
Approximation Algorithms for Delay-Sensitive
Multicast Routing

Ariel Orda Alexander Sprintson
Department of Electrical Engineering, Parallel and Distributed Computing Group,

Technion—Israel Institute of Technology. California Institute of Technology.
Email: ariel@ee.technion.ac.il. Email: spalex@caltech.edu.

Abstract

Emerging group applications require efficient multicast schemes that provide Quality of Service (QoS) guar-
antees. QoS can be achieved by provisioning multicast trees that satisfy QoS constraints. Since the efficient usage
of network resources is an important requirement, the cost of the constructed multicast tree should be as small as
possible. Accordingly, in this study we investigate the fundamental problem of finding a multicast tree that satisfies
end-to-end QoS constraints at minimum cost. We focus on additive QoS constraints such as delay or jitter, which
are more difficult to handle.

This problem has been extensively studied. However, existing solutions have either relied on heuristic approaches
or considered special cases, such as the case where the delay and cost of each link are identical. Moreover, many
of the heuristic approaches are based on restricting assumptions, such as symmetric link delays. In this study we
propose a novel algorithmic scheme, with proven performance guarantees, for this fundamental multicast problem.
Effectively, this scheme allows to obtain an approximate solution to this problem out of any given approximate
scheme of its (simpler) unconstrained directed version, with about identical (� -close) performance guarantees.

Keywords: Routing, Multicast, Quality of Service.

lesley
CCIT Report #494 July 2004

I. INTRODUCTION

Multicast is an important network mechanism that allows simultaneous transmission of data to multiple destina-
tions with minimal bandwidth consumption. In order to support new applications such as multimedia streaming and
video conferencing, multicast mechanisms are expected to provide a certain degree of Quality of Service (QoS). A
fundamental problem in this context is to identify multicast trees that satisfy end-to-end QoS constraints at minimum
cost. Since bottleneck QoS constraints, such as bandwidth, can be efficiently handled by pruning infeasible links,
we focus on additive QoS constraints, such as delay or jitter, which are much more difficult to handle.

Finding multicast trees that support additive QoS constraints is an intractable problem, as it contains the Minimum
Steiner Tree (MST) and Restricted Shortest Path (RSP) problems, each known to be

���
-hard [7]. Essentially, MST

is a special case of our problem with no QoS constraints, whereas RSP is the special case of unicast. The first
problem, MST, has been extensively investigated for undirected networks, and several efficient solutions, of constant
approximation ratios, have been established (see, e.g., [10]). For directed networks, the only general solution was
recently established in [3]. The second problem, RSP, has been the subject of several studies [4], [8], [9], [13],
which proposed efficient approximation schemes. In particular, several efficient algorithms have been proposed for
computing a path that satisfies the delay constraint and whose cost is at most �����	��
 times higher than the optimum.

The problem that we consider, namely establishment of efficient QoS multicast routing schemes, has attracted
a large body of research (see e.g., [1], [5], [11], [15]–[17], [19], [21] and references therein). A good survey of
multicast routing protocols and their QoS extensions can be found in [18]. Many of these studies employed heuristic
approaches [1], [5], [11], [15], [17], [21]. Moreover, these heuristics were often based on restricting assumptions,
such as symmetry of link delays [5], [11], [15], [21]. Provable approximate solutions have been proposed, however
they either considered restricted special cases, or else incurred a potentially large violation of the QoS constraint. For
example, [12] effectively deals with our problem, however in the special case of identical link delays. As another
example, [19] also dealt with our problem, however in the special case where the delay and cost of each link
are identical. Obviously, such simplifying assumptions do not hold in many practical settings. In [14], a provable
approximation to our problem has been presented, however it allows a violation of the delay constraint by a factor
as large as ������ , where � is the number of nodes; moreover, it assumes symmetric links. Hence, to the best of
our knowledge, no solution of provable performance has been established to this fundamental multicast problem for
general networks and no violation of the QoS constraints. Accordingly, in this study, we propose novel schemes for
general directed networks that achieve, for any fixed ����� and ����� , an approximation ratio of ��������
������ �!�"
$#�%�&$' ,
where # is the number of terminals, i.e., our schemes find a tree that (strictly) satisfies the QoS constraints and
whose cost is at most �����(��
������)�*�"
$# %�&$' times higher than the optimum. For an asymptotically large number of
terminals, the approximation ratio is upper-bounded by �����+,# . A proven lower bound for this problem is �.-/# [2].
Although the ideas that led to development of the schemes as well as performance proofs are rather involved, the
schemes per se are relatively simple and easy to implement.

Due to the fundamental nature of the considered problem, our results can by used in a variety of practical
applications. Indeed, any multicast architecture that provides a certain degree of quality of service requires efficient
schemes for identification of QoS trees.

The rest of this paper is organized as follows. In Section II, we formally state the considered problems. In
Section III, we briefly describe the algorithm of [3] for the MST problem in directed graphs, which serves as a
building block in our solution. Next, in Section IV, we present the first approximation algorithm, which, while
conceptually simple, incurs a high computational complexity. Accordingly, in Sections V and VI we present
two additional algorithms, whose computational complexities are reasonable. Finally, we discuss our results in
Section VII.

II. MODEL AND PROBLEM FORMULATION

Let 01�325476�
 be a directed graph, where 2 is the set of vertices and 6 is the set of edges. We denote �98;:<2	: and= 8;: 6>: . A path is a finite sequence of vertices
� 8@?BADC�4EA % 4GFGFGFH4EA�IKJ , such that, for �1LM��L*NO�M� , ��A ' 4EA '.PQ%
SRT6 .

A directed tree U is a subgraph of 01�325476�
 with a source vertex V such that every vertex A	RTU is reached from V
by a unique path. We use a tree in order to interconnect the source V and terminals WX8@?ZY % 4EY + 4GFGFGFH4EYE[\J . Given a
tree U , a path between the source V and a vertex A�R]U on edges that belong to U is denoted by

�_^a`cb dfe
.

We assume that each edge offers a delay guarantee g�h . The delay ij� �
 of a path
�

is the sum of delays of its
edges, i.e., ik� �
58@l h�m�n goh . Each edge is also associated with a nonnegative cost p"h . The cost qr� �
 of a path

�

2

is defined to be the sum of the costs of its edges, i.e., qO� �
/8 l h.mZn p h . Similarly, the cost qr� U�
 of a tree U isqr� U�
 8 l h�m ` p h . We assume that all parameters (cost and delays) are (non-negative) integers.
Definition 1 (Transitive closure): The transitive closure

�0 of 0 is a graph that includes, for each pair of vertices� and A in 0 , an edge � � 4EA
 such that p ^ � b d�e is the minimum cost of a path from � to A in 0 .
Definition 2 (� -level tree): Let U be a tree with source V . U is said to be an � -level tree if for, each vertex A>R!U ,

it holds that the path between V and A in U includes at most � edges.
We are now ready to formulate the problem considered in this study.
Problem RST (Restricted Steiner Tree): Given a graph 0 , a source V , a set of # terminals W 8 ?BY % 4GFGFGFH4EYE[J

and a delay constraint i , find a minimum cost tree U that connects V to each terminal Y��	R W and satisfies the
delay constraint i , i.e., for each Y � R!W it holds that ik� � ^a`cb ���$e
SL�i .

An instance �30�4 V 4EW 47i>
 of Problem DST is denoted by 	�
 . We denote by ���� ��	�

 the cost of an optimal
solution for an instance 	�
 .

Our approximation algorithm for Problem RST employs a reduction to the following problem of finding an
(unconstrained) Steiner tree in directed graphs.

Problem DST (Directed Steiner Tree): Given a directed graph 0 , a source V and a set of # terminals W 8?BY % 4GFGFGF 4EYE[_J , find a minimum cost tree U Rk0 that connects V and each terminal Y � RTW .
An instance �30�4 VD4EWj
 of Problem DST is denoted by 	��
 . We denote by ���� ��	��

 the cost of an optimal solution

for instance 	 �
 . We also denote by ���� ^
'
e
��	 �

 the cost of the optimum � -level tree that solves instance 	 �
 of

Problem DST. An approximation algorithm for Problem DST was presented in [3].
Another related problem is to find a minimum cost (unicast) path that satisfies a given delay constraint. In effect,

this is the Restricted Shortest Path problem, defined as follows.
Problem RSP (Restricted Shortest Path): Given a source vertex V , a destination vertex Y and a delay constrainti , find a minimum cost path

�
between V and Y such that ik� �
 L�i .

Several efficient approximation schemes have been proposed for this problem. In particular, [13] presented a
scheme that computes, in �>� = � � %� �k������.�� �j
E
 time, a path that satisfies the delay constraint i and whose cost
is at most ��� �>��
 times higher than the optimum; we refer to this solution as Algorithm RSP-1. Taking a somewhat
different approach, [8] proposed to alleviate the delay constraints and presented an algorithm that computes, for
each vertex AkR 2 , a path between V and A such that ik� �
 L ��������
$i and qr� �
 L����� , where ���� is the
cost of an optimal path between V and A that satisfies the delay constraint i . The computation complexity of this
algorithm is �>� %� � = �M�@������j
$�
 ; we refer to this solution as Algorithm RSP-2.

Our results

Since the considered problem is
���

-hard, we focus on (provable) approximate solutions. We present three ap-
proximation algorithms for Problem RST. The first algorithm provides a solution whose cost is at most �����)���"
$# %�&$'
times higher than the optimum, for any integer ��� � . The computational complexity of the algorithm depends on
the values of the edge delays, hence can be prohibitively high. The complexities of the second and third algorithms
are much lower, and do not depend on delay values. The second algorithm allows a small violation of the delay
constraint. More specifically, it computes a tree U such that, for each Y � R!W , it holds that ij� � ^a`cb ���$e
�L ���c� ��
$i
and qr� U
SL ��������
��f��� �!�"
$# %�&$'����� ��	�

 , for any ����� and integer � � � . The third algorithm provides a solution
that does not violate the delay constraint and whose cost is at most ��� � ��
 + ����� � �"
$# %�&$' times higher than the
optimum, for any �����1L@� and integer �/�@� . The computational complexity of the second and third algorithms
are �>��� '�� �"! '$#,% # + '$#,%f
 and �>�E� ����������� �M���� %�
%� �&! '�#,% #('�'$# +
 , respectively.

III. PRELIMINARIES: APPROXIMATION ALGORITHM FOR PROBLEM DST

Previous studies [3], [12] have pointed out that problems RST and DST are closely related. We exploit this
relation by constructing a reduction from Problem RST to Problem DST. Then, we solve Problem DST by using
the algorithm presented in [3]. In this section we briefly describe the algorithm of [3].

The algorithm, referred to as Algorithm DST, uses the notion of density of a multicast tree, which is defined to
be the ratio between the tree cost and the number of terminals.

Algorithm DST includes a recursive procedure A ' � # 4�)Z4+*O
 , which identifies an � -level tree U that connects vertex) with at least # terminals *,�.-/* . More specifically, Procedure A % � # 4�)�4+*O
 finds the # terminals that are closest

3

to the root and connects them to the root by using shortest paths; for � � � , Procedure A ' � # 4�)Z4+*�
 repeatedly finds
a vertex A and a number # � 4B�_L�# � L�# , such that the density of the tree U '�#,% � # � 4EA 4+*r
��1?o�$)Z4EA�
 J is the minimal
among all trees of this form, where U '$#,% � # ��4EA 4+*r
 is the tree returned by the invocation of Procedure A '$#,% for� # ��4EA 4+*r
 . The detailed description of Algorithm DST can be found in Fig. 1.

Algorithm DST (�
 �30�4 VD4EWj
�4E�):
input:���� - an instance of Problem DST�

- the graph,� - source node.
	��
 ��7b � � � b ����� - the set of [terminals.' - the level of the returned tree.
output:`

- A solution to
� � .

1 ��� A �������������!
2 return �

Procedure A �"������#$��%&
1 if there do not exist [terminals reachable from ' then
2 return (
3

`*) (
4 while [,+_C
5

`.-0/01324) (; [-5/61728) C
6 for each link

^ ' b�d�e m � and each [� b %:9 [� 9 [
do

7
` �)

A �<; � ^ [� b dBb>=Qe@?
 ^ ' b dfeA�
8 if BDCFEHGJIJK�LNM� GJIJK�L O BDCPERQSM� Q then

9
` -0/6172)(` �

; [-5/6172) [�
10

= �)
 �UTWV �UT m =YX �UT m `.-5/6172R�
11

`Z)(`Y?�`.-0/0132
12

=*)[=]\D= �
13 [)^V =_V
14 return

`
Fig. 1. Algorithm DST

We denote by 	 = the instance of Problem DST that seeks a minimum cost tree connecting V and the group of
terminals * . Let �������	 =
 be the cost of an optimal solution for this instance.

The following theorem was proven in [3].
Theorem 1 [3]: Given an instance 	 �
 8 �30�4 VD4EWj
 of Problem DST and an integer �74B� L � L ���� : WM: ,

Algorithm DST returns a tree U that satisfies qO� U
�L������)�M�"
$#M%�&$' ���� ��	 �

 .
By Theorem 1, Algorithm DST returns a tree whose cost is at most ����� � �"
$#M%�&$' times more than the optimum.

For our purposes, we shall need a more general version of Theorem 1. In particular, we establish that the algorithm
returns a tree whose cost is at most ����� �!�"
$# %�&$' �q , provided that

�q satisfies the following condition: for each subset* of W , it holds that
�qa`cbedgf hFikj ^ � Ql ^ � b � b =Qe eV =_V m>n i . We note that, for certain instances 	 �
 of Problem DST, it might be

the case that
�q L �������	 �

 .

Theorem 2 : Given are an instance 	 �
 8 �30�4 VD4EWj
 of Problem DST and an integer � 4B�_LM� L����� : WM: . Denote:

�q 8poZq@r=_s
 t ���� ^ ' e ��	 �= �30�4 V 4+*r
E

: *!: %�&$' uwv

Then, Algorithm DST returns a tree U that satisfies qr� U�
/LM�����Q���"
$#(%�&$' �q .
Proof: See Appendix A.

Theorem 3 : Let x be the maximum number of edges that originate from a vertex in 0 . Then, the computation
complexity of Algorithm DST is �>�>xH'$#,%7# + '�#,%f
 .

Proof: The computational complexity of procedure A ' for �O8 � is �>� #
 . Note also that Procedure A '
invokes Procedure A '$#,% at most x # + times. Hence, the computational complexity of Procedure A ' and, in turn,
Algorithm DST is �>�>x '$#,% # + '$#,%
 .

4

f1Instance IX of
Problem RST

'

Algorithm
DSTg1

Instance IX' of
Problem DST

'Solution T of
Instance IX'

Solution T of
Instance IX '

Fig. 2. Reduction from Problem RST to DST

IV. FIRST APPROXIMATION: SIMPLE BUT INEFFICIENT

In this section we present the first approximation algorithm, which, while conceptually simple, incurs a high
computational complexity.

A. � -Reductions

We begin by introducing the concept of � -Reductions, which allow to establish an approximation algorithm for
Problem RST out of any given approximation algorithm for Problem DST. In this section we describe � % -reductions,
while � + - and � ' -reductions are introduced in sections V and VI, respectively.

Definition 3 (� % -reduction): A � % -reduction from Problem RST to Problem DST is a duple ��� % 4�� %
 that satisfies
the following:

� The function � % maps an instance 	�
��30�4 VD4EW]47i!
 of Problem RST to an instance 	��
 Q �30 � 4 V ��4EW"�
 of Prob-
lem DST such that �������	 �
 Q
�L �������	

 ;� The function � % maps a solution U � of 	 �
 Q to solution U of 	�
 such that qO� U
c8 qr� U �
 .

Let ��� % 4�� %
 be a � % -reduction. Then, we can employ the following procedure, in order to obtain an approximation
scheme for Problem RST. Given an instance 	
 of Problem RST we compute an instance 	 �
 Q of Problem DST
by invoking function � % . Next, we find a solution U � of 	 �
 Q by applying Algorithm DST. Finally, we identify a
solution U of 	�
 by invoking function � % on U � . Fig. 2 depicts the process of computing a solution for instance	�
 of Problem RST.

B. Layers Graph

We proceed by presenting a structure, termed Layers Graph, which allows to establish a � % -reduction ��� % 4�� %

from Problem RST to Problem DST.

The purpose of the Layers Graph, denoted by
�� % , is to distinguish between trees that connect the source V to

the terminals W and also satisfy the delay constraint i , and all other trees in 0 . Specifically, the layer graph
�� % is

constructed as follows. First, we compute, for each two vertices � and A and each delay constraint g , � L�g�L�i , a
minimum cost path

���^ � b d�e between � and A whose delay is at most g . Next, for each vertex A>R 0 , we add i@���
vertices A C 4GFGFGFQ4EA	� to

�� % . For each ATR 0 and each g , �>L g!L i �*� , we add to
�� % an edge ��A � 4EA � PQ%
 whose

cost is � . Next, for each two vertices, � � and A � , such that
k� g , we add to
�� % an edge � � � 4EA �
 whose cost isp ^ ��� b d � e 8 qO� � � # �^ � b d�e
 . Fig. 3(b) depicts an example of a Layers Graph.

Consider a tree U in 0 that connects V and the terminals WX8@?BY % 4GFGFGFQ4EY�[\J , and, in addition, satisfies the delay
constraint i . We show that there exists a corresponding tree U �cR �� % that connects V C and W"�Q8 ?BY � % 4GFGFGFH4EY �[J ,
such that qr� U
58 qO� U �
 . The tree U � is defined recursively, starting with vertex V C . First, for each vertex A�R]U ,
compute the delay g d of the path between V and A in U , i.e., g d 8 ij� � ^a`cb dfe
 . Next, for each edge E� V 4EA�
\R U ,
we add to U � an edge � V C 4EA ���
 . Next, we grow the tree from each vertex A ��� : for each edge ��A 4 �
 R U we add
to U � an edge ��A ��� 4 � ���
 . Next, we proceed to grow the tree from vertex � ��� an so on. The process ends with
a tree U � that connects V and vertices ?BY ��� m% 4GFGFGFH4EY � ���[J . Note that, for each Y � R W , it holds that g ��� L i . We
then use edges ��Y �� 4EY � PQ%�
 of zero cost in order to construct a tree U � that connects V and the terminals W(� 8?BY�� % 4GFGFGFH4EY��[J . For example, consider the tree U 8 ?o� V 4 �
�4"� � 4EA
�4"� � 4��
 J in Fig. 3(a). The corresponding treeU � 8@?o� V C 4 � %f
�4"� � %B4EA���
�4"� � %B4�� +
�4"��� + 4�� '"
�4"��� ' 4����Z
 J in the Layers Graph

�� % is marked by bold lines in Fig. 3(b).

5

�� � �� �

�� � �� �� � 	�

�� �
�

�
 � ��

�

�

�

�

�

�

�

�

�

�

	

	

�
�

�

�
�

�
�

�

�

�
�

�

�
�

�
�

�
�

�

�
� �

�

�
�

�

�
�

�
�

�

	

	�

Fig. 3. (a) Original Graph � . Associated with each edge are its delay and cost. (b) Layers Graph
�� �

(some of the edges are omitted).

Similarly, it can be shown that, for each tree U � in
�� % that connects V C and W � 8;?BY�� % 4GFGFGFH4EY�� [J , there exists a

tree U in 0 that connect V and the terminals W , such that U satisfies the delay constraint i and qO� U�
58 qr� U �
 .
The reduction ��� % 4�� %
 is then defined as follows.
Definition 4 (Reduction ��� % 4�� %
): A reduction ��� % 4�� %
 is a pair of functions � % 4�� % such that:

1) The function � % gets as input an instance 	�
 8 �30 4 V 4EW 47i>
 of Problem RST and returns an instance	 �
 Q 8 � �� % 4 V C 4EW �
 of Problem DST, where
�� % is a Layer graph and W � 8@?BY�� % 4GFGFGFQ4EY�� [J .

2) The function � % gets as input a solution U,� of 	 �
 Q and returns a tree

U 8 �^ � � b d � e m ` Q � � # �^ � b d�e 4 (1)

where ? � �^ � b d�e J are paths computed during the construction of the Layers Graph
�� % .

The � % -reduction ��� % 4�� %
 gives rise to the corresponding approximation algorithm, referred to as Algorithm RST-
1. Specifically, given an instance 	
 of Problem RST we compute an instance 	 �
 Q of Problem DST by invoking
function � % . Next, we find a solution U � of 	 �
 Q by applying Algorithm DST. Finally, we identify a solution U of	
 by invoking function � % on U � . The detailed description of the algorithm appears in Fig. 4.

Theorem 4 : Algorithm RST-1 returns a solution U to instance 	
 of Problem RST such that qr� U1
1L;�f��� ��"
$# %�&$' �������	�
\
 .
Proof: See Appendix B.

Note 1 : In Algorithm RST-1, we can substitute Algorithm DST with any approximation algorithm for Prob-
lem DST and obtain, through a � % reduction ��� % 4�� %
 , a solution to Problem RST with the same approximation
ratio as for Problem DST. For example, for the special case of a small number of terminals, [6] presents an
algorithm that identifies an exact (i.e., optimal) solution to Problem DST within the computational complexity
of �>� = � � [# + � � � [#,% ���� �
 . By employing this algorithm, we can identify an exact (optimal) solution for
Problem RST in that special case.

Due to the large size of the Layers Graph
�� % , the computational complexity of Algorithm RST-1 is too high.

Indeed, since
�� % has �>� �(Fai>
 vertices, the running time of Algorithm DST is �>�E� � F"i!
 '$#,% # + '$#,%�
 (by Theorem 3).

In the following sections we show how to construct Layers Graphs of smaller size, which result in more efficient
approximation algorithms.

V. SECOND APPROXIMATION: EFFICIENT, BUT VIOLATES THE DELAY CONSTRAINT

A. Layers Graph
�� +

We begin by presenting a Layers Graph
�� + , which is similar to

�� % , but has a much smaller size. The idea
is to use the technique of linear scaling in order to build a Layers Graph

�� + with a much smaller number of
layers than in

�� % . Specifically, the layers of
�� + correspond to delay values ?"� 4��>4����>4GFGFGF)4 �i J , where �98 � � �'

and
�i 8�� F '

^
%�P � e� 8 ik���\�@��
 . We begin by computing, for each pair of vertices � 4EA R 0 and for eachg�R@?	�>4����>4GFGFGFH4 �i]J , a path

� �^ � b d�e between � and A such that ik� � �^ � b d�e
	L g and qr� � �^ � b dfe
	L ��� � ��
Eq �^ � b d�e ,

6

Algorithm RST-1 (�
 �30 4 V 4EW 47i>
�4E�):
input:� � - an instance of Problem RST�

- the graph,� - source node.
	��
 � � b � � � b � � � - the set of [terminals.

� - the delay constraint.' - the level of the returned tree.
variables:�� � ^ �� b �� e

- The Layers Graph.
output:`

- A solution to
� � .

1 for each pair of nodes
^ � b�d�e m � do

2 for each
�) % to � do

3 n��C��	�
HM) a minimum cost path between
d

and� whose delay is at most
�

4
��) (, ��) (

5 for each node
d m � do

6
��) �� ?
 d�� b � � � b d� �

7 for each
�

, C 9 � 9 � #\% do
8

��) �� ?
 ^ad � b d ��� � eA�
9 � C�
 � �
 ��� m M) C

10 for each pair of nodes
^ � � b d T e m ��

, � + � do

11
��) �� ?
 ^ � � b d T eA�

12 � C�� � �
 � M)��Q^ n T ; �C����
7M e
13

� �� Q) ^ �� �Eb � � b
 � � b � � � b � � ��e
14

` �)
DST

^ � �� Q b ' e
15

`*) �C�� � �
 � M��JE Q n T ; �C��	�
7M
16 return

`
Fig. 4. Algorithm RST-1

������ ��! �"��#� $#�!
��#��� %��!

�%#��� &��!
'

(

)

*

&
&

$

',+ (-+).+ * +

'0/-+ (/�+) /-+ *	/-+

',1 + (-1 +),1 + *21 +

%

%
&

$

$

$'03-+ (-3-+) 3-+ *	3-+&

$'04-+ (4-+)04-+ *	4-+&

5�687 5�9:7

Fig. 5. (a) Original graph � . Associated with each edge are its delay and cost. (b) Layers Graph
��<;

(for a small value of = , some of the
edges are omitted).

where q �^ � b d�e is the minimum cost of a path between � and A whose delay is at most g . To that end, we employ
Algorithm RSP-1 of [13].

The Layers Graph
�� + is then constructed as follows. For each vertex A R 0 , we add x 8 �

�> 8 '
^
%�P � e� vertices

?BA C 4EA > 4EA + > 4GFGFGFQ4EA �
� J to

�� + . For each ATR 0 and each g�47�>L g!L x]��� , we add to
�� + an edge ��A � � > 4EA

^ � PQ%
e >

with zero cost. Next, for each two vertices � � � > R �� + and A � � > R �� + ,
!�*g , we add an edge � � � � > 4EA � � >
 whose
cost is set to qr� �

^ � # � e >^ � b dfe
 . Fig. 5 depicts an example of original graph 0 and the corresponding Layers Graph�� + for i 8@? � , �O8 � and � 8 � . In this example we have �X8 ��� ,
�i 8BA�� and x 8@? . Note that the number

of vertices in Layers Graph
�� + is just 20, compared to � i � �"
8? 8 ��CD? vertices in the Layers Graph

�� % that
corresponds to 0 .

Far each tree U in 0 that connects V and the terminals W 8 ?BY % 4GFGFGFQ4EY�[\J , and, in addition, satisfies the delay

7

constraint i , there exists a corresponding tree U � R �� + that connects V C and W � 8 ?BY �� % 4GFGFGFH4EY
�
�[J , such thatqr� U�
/L ��� � ��
Eqr� U �
 . For example, consider the tree U 8@?o� VD4 �
�4"� � 4EA
�4"� � 4��
 J in Fig. 5(a). The corresponding

tree U � 8 ?o� V C 4 � + C
 , � � + C 4EA�� C
 , � � + C 4�� � C
 , ��� � C 4���� C
 , ��A�� C 4EA � C
 , ����� C 4�� � C
 J in the Layers Graph
�� + is marked

by bold lines in Fig. 5(b). Recall that in Layers Graph
�� % each vertex A>R 0 is mapped to A � � R �� % , where g d is

the delay of the path that between V and A in U . Thus vertex � is mapped to vertex � % C R �� % . Since there is no
such vertex in

�� + , vertex � is mapped to the nearest vertex of higher layer, i.e., � + C . We continue to grow the tree
from vertex � + C : edge � � 4EA�
 R U is mapped to edge � � + C 4EA�� C
 R U � , while edge � � 4��
_R U is mapped to edge� � + C 4�� � C
 .
B. � + -reductions

We proceed by introducing the concept of a � + -reduction, that allows to obtain an efficient approximation
algorithm for Problem RST.

Definition 5 (� + -reduction): A � + -reduction from Problem RST to Problem DST is a triple ��� + 4�� + 47��
 that satisfies
the following:

� � + maps an instance 	
 �30�4 VD4EW]47i!
 of Problem RST to an instance 	 �
 Q �30 � 4 V � 4EW �
 of Problem DST such that:
1) : W � :�8;: WM: ;
2) ���� ^ ' e ��	 �
 Q
�L �����(��
G: WM: %�&$' ���� ��	�
\
 ;
3) for each * � -MW � it holds that ���� ^

'
e
��	 �= Q
SL �����(��
G: * � : %�&$' �������	�

 , where 	 �= Q 8 �30 � 4 V � 4+* �
 .

� � + maps a solution U � of 	 �
 Q to a tree U R]0 such that

1) qr� U�
/L*qr� U �
 ;
2) for each Y � R!W it holds that ik� � ^a`5b � � e
�L �����(��
$i .

As we show below, a � + -reduction ��� + 4�� + 47��
 gives rise to an approximation algorithm for Problem RST that
allows a small violation (by a factor of �����(��
) of the delay constraint.

We proceed to define a � + -reduction ��� + 4�� + 47��
 .
Definition 6 (Reduction ��� + 4�� + 47��
): A reduction ��� + 4�� + 47��
 is a pair of functions � + , � + and an approximation

ratio � , such that:
� The function � + receives as input an instance 	�
 �30�4 VD4EW]47i!
 of Problem RST and an approximation ratio � , and

returns an instance 	 �
 Q � �� + 4 V C 4EW �
 of Problem DST, where
�� + is the Layers Graph and W � 8 ?BY ��� :KY � R!W J .� The function � + receives as input a solution U � of 	 �
 Q . The function returns a tree

U 8 �^ � � b d � e m ` Q �
^ � # � e^ � b d�e 4 (2)

where
� � ^ � e^ � b d�e�� are paths computed during the construction of the Layers Graph

�� + .
In order to show that ��� + 4�� + 47��
 is a valid � + -reduction (as per Definition 5) we will use the following lemma,

taken from [20].
Lemma 1 [20]: Let

�0 be a transitive closure of graph 0 . Then, for each tree U R �0 that connects the source V
with a group of terminals W , and for each � , ��L*� L ���� : WM: , there exists an � -level tree

�U in
�0 that connects V

with W such that qr� �U1
�L@: WM: %�&$',FZqr� U1
 .
Lemma 2 : ��� + 4�� + 47��
 is a valid � + -reduction.

Proof: See Appendix C.
The � + -reduction ��� + 4�� + 47��
 gives rise to the corresponding approximation Algorithm RST-2. Specifically, given

an instance 	
 of Problem RST we compute an instance 	 �
 Q of Problem DST by invoking function � + . Next, we
find a solution U � of 	 �
 Q by applying Algorithm DST. Finally, we identify a solution U of 	
 by invoking function
� + on U � . The detailed description of Algorithm RST-2 appears in in Fig. 6.

Theorem 5 : Given an instance 	�
 of Problem RST, Algorithm RST-2 identifies, in �>� � � ! '$#,% # + '�#,%�
 time, a
tree U R 0 such that qO� U
�L@�����(��
��f���)���"
$# %�&$' �������	�

 and ij� � ^a`5b ����e
�L �����(��
$i for each Y � R!W .

Proof: See Appendix D.

8

Algorithm RST-2 (�
 �30 4 V 4EW 47i>
�4E�747�):
input:� � - an instance of Problem RST�

- the graph� - source node
	��
 � � b � � � b � � � - the set of [terminals

� - the delay constraint' - the level of the returned tree� - the approximation ratio
variables:�� ; ^ �� b �� e

- The Layers Graph.
output:`

- A solution to
� � .

1 >)�� � �
2 for each pair of nodes

^ � b�d�e , � b d m � do
3 for each

�
, C 9 � 9 � do

4 n � � �C��	�
HM) RSP-1
^ � b � b dGb � � > b � e

5
��) (, ��) (

6 �) � C � � � M�
7

�
�
) > � �

8 for each node
d m � do

9
��) �� ?
 d�� b d � b d ; � b � � � b d�� � � �

10 for each
�) C to � do

11
��) �� ?
 ^ad � � � b d C �:� � M � � eA�

12 � C�
 ��� 	 �
 h � � m j � 	 M) C
13 for each pair of nodes

^ � � b d T e , � � b d T m � ,
� + '

do
14

��) �� ?
 ^ � � b d T e>�
15 � C�� � �
 � M � �Q^ n C T ; � M �C��	�
7M e
16

� �� Q) ^ �� ; b � � b
 ��
 � b � � � b ��
� ��e
17

` �)
DST

^ ���� Q b ' e
18

` � �C�� � �
 � M �JE Q n T ; �C����
7M
19 return

`
Fig. 6. Algorithm RST-2

VI. THIRD APPROXIMATION: EFFICIENT AND WITH NO DELAY VIOLATION

In this section we present an approximation algorithm for Problem RST that has low computational complexity
and does not violate the delay constraint. The idea is to use a new Layers Graph

�� ' that is similar to
�� % , but

contains much less edges and vertices. In order to construct
�� ' we need to have an estimate

on the value of�������	�

 . We assume for the moment that such an estimate is given, while later, in Section VI-D, we shall show

how to identify a sufficiently good estimate.

A. Path Aggregation

Recall that Algorithm RST-1 begins by computing the set � that includes, for each two vertices � and A and delay
constraint g , � L�g	L�i , a minimum cost path

� �^ � b d�e between � and A whose delay is at most g . The tree returned
by the algorithm comprises of paths that belong to � . Note that � contains a large number of paths � �>� � + i!
E
 .
Moreover, the computation of each

� �^ � b d�e R�� incurs high complexity. Accordingly, we use an alternative set of
paths, �%� , of much smaller size. In addition, the set � � comprises of suboptimal paths, whose computation requires
much less time. Specifically, we set � 8 ���

� [# + and compute, for each � 4EA>R 0 and for each p 8 �>4�� F �>4GFGFGFH4 ,
a path

�� �^ � b d�e , such that:

1) qr� �� �^ � b d�e
SL�p � � ;

2) ik� �� �^ � b d�e
�L�ik� � �
 for each path
� � between � and A that satisfies qO� � �
SL�p .

Note that � � is a path set that represents much bigger path set � . Thus, we say that � � aggregates path set � .
For example, Fig. 7 demonstrates the paths that belong to sets � 8@? � % 4GFGFGFH4 � � J and � � 8 ? �� % 4GFGFGF 4

�� ' J in the
delay-cost plane. A path

�
is represented by a point � ik� �
�4�qO� �
E
 . Note that the delay of

�� % is no higher than

9

�
�
�
�

� � � � 	
�
 � � � � � � � � � � � � � � �

�

�

�

� �

� �

�

� �

� �
� � � �

�

� �

� �

Fig. 7. Representation of paths in the delay-cost plane

�� � �� �� � ��

�� � ��
�� � ��

�

	

�
�� � ��

�� � ��

��

�

�
�

�

�
�

	

�

�

�

	
�

�

�

�

�

�

� � � � � �

Fig. 8. (a) Original graph � . Associated with each edge are its delay and cost. (b) Layers Graph
����

(for a small value of =).

that of
� % , � + and

� ' , while the cost of
�� % is higher than that of

� % , � + and
� ' by at most ��� . Thus, we can

use
�� % instead of

� % 4 � + 4
� ' . We use

��
+ instead of

� ' , � � , ��� and
��
� instead of

���
,
� � and

���
.

We compute set �%� by interchanging delays and costs in 0 and invoking Algorithm RSP-2, presented in [8],
on the resulting graph for delay constraint p and �(8 >

� . Finally, we insert all paths
�� �^ � b d�e to �&� , i.e., �%� 8

? �� �^ � b d�e : � 4EA�Rk0�47p 8 �>4����>4GFGFGF)4 J .
B. Layers Graph

�� '
In order to reduce the size of

�� ' we restrict ourself to � -level trees, which, by Lemma 1, provide a good
approximation to the optimal solution. Thus, all edges of

�� % that do not belong to � -level trees are omitted from�� ' . We construct
�� ' in � phases, as follows: in the first phase we add edges that originate from V and the

corresponding vertices, in the second phase we add edges that originate from the vertices added in the second
phase, etc. Figures 8(a) and (b) depict an example of an original graph 0 and the corresponding Layers Graph

�� ' ,
which comprises of several � -level trees. In order to further reduce the size of

�� ' , we use path aggregation. More
specifically, edges of

�� ' represent paths in � � , whose size is smaller than that of � . Thus, each vertex A�' R �� '
has only �>� �> �
 8 �>� [�
 edges that originate from it. Hence, the number of vertices that we add to

�� ' in the
first phase is �>� [�
 , in the second phase we add �>�E� [�
 +
 vertices, etc., and the total number of vertices and
edges is �>�E� [�
 '
 . The important property of Layers Graph

�� ' is that the maximum number x of edges that
originate from a vertex in

�� ' is at most �>� [�
 , compared to �>� i>
 in
�� % . Since x determines the running time of

Algorithm DST applied to
�� ' , this results in a significant reduction in the computational complexity of the overall

algorithm.
We proceed to describe the construction of

�� ' in more details.
�� ' is constructed through the following iterative

process. We maintain a set
� I that records the vertices added to

�� ' at iteration N . We begin with
�� ' 8 ?ZV C J and� C 8@?ZV C J . At iteration N , we execute the following loop. For each vertex � � R � I #,% and for each path

�� �^ � b d�e R � � ,
such that ik� �� �^ � b d�e
 L@i � g , we add a vertex � � to

�� ' and
� I , where
�8;g_��ij� �� �^ � b d�e
 . In addition, we add

an edge � � � 4EA �
 to
�� ' whose cost is set to qO� �� �^ � b d�e
 . The process terminates after � iterations. Finally, for each

terminal Y � R!W we add a vertex Y �� to
�� ' , and a zero-cost edge that connects each vertex Y �� R �� ' to Y �� .

10

C. � ' -reductions

We define the concept of a � ' -reduction, which is similar to a � + -reduction, but with no violation of the delay
constraint.

Definition 7 (� ' -reduction): A � ' -reduction from Problem RST to Problem DST is a quadruple ��� ' 4�� ' 4 47��

that satisfies the following:

� The function � ' maps an instance 	�
��30�4 VD4EW]47i!
 of Problem RST to an instance 	 �
 Q �30 � 4 V � 4EW �
 of Prob-
lem DST, such that:

1) : W � :�8;: WM: ;
2) ���� ^ ' e ��	 �
 Q
�L@: WM: %�&$' ���� ��	�
\
 �(� ;
3) for each *,�.-MW"� it holds that ���� ^

'
e
��	 �= Q
SL@: * � : %�&$' �������	�

,�M� , where 	 �= Q 8;�30 � 4 V���4+* ��
 ;

� The function � ' maps a solution U � of 	 �
 Q to solution U of 	�
 such that qO� U
�L qr� U �
 .
As it is the case for a � % -reduction, a � ' -reduction ��� ' 4�� ' 4 47��
 gives rise to an approximation algorithm for

Problem RST.
We proceed to define a � ' -reduction ��� ' 4�� ' 4 47��
 .
Definition 8 (Reduction ��� ' 4�� ' 4 47��
): A reduction ��� ' 4�� ' 4 47��
 is a pair of functions � ' 4�� ' , an estimate

on�������	�

 , and an approximation ratio � , such that:

� The function � ' receives as input an instance 	�
 �30 4 V 4EW 47i>
 of Problem RST, and returns an instance	 �
 Q � �� ' 4 V C 4EW �
 of Problem DST, where
�� ' is the Layers Graph for 0 ,

and � , and W � 8@?BY��� : Y � RTW J .� The function � ' receives as input a solution U � of 	 �
 Q . The function returns a tree

U 8 �

h ^ � � b d � e m ` Q �� ���^ � b d�e v
The � ' -reduction ��� ' 4�� ' 4 47��
 , gives rise to the corresponding approximation, referred to as Algorithm SCALE.

Specifically, given an instance 	�
 of Problem RST we compute an instance 	 �
 Q of Problem DST by invoking
function � ' . Next, we find a solution U � of 	 �
 Q by applying Algorithm DST. Finally, we identify a solution U
of 	�
 by invoking function � ' on U � . The detailed description of Algorithm SCALE appears in Fig. 9. Note that
this algorithm is not a complete approximation algorithm because it assumes that an estimate

on ���� ��	

 is

known.

D. Lower and Upper Bounds

Algorithm SCALE, presented in the previous section, requires an estimate

on the cost ���� ��	
\
 of the optimal
solution to 	�
 . In this section we show how to obtain a good estimate

. For this purpose, we maintain lower

and upper bounds,
�

and
�

, on �������	�

 . We begin with some initial bounds, and proceed to iteratively improve
them, until they become sufficiently tight. The technique we use is similar to the one employed in [13] for finding
restricted shortest (unicast) paths.

The initial upper and lower bounds,
�

and
�

, are identified by Procedure BOUND. We denote by po% � p + �FGFGF ��p ' the distinct cost values of the edge in 0 . Our goal is to identify the maximum cost value p�� Rj?"p � J such
that if all edges whose cost is higher than p�� are omitted from 0 , the resulted graph 0�� has no tree that connectsV and terminal W and satisfies the delay constraint i . Clearly, any such tree contains at least one edge whose cost
is p � or more, hence p � is a lower bound on ���� ��	�

 . In addition, there exists a tree U that comprises edges
whose cost is p � or less and satisfies the constraint i . Since the number of edges in U is at most � we conclude
that p���FB� is an upper bound on ���� ��	�

 .

Procedure BOUND performs a binary search on the values p %B47p + 4GFGFGFQ47p ' . At each iteration we check whetherp L�p � , where p is the current estimate of p � . For this purpose we remove from 0 all edges whose cost is more thanp and find a minimum delay path between V and each terminal in W . If all paths satisfy the delay constraint i ,
then p�`�p�� ; otherwise p���p�� . The total number of iterations is �>� ����)D
c8 �>� ������
 . At each iteration we execute
a shortest path algorithm, namely Dijkstra’s, whose complexity is �>� = � �@������j
 . Thus, the total computational
complexity of the procedure is � �>� = �(� ������
K������j
 .

In order to find a better estimate, we use Procedure TEST, which gets

and � as input and returns either a solutionU to instance 	�
 or FAIL. If the procedure returns FAIL, then �������	

��
; otherwise, it is the case that qO� U
�L��� � ��
������)�M�"
$# %�&$' . Procedure TEST invokes Algorithm SCALE for ��	�
 4E�74 47��
 . If Algorithm SCALE returns a

11

Algorithm SCALE (�
 �30�4 V 4EW 47i>
�4E� 4 47�):
1 >) ���� � ; ;
2
� �) (

3 for each pair of nodes
^ � b�d�e , � b d m � do

4 for � � > b + >
b � � � b � do

5
�n��C��	�
HM) RSP-2

^ � b � b dGb � b � � e
6

� �) � � ? �n��C����
HM
7

�� �)
 � � �
8 � �)
 � � �
9 for I) % to ' do

10 for each node � � m ��� ; � do
11 if � m
 then
12

�� �) �� � ?
 ^ � � b � eA�
13 � C�� � � � 	 M) C
14 for each path

�n �C��	�
HM m � � that originates from� such that �
^ �n �C����
HM e 9���# � do

15 �) � P��
^ �n �C��	�
HM e

16 �
�) ��� ?
 d T �
17

�� �) �� � ?
 ^ � � b d T eA�
18 � C�� � �
 � M)��Q^ �n��C����
HM e
19
 �)
 � � b � � � b � � �
20 if terminals
 � are not reachable from � � in

�� �
then

21 return FAIL
22

� �� Q) ^ �� � b � � b
 � e
23

` �)
DST

^ � �� Q b ' e24
`*) �

� C�� � �
 � M��JE Q n � �C��	�
7M
25 return

`
Fig. 9. Algorithm SCALE

tree U whose cost is at most ��� ����
������ � �"
$# %�&$' , then Procedure TEST returns U ; otherwise Procedure TEST

returns FAIL.
We tighten the lower and upper bounds

� 4 � by performing a binary search on the interval � � 4 �
 on a logarithmic
scale. In each iteration we invoke Procedure TEST

with
 8 � � �^

%�P � e ' ^ '$#,% e [m>n i . If Procedure TEST returns FAIL, then it is the case that ���� ��	

 �
, hence

�
is

set to

. Otherwise, Algorithm SCALE returns a tree U whose cost is at most ��� � ��
������,� �"
$#�%�&$' , hence we set
� 8 qO� U
 . We also keep U as a possible solution for instance 	
 .

Note that, if the ratio
��� �

is equal to � � at iteration
 , then at iteration
 � � we have

��� PQ% 8
^
%�P � e ' ^ '$#,% e [mAn i �� 8

� 8 � �����(��
������ ���"
$# %�&$' � � v
Thus, since � % 8 � , after �>� ����������� �M���� %�
 iterations we have � � L �����M��
 + �����c���"
$# %�&$' . Finally, we return
the solution U to instance 	�
 such that qO� U
c8 �

. Since
� L�� � � L ��� �T��
 + ����� � �"
$# %�&$' �������	�

 , we conclude

that the cost of U is at most ����� ��
 + �f���Q���"
$# %�&$' times higher than the optimum.
The detailed description of the algorithm, referred to as Algorithm RST-3 appears in Fig. RST-3.
Theorem 6 Given an instance 	�
 of Problem RST, Algorithm RST-3 identifies, in �>�E� ����������� � ���� %�
 � � ��! '$#,% # '�'$# +

time, a solution tree U to 	�
 such that qr� U
SL �����M��
������ ���"
$# %�&$' �������	�

 .
Proof: See Appendix E.

VII. CONCLUSION

In this paper, we have investigated approximation algorithms for multicast routing with QoS guarantees. Our
major contributions are two efficient approximation algorithms that identify, for any fixed �S� � and ���*� , a tree
whose cost is at most �����(��
������ ���"
$# %�&$' times higher than the optimum, where # is the number of terminals.

The first algorithm, referred to as Algorithm RST-2, identifies, in �>� � '$� �"! '$#,% # + '$#,%�
 time, a tree such that the
delay of every path between the source and any terminal is at most ��� �k��
$i , where i is the delay constraint. The

12

Algorithm RST-3 (�
 �30 4 V 4EW 47i>
�4E�747�):
1

� b b �`*)
BOUND

^ � � ^ � b � b
 b � e e
2 do
3 �)�� � � �C � � � M � C ��; � M�� � � mAn i
4

`Z)
TEST

^ � � ^ � b � b
 b � e b � b � e
5 if Procedure TEST returned FAIL then

�) �
6 else

) �Q^ `He
,
�`Z)(`

7 until
 & � 9 ^

% P � e ; ' ^ ' #\%
e"V
 V ��� � .

8 return
`

.

Procedure TEST
^ � � ^ � b � b
 b � e b � e

1
`*)

SCALE

^ � � ^ � b � b
 b � e b ' b � e
2 if Algorithm SCALE returned FAIL or�Q^a`Qe O + '

^
' # % e [

��� � � then
3 return FAIL
4 else
5 return

`
Procedure BOUND

^ � � ^ � ^ � b � e b � b
 b � e e
1 let �

���
� ;

�
� � �

�
�
	 the distinct costs values of the

links.
2 h���) % ; I '�� I

) '
3 while h���

� I '�� I # %
4 I)���^ I '�� I P h��� e & +��
5

� �)
 h V � � 9 � � �
6 Use Dijkstra’s algorithm to compute a minimum

delay path n C��8� � � M in
� ^ � b � � e

between � and each�UT m

7 if for each

�UT m
 it holds that n C��8� � � 9�� then

8 I '�� I
) I

9
�` � ? � � � � n C��8� � � M

10 else
11 h���) I
12

) "� � � ��� � ;
�) � � ��� � ;

13 return
�

,

,
�`

;

Fig. 10. Algorithm RST-3

second algorithm, referred to as Algorithm RST-3, finds a tree that fully satisfies the delay constraint and incurs
a computational complexity of �>�E� ����������� �@���� %�
 � �%! '$#,% #('�'$# +
 , which is by a factor of �>�E� �.������� � ����� %�
$#k'$#,%�
 higher than that of Algorithm RST-2. To the best of our knowledge, the proposed algorithms are
the first solutions of provable performance to this basic problem. Our algorithms work in general graph settings
and topologies and they allow to find solutions with either no violation or at most a small violation of the delay
constraint.

We introduced the concept of � -reductions, which allows to use any solution to the Directed Steiner Tree problem
in order to obtain a corresponding solution to its RST version. For example, by using a � ' -reduction and the DST
algorithm of [6], we obtain a polynomial, � -optimal solution to Problem RST in the special case of a small number
of terminals.

REFERENCES

[1] T. Alrabiah and T. F. Znati. Low-Cost, Bounded-Delay Multicast Routing for QoS-Based Networks. In Proceedings of IEEE ICCCN’98,
Lafayette, Lousiana, October 1998.

[2] J. Bar-Ilan, G. Kortsarz, and D. Peleg. Generalized Submodular Cover Problems and Applications. In Proceedings of the fourth Israel
Symposium on Theory of Computing and Systems, Jerusalem, Israel, June 1996.

[3] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li. Approximation Algorithms for Directed Steiner Problems.
Journal of Algorithms, 33(1):73–91, October 1999.

[4] F. Ergun, R. Sinha, and L. Zhang. An Improved FPTAS for Restricted Shortest Path. Information Processing Letters, 83(5):237–293,
September 2002.

[5] A. Erzin. Polynomial Algorithm for Bandwidth-Delay-Constrained Multicast Routing Problem. In Proceedings of International
Conference on Integer Programming and Combinatorial Optimization, Houston, Texas, USA, 1998.

[6] J. Feldman and M. Ruhl. The Directed Steiner Network Problem is Tractable for a Constant Number of Terminals. In Proceedings of
IEEE Symposium on Foundations of Computer Science (FOCS ’99), New York, New York, October 1999.

13

[7] M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman, San Francisco, 1979.
[8] A. Goel, K.G. Ramakrishnan, D. Kataria, and D. Logothetis. Efficient Computation of Delay-Sensitive Routes from One Source to All

Destinations. In Proceedings of IEEE INFOCOM’01, Anchorage, Alaska, April 2001.
[9] R. Hassin. Approximation Schemes for the Restricted Shortest Path Problem. Mathematics of Operations Research, 17(1):36–42,

February 1992.
[10] S. Hougardy and H. J. Prömel. A 1.598 Approximation Algorithm for the Steiner Problem in Graphs. In Proceedings of Symposium

on Discrete Algorithms (SODA), 1999.
[11] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicast Routing for Multimedia Communication. IEEE/ACM Transactions on

Networking, 1(3):286–292, 1993.
[12] G. Kortsarz and D. Peleg. Approximating the Weight of Shallow Steiner Trees. Discrete Applied Mathematics, 93:265–285, 1999.
[13] D.H. Lorenz and D. Raz. A Simple Efficient Approximation Scheme for the Restricted Shortest Path Problem. Operations Research

Letters, 28(5):213–219, June 2001.
[14] M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt III. Bicriteria Network Design Problems. Journal

of Algorithms, 28(1):142–171, 1998.
[15] R. Sriram, G. Manimaran, and C. Ram. Algorithms for Delay-constrained Low-cost Multicast Tree Construction. Computer

Communications, 21(18):1693–1706, November 1998.
[16] A. Striegel and G. Manimaran. A Survey of QoS Multicasting Issues. IEEE Communications, 40(6):82–87, June 2002.
[17] Q. Sun and H. Langendörfer. An Efficient Delay-Constrained Multicast Routing Algorithm. Journal of High Speed Networks, 7(1):43–

55, 1998.
[18] B. Wang and J. Hou. Multicast Routing and its QoS Extension: Problems, Algorithms, and Protocols. IEEE Network, 14, January

2000.
[19] G.L. Xue. Provably Good Approximations to Minimum Cost Delay-Constrained Multicast Trees. In Proceedings of IEEE International

Conference on Computer Communications and Networks, ICCCN’99, Natick-Boston, MA, October 1999.
[20] A. Zelikovsky. A Series of Approximation Algorithms for the Acyclic Directed Steiner Tree Problem. Algorithmica, 18(1):99–110,

1997.
[21] Q. Zhu, M. Parsa, and J. J. Garcia-Luna-Aceves. A Source-Based Algorithm for Delay-Constrained Minimum-Cost Multicasting. In

Proceedings of IEEE INFOCOM’95, Boston, Massachusetts, April 1995.

14

APPENDIX

A. Proof of Theorem 2

Theorem 2: Given are an instance 	 �
 8 �30 4 V 4EW
 of Problem DST and an integer �74B�\LM��L����� : WM: . Denote:

�q 8poZq@r=_s
 t ���� ^ ' e ��	 �= �30�4 V 4+*r
E

: *!: %�&$' u v

Then, Algorithm DST returns a tree U that satisfies qr� U�
/LM�����Q���"
$# %�&$' �q .
The proof follows [3] almost verbatim. We begin by defining a variant of Problem DST, which seeks a minimum

cost tree that connects part of the terminals.
Problem (D-STEINER � #]4 VD4EWj
): Given a root V R 2 , an integer # and a set W -*2 of terminals with : W(: `�# ,

construct a tree rooted at V , spanning any # terminals in W and of minimum possible cost.
Recall that the density of a tree U is the ratio of the cost of the tree to the number of terminals in U . We denote

the density of U by � � U
 . In addition, we denote by
�q the minimum cost such that, for each subset * of W , holds���� ^ ' e ��	 �= �30�4 VD4+*r
E
SL@: *!: %�&$' �q , i.e.,

�q 8poZq@r=_s
 t ���� ^ ' e ��	 �= �30�4 V 4+*r
E

: *!: %�&$' u 4 (3)

where ���� ^ ' e ��	 �

 is the cost of an optimum � -level tree that solves instance 	 �
 of Problem DST.
Definition 9 (Partial Approximation): An �c� #
 -partial approximation procedure for

D-STEINER � #]4 VD4EWj
 is a procedure that constructs a tree U � rooted in V , spanning �1L # � L # terminals in W
such that � � U �
SL �c� #
 ��[.

Let A � # 4 V 4EW
 be a partial approximation procedure for D-STEINER � # 4 V 4EW
 , we define the Algorithm B � # 4 V 4EW

for D-STEINER � # 4 V 4EW
 , as follows.

Definition 10 (Algorithm B): Algorithm B � #]4 VD4EWj
 begins by invoking Algorithm A for � # 4 V 4EW
 . Let U % be a
tree returned by Algorithm A and let # % be the number of terminals in U % . If # % 8 # , Algorithm B terminates
and returns a tree U % . Otherwise, B � #]4 VD4EWj
 returns the union of U % and the tree returned by a recursive call to
B � # � # % 4 VD4EW � W %
 , where W % is the set of terminals spanned by U % .

Lemma 3 : Given A � # 4 V 4EW
 , an �c� #
 -partial approximation for D-STEINER � #]4 VD4EWj
 where �c���,
 � � is a
decreasing function of � , the algorithm B � # 4 V 4EW
 returns a solution U for D-STEINER � # 4 VD4EWj
 of cost qO� U
�L
� � #
 �q , where � � #
�8�� [C�� ^��"e� g	� .

Proof: We will prove the claim by induction on # . The base case, # 8X� , follows as �c���"
 L
� %C�� ^��"e� g	�
(by the decreasing property of � ^��"e�). Suppose it is true for all values less than # . Suppose the call to A � # 4 V 4EW

returns a tree U % rooted at V that spans # % terminals. Since A � # 4 VD4EWj
 is an �c� #
 -partial approximation solution,
it holds that � � U %
c8 qO� U %
% L �c� #

�q
(4)

qO� U %
SL�# % �c� #

#

�q L (5)

L
�� [

[# [m �c���
� g���� �q�4 (6)

where the last inequality follows from the decreasing property of � ^��"e� . If # % 8@# , the algorithm returns U % . For
this case, qO� U %
�L � � #
 �q .

Suppose # % L�# . Let W % be the set of terminals spanned by U % and let U + be the tree returned by the recursive
call to B � # � # % 4 VD4EW���W %
 . By the inductive hypothesis, qr� U +
�L � � # � # %

�q , i.e.,

qr� U +
�L
� [# [m

C
�c���
� g�� � �q (7)

Adding (6) and (7), we get qO� U %
H��qr� U +
SL � � #
 �q
i

This proves that, for this case too, the algorithm returns a tree U whose cost is at most � � #
 �q .
We denote by U

^
'
eb:dgf � # 4 V 4EW
 , the optimum � -level tree that solves D-STEINER � # 4 V 4EW
 . We denote the cost

and density of U
^
'
eb:dgf � # 4 V 4EW
 by q

^
'
eb:dgf � # 4 V 4EW
 and � ^ ' ebedgf � # 4 VD4EWj
 , respectively.

The following lemma is taken from [3].
Lemma 4 : The trees U�������� chosen by the Algorithm A ' , ��` � have the following property: � � U��������Q
 L���Q���"
 � ^ ' eb:dgf � # 4 V 4+*O
 , where # and * refer to the current values being used by the Algorithm A ' .
We are no ready to prove Theorem 2.

Proof: We divide the execution of
� ' � # 4 V 4EW
 into stages, each stage corresponds to one iteration of the

outer loop. Let W � be the set of unsatisfied terminals, i.e., terminals that have not been yet connected by the tree.
We denote #,� 8 : W �K: . Lemma 4 implies that, at stage
 , Algorithm

� ' identifies a tree with density no worse than

��� � �"

� hPikj	�
� ^ [� b � b
 � e[� . Since Problem D-STEINER �7: * : 4 V 4+*1
 is a generalization of Problem DST for 	 �= �30�4 VD4+*r
 ,

it holds that q
^
'
eb:dgf �7: *>: 4 VD4+*r
jL ���� ^ ' e ��	 �= �30�4 V 4+*r
E
 . Hence, the density of the tree identified at stage
 by

Algorithm
� ' is no worse than

���Q���"
 q
^
'
ebedgf � # ��4 VD4EW �Z
� L ���Q���"
 ����

^
'
e
��	 �
 � �30�4 V 4EW �
E

�

L ���Q���"
 # %�&$'�
�

�q v
Hence, each stage behaves like an ���c� �"
$# %�&$'� -partial approximation to D-STEINER � # � 4 VD4EW �
 . Using Lemma 3
we obtain the following bound on the cost qO� U
 of tree U identified by

� ' � # 4 V 4EW
 .
qO� U
�L ���)���"
 �q

 [
C

� %�&$' g �
� 8 �����)���"
$# %�&$' �q v

B. Proof of Theorem 4

We begin by proving that the functions � % and � % constitute a valid � % -reduction.
Lemma 5 : If 	 �
 Q 8 � % ��	�

 then ���� ��	 �
 Q
SL �������	�

 .

Proof: Let U������ be an optimal solution for instance 	
 of Problem RST, i.e., qO� U������E
c8 �������	�
\
 . For each
vertex ATR]U ����� , we denote by g d the delay of the path between V and A in U ����� . Let

�U;8 ?o� � ��� 4EA ���
 :Q� � 4EA�
 RU ����� J:��?o��Y �� 4EY � PQ%�
 :�Y � R]U ����� 4�g � � L�g	L�i � ��J . It is easy to verify that
�U is a tree in

�� % that connects source V�C
with terminals W � 8@?BY��� :DY � R!W J and it holds that qO� U �����
58 qr� �U
 . We conclude that �������	 �
 Q
�L �������	�

and the lemma follows.

Lemma 6 : Let U � be a solution of instance 	 �
 Q of Problem DST. Then, U 8 � % � U �
 is a solution of instance 	

of Problem DST and it holds that qr� U1
c8 qr� U �
 .

Proof: According to the definition of � % , U includes, for each edge H8 � � � 4EA �
 in U � , a path
� � # �^ � b d�e in 0 that

connects vertices � and A and whose delay is at most �
 � gK
 . Clearly, for each Y � RTW it holds that ik� � ^a`cb � � e
�L�i ,
which implies that U is a solution of instance 	
 . Since qr� � � # �^ � b d�e
c8 pfh it follows that qO� U
c8 qO� U �
 .
Theorem 4: Algorithm RST-1 returns a solution U to instance 	
 of Problem RST such that qr� U
TL �����/��"
$# %�&$' �������	�
\
 .

Proof: Lemmas 5 and 6 imply that ��� % 4�� %
 is a valid � % -reduction. Hence, the instance 	 �
 Q of Problem DST,
computed in line 13, satisfies �������	��
 Q
 L �������	�

 . By Theorem 1, Algorithm DST ��	��
 Q 4E�$
 returns a tree U,�
that satisfies qO� U �
SLM����� �(�"
$# %�&$' ���� ��	 �
 Q
 . Since � % maps U � to a solution U of 	
 such that qO� U�
58 qr� U �
 ,
we have qr� U
SLM�����)���"
$# %�&$' �������	 �
 Q
�LM����� �M�"
$# %�&$' ���� ��	�
\
 and the theorem follows.

ii

C. Proof of Lemma 2

We begin by showing that ��� + 4�� + 47��
 is a valid � + -reduction (as per Definition 5).
Lemma 7 : If 	 �
 Q 8 � + ��	�

 then ���� ^ ' e ��	 �
 Q
SL �����(��
G: WM: %�&$' ���� ��	�

 .

Proof: Let
�	 �
 � �� % 4 V C 4

�Wj
S8 � % ��	

 and let U be a solution to instance
�	 �
 of Problem DST. By Lemma 5,qr� U�
 L ���� ��	�

 . We note that the Layers Graph

�� % is a transitive closure per se. Hence, by Lemma 1, there
exists a tree an � -level tree

�U in
�� % such that qr� �U�
SL : W(: %�&$' qr� U1
SL : W(: %�&$' �������	�
\
 .

We round the delay value gKh of each edge R �U , replacing it by g � h , as follows:

g � h 8
� goh
��� F �>4

where � 8 � � �' . Note that after the rounding delay values of each edge increase by at most � , i.e., g � h L�gohK� � .
For each vertex A>R �U , we denote by g d and g �d the delay of the path between V and A in

�U with respect to the
original and rounded delay values, respectively, i.e., g d 8 l h.mZn h����� � j gDh and g �d 8 l h�m�n h���	� � j g � h .

For each vertex A	R �U , we define
]��A
58 A � Q� . Note that the delay of the path
� ^ �`5b d�e with respect to the original

edge delays is at most i , i.e., l h.mZn h����� � j gDh�L i . It follows that the delay of the path
� ^ �`cb d�e with respect to the

rounded edge costs is at most i(��� � 8 ��� �>��
$i 8 �i . We conclude that, for each A>R 2 , it holds that
]��A
/R �� + .
For each edge S8 � � 4EA
�R �U , we define
]� 3
 8X��
]� �
�4�
]��A
E
 . As shown above,
T� �
�R �2 and
]��A
 R �2 .

Moreover, there is an edge between
]� �
 8 � � Q� and
T��A�
 8 A � Q� in
�� + , whose cost is set to qr� � � Q� # � Q�^ � b d�e
 . Since

g �d � g �� ��g d � g � , it holds that qr� � � Q� # � Q�^ � b dfe
SL ����� ��
$pfh .
Let

�U ��8 ?
T� 3
 :)R �UrJ_��?o��Y �� 4EY � PQ%�
\:oY � R �UO47g ��� L�g	L �i � ��J . From the above discussion it follows that
�U �

is an � -level tree in
�� + that connects source V�C with vertices Y �� % 4GFGFGFQ4EY

�
�[. Moreover, since the cost of each edge in�U � is at most �����M��
 higher than the cost of the corresponding edge in

�U , it follows that qO� �U �
/L �����M��
Eqr� �U1
 .
Thus, ���� ^

'
e
��	 �
 Q
/L*qr� �U �.
�L@�����(��
G: WM: %�&$' ���� ��	�

 and the lemma follows.

Lemma 8 : Let 	 �
 Q 8 � + ��	�
\
 . For each subset * � - W � it holds that ���� ^ ' e ��	 �= Q
 L ���S����
G: * � : %�&$' �������	�
\
 ,
where 	 �= Q 8 � �� + 4 V C 4+* �.
 .

Proof: Let * � be a subset of W � , we denote * 8 ?BY � :)Y ��� R�* � J . Next, we denote by 	 = the instance
�30�4 V 4+*�47i!
 of Problem RST. Note that * - W and 	 �= Q 8 � + ��	 =
 . Hence, by Lemma 7, ���� ^

'
e
��	 �= Q
 L ��� ���
G: * � : %�&$' �������	 =
 . Since * - W it holds that ���� ��	 =
 L �������	�
\
 . We conclude that ���� ��	 �= Q
 ^ ' e L ��� ���
G: *,� : %�&$' �������	�
\
 and the lemma follows.

Lemma 9 : Let U � be a solution of instance 	��
 Q of Problem DST. Then, U 8 � + � U �.
 is a tree that connects the
source V to the terminals W in 0 and satisfies qr� U
58 qr� U �
 as well as ik� � ^a`cb ����e
SL ���5� ��
$i for each Y �\R!W .

Proof: According to the definition of � + , U includes, for each edge H8 � � � 4EA �
 in U � , the path
� ^ � # � e^ � b d�e , which

was computed during the construction of the Layers Graph
�� + . Since ij� �

^ � # � e^ � b d�e
 L;�
�� g
 and qr� �
^ � # � e^ � b d�e
 L p h ,

we conclude that qO� U�
58 qO� U �
 , and for each terminal YSR!W , it holds that ik� � ^a` Q b � e
�L �i 8 �����M��
$i .
Lemma 2: ��� + 4�� + 47��
 is a valid � + -reduction.

Proof: Immediate from Lemmas 7, 8 and 9.

D. Proof of Theorem 5

Theorem 5: Given an instance 	
 of Problem RST, Algorithm RST-2 identifies, in �>� � � ! '$#,% # + '$#,%f
 time, a treeU R 0 such that qr� U1
SL �����M��
������ ���"
$# %�&$' ���� ��	�
\
 and ik� � ^a`5b ����e
�L@�����(��
$i for each Y � R!W .
Proof: Lemma 2 implies that ��� + 4�� + 47��
 is a valid � + -reduction. Let 	 �
 Q be an instance of Problem DST

computed in line 16. Since ��� + 4�� + 47��
 is a valid � + -reduction, for each subset *,� of W � , it holds that ���� ^
'
e
��	 �= Q
�L���K�O��
G: * � : %�&$' �������	�

 . Thus, the condition of Theorem 2 holds for

�q 8 ��� �r��
�����r��	�

 . Hence, Algorithm DST
returns a tree

�U such that qO� �U
 L ��� � ��
������ � �"
$# %�&$' �������	�
\
 . Since � + maps
�U to a tree U9R�0 such thatqr� U�
�8 qr� �U1
 and ij� � ^ `cb ����e
 L �����M��
$i for each Y � R]W , we have qr� U1
/L ��������
������c���"
$# %�&$' �������	�

 .We

conclude that Algorithm RST-2 identifies a tree U R@0 such that qO� U
�L ��� � ��
������/� �"
$#�%�&$' �������	�
\
 andik� � ^a`5b � � e
�L �����(��
$i for each Y � R!W .

iii

The computational complexity of Algorithm RST-2 is dominated by the time required for executing Algo-
rithm DST for

�� + . Since the number of vertices in
�� + is � F '

^
%�P � e� 8 �>� '$� �
 , the running time of the algorithm

is �>��� '�� � ! '$#,% # + '�#,%f
 .
E. Proof of Theorem 6

Lemma 10 : For each path
���^ � b d�e R � there exists a path

�� �^ � b dfe R�� � such that ij� �� �^ � b d�e
>L ij� � �^ � b d�e
 and

qr� �� �^ � b d�e
SL*qO� � �^ � b d�e
H� ��� .

Proof: Let
� �^ � b d�e be a path in � . Let p 8 ���

�Q^ n �h � � � j e> � . Note that since qO� � �^ � b d�e
SL
it holds that p L

,

hence there exist path
�� �^ � b d�e in � � . We show that

�� �^ � b dfe satisfies both conditions stated in the lemma. Recall

that
�� �^ � b d�e is computed by AlgorithmRSP-2 applied for � , A , p , and � . Thus, since qr� � �^ � b dfe
kL p , we have

ik� �� �^ � b dfe
�L�ij� � �^ � b d�e
 . In addition, the cost qO� �� �^ � b d�e
 of
�� �^ � b dfe is at most p � � L qr� ���^ � b d�e
H� ��� .

Lemma 11 : Let
�0 be a transitive closure of the graph 0 and let 	
1� �0 4 VD4EWj
 be an instance of Problem DST.

Then there exists an � -level tree
�U R �0 that connects V and terminals W such that qO� U�
SL : W(: %�&$' F����� ��	�
\
 and

the number of edges in
�U is at most ��: W(: ��� .

Proof: By Lemma 1, there exists a tree U that connects V with W such that qr� U�
/L@: W(: %�&$' F ���� ��	�

 . Let�U be such a tree with minimum number of edges.
We prove that

�U has at most ��: WM:B� � edges. Suppose, by way of contradiction, that
�U has more than ��: W(:"� �

edges. Then, there exists a vertex � � R �U��8;V C that has only one child A � that belongs to
�U . We then substitute

the edges ���)� � �
�4 � �
 and � � � 4EA �
 by an edge ���)� � �
�4EA �
 , where �)� � �
 R �U is a parent vertex of vertex � � . The
cost of the resulted tree is identical to qr� �U�
 , but the number of edges is fewer than in

�U , which contradicts the
fact the number of edges in

�U is minimal.
We proceed to show that the function � ' satisfies the conditions of a � ' -reduction.
Lemma 12 : Let 	 �
 Q 8 � ' ��	�
\
 . If ���� ��	�

�L

then ���� ^ ' e ��	 �
 Q
SL@: WM: %�&$' �������	�
\
,�(� .
Proof: Let

�	 �
 � �� % 4 V C 4
�W
M8 � % ��	�

 and let U �
 be a solution to instance

�	 �
 . By Lemma 5, it holds
that qr� U �

 L ���� ��	�
\
 . Lemma 11 implies that there exists an � -level tree

�U �
 in
�� % such that qO� �U �

 L: W(: %�&$'�qr� U �

SL@: W(: %�&$' ���� ��	�
\
 and the number of edges in qO� �U �

 is at most ��� ��� .

We show that there exists an i-level tree
�U �
 Q in

�� ' that connects V C and the terminals W � 8@?BY �� :oY � R!W J such
that qr� �U �
 Q
�L qr� �U �

 � �SF . We construct

�U��
 Q through the following iterative process. For each vertex A � R �U �
 ,
there is a corresponding vertex A � Q R �U �
 Q , such that
 � L
 . We maintain a set

� I , which keeps each vertex added
to

�U �
 Q at iteration N and the corresponding vertex in
�U �
 . We begin by setting

�U �
 Q 8 ?ZV C J and
� C 8 ?o� V C 4 V C
 J .

At iteration N we perform the following loop. For each pair of vertices � � � Q 4 � �
 R � I #,% , and for each edge
�� � � 4EA �
/R �U �
 we set p � h 8�� � �>
	 � . Since pGhQL �������	�
\
/L

, it holds that p � h R ?	�!4����>4GFGFGFQ4 J , which implies
that there exists

�� � Q �^ � b d�e R �&� . Next, we set
 � 8 g � �*ij� �� � Q �^ � b d�e
 . Note that p ^ � � Q b d � Q e L@p h � ���X8 p h � � �
+ [#,% and

g ^ � � Q b d � Q e L�gDh . Next, we add an edge � � � Q 4EA � Q
 to
�U �
 Q and pair of vertices � � � Q 4 � �
 to

� I . The process terminates
after � iterations. Finally, we augment

�U �
 Q by zero-cost edges in order to obtain a tree that connects source V C to
terminals W � .

Note that qO� �U �
 Q
 L l h Q m �` Q� Q p h Q L l h�m �` �� � p h � ���
+ [#,%
 L qr� �U �

H�M� , where the last inequality holds because

tree
�U �
 has at most ��# �T� edges. We conclude that ���� ^

'
e
��	 �
 Q
�L*qr� �U �

�� � ��# �T�"
 � L@: WM: %�&$' ���� ��	

��>�

and the lemma follows.
Lemma 13 : Let 	 �
 Q 8 � ' ��	�
\
 . If �������	�

 L

then, for each subset *,� - W � , it holds that ���� ^ ' e ��	 �= Q
 L: * � : %�&$' ���� ��	�
\
,�(� , where 	 �= Q 8 � �� ' 4 V C 4+* �
 ;
Proof: Let * � be a subset of W � , we denote by 	��= Q the instance � �� ' 4 V C 4+* ��
 of Problem DST. Let * 8?BY�� :�Y��� R * � J and let 	 = be the instance �30�4 V 4+*�47i!
 of Problem RST. Note that 	 �= Q 8 � ' ��	 =
 . Lemma 12 implies

that ���� ^ ' e ��	 �= Q
 L : *!: %�&$' �������	 =
c� � . Since * - W , we have ���� ��	 =
 L �������	�

 . We conclude that���� ^ ' e ��	 �= Q
SL@: *!: %�&$' �������	�

 �(� and the lemma follows.
We proceed to show that the function � ' satisfies the conditions of � ' -reduction.
Lemma 14 : Let 	��
 Q 8 � ' ��	�

 and let U,� be a solution of instance 	��
 Q . Then, U 8 � ' � U �
 is a solution of

instance 	
 and qO� U
c8 qO� U �
 .
iv

Proof: By the definition of � ' , U includes, for each edge E� � � 4EA �
 in U � , a path
�� � �^ � b d�e R�� � . We note that

qr� �� ���^ � b d�e
 L p h and ik� �� � �^ � b d�e
 L
 �*� . We conclude that U is a solution of the instance 	
 and qr� U1
�8 qr� U �
 .
Lemma 15 : If �������	�
\
!L

then Algorithm SCALE returns a solution U to 	�
 such that qr� U
!L �����/��"
$# %�&$'7� �������	

,�(�
 .
Proof: Let 	 �
 Q be an instance of Problem DST computed in line 22. By Lemmas 12 and 13, for each * � -�W � it

holds that ���� ^
'
e
��	 �= Q
/L@: * � : %�&$' ���� ��	�

 �T� . Thus, the condition of Lemma 2 holds for

�q 8��������	�

 �!� .
Hence, it follows that Algorithm DST returns a tree

�U such that qr� �U
�L �f�����@�"
$# %�&$' � ���� ��	�
\
 � �
 . By
Lemma 14, � ' satisfies the conditions of a � ' -reduction. Thus, � ' maps

�U to a tree U Rk0 such that qO� U
c8 qr� �U1
 .
We conclude that qr� U
SLM�����)���"
$# %�&$'7� �������	

 �(�
 and the lemma follows.

Lemma 16 : The computational complexity of Algorithm SCALE is �>� � � � ! '�#,% #('�'$# +
 .
Proof: The Layers Graph

�� ' is constructed in � iterations. At iteration
 , we invoke Algorithm RSP-2 �>� �>
c8�>� [�
 times, for each p�R�?	�>4����>4GFGFGF)4 J . Since the running time of Algorithm RSP-2 is �>�
^��

P. �
�
� e � � �>

= �>�
^��

P. �
�
� e � � [�
 , the total running time of all invocations of Algorithm RSP-2 is �>�

^��
P. �

�
� e ' [�� � �
 .

Each vertex A � R �� ' has at most � �> edges originated from it. Thus, by Theorem 3, the execution time of

Algorithm DST is �>��� � �> ! '$#,% # + '$#,%
58 �>��� [� ! '$#,% # + '$#,%
 = �>��� � ! '$#,% # '�'�# +
 .
We conclude that the total running time of the algorithm is dominated by the time required to execute Algo-

rithm DST , and the lemma follows.
Lemma 17 : If Procedure TEST returns FAIL then �������	�
\
 �

; otherwise Procedure TEST returns a tree U
such that qr� U1
�L �����(��
������)���"
$# %�&$' .

Proof: Suppose, by way of contradiction, that Algorithm SCALE returns FAIL and�������	�

SL
. Then, Algorithm SCALE is invoked with

 ` �������	

 and, by Lemma 15, it returns a solutionU to 	�
 such that qO� U
 L*�����c���"
$# %�&$'7� �������	�
\
 �M�
 L ��������
������c���"
$# %�&$' . Thus, Procedure TEST must
return U , which results in a contradiction.
Theorem 6: Given an instance 	�
 of Problem RST, Algorithm RST-3 identifies, in�>�E� ����������� ������ %�
 � � � ! '$#,% # '�'�# +
 time, a solution tree U to 	�
 such that qO� U�
SL@��������
������B�1�"
$# %�&$' �������	�
\
 .

Proof: Procedure BOUND computes obvious lower and upper bounds
�

and
�

on ���� ��	

 . As discussed
above, the bounds remain valid during the execution of the loop that begins at line 2, and after the execution
of this loop it holds that

� L ���\�@��
 + ����� � �"
G: WM: %�&$' . The algorithm returns a tree U that satisfies qO� U�
jL�����M��
 + ����� ���"
G: W(: %�&$' � L ��������
 + ����� ���"
G: WM: %�&$' ���� ��	�

 . By invoking Algorithm RST-3 for

�
' we can achieve

an approximation ratio of �����(��
������)���"
G: W(: %�&$' ���� ��	

 .
We proceed to analyze the computational complexity of Algorithm RST-3. As discussed above, the loop that

begins at line 2 is executed �>� ����������� � ���� %�
 times. At each iteration we invoke Procedure TEST. Proce-
dure TEST, in turn, comprises of a single invocation of Algorithm SCALE for ��	
�4E�74 47��
 , thus its running time is

�>�E� ����������� �M���� %�
 � ^
� [# + e � � '$#,% # + '$#,%
 . We conclude that the total running time of Algorithm RST-3 is

�>�E� ��������� � �(���� �
�

� �,? # � �
$�
� � '�#,% #j+ '$#,%
58

8 �>�E� ����S���� � �(���� �
�

� ? �

� � '$#,% # '�'$# +
 v

v

