
1

QoS Routing with Efficient Traffic Reshaping and

Deadline Allocation in EDF Networks

Erez Biton and Ariel Orda

Department of Electrical Engineering

Technion - Israel Institute of Technology

Haifa 32000, Israel

{berez@tx,ariel@ee}.technion.ac.il

Abstract

We consider QoS routing schemes for connections with end-to-end delay requirements in networks that employ the earliest

deadline first (EDF) scheduling discipline. More precisely, we consider the class of rate-controlled EDF, for which traffic is

reshaped at each node along the path. Previous EDF routing proposals did not consider the possibility of reshaping the traffic with

different parameters at each hop. Moreover, the two problems of path selection and assignment of deadlines along the chosen path

were considered independently. On the other hand, it is well known that, by allowing to reshape traffic with different parameters

at each hop, better end-to-end bounds can be obtained. Accordingly, in this study we consider the joint problem of identifying a

feasible path and optimizing the reshaping parameters along the path. This way, we broaden the space of feasible solutions.

Next, we turn to consider the problem of optimizing the route choice in terms of balancing the loads and accommodating

multiple connections. Our first scheme identifies a feasible path (if one exists) with the maximum bottleneck residual rate. Then,

in order to achieve better utilization of network resources, the second scheme considers the joint problem of route selection and

assignment of deadlines along the chosen path. By way of simulations, we demonstrate the advantages of our schemes.

I. INTRODUCTION

Emerging broadband high speed networks are expected to support real time and multimedia applications,

with various Quality of Service (QoS) requirements. Accordingly, a key issue in the design of broadband

architectures is how to provide the resources in order to meet the requirement of each connection, and,

moreover, how to meet that goal in a networkwide efficient manner. The establishment of efficient QoS

routing schemes is, undoubtedly, one of the major building blocks in such architectures.

One of the major problems in the establishment of a connection with QoS guarantees arises from the need

to assign some end-to-end requirements, mainly delay, into local requirements, which would indicate how to

reserve resources along the route. Obviously, the identification of a feasible, furthermore “optimal” route for

such a connection, greatly depends on our ability to perform such an assignment.

The ability to provide end-to-end delay guarantees depends on the scheduling discipline employed in the

network. Such disciplines are characterized by bounds on the maximal delay that any link can incur, and

hence a corresponding bound on the end-to-end delay can be derived. Such a bound provides a valuable

tool for quantifying the quality of a path in terms of its ability to meet the QoS delay requirement. The

corresponding routing problem is, therefore, to identify the path that has the best performance, according to

that bound and with respect to the QoS requirement.

lesley
CCIT Report #495 July 2004

2

For example, Generalized Processor Sharing (GPS) [1], also known as Weighted Fair Queueing (WFQ),

is a well known scheduling discipline. Indeed, the QoS routing problem in networks with GPS scheduling

has been widely explored (e.g., [2, 3, 4, 5, 6]). Yet, another important discipline is the Earliest Deadline First

(EDF) scheduling discipline [7]. EDF has been proven to be an optimal scheduling discipline in the sense

that if a set of sessions is schedulable under any scheduling discipline (i.e., if the session’s packets can be

scheduled in such a way that all of their deadlines are met), then the set is also schedulable under EDF [8].

Also, a certain class of EDF schedulers, namely Rate-Controlled EDF, was proven to outperform GPS in pro-

viding end-to-end delay guarantees in a network [9]. Consequently, the EDF scheduling discipline has been

widely investigated as well. In particular, the establishment of schedulability conditions and efficient admis-

sion control schemes have been considered in [10, 11]. Furthermore, the establishment of efficient end-to end

bounds based on per-node traffic shaping has been studied in [9, 12]. Nevertheless, the corresponding QoS

routing and resource assignment problems have not been fully explored. Some simple routing schemes that

aim at finding a feasible path have been proposed [13, 14]. However, those schemes do not aim at optimizing

the deadline assignment nor the route selection, in terms of maximizing the ability to accommodate future

calls. Consequently, the authors of [15] have proposed new resource division policies (i.e., deadline assign-

ment policies). However, the schemes proposed in [15] consider routing and resource division independently.

Furthermore, although it is known that reshaping the traffic with potentially different parameters at each node

in the network might reduce the obtained end-to-end delay bound [9], none of the above routing schemes

considers such traffic reshaping. In other words, all the proposed routing schemes consider the same traffic

parameters along the path, and in particular the same traffic parameters as at the entrance to the network.

Clearly, such an assumption results in loose end-to-end delay guarantees and lower network resource utiliza-

tion (i.e., higher blocking probability). Consequently, under such settings, GPS networks might outperform

EDF networks in terms of session blocking probability, as suggested in [16].

Focusing on burstiness constrained traffic (also known as single-leaky-bucket traffic), we consider the joint

problem of optimizing the traffic reshaping parameters along a path (to obtain lower end-to-end delay bounds)

and identifying the quickest path, i.e., the path with the minimum end-to-end delay bound. Then, we turn

to consider the more complex problem of optimizing the route choice in terms of balancing the loads and

accommodating multiple connections.

The rest of the paper is structured as follows. In Section II, we formulate the model. Next, in Section III,

we discuss the EDF schedulability conditions and some prerequisite results. In Section IV, we consider the

problem of finding feasible paths and in particular quickest paths. More specifically, we establish new routing

schemes that identify the quickest path while optimizing the traffic reshaping parameters. Then, in Section

V, we turn to consider the problem of optimizing the route choice as well as the deadline assignment. in

Section VI, we illustrate the efficiency of our routing schemes through simulations. Finally, in Section VII,

we conclude our study.

3

II. MODEL FORMULATION

Given is a network across which sessions need to be routed. The network is represented by a directed graph

G (V, E), in which nodes represent switches and arcs represent links. V is the set of nodes and E is the set

of interconnecting links; let |V | = N and |E| = M .

Each link l ∈ E is characterized by (i) a service rate Rl and (ii) a constant delay value δl, related to the

link’s speed, propagation delay and maximal transfer unit.

We assume that the Rate-Controlled Earliest Deadline First (RC-EDF) service discipline is employed in

each link l ∈ E. Accordingly, traffic from a particular connection entering a switch passes through a traffic

shaper before being delivered to the scheduler. The traffic shaper regulates traffic, so that the output of the

shaper satisfies certain pre-specified traffic characteristics. We consider the traffic model introduced in [17],

of burstiness constrained processes (also known as single-leaky-bucket traffic). The traffic shaper reshapes

the incoming traffic by delaying packets so that the output is BC, and then delivers them to the scheduler. The

EDF scheduler associates a deadline t + di with each packet of a session i that arrives at time t. The packets

are served in the order of their assigned deadlines. For ease of presentation, we assume a preemptive EDF

scheduler (or, alternatively, negligible packet sizes).

We assume a source (“explicit”) QoS routing framework, in which link state information is exchanged and

maintained up-to-date among network nodes for path computation. Routing decisions are based on the image

of the network at the source node.

A session i in the network is characterized by the following parameters:

• Source and destination nodes si and ti, correspondingly.

• A maximal traffic burst σi
0.

• A traffic upper rate ρi
0.

• A required end-to-end delay bound Di.

A session should be routed through some path p between the corresponding source and destination nodes.

Let H be the maximal possible number of hops in a path. We denote by n (p) the number of hops (i.e., links)

of a path p. We shall also denote by Di (p) the guaranteed end to end delay to session i along path p.

Denote the set of sessions at link l ∈ E by Il and the number of sessions at link l by Il. Let Imax be the

maximal number of sessions at any link, that is Imax = max
l∈E

Il. Also, denote the residual rate of a link l by R′
l,

where R′
l = Rl−

∑

i∈Il

ρi
0. Finally, let R′

max be the maximal residual rate in the network, that is R′
max = max

l∈E
R′

l.

Without loss of generality, all quantities are normalized, such that the minimum (i.e., basic resolution) unit

is “1”.

III. EDF SCHEDULABILITY CONDITIONS

We consider flows that are (σ, ρ) - burstiness constrained. More formally, consider the data flow of a

session i with the amount of arrivals in the time interval [t1, t2] denoted by Ai [t1, t2]. The flow is (σi, ρi)-

burstiness constrained if Ai [t, t + τ] ≤ σi + ρi, ∀τ > 0.

Let Il be a set of flows entering an EDF scheduler in link l with a service rate Rl. Assume that each session

i is characterized by a (σi, ρi)-burstiness constrained flow and a maximum packet queueing delay of di
l. Then,

4

the set Il is EDF-schedulable if and only if and only if the following two conditions hold:

(i) the stability condition,
∑

i∈Il
ρi < Rl,

and (ii) the schedulability condition,

Rlt ≥
∑

i∈Il

1
(

t − di
l

) (

σi + ρi
(

t − di
l

))

, ∀t ≥ 0, (1)

where 1 (t) =







0 t < 0

1 otherwise
.

Following [11], we define the link work availability function Fl : [0,∞) −→ [0,∞) as

Fl (t) = Rlt −
∑

i∈Il

1
(

t − di
l

) (

σi + ρi
(

t − di
l

))

. (2)

�

✁✂
✄☎✆

✝✞✟

✠ ✡
☛☞ ✌

Fig. 1. A typical instance of the work availability function

A typical instance of Fl (t) is depicted in Figure 1. Fl (t) specifies the worst case amount of work (in bits)

available at time t at the EDF scheduler in link l, while still guaranteeing session i a maximum packet delay

of di
l, for 1 ≤ i ≤ Il. Clearly, the schedulability condition (1) becomes Fl (t) ≥ 0 ∀t ≥ 0. Accordingly, the

state of a link l ∈ E is given by Fl (t).

It is easy to see that Fl (t) linearly increases with discontinuities at times (di
l)i∈Il

, at which the function

decreases in the amount of (σi)i∈Il
. Note that the local minima of the function Fl (t) are obtained at times

(di
l)i∈Il

. Then, the schedulability condition is equivalent to Fl (u) ≥ 0 ∀u ∈ (di
l)i∈Il

⋃

{0} [11]. Let us

assume, without loss of generality, that the flows in Il = {1, 2, . . . , Il} are ordered by (di
l): i < j ⇒ di

l ≤

dj
l∀i, j ∈ Il. Let d0

l = 0. Denote the local minima values by wi
l , where w0

l = 0 and wi
l = Fl (d

i
l) , i =

1, 2, . . . , Il. Also, denote the slopes of Fl (t) by ri
l , where ri

l = Rl −
∑

j≤i

ρi, i = 0, 1, . . . , Il. Then, the

work availability function is fully specified by the set (di
l, w

i
l , r

i
l)0≤i≤Il

. Therefore, the set (di
l, w

i
l , r

i
l)0≤i≤Il

constitutes the link parameters, which specify the state of the link l ∈ E. Obviously, this set should be

updated each time a connection is admitted to the scheduler or leaves it. An efficient update algorithm can be

found in [11].

Consider a link l and a pending session m with traffic parameters (σm
0 , ρm

0). Then, the minimum queueing

delay dm
l,0 that can be guaranteed to m can be found by determining the leftmost position of σm

0 + ρm
0 · t such

that it is below the graph of Fl (t) for all t ≥ 0, as in Figure 1. An efficient scheme that is given the link and

traffic parameters and calculates dm
l,0 can be found in [11].

5

IV. FINDING FEASIBLE PATHS

In the context of EDF routing, we seek both a path and a deadline allocation at each link along the chosen

path. Accordingly, we define a path-deadline assignment as follows.

Definition 1: A path-deadline assignment is a path (p, d), where d = {dl}l∈p
is the set of deadline assign-

ments at each link l ∈ p.

We begin with the basic problem of identifying a feasible path-deadline allocation. If several feasible paths

exist, we seek a path with the minimal end-to-end delay. Consider first the standard case, where the traffic at

each node is shaped with the parameters at the entrance to the network. In this case, the problem is formulated

as follows.

Quickest Feasible Path Problem (QFP): Given are a network G (V, E), with a service rate Rl, a prop-

agation delay δl, and a work availability function Fl (t) for each l ∈ E. Also, given is a session m with

source sm, destination tm, upper rate ρm
0 , burst σm

0 and an end-to-end delay requirement Dm. Find a feasible

path-deadline assignment (pm, dm), i.e., a path between sm and tm and a deadline allocation {dm
l }l∈pm , such

that:

1. Dm (pm) =
∑

l∈pm

(dm
l + δl) ≤ Dm,

2. for all l ∈ p
m:

Fl (t) − 1 (t − dm
l) (σm

0 + ρm
0 (t − dm

l)) > 0 ∀t > 0.

If there are several such paths, the one with the minimum end-to-end delay bound is selected, i.e., a path with

the minimum Dm (pm).

Distributed routing schemes that solve this problem have been proposed in several studies (e.g., [13, 14,

11, 18]). Those routing schemes are guaranteed to find a feasible path, if one exists. Basically, the schemes

employ the following algorithm, which is specified here for completeness.

Algorithm QFP (sketch): For each link l ∈ E, calculate the minimum queueing delay dm
l,0 that link l can

guarantee to session m, while maintaining

Fl (t) − 1
(

t − dm
l,0

) (

σm
0 + ρm

0

(

t − dm
l,0

))

> 0, ∀t > 0.

Then, find the shortest path with respect to the metric
{

dm
l,0 + δl

}

. If the sum of the queueing and propagation

delays along the identified path p̃ is at most Dm , i.e., Dm (pm) ≤ Dm, then return p̃, dm
l = dm

l,0; otherwise,

there is no feasible path.

Next, consider the more complex problem of identifying a feasible path while reshaping the traffic at each

node along the path. It is known that the selection of the traffic reshaping parameters influences the schedu-

lable region under RC-EDF [9]. In other words, proper selection of the traffic reshaping to be performed at

each node may result in a lower end-to-end delay bound. For simplicity, we focus on the restricted case of

single-leaky-buckets. Accordingly, we define a path-reshaping-deadline assignment as follows.

Definition 2: A path-reshaping-deadline assignment is a path
(

p, (σ, ρ), d
)

, where (σ, ρ) = {(σl, ρl)}l∈p

are the reshaping parameters at each link l ∈ p and d = {dl}l∈p
is the deadline assignment at each link l ∈ p.

Then, the problem is formulated as follows.

6

Quickest Feasible Path with Traffic Reshaping Problem (QFPTS): Given are a network G (V,E), with

a service rate Rl, a propagation delay δl, and a work availability function Fl (t) for each l ∈ E. Also, given

is a session m with source sm, destination tm, upper rate ρm
0 , burst σm

0 and an end-to-end delay requirement

Dm. Find a feasible path-reshaping-deadline assignment
(

p
m, (σm, ρm), dm

)

, i.e., a path between sm and

tm, reshaping parameters {(ρm
l , σm

l)}l∈pm , and a deadline allocation {dm
l }l∈pm , such that:

1. max
l∈pm

(

(σm

0
−σm

l)
+

ρm

l

)

+
∑

l∈pm

(dm
l + δl) ≤ Dm

2. for all l ∈ p
m: ρm

l ≥ ρm
0 ,

3. for all l ∈ p
m:

Fl (t) − 1 (t − dm
l) (σm

l + ρm
l (t − dm

l)) > 0, ∀t > 0.

If there are several such paths, the one with the minimum end-to-end delay bound is selected, i.e., a path with

the minimum

Dm (pm) = max
l∈pm

(

(σm
0 − σm

l)+

ρm
l

)

+
∑

l∈pm

(dm
l + δl).

Note that the maximum reshaping delay (i.e., max
l∈pm

(σm

0
−σm

l)
+

ρm

l

) is incurred only once, and is independent of

the number of hops on the path [9].

A. Reshaping both the traffic burst as well as the traffic rate

Let Wl (σ
m
l , ρm

l) be the minimum delay that can be guaranteed to a session m at link l, as a function of the

reshaping parameters σm
l and ρm

l . Accordingly, for 0 ≤ σm
l ≤ σm

0 and ρm
0 ≤ ρm

l < R′
l:

Wl (σ
m
l , ρm

l) = {min d|Fl (t) − 1 (t − d) (σm
l + ρm

l (t − d)) > 0∀t > 0} .

Obviously, we have that Wl (σ
m
0 , ρm

0) = dm
l,0. Furthermore, given the session m traffic reshaping parameters

at each link l ∈ p, (σm
l , ρm

l), the end-to-end delay along a path p is given by

Dm (p) = max
l∈p

(

(σm
0 − σm

l)+

ρm
l

)

+
∑

l∈p

(Wl (σ
m
l , ρm

l) + δl).

Suppose that the maximum allowed reshaping delay along a path p is C time units, that is

max
l∈p

(

(σm
0 − σm

l)+

ρm
l

)

≤ C.

Then, at each link l we seek the session m reshaping parameters (σm
l , ρm

l) that minimize the link’s l guaran-

teed delay, Wl (σ
m
l , ρm

l). Denote the obtained minimum delay (with a maximum reshaping delay of C time

units) by Wl (C). Clearly, Wl (0) = dm
l,0. Algorithm Minimum-Link-Delay, specified in Figure 2, identifies

the optimum reshaping parameters (σ̄m
l , ρ̄m

l) and the corresponding minimum delay Wl (C).

Proposition 1: (a) Let Il be a schedulable set of sessions at link l, and let {wi
l , d

i
l, r

i
l}0≤i≤Il

be a set of

parameters defining the link work availability function. Let (ρm
0 , σm

0) be the traffic parameters of a new

session m, at the entrance to the network. Also, let C be the maximal allowed reshaping delay. Then, the

7

minimum link’s guaranteed delay Wl (C), and the corresponding session m reshaping parameters at link l,

(σ̄m
l , ρ̄m

l), are correctly identified by Algorithm Minimum-Link-Delay.

(b) The algorithm’s complexity is O
(

Il · log
(

dm
l,0

))

.

Proof: A maximal reshaping delay C implies that, for all possible reshaping parameters (σm
l , ρm

l), we

have σm
l +ρm

l C = σm
0 . Accordingly, a given delay λ can be guaranteed only if F (λ + C) > σm

0 . Keeping that

in mind, the algorithm calculates the maximum rate rmax for which Fl (t)−σm
0 −rmax (t − λ − C) > 0, ∀t ≥

λ+C. Then, the algorithm calculates the minimum rate rmin for which Fl (t)−(σm
0 − rmin (λ + C − t)) > 0

for all t in the range λ ≤ t < λ + C. Accordingly, the algorithm sets ρm
l to be such that ρm

l ≥ ρm
0 and

rmin ≤ ρm
l ≤ rmax.

The algorithm considers O
(

log
(

dm
l,0

))

delay values, and for each delay λ the algorithm involves O (Il)

calculations. Thus the algorithm’s complexity is O
(

Il · log
(

dm
l,0

))

.

With the above algorithm at hand, we turn to solve the routing and traffic reshaping problem QFPTS.

Algorithm QFPTS, specified in Figure 3, solves this problem. The algorithm executes Dijkstra’s shortest

path algorithm for all possible values of C. Thus, obviously, the complexity of the algorithm could be pro-

input:
{

wi
l , d

i
l, r

i
l

}

0≤i≤Il
, (ρm

0 , σm
0), C

output: (σ̄m
l , ρ̄m

l), Wl (C)

1. find dm
l,0

2. H ← dm
l,0

3. L ← 0

4. λ ← dm
l,0

5. while
∣

∣λ − L+H
2

∣

∣ > 1

(a) λ ← L+H
2

(b) let j such that d
j−1
l ≤ λ + C and d

j
l > λ + C

(c) let b such that db−1
l ≤ λ and db

l > λ

(d) if w
j−1
l + r

j−1
l

(

λ + C − d
j−1
l

)

> σm
0

i. r1
max ← R′

l

ii. r2
max ← min

i≥j

wi
l−σm

0

di
l
−λ−C

iii. rmax ← min
{

r1
max, r

2
max

}

iv. r1
min ←

σm
0 −(w

b−1

l
+r

b−1

l (λ−d
b−1

l))
C

v. r2
min ← max

b≤i≤j−1

σm
0 −wi

l

λ+C−di
l

vi. rmin ← max
{

r1
min, r2

min

}

vii. if ρm
0 > rmax or rmin > rmax then go to step 5e

viii. (else) if ρm
0 > rmin then ρm

l ← ρm
0

ix. else ρm
l ← rmin

x. σm
l ← σm

0 − ρm
l C

xi. H ← λ

(e) else L ← λ (a delay λ cannot be guaranteed)

6. Wl (C) ← λ

7. (σ̄m
l , ρ̄m

l) ← (σm
l , ρm

l)

Fig. 2. Algorithm Minimum-Link-Delay

8

hibitively large. Therefore, in order to reach an efficient yet computationally tractable solution, we establish

an approximation scheme based on quantizing the reshaping delays. For ease of presentation, we begin with

an approximation of order 2, i.e., the following algorithm shall derive a solution (path-reshaping-deadline

assignment) whose guaranteed end-to-end delay is at most twice greater than that of the quickest.

The session m reshaping delay C could take any value in the interval
[

0,
σm

0

ρm

0

]

. We group these values into

O
(

log
σm

0

ρm

0

)

reshaping-delay-classes, such that, for 1 ≤ k ≤ ⌈log2
σm

0

ρm

0

⌉, reshaping-delay-class k contains all

reshaping delays in the range
(

2k−1, 2k
]

.

The Quantized 2-Approximation algorithm, termed Algorithm QFPTS-Q-2, is specified in Figure 4.

Proposition 2: (a) The guaranteed end-to-end delay of the output path p̃
m of algorithm QFPTS-Q-2 is at

most twice larger then the minimal value, i.e., if p
∗ is the quickest path then Dm (p̃m) ≤ 2 · Dm (p∗).

(b) The algorithm’s complexity is

O

(

log

(

σm
0

ρm
0

)

(N log N + M)

)

.

Proof: Let C∗ be the reshaping delay of the optimal solution and k∗ be the corresponding reshaping-

delay-class. Then, by the algorithm, Ck∗

≤ 2 · C∗. Furthermore, since C∗ ≤ Ck∗

implies that

Wl

(

Ck∗
)

≤ Wl (C
∗), it holds that

∑

l∈p(k∗)

Wl

(

Ck∗
)

+ δl ≤
∑

l∈p∗

Wl (C
∗) + δl. Therefore,

Ck∗

+
∑

l∈p(k∗)

Wl

(

Ck∗)

+ δl ≤ 2 · C∗ +
∑

l∈p∗

Wl (C
∗) + δl.

Then, clearly, Dm (p̃m) ≤ Ck∗

+
∑

l∈p(k∗)

Wl

(

Ck∗
)

+ δl, which implies that Dm (p̃m) ≤ 2 · Dm (p∗), and the

first part of the proposition follows. The second part of the proposition is straightforward.

We proceed to generalize the above algorithm for obtaining an ǫ-approximation. Given a value ǫ > 0,

the reshaping delay values are grouped into O
(

log1+ǫ
σm

0

ρm

0

)

reshaping-delay-classes, such that, for 1 ≤ k ≤

⌈log1+ǫ

(

σm

0

ρm

0

)

⌉, reshaping-delay-class k contains all reshaping delays in the range
(

(1 + ǫ)k−1 , (1 + ǫ)k
]

.

The corresponding Algorithm QFPTS-Q-ǫ is identical to Algorithm QFPTS-Q-2, except that it consists of

O
(

log1+ǫ
σm

0

ρm

0

)

iterations that consider the above O
(

log1+ǫ
σm

0

ρm

0

)

reshaping-delay-classes.

1. for all possible values of C, 0 ≤ C ≤
σm
0

ρm
0

(a) for each l ∈ E, calculate Wl (C) and (σ̄m
l , ρ̄m

l) through algorithm Minimum-Link-Delay

(b) find the shortest path p (C) w.r.t. {Wl (C) + δl} (through Dijkstra’s shortest path algorithm)

2. let C̃ such that C̃ +
∑

l∈p(C̃)

(

Wl

(

C̃
)

+ δl

)

is minimized

3. if C̃ +
∑

l∈p(C̃)

(

Wl

(

C̃
)

+ δl

)

< Dm

(a) return p̃
m ← p

(

C̃
)

, (σ̃m
l , ρ̃m

l), dm
l ← Wl

(

C̃
)

(b) end

4. else there is no feasible path, end

Fig. 3. Algorithm QFPTS

9

1. for all l ∈ E, calculate dm
l,0

2. C0 ← 0, (σ̄m
l , ρ̄m

l) (0) ← (σm
0 , ρm

0)

3. find the shortest path p (0) w.r.t. Dm
l,0 + δl

4. for all k, 1 ≤ k ≤ ⌈log2
σm
0

ρm
0

⌉

(a) Ck ← 2k

(b) for all l ∈ E, calculate Wl

(

Ck
)

and (σ̄m
l , ρ̄m

l) (k) through algorithm Minimum-Link-Delay

(c) find the shortest path p (k) w.r.t.
{

Wl

(

Ck
)

+ δl

}

(through Dijkstra’s shortest path algorithm)

5. let k̃ such that C k̃ +
∑

l∈p(k̃)

(

Wl

(

C k̃
)

+ δl

)

is minimized

6. if C k̃ +
∑

l∈p(k̃)

(

Wl

(

C k̃
)

+ δl

)

< Dm

(a) return p̃
m ← p

(

k̃
)

, (σ̃m
l , ρ̃m

l) ← (σ̄m
l , ρ̄m

l)
(

k̃
)

, dm
l ← Wl

(

C k̃
)

,

(b) end

7. else there is no feasible path, end

Fig. 4. Algorithm QFPTS-Q-2

Proposition 3: (a) The guaranteed end-to-end delay of the output path p̃
m of Algorithm QFPTS-Q-ǫ is at

most 1 + ǫ larger than the minimum value, i.e., if p
∗ is a quickest path, then Dm (p̃m) ≤ (1 + ǫ) · Dm (p∗).

(b) The algorithm’s complexity is O
(

1
ǫ
log

(

σm

0

ρm

0

)

(N log N + M)
)

.

Proof: The proof of the first part of the proposition is similar to that of Proposition 2. The second part

is immediate from the following relation:

O

(

log1+ǫ

σm
0

ρm
0

)

= O

(

log
σm

0

ρm

0

log (1 + ǫ)

)

= O

(

1

ǫ
· log

σm
0

ρm
0

)

.

A.1 An Example

We now demonstrate the efficiency of the proposed QFPTS algorithm. Through a simple network exam-

ple, we indicate that the standard QFP algorithm may not identify a feasible path; in contrast, our QFPTS

algorithm is guaranteed to identify a feasible path, if it exists.

3
l

4
l

5
l

6
l

1
l

2
l

source destination

Fig. 5. A 6-hop network example

Consider some source and destination nodes connected by a 6-hop path, as depicted in Fig. 5. The band-

width of each of the six links is assumed to be 10Mbps. Assume that propagation delays are negligible.

Suppose that a session, referred to as session 1, with (1Mb, 2Mbps)-burstiness constrained traffic, is routed

through these links. Also, assume that session 1 is reshaped at each link with the same traffic parameters

as at the entrance to the network. Furthermore, assume that the session is assigned a deadline of 200ms at

each link, which constitute an end-to-end guaranteed delay of 1200ms. Now, suppose that a new session,

10

referred to as session 2, is pending, and suppose that its traffic parameters are (1Mb, 5Mbps), and it requires

an end-to-end delay guaranteed of 1000ms. Under the above setting, the standard QFP algorithm assumes

a minimum delay of 200ms at each link. A minimum delay of 200ms follows since at time t = 200ms the

work availability function equals to 1Mb, that is, Fl (200ms) = 10Mbps · 200ms − 1Mb = 1Mb. Accord-

ingly, the minimum end-to-end delay along the path is 1200ms, which is not feasible. In contrast, our QFPTS

algorithm identifies an optimal reshaping at each node; that is, the traffic is reshaped with the parameters

(0Mb, 5Mbps), which corresponds to a shaping delay of 500ms. Consequently, a minimum queueing delay

of 0ms can be guaranteed at each link. A 0ms delay follows since Fl (t) − 5Mbps · t ≥ 0, ∀t > 0. In

particular, at time t = 200ms, Fl (t) − 5Mbps · t = 1Mb − 5Mbps · 200ms = 0. Thus, the path is feasible

for session 2 with a guaranteed end-to-end delay of 500ms. Alternatively, algorithm QFPTS-Q-2 identifies a

guaranteed end-to-end delay of at most 1000ms, which is still feasible.

B. Reshaping only the traffic burst

Here, we consider the special case in which only the maximal burst size of the traffic can be reshaped along

the path.

Suppose that, at each link l ∈ p, the traffic of a session m is shaped with a fixed rate ρm
0 , as at the entrance

to the network. Furthermore, suppose that, at each link l, the traffic burst of session m is reshaped with a

parameter σm
l . Accordingly, at each link l, the traffic of session m entering the EDF scheduler is (ρm

0 , σm
l)-

burstiness constrained.

Define the link-delay-burst function Wl (σ), for all 0 ≤ σ ≤ σm
0 , as

Wl (σ
m
l) = {min d|Fl (t) − 1 (t − d) (σm

l + ρm
0 (t − d)) > 0, ∀t > 0} .

Wl (σ
m
l) is the minimum delay that can be guaranteed to a session m at link l, as a function of σm

l . A typical

instance of Wl (σ
m
l) (which corresponds to Fl (t) of Figure 1) is depicted in Figure 6. We note that Wl (σ

m
l)

,0

m

l
d

0

m�

✁

✂ ✄
lW ☎

Fig. 6. A typical instance of the link-delay-burst function Wl (σ
m
l)

is an increasing piecewise linear function of σm
l . Furthermore, the number of points at which the slope of the

function Wl (σ
m
l) changes is less than 2I−

l , where I−
l is the number of sessions at link l with a deadline of

11

at most dm
l,0. Denote the burst size instances for which the slope of Wl (σ

m) changes by xj
l and let x0

l = 0.

Additionally, denote the slope values and the function values of Wl (σ
m) at these points (starting with the

right hand side) by aj
l and yj

l , respectively. Let Jl be the number of points at which the slope changes, where

Jl ≤ 2I−
l .

Algorithm Calculate-Link-Delay-Burst, specified in Figure 7, calculates the set
(

yj
l , x

j
l , a

j
l

)

0≤j≤J
for a link

l ∈ E, given the link parameters (wi
l , d

i
l, r

i
l)0≤i≤Il

(the link’s work availability function) and given the pending

session’s parameters (ρm
0 , σm

0).

Proposition 4: (a) Let Il be a schedulable set of sessions at link l, and let {wi
l , d

i
l, r

i
l}0≤i≤Il

be a set of

parameters defining the link work availability function. Also, let (ρm
0 , σm

0) characterize a new session m such

that the stability condition
∑

i∈Il

ρi
l +ρm

l < Rl is satisfied. Then, the link-delay-burst Wl (σ
m), is fully specified

by the set
{

yj
l , x

j
l , a

j
l

}

0≤j≤Jl

, obtained by Algorithm Calculate-Link-Delay-Burst.

(b) The algorithm’s complexity is O (I2
l).

Proof: First, the algorithm finds the minimum guaranteed delay for a zero burst as follows.

Let (αi)i∈Il
such that

Fl

(

di
l

)

= ρm
0

(

di
l − αi

)

i ∈ Il

and let cα = max (αi, 0).

Let cβ = max
i∈Il;Fl(di

l)=0
(di

l) and c = max (cα, cβ).

Let b, 1 ≤ b ≤ Il + 1, such that db−1
l ≤ m < db

l , where d0
l = 0 and dIl+1

l = ∞.

If Fl

(

db−1
l

)

= 0 then, the minimum guaranteed delay is db−1
l , i.e., y0

l = db−1
l . The slope of Wl (σ

m) is 1

rb−1

l

.

Furthermore, let

e = arg min
k>b−1

Fl

(

dk
l

)

− ρm
0

(

dk
l − db−1

l

)

and let α be such that

Fl (d
e
l) − ρm

0 (de
l − α) = Fl

(

db−1
l

)

+ rb−1
l

(

α − db−1
l

)

.

Then, the slope of Wl (σ
m) changes at Wl (σ

m) = α to 1
ρm

0

.

Otherwise (i.e., Fl

(

db−1
l

)

6= 0), the minimum guaranteed delay for a zero burst is cα and the first slope of

Wl (σ
m) is 1

ρm

0

.

Next, the algorithm iterates over the delays
{

db
l

}

b≤Il+1
in order to find the corresponding points at which

the slope of Wl (σ
m) changes.

Let

e = arg min
k>b−1

Fl

(

dk
l

)

− ρm
0

(

dk
l − db−1

l

)

.

If

Fl (d
e
l) − ρm

0

(

de
l − db−1

l

)

> Fl

(

db−1
l

)

then the slope of Wl (σ
m) changes at Wl (σ

m) = db−1
l to 1

rb−1

l

. Furthermore, the slope of Wl (σ
m) changes

again at Wl (σ
m) = c where c is such that

Fl (d
e
l) − ρm

0 (de
l − c) = Fl

(

db−1
l

)

+ rb−1
l

(

c − db−1
l

)

.

12

input:
{

wi
l , d

i
l, r

i
l

}

0≤i≤Il
, (ρm

0 , σm
0)

output:
{

y
j
l , x

j
l , a

j
l

}

0≤j≤Jl

1. cα ← 0; cβ ← 0

2. for i=1 to Il do

(a) if wi
l > 0 then

i. αi ← di
l −

wi
l

ρm
0

ii. cα ← max (cα, αi)

(b) else cβ ← max
(

cβ , di
l

)

3. c ← max (cα, cβ)

4. b ← 0

5. while (b ≤ Il + 1) and
(

c ≥ db
l

)

do

(a) b ← b + 1

6. j ← 0

7. if wb−1 = 0

(a) y
j
l ← db−1

l ; x
j
l ← 0; a

j
l ← 1

r
b−1

l

(b) c ← wb−1
l ; e ← b − 1

(c) for k = b to Il + 1 do

i. if wk
l − ρm

0

(

dk
l − db−1

l

)

< c

ii. c ← wk
l − ρm

0

(

dk
l − db−1

l

)

; e ← k

(d) c ←
we

l −w
b−1

l
+r

b−1

l
d

b−1

l
−ρm

0 de
l

r
b−1

l
−ρm

0

(e) j ← j + 1

(f) y
j
l ← c; x

j
l ← x

j−1
l +

y
j

l
−y

j−1

l

a
j−1

l

; a
j
l ← 1

ρm
0

8. else y
j
l ← cα; x

j
l ← 0; a

j
l ← 1

ρm
0

9. b ← b + 1

10. while b < Il + 1 and x
j
l < σm

0

(a) c ← wb−1
l ; e ← b − 1

(b) for k = b to Il + 1 do

i. if wk
l − ρm

0

(

dk
l − db−1

l

)

< c

ii. c ← wk
l − ρm

0

(

dk
l − db−1

l

)

; e ← k

(c) if we
l − ρm

o

(

de
l − db−1

l

)

> wb−1
l do

i. j ← j + 1

ii. y
j
l ← db−1

l ; x
j
l ← x

j−1
l +

y
j

l
−y

j−1

l

a
j−1

l

; a
j
l ← 1

r
b−1

l

iii. c ←
we

l −w
b−1

l
+r

b−1

l
d

b−1

l
−ρm

0 de
l

r
b−1

l
−ρm

0

iv. j ← j + 1

v. y
j
l ← c; x

j
l ← x

j−1
l +

y
j

l
−y

j−1

l

a
j−1

l

; a
j
l ← 1

ρm
0

(d) b ← b + 1

11. if b = Il + 1 and b 6= 1

(a) j ← j + 1

(b) y
j
l ← db−1

l ; x
j
l ← x

j−1
l +

y
j

l
−y

j−1

l

a
j−1

l

; a
j
l ← 1

r
b−1

l

12. Jl ← j

Fig. 7. Algorithm Calculate-Link-Delay-Burst

13

Here, the slope changes to 1
ρm

0

.

For each i, 1 ≤ i ≤ Il, the algorithm consists O (Il) operations. Thus, the algorithm’s complexity is O (I2
l).

Now, we have that the end-to-end delay along a path p is given by

Dm (p) = max
l∈p

(

(σm
0 − σm

l)+

ρm
0

)

+
∑

l∈p

(Wl (σ
m
l) + δl).

Corollary 1: Suppose that the session m guaranteed end-to-end delay Dm (p) is minimized by the set

{σ̄m
l }l∈p

. Then, {σ̄m
l }l∈p

have the same value, i.e., σ̄m
l = σ̄m ∀l ∈ p.

Proof: By contradiction. Assume that σ̄m
l = σ̄m ∀l ∈ p does not hold. Then, let σ̃m = min

l∈p

σ̄m
l .

Clearly, max
l∈p

(

(σm

0
−σ̄m

l)
+

rm

)

= max
l∈p

(

(σm

0
−σ̃m)

+

rm

)

. However, since Wl (σ
m
l) is increasing in σm

l , we have that

Wl (σ̃
m) ≤ Wl (σ̄

m
l) ∀l ∈ p. Accordingly, the end-to-end delay along the path p with a maximal burst size

of σ̃m ∀l ∈ p is lower than the end-to-end delay with maximal burst sizes of σ̄m
l ∀l ∈ p, which contradicts

the optimality of {σ̄m
l }l∈p

.

Thus, aiming at minimizing the end-to-end delay we seek a single maximal burst size value for all the links

along the path.

Denote W (σm) =
∑

l∈p

Wl (σ
m). It is easy to see that W (σm) is increasing and piecewise linear. Further-

more, if the slope of W (σm) changes at σ0 then for at least one link l ∈ p, say l0, the slope of Wl0 (σm)

changes at σ0. Accordingly, the slope of W (σm) changes at most 2hI−
max times, where I−

max = max
l∈p

I−
l and h

is the number of hops along p.

Given a path p, the following corollary considers the optimal reshaping burst σ̄m that minimizes the guar-

anteed end-to-end delay Dm (p).

Corollary 2: Suppose that the session m guaranteed end-to-end delay Dm (p) is minimized by a maximal

burst size σ̄m. Then, W (σm) changes its slope at σ̄m.

Proof: By contradiction. Assume that W (σm) is differentiable at σ̄m. Then, consider the following

two possible cases.

Case 1: W ′ (σ̄m) < 1
ρm

0

.

Then, consider a maximal burst size σ̃m = σ̄m + ǫ. We have that

σm
0 − σ̃m

ρm
0

+ W (σ̃m) +
∑

l∈p

δl <
σm

0 − σ̄m

ρm
0

+ W (σ̄m) +
∑

l∈p

δl,

which contradicts the optimality of σ̄m.

Case 2: W ′ (σ̄m) > 1
ρm

0

.

Then, consider a maximal burst size σ̃m = σ̄m − ǫ. We have that

σm
0 − σ̃m

ρm
0

+ W (σ̃m) +
∑

l∈p

δl <
σm

0 − σ̄m

ρm
0

+ W (σ̄m) +
∑

l∈p

δl,

which contradicts the optimality of σ̄m.

14

Corollary 2 suggests that an optimal routing scheme may limit itself to consider reshaping burst sizes at which

Wl (σ
m) , ∀l ∈ E, change their slopes. Accordingly, for each such burst size, Algorithm QFPTS-Fixed Rate

(QFPTS-FR), depicted in Figure 8, finds the shortest path w.r.t. Wl (σ
m) + δl. Then, among the O (MImax)

paths, it chooses a path p̃ and burst σ̃m that minimize the guaranteed end-to-end delay.

1. for all l ∈ E, call Calculate-Link-Delay-Burst

2. for all values of σm, σm ∈

{

{

x
j
l

}

0≤j≤Jl

}

l∈E

(a) for all l ∈ E, calculate Wl (σ
m)

(b) find the shortest path p̃ between sm and tm w.r.t. {Wl (σ
m) + δl} (through Dijkstra’s shortest path algorithm)

3. among the O (MImax) paths, choose a path p̃ and burst σ̃m with the smallest guaranteed end-to-end delay

Dm (p) =
(σm

0 −σm)+

ρm
0

+
∑

l∈p

(Wl (σ
m) + δl).

4. if Dm (p̃) < Dm then

(a) dm
l ← Wl (σ̃

m) , ∀l ∈ p̃

(b) (σ̃m
l , ρ̃m

l) ← (σ̃m, ρm
0) , ∀l ∈ p̃

(c) return p̃, {dm
l }

l∈p̃
, {(σ̃m

l , ρ̃m
l)}

l∈p̃

5. else

(a) there is no feasible path

(b) end

Fig. 8. Algorithm QFPTS-FR

Proposition 5: Algorithm QFPTS-FR correctly solves QFPTS problem for a fixed reshaping traffic rate

ρm
o . The algorithm’s complexity is O (MImax (N log N + M)).

Proof: The first part of the proposition follows from Corollaries 1 and 2. The algorithm consists of

O (MImax) executions of Dijkstra’s shortest path algorithm. The second part of the proposition immediately

follows.

While the computational complexity of Algorithm QFPTS-FR is polynomial, it could still be prohibitively

large. Therefore, in order to obtain an efficient yet computationally tractable solution, we establish an ǫ-

optimal solution with a complexity of O
(

M (N log N + M) 1
ǫ
log Dmax

)

. To that end, we quantize the delay

deadlines at each link.

Suppose that the allowed values of guaranteed link delay are restricted to a set of O
(

log1+ǫ Dmax

)

delay-

classes, where Dmax is the maximal end-to-end delay requirement. More precisely, at each link l ∈ E,

the delay deadline assignment has to assume a value out of the set 0, 1 + ǫ, (1 + ǫ)2 , . . . (1 + ǫ)K
, where

K = ⌈log1+ǫDmax⌉. Accordingly, the work availability function at each link l might change its slope only at

the points 0, 1 + ǫ, (1 + ǫ)2 , . . . (1 + ǫ)K
. Consequently, the slope of the link-delay-burst function changes at

most 2∗K times. The corresponding algorithm QFPTS-FR- Delay Quntized - ǫ (QFPTS-FR-DQ-ǫ), depicted

in Figure 9, is similar to algorithm QFPTS-FR, only that it consists of O
(

M log1+ǫ Dmax

)

iterations and it

assigns deadlines out of the allowed set.

Proposition 6: (a) The guaranteed end-to-end delay of the output path p̃
m of algorithm QFPTS-FR-DQ-ǫ

is at most 1 + ǫ larger then the minimal value obtained by Algorithm QFPTS-FR, i.e., if p
∗ is the output path

of algorithm QFPTS-FR then Dm (p̃m) ≤ (1 + ǫ) · Dm (p∗).

15

(b) The algorithm’s complexity is O
(

M (N log N + M) 1
ǫ
log Dmax

)

.

Proof: For each link l ∈ p̃ dm
l is at most (1 + ǫ) Wl (σ̃

m), i.e., dm
l ≤ (1 + ǫ) Wl (σ̃

m). Accordingly,

Dm (p̃) =
(σm

0 − σm)+

ρm
0

+
∑

l∈p

(dm
l + δl) ≤ (1 + ǫ)

(

(σm
0 − σm)+

ρm
0

+
∑

l∈p

(Wl (σ̃
m) + δl)

)

= (1 + ǫ) Dm (p∗) .

The algorithm consists of O
(

M log1+ǫ Dmax

)

executions of Dijkstra’s shortest path algorithm. The second

part of the proposition is follows from the following relation:

O
(

log1+ǫ Dmax

)

= O

(

log Dmax

log (1 + ǫ)

)

= O

(

1

ǫ
· log Dmax

)

.

V. OPTIMIZING THE PATH SELECTION

The ability to identify a feasible path for a connection does not yield yet a satisfactory QoS routing so-

lution. Indeed, in order to supervise multiple connections throughout the network, the routing algorithm

must consider the efficient use of the consumed resource. There does not seem to be a precise definition

for “optimality” of a path in this context, yet it is clear that an efficient scheme should aim at balancing the

load throughout the network. In the following, we devise two criteria for balancing the load, as well as the

corresponding routing schemes.

A. Rate Consumption Criterion

Consider first the simple criterion of choosing, for a connection request m, a path p for which the residual

rate (after establishing the new connection) of its bottleneck link is maximal. That is, we aim at solving the

following problem.

1. for all l ∈ E, call Calculate-Link-Delay-Burst

2. for all values of σm, σm ∈

{

{

x
j
l

}

0≤j≤Jl

}

l∈E

(a) for all l ∈ E, calculate Wl (σ
m)

(b) find the shortest path p̃ between sm and tm w.r.t. {Wl (σ
m) + δl} (through Dijkstra’s shortest path algorithm)

3. among the O (MImax) paths, choose a path p̃ and burst σ̃m with the smallest guaranteed end-to-end delay

Dm (p) =
(σm

0 −σm)+

ρm
0

+
∑

l∈p

(Wl (σ
m) + δl).

4. if Dm (p̃) < Dm then

(a) for each l ∈ p̃

i. let kl such that Wl (σ̃
m) > (1 + ǫ)

kl−1
and Wl (σ̃

m) < (1 + ǫ)
kl

ii. dm
l ← (1 + ǫ)

kl

iii. (σ̃m
l , ρ̃m

l) ← (σ̃m, ρm
0)

(b) return p̃, {dm
l }

l∈p̃
, {(σ̃m

l , ρ̃m
l)}

l∈p̃

5. else

(a) there is no feasible path

(b) end

Fig. 9. Algorithm QFPTS-FR-RQ-ǫ

16

Maximum Residual Bottleneck(MRB): Given are a network G (V,E), with a service rate Rl, a propagation

delay δl, and a work availability function Fl (t) for each l ∈ E. Also, given is a session m with source sm,

destination tm, upper rate ρm
0 , burst σm

0 and an end-to-end delay requirement Dm. Find a feasible path-

deadline assignment (pm, dm), i.e., a path between sm and tm and a deadline allocation (dm
l)l∈pm , such

that:

1.
∑

l∈pm

(dm
l + δl) ≤ Dm,

2. for all l ∈ p
m:

Fl (t) − 1 (t − dm
l) (σm

0 + ρm
0 (t − dm

l)) > 0 ∀t > 0.

If there are several such paths, select the one with the maximum residual rate of its bottleneck, i.e.,

max
p

min
l∈p

(R′
l − ρm

0).

Let R1, R2, . . . RK be the set of all residual rate values, where K ≤ M . Assume, without the loss of

generality, that R1 > R2 > . . . > RK . Algorithm MRB, specified in Figure 10, solves the above problem.

1. for all l ∈ E, calculate the minimum delay dm
l,0 that can be guaranteed to session m (through Algorithm

MINIMUM-DELAY of [19])

2. find the shortest path p̃ between sm and tm w.r.t.
{

dm
l,0 + δl

}

(through Dijkstra’s shortest path algorithm)

3. if
∑

l∈p̃

(

dm
l,0 + δl

)

< Dm then

(a) L ← 1, H ← K, k ← 1

(b) while k 6= ⌊L+H
2 ⌋

i. k ← ⌊L+H
2 ⌋

ii. delete all links l with R′
l < Rk

iii. find the shortest path p̃ w.r.t.
{

dm
l,0 + δl

}

iv. if
∑

l∈p̃

(

dm
l,0 + δl

)

< Dm then H ← k else L ← k

(c) η ← D −
∑

l∈p̃

(

dm
l,0 + δl

)

(d) dm
l ← dm

l,0 + η
h

, where h is the number of hops along the path p̃

(e) return p̃, {dm
l }

l∈p̃

4. else there is no feasible path, end

Fig. 10. Algorithm MRB

Proposition 7: Algorithm MRB correctly identifies a feasible path (if one such exists) with the maximum

residual rate of its bottleneck link. The algorithm’s complexity is O (MImax + log K (N log N + M)).

Proof: The first part of the proposition is straightforward.

The algorithm calculates MINIMUM-DELAY for all links, which involves O (MImax) operations. Then, the

algorithm consists O (log K) executions of Dijkstra’s shortest path algorithm, which involves

O (log K (N log N + M)) operations.

B. Delay-Rate Consumption Criterion

The way that a session affects the availability of resources at a link depends on the residual rate as well as

the assigned deadline at that link. In other words, a session m that is routed through a link l consumes more

17

resources when it is assigned a smaller deadline. While algorithm MRB balances the rate consumption, the

path selection does not account for the allocation of the delay deadlines. More precisely, the MRB scheme

balances the deadline assignment along the path p̃ only after the path is selected. Accordingly, we now

consider an alternative routing scheme, which aims at balancing the load as well as optimizing the deadline

allocation. To that end, a new criterion for load balancing is called for.

More specifically, we seek a measure for the residual resource available for future connections after admit-

ting a connection. Such a measure should account for the rate consumption as well as the deadline allocation.

Recall that the EDF schedulability condition at each link l ∈ E is given by the inequality Fl (t) > 0,

∀t > 0. Thus, when admitting a new connection m with a deadline dm
l , the following inequality should hold:

min
t>dm

l

(Fl (t) − 1 (t − dm
l) (σm

0 + ρm
0 (t − dm

l))) > 0. Accordingly, for all d > dm
l,0, define the residual resource

function as follows:

Sl (d) = min
t>d

(Fl (t) − 1 (t − d) (σm
l + ρm

l (t − d)))

Sl (d) estimates the residual resources available for future connections as a function of the deadline assign-

ment for the newly established connection. In other words, consider a connection established at two links l1

and l2 with deadlines dl1 and dl2 , and suppose that Sl1 (dl1) < Sl2 (dl2); then, the connection establishment

has a more severe impact on link l1 than on link l2 in terms of reducing the ability to admit future connection

requests. Intuitively, Sl (d) can be found by sliding the function 1 (t − d) (σm
0 + ρm

0 (t − d)) (i.e., increasing

� ✁
lF t

✂ ✄
lS d

d

,0

m

l
d

0

m☎

Fig. 11. A typical instance of the residual resource function

d) from its leftmost position dm
l,0 to the right (see Figure 11). For each point (i.e., for each d), the value of

Sl (d) is given by the minimum distance between Fl (t) and 1 (t − d) (σm
0 + ρm

0 (t − d)). A typical instance

of Sl (d) is depicted in Figure 11. Note that Sl (d) is increasing and piecewise-linear with alternating slopes.

Denote the delay instances for which the slope of Sl (d) changes by xj
l and let x0

l = dm
l,0. Additionally, denote

the slope values and the function values of Sl (d) at these points (starting with the right hand side) by aj
l

and yj
l , respectively. Let J be the number of points at which the slope changes. Then, the residual-resource

function is given by the set
(

yj
l , x

j
l , a

j
l

)

0≤j≤J
.

Algorithm Calculate-Residual-Resource, specified in Figure 12, calculates the set
(

yj
l , x

j
l , a

j
l

)

0≤j≤J
for a

link l ∈ E, given the link parameters (wi
l , d

i
l, r

i
l)0≤i≤Il

(the link’s work availability function) and given the

pending session’s parameters (ρm
0 , σm

0). First, the algorithm considers a zero traffic burst. Then, at step 6, the

algorithm makes the necessary modifications to account for a traffic burst of σm
0 . Assuming a zero burst, the

algorithm considers all the minima of the work availability function Fl (t). For each minimum, it identifies

18

the points at which the slope changes. More specifically, suppose there is a minimum at time di
l, which

corresponds to the deadline of session i; then step 2b identifies whether, for all d in the range di−1
l < d ≤ di

l,

the minimum min
t>d

Fl (t) − 1 (t − d) (ρm
0 · t) is obtained at time t = di

l. If so, then step 2c is executed. At that

step, the algorithm identifies a potential point at which the slope changes to ρm
0 , and a second point at which

the slope changes to ri
l . Otherwise, at step 2b only one potential point is identified, namely the one at which

the slope changes to ρm
0 .

input:
{

wi
l , d

i
l, r

i
l

}

0≤i≤Il
, (ρm

0 , σm
0)

output:
{

y
j
l , x

j
l , a

j
l

}

0≤j≤Jl

1. k ← 0, x̄0
l ← 0, ā0

l ← r0
l , ȳ0 ← 0

2. for i = 1 to Il:

(a) zi ←

{

min
k>i

wk
l − ρm

0

(

dk
l − di

l

)

, i < Il

wi
l , i = Il

(b) if zi ≤ wi
l

i. x ←
zi−w

i−1

l
−ρm

0 di
l+r

i−1

l
d

i−1

l

r
i−1

l
−ρm

0

ii. if di−1
l < x < di

l then

A. k ← k + 1

B. x̄k
l ← x, āk

l ← ρm
0 , ȳk

l ← yk−1
l + āk−1

l

(

x̄k
l − x̄k−1

l

)

(c) else if zi > wi
l

i. x ←
wi

l−w
i−1

l
−ρm

0 di
l+ri−1d

i−1

l

r
i−1

l
−ρm

0

ii. if di−1
l < x < di

l then

A. k ← k + 1

B. x̄k
l ← x, āk

l ← ρm
0 , ȳk

l ← yk−1
l + āk−1

l

(

x̄k
l − x̄k−1

l

)

,

iii. k ← k + 1

iv. x̄k
l ← di

l , āk
l ← ri

l , ȳk
l ← yk−1

l + āk−1
l

(

x̄k
l − x̄k−1

l

)

3. k ← k + 1

4. x̄k
l ← dk

l , āk
l ← rk

l , ȳk
l ← wI

l

5. K ← k.

6. if ȳK
l ≤ σm

0

(a) x0
l ← x̄K

l +
σm
0 −ȳK

l

āJ̄
l

, a0
l ← āK

l , y0
l ← 0

(b) Jl ← 0

7. else

(a) let b such that ȳb−1
l ≤ σm

0 and ȳb
l > σm

0 .

(b) j ← 0, x0
l ← x̄b

l −
yb

l −σm
0

a
b−1

l

, a0
l ← āb−1

l , y0
l ← 0.

(c) for k ← b to K:

i. j ← j + 1, x
j
l ← x̄k

l , a
j
l ← āk

l , y
j
l ← ȳk

l − σm
0

(d) Jl ← j

Fig. 12. Algorithm Calculate-Residual-Resource

Proposition 8: (a) Let Il be a schedulable set of sessions at link l, and let {wi
l , d

i
l, r

i
l}0≤i≤Il

be a set of

parameters defining the link work availability function. Also, let (ρm
0 , σm

0) characterize a new session m such

that the stability condition
∑

i∈I

ρi
l + ρm

l < Rl is satisfied. Then, the link residual resource function Sl (d), is

fully specified by the set
{

yj
l , x

j
l , a

j
l

}

0≤j≤Jl

, obtained by Algorithm Calculate-Residual-Resource.

19

(b) The algorithm’s complexity is O (I2
l).

Proof: Algorithm Calculate-Residual-Resource iterates over the delays {di
l}i∈Il

and identifies the cor-

responding points at which the slope of Sl (d) changes. The algorithm implements the following scheme.

For each i ∈ Il, let

e = arg min
k>i

Fl

(

dk
l

)

− ρm
0

(

dk
l − di

l

)

.

If Fl (d
e
l) − ρm

0 (de
l − di

l) ≤ Fl (d
i
l) then find x such that

Fl

(

di−1
l

)

+ ri−1
l

(

x − di−1
l

)

= Fl (d
e
l) − ρm

0 (de
l − x) ;

if di−1
l < x < di

l then the slope of Sl (d) changes at x (see, for example, point x2
l in Figure 13(a)).

Otherwise (Fl (d
e
l) − ρm

0 (de
l − di

l) > Fl (d
i
l)), find x such that

Fl

(

di−1
l

)

+ ri−1
l

(

x − di−1
l

)

= Fl

(

di
l

)

− ρm
0

(

di
l − x

)

;

if di−1
l < x < di

l then the slope of Sl (d) changes at x (see, for example, point x2
l in Figure 13(b)). Further-

more, the slope of Sl (d) changes again at di
l (see, for example, point x3

l in Figure 13(b))

5

3

l

l

d

x

4

l
d

2

l
x

3

1

l

l

d

x

2

l
d 1

l
d

� ✁
lF t

✂ ✄
lS d

d
,0

0

m

l

l

d

x

0

m☎

(a)

4

3

l

l

d

x

2

l
x

3

1

l

l

d

x

2

l
d

1

l
d

� ✁
lF t

✂ ✄
lS d

d
,0

0

m

l

l

d

x

0

m☎

4

l
x

5

5

l

l

d

x

(b)

Fig. 13. Typical instances of the residual resource function

One can see that the above scheme identifies all the points at which the slope of Sl (d) changes as well

as the function and the slope values at these points. Accordingly, the corresponding set
{

yj
l , x

j
l , a

j
l

}

0≤j≤Jl

,

identified by the algorithm, fully specifies Sl (d).

For each i, 1 ≤ i ≤ Il, the algorithm consists O (Il) operations. Thus, the algorithm’s complexity is O (I2
l).

One can see that the way by which the path selection and deadline allocation affect the available resources

at the network links depends on the the value of the residual resource function Sl (dl). Therefore, a better

measure for balancing the loads over the network might be one that accounts for the residual resources, rather

than the residual rate. Accordingly, we aim at balancing the load by seeking a feasible path for which the

residual resourced of its bottleneck link is maximal. That is, we seek a path that solve the following problem.

Maximum Residual Resource(MRR): Given are a network G (V, E), with a service rate Rl, a propagation

delay δl, and a work availability function Fl (t) for each l ∈ E. Also, given is a session m with source sm,

20

destination tm, upper rate ρm
0 , burst σm

0 and an end-to-end delay requirement Dm. Find a feasible path-

deadline assignment (pm, dm), i.e., a path between sm and tm and a deadline allocation (dm
l)l∈pm , such

that:

1.
∑

l∈pm

(dm
l + δl) ≤ Dm,

2. for all l ∈ p
m:

Fl (t) − 1 (t − dm
l) (σm

0 + ρm
0 (t − dm

l)) > 0 ∀t > 0.

If there are several such paths, select the path-deadline assignment that solves the following: max
p,(dl)l∈p

min
l∈p

(Sl (dl)).

Algorithm MRR, specified in Figure 14, identifies such a path. First the algorithm calculates for each link

l ∈ E the residual-resource function through algorithm Calculate-Residual-Resource. Then, it performs a

binary search to find the maximal minimal allowed residual-resource value for which a feasible path exists.

For each minimal allowed value, the algorithm calculates the minimum available deadline dm
l at each link

l (through the residual-resource function). Then, it finds the shortest path with respect to {dm
l + δl}. If

the identified path is feasible, then the minimal residual-rate value can be increased, otherwise it should be

decreased.

1. for all l ∈ E, call Calculate-Residual-Resource

2. for all l ∈ E, let the minimum delay dm
l,0 ← x0

l

3. find the shortest path p̃ between sm and tm w.r.t.
{

dm
l,0 + δl

}

(through Dijkstra’s shortest path algorithm)

4. if
∑

l∈p̃

(

dm
l,0 + δl

)

< D then

(a) for all l ∈ E

i. if D > xKl

l then Rl (D) ← yKl

l + aKl

l

(

D − xKl

l

)

ii. else

A. let bl such that xbl−1
l ≤ D < xbl

l

B. Rl (D) ← ybl−1
l + abl−1

l

(

D − xbl−1
l

)

(b) L ← 0 H ← max
l

Rl (D), λ ← H

(c) while
∣

∣λ − L+H
2

∣

∣ > 1

i. λ ← L+H
2

ii. for all l ∈ E

A. if λ > yKl

l then dm
l ← xKl

l +
λ−y

Kl
l

a
Kl
l

B. else let bl such that ybl−1
l ≤ λ < ybl

l ,

dm
l ← xbl−1

l +
λ−y

bl−1

l

a
bl−1

l

iii. find the shortest path p̃ between sm and tm w.r.t. {dm
l + δl} (through Dijkstra’s shortest path algorithm)

iv. if
∑

l∈p̃

(dm
l + δl) ≤ D then L ← λ else H ← λ

(d) return p̃, {dm
l }

l∈p̃

5. else there is no feasible path, end

Fig. 14. Algorithm MRR

Proposition 9: Algorithm MRR correctly solves the problem. The algorithm’s complexity is

O
(

M · I2
max + log (R′

maxD) (N log N + M)
)

.

21

Proof: The first part of the proposition results from the fact that the residual-resource function is

increasing.

The algorithm calculates the residual-resource for all links, which involves O (MI2
max) operations. Then, the

algorithm consists O (log (R′
maxD)) iterations; at each iteration Dijkstra’s shortest path algorithm is executed.

VI. SIMULATION RESULTS

We now demonstrate the efficiency of the proposed load-balancing routing schemes by way of simula-

tions. Our figure of merit is session blocking probability, which is evaluated for various loads and network

topologies.

Following [19], the characteristics of the sessions that need to be supported in the network are generated

randomly and are intended to cover a wide range of traffic patterns. We take ρ = 10pKb/s, where p is

uniformly distributed in [1, 3]. Hence, ρ covers the range [10Kb/s, 1Mb/s]. Next, we take σ = r ·ρKb, where

r is uniformly distributed in [0.8, 1.6]. Session requests are generated according to a Poisson process with a

parameter α. The session’s source and destination nodes are uniformly chosen. A session is accepted if the

considered routing scheme identifies a feasible route; otherwise, the session is rejected. An accepted session

stays in the system for an exponentially distributed duration time with mean 1
β

. The ratio α
β

characterizes the

traffic load offered to the network, i.e., the average number of flows that would exist at any time at a network

with no capacity limitation. The blocking probability is evaluated as the total number of rejected sessions

divided by the total number of generated sessions.

Each session has a delay requirement D = 10s · 30ms, where s is uniformly distributed in [0, 1.52], thus D

ranging in [30ms, 1s]. We conducted the simulations on the network topologies depicted in Figure 15, which

were extensively considered in network performance studies.

34 Mbps

(a)COST239 topology

0

45 Mbps 0.05 msec
100 Mbps ,0.1 msec

155 Mbps ,0.2 msec

(b)Clustered topology

Fig. 15. Network topologies

We compared between the following routing algorithms:

• Our maximum residual bottleneck algorithm (MRB), which identifies a feasible path with the maximum

residual rate of its bottleneck link.

• Our maximum residual resource algorithm (MRR), which identifies a feasible path with the maximum

22

residual resource of its bottleneck link.

• The quickest path algorithm, which identifies a feasible path with the minimum end-to-end delay bound.

• The minimum hop path algorithm, which identifies a feasible path with the minimum number of hops.

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Traffic Load

B
lo

c
k
in

g
 P

ro
b

a
b

ili
ty

Minimum−Hop Path
Quickest Path
MRB
MRR

(a)COST239 topology

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Traffic Load

B
lo

c
k
in

g
 P

ro
b

a
b

ili
ty

Minimum−Hop Path
Quickest Path
MRB
MRR

(b)Clustered topology

Fig. 16. Session request blocking probability

We generated a total of 10, 000 sessions in each simulation run, i.e., for each routing scheme and each

traffic load. Each simulation run was repeated 5 times with different seeds. Fig. 16 presents the simulation

results, in terms of the blocking probability as a function of the traffic load, in the two network topologies.

One can see that our maximum residual resource (MRR) and maximum residual bottleneck (MRB) routing

schemes outperform both the quickest path as well as the minimum hop path routing schemes. In particular,

focusing on a load region for which the blocking percentage is 10% (i.e., a significant yet still reasonably

acceptable value), our maximum residual resource (MRR) algorithm admits about 60% more sessions than

the quickest path routing scheme in the COST239 topology, and about 80% more sessions in the Clustered

topology. Furthermore, Algorithm MRR admits over 100% more sessions than the minimum-hop path routing

scheme, in both topologies.

VII. CONCLUSION

This study has considered QoS routing in networks that employ the rate-controlled EDF scheduling disci-

pline.

First, we focused on the basic problem of identifying feasible paths. Here, we broadened the space of

feasible solutions by allowing to reshape the traffic with different parameters at each hop. Accordingly, we

established an optimal routing scheme that considered the joint problem of identifying a feasible path and

optimizing the reshaping parameters along the path. However, the computational complexity of this scheme

might be prohibitively large. Thus, we established an approximation scheme that is based on quantizing the

reshaping delay, which is ǫ-optimal and at the same time computationally efficient. Our scheme is guaranteed

to find a feasible solution (i.e., path) whenever the standard EDF routing schemes do so. Moreover, we

demonstrated that our scheme identifies feasible solutions also in cases in which the standard schemes fail.

23

We also consider the special case in which only the maximal burst size of the traffic can be reshaped along

the path. For this case, we establish an optimal routing scheme as well as an ǫ-optimal solution of lower

complexity.

Next, we considered the more complex problem, of optimizing the route choice in terms of balancing the

loads and accommodating multiple connections. Here, we established and validated two routing schemes.

The first scheme aims at balancing the load by identifying a feasible path (if one exists) with a maximum

bottleneck residual rate. The second scheme jointly considers the problems of route selection and assignment

of deadlines along the chosen path. Clearly, considering the problems jointly, instead of independently as in

previous approaches, leads to a better utilization of the network resources. Simulation results demonstrated

the advantages of our schemes, in particular the second one.

To sum up, this study has investigated two novel classes of EDF routing schemes: the first allows per-hop

optimization of the reshaping parameters, while the second aims to optimize the global utilization of network

resources. An important yet complex task, left for future research, is to merge the two classes, i.e., establish

an efficient EDF routing scheme that performs per-hop reshaping optimization and optimizes the utilization

of the network.

REFERENCES

[1] A. K. Parekh and R. G. Gallager, “A generalized processor sharing approach to flow control in integrated services networks - the single

node case,” IEEE/ACM Transanctions on Networking, vol. 1, 1993.

[2] Z. Wang and C. Crowcroft, “QoS routing for supporting resource reservation,” IEEE JSAC, September 1996.

[3] R. Guerin and A. Orda, “QoS-based routing in networks with inaccurate information: Theory and algorithms,” IEEE/ACM Transanctions

on Networking, vol. 7, no. 3, pp. 350–364, June 1999.

[4] Q. Ma and P. Steenkiste, “Quality of service routing for traffic with performance guarantees,” in IWQOS’97, May 1997, pp. 115–126.

[5] A. Orda, “Routing with end to end QoS guarantees in broadband networks,” IEEE/ACM Transanctions on Networking, vol. 7, no. 3, pp.

365–374, June 1999.

[6] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick, “A framework for QoS-based routing in the internet,” RFC 2386, Internet Engineering

Task Force, August 1998.

[7] H. Zhang and D. Ferrari, “Rate-controlled service disciplines,” Journal of High Speed Networks, vol. 3, no. 4, pp. 389–412, 1994.

[8] L. Georgiadis, R. Guerin, and A. Parekh, “Optimal multiplexing on a single link: Delay and buffer requirements,” IEEE Trans. Information

Theory, vol. 43, no. 5, pp. 1518–1535, Septemer 1997.

[9] L. Georgiadis, R. Guerin, V. Peris, and K. N. Sivarajan, “Efficient network QoS provisioning based on per node traffic shaping,” IEEE

Trans. Networking, vol. 4, no. 4, pp. 482–501, August 1996.

[10] J. Liebeherr, D. Wrege, and D. Ferrari, “Exact admission control for networks with a bounded delay service,” IEEE/ACM Transanctions on

Networking, vol. 4, no. 6, pp. 885–901, December 1996.

[11] V. Firoiu, J. Kurose, and D. Towsley, “Efficient admission control of piecewise linear traffic envelopes at edf schedulers,” IEEE/ACM

Transanctions on Networking, vol. 6, no. 5, pp. 558–570, October 1998.

[12] V. Sivaraman, F. M. Chiussi, and M. Gerla, “Traffic shaping for end-to-end delay guarantees with edf scheduling,” in IWQoS 2000, 2000.

[13] D. Ferrari and D. C. Verma, “A scheme for real-time channel establishment in wide-area networks,” IEEE Journal of Selected Areas in

Communication, vol. 8, pp. 368–379, April 1990.

[14] Chih-Che Chou and Kang G. Shin, “A distributed table-driven route selection scheme for establishing real-time video channels,” in

International Conference on Distributed Computing Systems, 1995, pp. 52–59.

[15] A.S. Ayad, M.T. El-Hadidi, and K.M.F. Elsayed, “Resource division policies for edf scheduling in atm networks,” in Proc. of the IEEE

ISCC’01, July 2001, number 3-5, pp. 249 – 254.

[16] K.M.F. Elsayed, A.S. Ayad, and M.T. El-Hadidi, “Evaluation of resource reservation policies for deterministic services in multi-service

packet networks,” in PROCEEDINGS OF 18th International Teletraffic Congress, September 2003, pp. 1081–1090.

[17] R. L. Cruz, “A calculus for network delay, part i: Network elements in isolation,” IEEE Trans. Information Theory, vol. 37, no. 1, pp.

114–131, January 1991.

24

[18] Kang G. Shin amd Chih-Che Chou and Seok-Kyu Kweon, “Distributed route selection for establishing real-time channels,” IEEE Transac-

tions on Parallel and Distributed Systems, vol. 11, no. 3, pp. 318 – 335, March 2000.

[19] V. Firoiu, J. Kurose, and D. Towsley, “Efficient admission control for EDF schdulers,” CMPSCI Technical Re-

port TR 96-46, Department of Computer Science, University of Massachusetts, MA, USA, April 1997. Available from

ftp://ftp.cs.umass.edu/pub/techrept/techreport/1996/UM-CS-1996-046.ps.

