

s.t. S −
m

∑

i=1

Bi º 0 , Bi º 0 ∀i = 1, . . . ,m























(IV-1)

The following proposition suggests that we can increase the achievable rate of user k +1

at the expense of the user k.

Proposition IV.1: Assume that (R1, . . . ,Rk,Rk+1, . . . ,Rm) ∈RG(S,N1...m) and that Rk >

0, then

1. if 1 ≤ k < m, then for every 0 < δ ≤ Rk, there exists an ε > 0 such that

(R1, . . . , Rk−1, Rk − δ, Rk+1 + ε, Rk+2, . . . , Rm) ∈ RG(S,N1...m)

2. if k = m, then for every 0 < δ ≤ Rm,

(R1, . . . , Rm−1, Rm − δ) ∈ RG(S,N1...m)

Proof: If (R1, . . . ,Rk,Rk+1, . . . ,Rm) ∈ RG(S,N1...m), then there exists a set of positive

semi-definite matrices B1, . . . ,Bm such that
∑m

i=1 Bi ¹ S and such that

Ri = RG
i (B1...m, N1...m) ∀i ∈ 1, . . . ,m

We define a new set of positive semi-definite matrices B′
1, . . . ,B

′
m such that
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1. If 1 ≤ k < m, then

B′
i =































Bi i 6= k,k + 1

αBk i = k

Bk+1 + (1−α)Bk i = k + 1

2. If k = m, then

B′
i =















Bi 1 ≤ i < m

αBm i = m

where 0 ≤ α < 1. Note that as Rk > 0, Bk 6= 0 (as otherwise, Rk = RG
k (B1...m,N1...m) = 0).

Since the determinant function is contiguous, for every 0 < δ ≤ Rk it is possible to choose

(∀k = 1, . . . ,m) an 0 ≤ α < 1 such that

RG
k (B′

1...m, N1...m) = Rk − δ

and as |B| > |A| if B º A Â 0 and B 6= A (Proposition I.2), we can write the following

expression for all k such that 1 ≤ k < m,

RG
k+1(B

′
1...m,N1...m) =

1

2
log

|Nk +
∑k+1

i=1 B′
i|

|Nk +
∑k

i=1 B′
i|

=
1

2
log

|Nk +
∑k+1

i=1 Bi|
|Nk +

∑k−1
i=1 Bi + αBk|

=
1

2
log

|Nk +
∑k+1

i=1 Bi|
|Nk +

∑k

i=1 Bi|
+ ε = RG

k+1(B1...m,N1...m) + ε = Rk+1 + ε

for some ε > 0. However, since
∑i

j=1 Bj =
∑i

j=1 B′
j ∀i 6= k, then

RG
i (B′

1...m, N1...m) = RG
i (B1...m, N1...m) = Ri ∀i 6= k, k + 1

Thus, we have found a set of positive semi-definite matrices B′
1, . . . ,B

′
m such that

∑m

j=1 B′
j ¹ S

and which achieve the required rates and therefore, these rates must lie in RG(S,N1...m).

An interesting result from the above proposition is that if a rate vector R lies inside the

Gaussian rate region, then all rate vectors which are element-wise smaller than R also lie

inside the Gaussian rate region. This is formalized in the following corollary.
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Corollary IV.1: If (R1, . . . ,Rm) ∈RG(S,N1...m), then every rate vector (R′
1, . . . ,R

′
m) such

that 0 ≤ R′
i ≤ Ri ∀i = 1, . . . ,m also belongs to the set RG(S,N1...m).

Proof: This is a simple result of recursively applying Proposition IV.1.

While Proposition IV.1 proved that we can increase the achievable rate of one user at

the expense of the preceding user, the following proposition shows that we could do the same

in the opposite direction.

Proposition IV.2: Assume that (R1, . . . ,Rk−1,Rk, . . . ,Rm) ∈RG(S,N1...m) and that Rk >

0, then

1. if 1 < k ≤ m, then for every 0 < δ ≤ Rk, there exists an ε > 0 such that

(R1, . . . , Rk−2, Rk−1 + ε, Rk − δ, Rk+1, . . . , Rm) ∈ RG(S,N1...m)

2. if k = 1, then for every 0 < δ ≤ R1,

(R1 − δ, R2, . . . , Rm) ∈ RG(S,N1...m)

The proof of the above proposition is very similar to that of Proposition IV.1 and therefore,

is omitted here.

An important result from the previous two propositions is given in the following corollary.

Corollary IV.2: If (R1, . . . ,Rm) ∈ RG(S,N1...m) and (R′
1, . . . ,R

′
m) ∈ RG(S,N1...m) such

that R′
i ≥ Ri ∀i = 1, . . . ,m and such that for some k ∈ {1, . . . ,m}, R′

k > Rk, then there exists

a rate vector (R′′
1, . . . ,R

′′
m) ∈RG(S,N1...m) such that R′′

i > Ri ∀i = 1, . . . ,m.

Proof: Because R′
k > Rk, it is possible to recursively use Proposition IV.1 to show that

there is an ε > 0 for which

(R′
1, . . . , R

′
k−1, Rk, R

′
k+1, . . . , R

′
m + ε) ∈ RG(S,N1...m)

We can now recursively use Proposition IV.2 to show that there are εi > 0 , i = 1, . . . ,m such
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that

(R′
1 + ε1, . . . , R

′
k−1 + εk−1, Rk + εk, R

′
k+1 + εk+1, . . . , R

′
m + εm) ∈ RG(S,N1...m)

Proof of Proposition 3.1

Proof: We begin with the first statement of the proposition. Since every ε-ball around

any optimal Gaussian rate vector (R1, . . . ,Rm) will always contain a point (R′
1, . . . ,R

′
m) /∈

RG(S,N1...m) (e.g. R′
i > Ri ∀i), it is clear that all optimal Gaussian rate vectors are bound-

ary points. Therefore, we only need to show that all boundary points are also optimal

Gaussian rate vectors. Assume, in contrast, that (R1, . . . , Rm) ∈ RG(S,N1...m) is not an

optimal Gaussian rate vector but is still a boundary point. Then, there exists a rate

vector (R′
1, . . . , R

′
m) ∈ RG(S,N1...m) such that R′

i ≥ Ri ∀i = 1, . . . ,m and such that for

some k ∈ {1, . . . ,m}, R′
k > Rk. By Corollary IV.2 we know that there exists a rate vector

(R′′
1, . . . ,R

′′
m) ∈ RG(S,N1...m) such that R′′

i > Ri ∀i = 1, . . . ,m and from Corollary IV.1 it is

clear that (R1, . . . ,Rm) must be an inner point of RG(S,N1...m) and hence not a boundary

point.

We proceed to prove the second statement of Proposition 3.1. We use induction on

the number of receiving users, m. The case of m = 1 is a single user channel with a noise

covariance matrix, N1. If, in the single user channel, (R1) /∈RG(S,N1), then R1 > C (channel

capacity) and therefore, there is a scalar b > 0 such that R1 = C + b.

Next, we assume that the statement is correct for k < m users where m > 1 and prove

that it must be true for k = m users. That is, we assume that for all ADBCs with k < m users

and with noise covariance matrices, N1, . . . ,Nk, that if there is a rate vector (R1,R2, . . . ,Rk)
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satisfying:

(R1,R2, . . . ,Rk) /∈RG(S,N1...k)

Rj ≥ 0, ∀j = 1, . . . ,k− 1

Rk > 0,

(IV-2)

then there is a strictly positive scalar, b > 0, and an optimal Gaussian solution point

B∗
1 , . . . ,B

∗
k such that

Rj ≥ RG
j (B∗

1...k,N1...k), j = 1, . . . ,k− 1

Rk ≥ RG
i (B∗

1...k,N1...k) + b

(IV-3)

and want to prove that for the m-users ADBC with noise covariance matrices, N1, . . . ,Nm,

that if there is a vector (R1,R2, . . . ,Rm) satisfying the conditions in (IV-2) for k = m, then

(IV-3) will hold for k = m.

We consider the m− 1 user channel and distinguish between two cases regarding the

rate vector (R1, . . . , Rm−1): Either (R1, . . . , Rm−1) /∈ RG(S, N1...m−1) or (R1, . . . , Rm−1) ∈

RG(S,N1...m−1). We start with the first case. Then, necessarily, (R1, . . . ,Rm−1) 6= 0. Let k

be the index of the last nonzero entry in (R1, . . . ,Rm−1). Then, we must have (R1, . . . ,Rk) /∈

RG(S,N1...k), Rk > 0, as otherwise

(R1, . . . , Rk, Rk+1, . . . , Rm−1) = (R1, . . . , Rk, 0, . . . , 0) ∈ RG(S,N1...m−1),

contradicting our assumption that (R1, . . . , Rm−1) /∈ RG(S,N1...m−1). Now, applying our

induction assumption, we can find an optimal Gaussian rate vector for the k-user BC,

(R∗
1, . . . ,R

∗
k), such that

Ri ≥ R∗
i i = 1,2, . . . ,k− 1

Rk ≥ R∗
k + b for some b > 0.
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However, (R∗
1, . . . ,R

∗
k,0, . . . ,0) is also an optimal Gaussian rate vector of the m-user ADBC.

To see this, observe that if not, there must exist some non-negative vector (δ1, . . . , δm) such

that at least one of the entries is strictly positive and such that

(R∗
1 + δ1, . . . , R

∗
k + δk, δk+1, . . . , δm) ∈ RG(S,N1...m)

and now, applying Proposition IV.2 we get

(R∗
1 + ε, . . . , R∗

k, 0, . . . , 0) ∈ RG(S,N1...m)

for some ε > 0, which implies

(R∗
1 + ε, . . . , R∗

k) ∈ RG(S,N1...k)

contradicting the assumption that (R∗
1, . . . ,R

∗
k) is an optimal Gaussian rate vector for the

k-users ADBC. Now, since Rm > 0, and R∗
m = 0, the second statement of the proposition

follows for the case (R1, . . . ,Rm−1) /∈RG(S,N1...m−1).

Next, we consider the second case where (R1, . . . ,Rm−1) ∈RG(S,N1...m−1). Define R
∗
=

(R∗
1, . . . ,R

∗
m−1,R

∗
m) such that R∗

i = Ri, ∀i = 1, . . . ,m− 1 and

R∗
m = sup{Rm|(R∗

1, . . . , R
∗
m−1, Rm) ∈ RG(S,N1...m)}.

As RG(S,N1...m) is a closed set, R
∗ ∈RG(S,N1...m). Furthermore, R

∗
is an optimal Gaussian

rate vector, as otherwise, using Proposition IV.1 we could write (R∗
1, . . . ,R

∗
m−1,R

∗
m + ε) ∈

RG(S,N1...m)}, contradicting the definition of R∗
m. However, as we know that all rate vectors

that are element-wise smaller then R
∗

lie in the Gaussian region (Corollary IV.1) and as

(R1, . . . , Rm) = (R∗
1, . . . , R

∗
m−1, Rm) /∈ RG(S,N1...m),

there must exist a b > 0 such that Rm = b + R∗
m.
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V. Extension of Propositions IV.1 and IV.2 to the

AMBC

As our proofs of Propositions IV.1 and IV.2 do not depend on the degradedness of the Noise

covariance matrices, Ni, we can automatically extend the intermediate results of the previous

section to the AMBC. The following proposition and corollary formalize this extension.

Proposition V.1: Let π be an m-user permutation function. If (R1, . . . ,Rm) ∈ RDPC(π,

S,N1...m), and Rπ(k) > 0 for some k ∈ 1 . . .m, then, for every δ ∈ (0,Rπ(k)], there exists an

ε > 0, such that (R∗
1, . . . ,R

∗
m) ∈ RDPC(π,S,N1...m) and (R∗∗

1 , . . . ,R∗∗
m ) ∈ RDPC(π,S,N1...m)

where

R∗
π(i) =































Rπ(i) − δ i = k

Rπ(i) + ε i = k + 1

Rπ(i) otherwise

R∗∗
π(i) =































Rπ(i) − δ i = k

Rπ(i) + ε i = k− 1

Rπ(i) otherwise

Proof: The proof is identical to the proofs of Propositions IV.1 and IV.2 where the

functions RG
i (B1...m,N1...m) are replaced by RDPC

i (π,B1...m,N1...m).

Corollary V.1: Define the rate vector R = (R1, . . . ,Rm) and let R
′
= (R′

1, . . . ,R
′
m) be any

rate vector such that 0 ≤ R′
i ≤ Ri ∀i = 1, . . . ,m. Then,

1. If R ∈RDPC(π,S,N1...m), then R
′ ∈RDPC(π,S,N1...m).

2. If R ∈RDPC(S,N1...m), then R
′ ∈RDPC(S,N1...m).

Proof: As in the case of corollary IV.1, the proof of the first statement is a sim-

ple result of a recursive application of Proposition V.1. To prove the second statement,

we note that as RDPC(S,N1...m) is convex, it is sufficient to show that for all k = 1 . . .m,

(R1, . . . ,Rk−1,0,Rk+1, . . . ,Rm) ∈RDPC(S,N1...m). Moreover, as every point in RDPC(S,N1...m)

is a convex combination of points in RDPC(π, S, N1...m), we need only to show that if
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(Rπ
1 , . . . ,Rπ

m) ∈ RDPC(π,S,N1...m), then, (Rπ
1 , . . . ,Rπ

k−1,0,R
π
k+1, . . . ,R

π
m) ∈ RDPC(π,S,N1...m).

However, this is a trivial case of the first statement.

VI. Proof of Proposition 3.3

This section relies heavily on the concept of a feasible direction which appears in [2] and

on dual functions and generalized inequalities as they appear in Chapter I, Subsections 2.4

and 5.9 of [4]. The reader is referred to these references for more insight. The proof of

Proposition 3.3 is based on a sequence of definitions and Propositions.

Definition VI.1 (Feasible Direction (chapter 4, [2])) Given a subset X ⊆ R
n and a vec-

tor x ∈ X , a vector y ∈ R
n is said to be a feasible direction of X at x if there exists an α > 0

such that x+ α′y ∈ X , ∀α′ ∈ [0,α].

Proposition VI.1: Consider the set of positive semi-definite real matrices of size t× t,

B = {B′ ∈ R
t×t | B′ º 0}. For a matrix B ∈ B, we define rB as the number of zero eigenvalues

(rB = t− rank(B)) and let vB
i , i = 1 . . . t denote orthogonal unit-length eigenvectors of B,

ordered so that the eigenvectors vB
i i ∈ 1 . . . rB have null eigenvalues. Furthermore, let VB

be a t×rB matrix such that VB = [vB
1 . . .vB

rB
] and let L be a t× t symmetric matrix. Then, if

rB = 0, then any symmetric matrix L will be a feasible direction. Otherwise, L is a feasible

direction if

V T
B LVB Â 0

Note that the proposition only states a sufficient condition.

Proof: We need to show that there exists a δ > 0 such that B + δ′L º 0, ∀δ′ ∈ [0, δ]. In

other words, we need to show that for every arbitrary vector, v, of size t× 1,

vT (B + δ′L)v ≥ 0, ∀δ′ ∈ [0, δ]
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When B = 0t×t, VB is a unitary matrix and the condition, V T
B LVB Â 0, implies that L Â 0.

Therefore, when B = 0t×t, clearly, the above expression holds. Hence, we will consider the

case where B 6= 0.

Assume that B 6= 0 and that rB > 0. Any arbitrary vector, v, can be represented as an

arbitrary linear combination of vB
i , i = 1 . . . t such that

v =
t

∑

i=1

βiv
B
i =

rB
∑

i=1

βiv
B
i +

t
∑

i=rB+1

βiv
B
i = v⊥ + v||

where v⊥ =
∑rB

i=1 βiv
B
i and v|| =

∑t

i=rB+1 βiv
B
i . By taking into account that Bv⊥ = 0, we

can write

vT (B + δ′L)v = vT
|| Bv|| + δ′vT

|| Lv|| + 2 · δ′vT
|| Lv⊥ + δ′vT

⊥Lv⊥ (VI-1)

Let mB denote the smallest, non-zero eigenvalue of B and mL denote the smallest eigenvalue

of V T
B LVB. As B 6= 0 and as V T

B LVB Â 0, both mB and mL are strictly positive. Furthermore,

let ML denote the largest absolute value of an eigenvalue of L. Note that as L 6= 0, ML > 0.

Since v⊥ = VBβ⊥ where β⊥ = (β1, . . . ,βrB
)T , we can write the following lower bound on

the last summand of (VI-1):

vT
⊥Lv⊥ = β

T

⊥(V T
B LVB)β⊥ ≥ mL|β⊥|2 = mL|v⊥|2,

where the inequality is due to mL being the smallest eigenvalue of V T
B LVB and the last equal-

ity is due to the fact that vB
i , i = 1 . . . t are orthonormal and hence, |v⊥| = |β⊥|. Furthermore,

we can lower bound the third summand of (VI-1) as follows:

2 · δ′vT
|| Lv⊥ ≥ −2 · δ′|vT

|| Lv⊥| ≥ −2 · δ′|vT
|| | · |Lv⊥| ≥ −2 · δ′|vT

|| | · ML|v⊥|
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where the second inequality is due to the Cauchy-Schwartz inequality. Therefore, we can

now write,

vT (B + δ′L)v ≥ mB|v|||2 − δ′ML|v|||2 − 2 · δ′ML|v||| · |v⊥|+ δ′mL|v⊥|2

=

(

mB − δ′
(

ML +
M2

L

mL

))

|v|||2 + δ′
(

ML√
mL

|v||| −
√

mL|v⊥|
)2

Clearly, for any 0 ≤ δ′ ≤ mB
(

ML+
M2

L
mL

) the above expression will be non-negative (regardless of

v). We now complete the proof and consider the case where rB = 0. As, B has no zero

eigenvalues, mB is the smallest eigenvalue of B and is strictly positive. Therefore, we may

write,

vT (B + δ′L)v ≥ mB|v|2 − δ′ML|v|2.

Clearly, for any 0 ≤ δ′ ≤ mB

ML
the above expression will be non-negative.

We can now state an extension of Proposition VI.1, relevant to the proof of Proposition

3.3.

Corollary VI.1: The set of matrices L1, . . . ,Lm−1 is a feasible direction of

D =

{

(B1, . . . , Bm−1)
∣

∣ B1 º 0, . . . , Bm−1 º 0,
m−1
∑

j=1

Bj ¹ S

}

at B1, . . . ,Bm−1 if the following conditions hold:

1. If rBi
> 0, then V T

Bi
LiVBi

Â 0, where i = 1, . . . ,m− 1.

2. If rBm
> 0, then V T

Bm

(

∑m−1
j=1 Lj

)

VBm
≺ 0

where Bm = S −
∑m−1

i=1 Bi and where rBi
and VBi

are defined in a similar manner to rB and

VB in Proposition VI.1 with respect to the matrices Bi, i = 1, . . . ,m.

Proof: This is a trivial result of Proposition VI.1.

Note that when rBi
= 0, we do not have any (individual) constraint on Li. In addition, note

that the above two conditions are identical to the first two conditions in the definition of a

strict direction (definition 3.4). We now turn to prove Proposition 3.3.
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Proof: As B∗
1 , . . . ,B

∗
m−1 is an optimal solution, there can not be a feasible direction of

D at B∗
1 , . . . ,B

∗
m−1 such that the directional derivatives,

ḟi(B
∗
1...m−1, L1...m−1) = tr{∇fi(B

∗
1 , . . . , B

∗
m−1) · (L1, . . . , Lm−1)

T}

are strictly positive for all i = 0, . . . , k, as this would suggest that B∗
1 , . . . , B

∗
m−1 was not

optimal to begin with.

By corollary VI.1, we observe that the first two conditions in the definition of a strict

direction are sufficient conditions for a feasible direction in D. Furthermore, the third (and

last) condition in the same definition states that the directional derivatives of fi, i = 1, . . . ,k

are all strictly positive. Therefore, we conclude that if L1, . . . ,Lm−1 is a strict direction, the

directional derivative (in the same direction) of f0 can not be strictly positive.

To summarize, define G = {(L1, . . . ,Lm−1)| (L1, . . . ,Lm−1) is a strict direction}. Then,

tr{∇f0(B
∗
1 , . . . , B

∗
m−1) · (L1, . . . , Lm−1)

T} ≤ 0, ∀(L1, . . . , Lm−1) ∈ G

Next, we show that we can use the fact that we know of some strict direction, L∗
1, . . . ,L

∗
m,

to extend the range of directions over which the directional derivative of f0 is non-positive.

Let L1, . . . ,Lm be any point on the closure of G. It is easily shown that if L∗
1, . . . ,L

∗
m is

a strict direction, so is L1 + αL∗
1, . . . ,Lm + αL∗

m, for every α > 0. Therefore,

tr{∇f0(B
∗
1 , . . . , B

∗
m−1) · (L1 + αL∗

1, . . . , Lm−1 + αL∗
m)T} ≤ 0, ∀α > 0.

However, as the above expression is linear and contiguous with α, we have

tr{∇f0(B
∗
1 , . . . ,B

∗
m−1) · (L1, . . . ,Lm−1)

T}

= lim
α↓0

tr{∇f0(B
∗
1 , . . . ,B

∗
m−1) · (L1 + αL∗

1, . . . ,Lm−1 + αL∗
m)T} ≤ 0

Thus, we can write,

tr{∇f0(B
∗
1 , . . . , B

∗
m−1) · (L1, . . . , Lm−1)

T} ≤ 0, ∀(L1, . . . , Lm−1) ∈ cl(G) (VI-2)
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We now use (VI-2) to write a bounded, convex optimization problem with conic inequal-

ities [4] and then use the dual problem to derive the necessary conditions on the gradients

as they appear in the proposition.

We begin with the primal problem:

minimize −tr{∇f0(B
∗
1 , . . . ,B

∗
m−1) · (L1, . . . ,Lm−1)

T}
L1, . . . ,Lm−1

such that −tr{∇fi(B
∗
1 , . . . ,B

∗
m−1) · (L1, . . . ,Lm−1)

T} ≤ 0, i = 1, . . . ,k

−V T
Bi

LiVBi
¹ 0, ∀i ∈ {i = 1, . . . ,m− 1 | rB∗

i
> 0}

V T
Bm

(
∑m−1

j=1 Lj)VBm
¹ 0 if rB∗

m
> 0

(VI-3)

One can easily verify that the feasible region defined by the inequalities in (VI-3), forms the

closure of G. By (VI-2), it is clear that the solution of (VI-3) is bounded by 0. In fact,

(VI-3) is actually a trivial problem and the optimum is achieved by Li = 0, i = 1, . . . ,m− 1.

However, we are not interested in the solution of the problem but rather in the conditions

on the gradients of the functions, fi, which are implied by the existence of this solution.

We now turn to write the dual problem. We begin with the Lagrangian:

L =− tr{∇f0(B
∗
1 , . . . ,B

∗
m−1) · (L1, . . . ,Lm−1)

T}

−
k

∑

i=1

γi · tr{∇fi(B
∗
1 , . . . ,B

∗
m−1) · (L1, . . . ,Lm−1)

T}

−
m−1
∑

i=1

tr{ΛiV
T
Bi

LiVBi
}+ tr

{

ΛmV T
Bm

(

m−1
∑

i=1

Li

)

VBm

}

where, for the sake of brevity, we assigned VBi
= 0t×t if rB∗

i
= 0. In addition, γi ≥ 0, i =

1, . . . , k are scalars and Λi º 0, i = 1, . . . ,m are matrices of size rB∗
i
× rB∗

i
if rB∗

i
> 0 and

t× t otherwise. Note that Λi play a similar role to the scalar Lagrange multipliers in a

constrained program with normal inequalities. However, here these scalar multipliers are

replaced by matrices in-order to accommodate conic inequalities.
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We can rewrite the Lagrangian as follows:

L = −
m−1
∑

i=1

tr





























∇Bi
f0(B

∗
1 , . . . ,B

∗
m−1) +

k
∑

j=1

γj ·∇Bi
fj(B

∗
1 , . . . ,B

∗
m−1)

+ VBi
ΛiV

T
Bi

−VBm
ΛmV T

Bm











LT
i



















The dual function, g(γ1...k,Λ1...m), is given by

g(γ1...k,Λ1...m) = min
L1,...,Lm

L

=



































0 if











∇Bi
f0(B

∗
1 , . . . ,B

∗
m−1) +

k
∑

j=1

γj ·∇Bi
fj(B

∗
1 , . . . ,B

∗
m−1)

+ VBi
ΛiV

T
Bi

−VBm
ΛmV T

Bm











= 0, ∀i = 1 . . .m− 1

−∞ otherwise

(VI-4)

The dual problem takes the following form:

maximize g(γ1...k,Λ1...m)

γ1...k,Λ1...m

such that γi ≥ 0, i = 1, . . . ,k

Λi º 0, i = 1, . . . ,m

(VI-5)

We use p∗ and d∗ to denote the optimal values of the primal problem (VI-3) and the dual

problem (VI-5) respectively. In general, d∗ ≤ p∗. However, as the primal problem is convex,

and since the existence of a strict direction implies the existence of a point ∈ relint cl(G),

Slater’s conditions for strong duality are met. Therefore, d∗ = p∗ = 0. By (VI-4), one can

verify that strong duality implies that there must be scalars γi ≥ 0, i = 1, . . . ,k and matrices

Λi º 0, i = 1, . . . ,m such that

∇Bi
f0(B

∗
1 , . . . ,B

∗
m−1) +

k
∑

j=1

γj ·∇Bi
fj(B

∗
1 , . . . ,B

∗
m−1) + VBi

ΛiV
T
Bi
−VBm

ΛmV T
Bm

= 0,

∀i = 1, . . . ,m− 1
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VII. The existence of a strict direction

Proposition VII.1: Let B∗
1 , . . . ,B

∗
m−1 be an optimal solution of the problem in equation

(3-20). If S Â 0 (strictly positive) and B∗
m = S−∑m−1

i=1 B∗
i 6= 0, there exists a strict direction

at B∗
1 , . . . ,B

∗
m−1.

Proof: Let rB∗
k
, k = 1, . . . ,m denote the number of null eigenvalues in B∗

k (where

B∗
m = S −∑m−1

i=1 B∗
i ) and v

B∗
k

i , i = 1, . . . , rB∗
k

denote orthogonal unit-length eigenvectors of

B∗
k which correspond to zero eigenvalues. Let zk =

∑rB∗
k

i=1 βiv
B∗

k

i for some choice of scalars βi.

We need to show that there exists a set of matrices L1, . . . ,Lm such that

1. zT
k Lkzk > 0, for all k ∈ {j = 1, . . . ,m− 1 | rB∗

j
> 0} and for every choice of scalars, βi,

such that zk 6= 0.

2. If rB∗
m

> 0, then zT
m

(

∑m−1
j=1 Lj

)

zT
m < 0 for every choice of scalars, βi, such that zm 6= 0.

3. tr{∇RG
i (B∗

1...m−1,S,Ñ1...m−1) · (L1, . . . ,Lm−1)
T} > 0, ∀i = 1, . . . ,m− 1.

Note that the above conditions are equivalent to those in definition 3.4.

For that purpose, we suggest a direction, L∗
1, . . . ,L

∗
m−1 of the form

L∗
i = −B∗

i +
1

m

∑

j 6=i , j<m

B∗
j + αiB

∗
m , i = 1, . . . ,m − 1 (VII-1)

for some αi > 0, i = 1, . . . ,m− 1. We begin by checking the first condition. As zk is a

linear combination of orthogonal eigenvectors corresponding to null eigenvalues of B∗
k, we

can write:

zT
k L∗

kzk =
1

m

∑

j 6=i , j<m

zT
k B∗

j zk + αiz
T
k B∗

mzk

As B∗
i º 0, i = 1, . . . ,m, it is clear from the above equation that zT

k L∗
kzk ≥ 0. Assume that

for some zk 6= 0 we get zT
k L∗

kzk = 0. This can only occur if zT
k B∗

j zk = 0, ∀j 6= k which implies

that zT
k (

∑m

j=1 B∗
j )zk = zT

k Szk = 0. However, we assume that S Â 0, and therefore, for any

zk 6= 0, zT
k Szk > 0. Thus we have proved that the first condition holds for any choice of
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αi > 0.

To prove that the second condition holds for our choice of direction, L∗
1, . . . ,L

∗
m−1, and

when rBm
> 0, we write:

zT
m

(

m−1
∑

i=1

L∗
i

)

zm = zT
m

(

− 2

m
(S − B∗

m) +
m−1
∑

i=1

αiB
∗
m

)

zm = − 2

m
zT

mSzm < 0

for every choice of βi such that zm 6= 0.

Note that to show that the first two requirements hold, we did not use the assumption

that B∗
m 6= 0. That is, we have shown that if S Â 0, we can find a direction for which the

first two conditions hold. This fact is of importance in the proof of the following proposition

(VII.2).

Next, we need to show that we can choose the scalars, αi > 0, such that the third

condition is met. Using the explicit expression for the rate gradients (3-21), we can rewrite

the directional gradient of the i’th rate as follows:

tr{∇RG
i (B∗

1...m−1,S,Ñ1...m−1) · (L∗
1, . . . ,L

∗
m−1)

T}

=
m−1
∑

j=1

tr{∇Bj
RG

i (B∗
1...m−1,S,Ñ1...m−1) ·L∗

j}

=
i−1
∑

j=1

tr{∇Bj
RG

i (B∗
1...m−1,S,Ñ1...m−1) ·L∗

j}+ tr







1

2

(

i
∑

l=1

(Bl + Ñl)

)−1

L∗
i







=
i−1
∑

j=1

tr{∇Bj
RG

i (B∗
1...m−1,S,Ñ1...m−1) ·L∗

j}

+ tr







1

2

(

i
∑

l=1

(Bl + Ñl)

)−1 (

−Bi +
1

m

∑

j 6=i , j<m

Bj

)







+ αi · tr







1

2

(

i
∑

l=1

(Bl + Ñl)

)−1

Bm







In general, we observe that the directional gradient of the i’th rate depends only on

L1, . . . ,Li, or alternatively, on α1, . . . ,αi. Therefore, we will set the values of αi recursively
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such that αi will be a function of αj, j = 1, . . . , i− 1. We observe that for i = 1, the first

summand in the last equality in the above expression does not exist. Furthermore, note that

because, Bm 6= 0 is positive semi-definite and
(

∑i

l=1(Bl + Ñl)
)−1

is strictly positive definite,

the last summand is always positive and could be made arbitrarily large by choosing α1 to

be large enough. Therefore, we choose α1 to be large enough such that the entire expression

is positive for i = 1. For i = 2, again, the last summand can be made arbitrarily large by

choosing α2 to be large enough. Thus, we can recursively choose αi, such that the directional

derivative is positive for all i = 1, . . . ,m− 1.

Proposition VII.2: Let B∗
1 , . . . ,B

∗
m−1 be an optimal solution of the problem in equation

(4-7). If S Â 0 (strictly positive), there exists a strict direction at B∗
1 , . . . ,B

∗
m−1.

Proof: We suggest a direction, L∗
1, . . . ,L

∗
m−1 of the form

L∗
i = −B∗

i +
1

m

∑

j 6=i , j<m

B∗
j + αiB

∗
m , i = 1, . . . ,m − 1 (VII-2)

for some αi > 0, i = 1, . . . ,m− 1.

As a byproduct of the proof of the previous proposition (VII.1), we have shown that if

S Â 0, this direction is also a strict direction for the problem in (4-7).

Appendix VIII

Proposition VIII.1: Let Ni Â 0, i = 1, . . . ,m, Bi º 0, i = 1, . . . ,m and Oi º 0, i = 1, . . . ,m

be t× t matrices such that Bi ·Oi = 0t×t, i = 1, . . . ,m and such that for all k = 1, . . . ,m,

γk+1

(

k
∑

i=1

Bi + Nk+1

)−1

+ Ok+1 = γk

(

k
∑

i=1

Bi + Nk

)−1

+ Ok (VIII-3)
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for some 0 < γ1 ≤ . . . ≤ γm. Then, we can find a set of t× t matrices, 0 ¹ N ′
1 ¹ ·· · ¹ N ′

m such

that N ′
i ¹ Ni, ∀i = 1, . . . ,m and such that for all k = 1, . . . ,m,

γk+1

(

k
∑

i=1

Bi + Nk+1

)−1

+ Ok+1 = γk+1

(

k
∑

i=1

Bi + N ′
k+1

)−1

= γk

(

k
∑

i=1

Bi + N ′
k

)−1

= γk

(

k
∑

i=1

Bi + Nk

)−1

+ Ok

(VIII-4)

Furthermore,

|
∑k

i=1 Bi + Nk|
|
∑k−1

i=1 Bi + Nk|
=

|
∑k

i=1 Bi + N ′
k|

|
∑k−1

i=1 Bi + N ′
k|

, ∀k = 1, . . . ,m

Before proving the proposition we give two intermediate results.

Proposition VIII.2: Let B º 0, X Â 0 and O º 0 be t× t symmetric matrices such that

B ·O = 0t×t and let α be a strictly positive scalar. Then, the following statements hold:

1. α(B + X)−1 + O = α(B + X ′)−1 where X º X ′ = (X−1 + 1
α
O)−1 Â 0

2. |B+X|
|X|

= |B+X′|
|X′|

Proof: To prove the first statement, we will show that
(

(B + X)−1 + 1
α
O

)−1
= B + X ′

where X ′ is as defined in the statement. For that purpose we write,

(

(B + X)−1 +
1

α
O

)−1

=

(

(B + X)−1

(

I + (B + X)
1

α
O

))−1

−B + B

(a)
=

(

I +
1

α
XO

)−1

(B + X)−B + B

(b)
=

(

I +
1

α
XO

)−1 (

(B + X)−
(

I +
1

α
XO

)

B

)

+ B

=

(

I +
1

α
XO

)−1

X + B =

(

X−1

(

I +
1

α
XO

))−1

+ B

= B +

(

X−1 +
1

α
O

)−1

where in (a) and (b) we used B ·O = 0t×t.
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We can now prove the second statement. As (B + X ′)−1 = (B + X)−1 + 1
α
O, we can

write:

|B + X ′|
|X ′| =

|I|
|X ′(B + X ′)−1| =

|I|
|(B + X ′ −B)(B + X ′)−1|

=
|I|

|I −B(B + X ′)−1| =
|I|

∣

∣I −B
(

(B + X)−1 + 1
α
O

)∣

∣

(a)
=

|I|
|I −B(B + X)−1| =

|B + X|
|X|

where, once again, in (a) we used B ·O = 0t×t.

Proposition VIII.3: Let X1 Â 0, X2 Â 0, B1 º 0, B2 º 0 and O2 º 0 be t× t symmetric

matrices such that B2 ·O2 = 0t×t. Given that for some scalar 0 < α ≤ 1, (B1 +X2)
−1 +O2 =

α(B1 + X1)
−1, the following two statements hold:

1. (B1 + X2)
−1 + O2 = (B1 + X ′

2)
−1 for some X ′

2 satisfying X2 º X ′
2 º X1.

2. |B1+B2+X2|
|B1+X2|

=
|B1+B2+X′

2|

|B1+X′
2|

Proof: Define K = (B1 + X2)
−1 + O2. As O2 º 0, we know that K−1 ¹ (B1 + X2) and

since 0 < α ≤ 1 and (B1 + X2)
−1 + O2 = α(B1 + X1)

−1, we know that (B1 + X1) ¹ K−1 ¹

(B1 +X2). Therefore, by choosing X ′
2 = K−1−B1, we have X2 º X ′

2 º X1 and we can write:

(B1 + X ′
2)

−1 = K = (B1 + X2)
−1 + O2

By the above equation we may write:

|B1 + B2 + X ′
2|

|B1 + X ′
2|

=
|B2(B1 + X ′

2)
−1 + I|

|I| =
|B2 ((B1 + X2)

−1 + O2) + I|
|I|

=
|B2(B1 + X2)

−1 + I|
|I| =

|B1 + B2 + X2|
|B1 + X2|

July 14, 2004—4 : 54 am DRAFT



THE CAPACITY REGION OF THE GAUSSIAN MIMO BROADCAST CHANNEL 82

Proof of Proposition VIII.1: For brevity, we rewrite expression (VIII-3) with some

notational modifications. Define

Lk =

(

k
∑

i=1

Bi + Nk+1

)−1

+
1

γk+1

Ok+1

Rk = γk

(

k
∑

i=1

Bi + Nk

)−1

+ Ok k = 1 . . .m− 1,

(VIII-5)

By (VIII-3), we have

Lk =
1

γk+1

Rk, ∀k = 1 . . . m − 1. (VIII-6)

We need to show that

Lk =

(

k
∑

i=1

Bi + N ′
k+1

)−1

=
γk

γk+1

(

k
∑

i=1

Bi + N ′
k

)−1

=
1

γk+1

Rk, ∀k = 1, . . . ,m − 1

(VIII-7)

for some matrices N ′
1, . . . , N

′
m such that N ′

i ¹ Ni, ∀i and such that 0 ≺ N ′
1 ¹ ·· · ¹ N ′

m.

Furthermore, we need to show that for these matrices, N ′
1, . . . ,N

′
m, we have

|∑k

i=1 Bi + Nk|
|∑k−1

i=1 Bi + Nk|
=

|∑k

i=1 Bi + N ′
k|

|∑k−1
i=1 Bi + N ′

k|
, ∀k = 1, . . . ,m. (VIII-8)

We use induction on k and begin by exploring (VIII-5) and (VIII-6) for k = 1. As

O1 º 0 and as B1 ·O1 = 0, by Proposition VIII.2, we can replace R1 with γ1(B + N ′
1)

−1

where 0 ≺ N ′
1 ¹ N1. Furthermore, by the same proposition we have |B1+N1|

|N1|
=

|B1+N ′
1|

|N ′
1|

. Since

γ2 ≥ γ1, by Proposition VIII.3, L1 can be replaced by (B1 + N ′
2)

−1 such that N ′
1 ¹ N ′

2 ¹ N2

and in addition |B1+B2+N2|
|B2+N2|

=
|B1+B2+N ′

1|

|B1+N ′
2|

and therefore, (VIII-7) holds for k=1 and (VIII-8)

holds for k = 1,2.

Next, we assume that (VIII-7) holds for k = 1, . . . ,n for some 1 ≤ n < m with matrices

N ′
1, . . . ,N

′
n+1 such that N ′

i ¹ Ni, i = 1, . . . , n + 1 and such that 0 ≺ N ′
1 ¹ ·· · ¹ N ′

n+1 and

prove that (VIII-7) must hold for k = 1, . . . ,n+1 and (VIII-8) holds for k = 1, . . . ,n+2 with
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matrices N ′
1, . . . ,N

′
n+2 such that N ′

i ¹ Ni, i = 1, . . . ,n+2 and such that 0 ≺ N ′
1 ¹ ·· · ¹ N ′

n+2.

For that purpose, we define

Q =
n

∑

i=1

Bi + Nn+1. (VIII-9)

As On+1 º 0 and as Bn+1 ·On+1 = 0t×t, we can use Proposition VIII.2 to rewrite the expression

for Rn+1 in (VIII-5) as follows,

Rn+1 = γn+1(Bn+1 + Q)−1 + On+1 = γn+1(Bn+1 + Q′)−1 (VIII-10)

where Q′ ¹ Q and where Q′ = (Q−1 + 1
γn+1

On+1)
−1. However, by (VIII-9) and (VIII-5), we

may write Q′ = L−1
n . Furthermore, by our induction assumption, (VIII-7) holds for k = n

and therefore, we may write

Q′ = L−1
n =

n
∑

i=1

Bi + N ′
n+1. (VIII-11)

Thus, by (VIII-11), (VIII-10), (VIII-5) and (VIII-6) we may write

Ln+1 =

(

n+1
∑

i=1

Bi + Nn+2

)−1

+
1

γn+2

On+2 =
γn+1

γn+2

(

n+1
∑

i=1

Bi + N ′
n+1

)−1

=
1

γn+2

Rn+1.

As On+2 º 0 and as γn+1

γn+2
≤ 1, we can use Proposition VIII.3 to rewrite the above expression

as follows:

Ln+1 =

(

n+1
∑

i=1

Bi + N ′
n+2

)−1

=
γn+1

γn+2

(

n+1
∑

i=1

Bi + N ′
n+1

)−1

=
1

γn+2

Rn+1.

for some N ′
n+2 º N ′

n+1 and such that N ′
n+2 ¹ Nn+2. Furthermore, by the same proposition

we have

|
∑n+2

i=1 Bi + Nn+2|
|∑n+1

i=1 Bi + Nn+2|
=

|∑n+2
i=1 Bi + N ′

n+2|
|∑n+1

i=1 Bi + N ′
n+2|

,

and thus we have shown that (VIII-7) holds for k = 1, . . . ,n + 1 and that (VIII-8) holds for

k = 1, . . . ,n + 2. ¥
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