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Abstract 
 
Two major objectives of multipath routing schemes are congestion avoidance and 
resilience to failures. However, focusing on each objective alone severely deteriorates 
the quality of the other. More specifically, when multipath routing is employed for 
congestion avoidance, the traffic is distributed among several different paths, each 
potentially prone to network failures. Since any path failure results in the failure of 
the entire transmission, a "naive" use of multipath routing for load balancing may 
largely increase the vulnerability of the connections to network failures. On the other 
hand, when multipath routing is employed in order to improve the resilience to 
failures, most of the corresponding schemes focus on the establishment of pairs of 
disjoint paths. However, in many cases, this restrictive requirement may lead to the 
selection of poor routing paths that were not designed to transfer large volumes of 
data; thus, their employment may dramatically increase the congestion state of the 
network. In this work we establish efficient multipath routing schemes that 
incorporate the two fundamental objectives of congestion avoidance and resilience to 
failures. To the best of our knowledge, we are the first to relax the common 
requirement of disjoint paths that solely considers full (100%) protection to single 
failures, into a weaker requirement that can accommodate any degree (0%-100%) of 
protection i.e., any desired probability to survive a network failure. We incorporate 
this new concept in several polynomial schemes that enhance survivability while 
considering the resilience-congestion tradeoff. Then, we turn to consider the major 
weakness of multipath routing schemes that solely balance the network's load, 
namely, increased vulnerability to failures. Specifically, we establish a multipath 
routing scheme that minimizes the congestion state of the network while satisfying 
some essential reliability requirements. As the corresponding problem is shown to be 
intractable, we establish an efficient � -optimal approximation scheme.  
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1. Introduction 
 
Practical routing schemes typically focus on discovering a single "optimal" path for 
routing, according to some desired metric. Accordingly, traffic is always routed over a 
single path, which often results in substantial waste of network resources. Multipath 
Routing is an alternative routing scheme that distributes the traffic among multiple 
"good" paths instead of routing all traffic along a single "best" path.  
 
Multipath routing can significantly reduce congestion in "hot spots", by deviating 
traffic to unused network resources, thus improving network utilization and providing 
load balancing [13]. Moreover, congested links usually result in poor performance 
and high variance. For such circumstances, multipath routing can offer steady and 
smooth data streams [4].   
 
Multipath routing can also improve the network's survivability i.e., its ability to 
maintain service continuity in the presence of failures. The main idea is to route 
duplicates of the original data flow along several (usually two) disjoint paths. In 
normal operation mode, the receiver picks to use the better path and discards data 
from the other. Then, upon a failure in the active path, the inferior path is selected in 
order to restore the damaged traffic. Such a survivability technique, usually referred to 
as 1+1 protection, allows fast recovery upon detection of a failure. In a more 
capacity-efficient approach (albeit with a significant larger recovery time), referred as 
a  1:1 protection, data is sent only on the active path; the backup path is activated only 
if upon a failure in the active path [16].  
 
A major problem that arises in the use of multipath routing for load balancing is 
increased vulnerability to failures. Indeed, when traffic is splitted among multiple 
paths, a failure in each routing path results in a failure of the entire transmission. For 
example, if the traffic is carried by n disjoint paths, each having a success probability 
p, then the success of the transmission is radically (exponentially) reduced  to np . 
Moreover, if these n disjoint paths have different success probabilities, then it follows 
that the transmission success is dominated by the path that has the smallest success 
probability. Therefore, it is essential for such multipath schemes to exclusively use 
paths with high success probabilities. 
 
At the same time, when multipath routing is used in order to enhance survivability to 
failures, the congestion state of the network may severely increase. Indeed, the 
restrictive requirement of protection schemes that assign traffic only to pairs of 
disjoint paths may be in many cases infeasible (where there are no such paths) and in 
other cases very limiting [17]. In the latter case, this often leads to the selection of 
inferior routing paths that were not designed to carry large volumes of data. 
Moreover, the focus on disjoint paths, used by existing protection schemes, solely 
considers full (100%) protection to single failures; i.e., only two degrees of 
survivability are provided, namely 100% or 0% protection. However, in practice, a 
much "softer" criterion for survivability, which enables to control various important 
tradeoffs, should be employed [17],[18] . 
 
In this study we investigate ways to efficiently cope with the tradeoff between the 
degree of survivability and the level of congestion in multipath routing schemes. 
More specifically, we address two main issues. First, we address the requirement of 
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Fig.1.1: A survivable connection  

multipath routing schemes that balance the network's load to use only sufficiently 
reliable paths. To that end, we establish a multipath routing scheme that minimizes 
the congestion while using only paths that satisfy a given end-to-end reliability 
requirement. Then, we turn to consider protection schemes that allow providing 
various degrees of survivability while considering the network's load. To that end, we 
introduce a new concept that relaxes the restrictive path disjointedness criterion of 
current protection schemes. To the best of our knowledge, we are the first to relax this 
standard path disjointedness criterion (which solely provides 0% and 100% 
survivability) into a continuous survivability criterion, which provides various 
degrees of survivability. 
 
We adopt the widely used single link failure model [9],[15],[18],[23]. Moreover, as 
the quality of a protection scheme can only be measured in the presence of failures, 
we assume that a failure event has taken place. Then, we evaluate the degree of 
survivability of each connection according to the probability that the connection 
continuously maintains the service after the failure. More specifically, given a failure 
event, we determine the connection's degree of survivability according to its 
probability to survive that failure i.e., the probability that either the active path or the 
backup path has survived the failure.  
 
Example: Consider the connection described in Fig. 1.1. Assume that the upper and 
lower paths are the connection's active and backup paths, respectively. In addition, 
assume that a failure probability ip  is associated with every link ie E� . Given the 
event of a link failure, we measure the connection's degree of survivability i.e., the 
probability of the connection to survive that failure. 
 

 
 
 
To that end, we first determine the failure probability of each link in the presence of a 
failure i.e., the failure probability of each link given that a failure event has already 
taken place in the network. For the single link failure model, this conditional 
probability is:  
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Next, we calculate the probability that the connection fails under the assumption of a 
network failure. To that end, we observe that, if the failure occurred at one of the links 
in the set 1 2 3 4 6 7 8 9 11 12 13 14{ , , , , , , , , , , , },e e e e e e e e e e e e  then the connection has survived the 
failure. However, if the failure occurred at either link 5e  or link 10 ,e  then the 
connection is broken. Thus, the probability that the given connection survives a 
failure is equal to the probability that both links 5e  and 10e  survives it, namely: 

�� � �� �5 101 1 0.95 0.97 0.92p p� � � � 	 � . Thus, we conclude that, upon a link failure, the 

connection in this example survives the failure with a probability of at least 0.92.  
 
This example illustrates that, unlike the inflexible requirement of path disjointedness, 
the idea of continuous survivability provides a flexible criterion for choosing the 
desired degree of survivability (e.g. 92%-survivability); consequently, it enables to 
consider tradeoffs for practical protection schemes (e.g., resilience vs. congestion, the 
resilience vs. delay). In addition, it precisely expresses the preferred level of 
survivability and, in contrast to the standard survivability technique of path 
disjointedness, it enables to provide accurate control on the survivability restrictions.  
 
We employ the concept of continuous survivability in order to design protection 
schemes that consider the resilience-congestion tradeoff. More specifically, we design 
polynomial protection schemes for 1+1 protection and 1:1 protection such that, for 
any 0 1p
 
 , establish p-survivable connections that minimize the network's load. 
Then, we show that the concept of continuous survivability leads to an efficient third 
protection architecture, which is an hybrid between 1:1 protection and 1+1 protection; 
this new architecture is shown to admit an efficient polynomial solution. Finally, we 
show that all proposed schemes can be enhanced in order to consider QoS 
requirements. In addition, we prove that, under the single link failure model, we 
cannot improve the quality of our solutions if we admit more than two paths for each 
survivable connection; thus, our solutions are optimal with respect to more general 
protection frameworks that admit any ( 2� ) number of paths.  
 
The rest of this paper is organized as follows. In section 2, we introduce some 
terminology and definitions, and formulate the main problems considered in this 
study. In section 3, we present some background and survey related previous work. In 
section 4, we establish routing schemes that incorporate the continuous survivability 
concept. In section 5, we consider multipath routing schemes with end-to-end 
reliability constraints. Finally Section 6 summarizes the results and discusses future 
research directions. 
 
2. Model and Problems Formulation 
 
This section formulates the general model and main problems addressed in this study. 
We begin with the following general definitions. 
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A network is represented by a directed graph � �,G V E , where V is the set of nodes 

and E  is the set of links. Let N V� and M E� . A path is a finite sequence of 

nodes � �0 1, , , hp v v v� � , such that, for 0 1n h
 
 � , � �1,n nv v E� � . A path is simple if 

all its nodes are distinct. A cycle is a path � �0 1, , , hp v v v� �  together with the link 

� �0,hv v E�  i.e., � �0 1 0, , , ,hv v v v� . Denote the set of all cycles in a network G  by 

� �T G . 
 
A commodity is a pair of nodes � �,i j V V� 	  that is assigned with a non-negative 

demand � �,i j
 . Let �  be the set of all commodities with positive demand 

� � � � � �� �,, , , 0i ji j i j V V� 
� � 	 � . Given a commodity � �,i j V V� 	 , we say that 

node i  is the source node of the given commodity and node j  is its target node. If 
1� 
 , we say that the network has a single commodity flow demand. Otherwise, we 

say that the network has a multi-commodity flow demand.  
 
The set � �,i jP  is the collection of all directed paths from the source i  to the destination 
j  in the network. In addition, let 

� �

� �,

,
,i j

i j V V
P P

� 	
� �  and let ( , ) ( , )i j i j

simpleP P�  represent the 

set of simple paths from i to j in the network. Finally, for each path p�P�s,t) and link 

e�E, �e(p) counts the number of occurrences of the link e in the path p. For example, 

given a non-simple path p=(v0,v1,v2,v3,v1,v2,v4) and a link e=(v1,v2), we have �e(p)=2. 
 
Each link e E�  is assigned a weight ew ��� , a capacity ec ���  and a failure 

probability � �0,1ep � . We consider a link state routing environment, where each 
source node has a (precise) image of the entire network. 
 
Definition 2.1 Given a (non-empty) path p , its weight � �W p  is defined as the sum 

of weights of its links, namely, � � e
e p

W p w
�

�� . 

 
Definition 2.2 Given a (non-empty) path p , its capacity � �C p  is defined as the 

capacity of its bottleneck link, namely, � � � �e
e E

C p cMin
�

� .  

 
Definition 2.3 Given a (non-empty) path p , its reliability � �p�  is defined as the 

multiplication of the success probabilities of its links, namely, � � � �1 e
e p

p p
�

� � �� . 

  
Definition 2.4 Let � �,G V E  be a network. A path flow is a real-valued function 

� �: 0f P �� �� that satisfies the following two properties:   
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Capacity constraints: For each e E� , � � � �e e
p P

p f p c
�

� � 
� . 

Flow demand: For each commodity � �,i j V V� 	 , � �
� �

� �

,

,

i j

i j

p P

f p 

�

�� . 

 
Definition 2.5 Given is a path flow � �: 0f P �� ��  over a network � �,G V E . A 

link flow of a commodity � �,i j V V� 	  is a real-valued function 

� �: 0f E V V �	 	 � ��  that satisfies, for each link e E� : � � � � � �,i j
e e

p P

f p f p
�

� ��� . 

Denote 
� �

� �

,

,

i j

e e
i j V V

f f
� 	
�� . 

 
Definition 2.6 Let � �,G V E  be a network. A cycle flow of a commodity � �,i j V V� 	  

is a real-valued function � � � �: 0f T G V V �	 	 � �� .  
 
Note that, for a given link flow of a commodity � �,i j V V� 	 , the path flow 

� � � �,: 0i jf P �� ��  is not necessarily unique. In addition, the path flow 

representation (of size � �O P ) may have exponential size (with respect to the 

network representation). However, it follows from the flow decomposition theorem 
[1] that any path flow assigned to a commodity � �,i j V V� 	  (i.e. the collection of 

pairs � �� �,p f p  for each � �,i jp P� ) has a corresponding path flow with at most M  
paths and cycles with a positive flow that share the same link flow representation. 
  

Definition 2.7 Given a network � �,G V E  and a link flow � �ef , the value e

e

f
c

 is the 

link congestion factor.  
 
Definition 2.8 Given a network � �,G V E  and a link flow � �ef , the network 

congestion factor is the largest link congestion factor in the network, i.e., max e

e E
e

f
c�

� �
� �
� �

. 

 
As noted in [2],[13],[22], the network congestion factor provides a good indication of 
congestion. 
 
Achieving a minimum network congestion factor minimizes the utilization of the 
most utilized link in the network. Observe that minimizing this value enables to 
successfully transfer the largest flow demand without violating the capacity constraint 
of any link. Hence, this problem is equivalent to maximizing the total throughput and 
can be efficiently solved using well-known solutions to the Maximum Flow Problem 
[1]. In [3], we formally establish this equivalence between these two problems.  
 
Finally, we formalize some survivability concepts. To that end, we first establish the 
following elementary terminology. A link is classified as faulty upon its failure; it 
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remains faulty until it is repaired. We say that a link e E�  is operational if it is not 
faulty. Likewise, we say that a path p is operational if it has no faulty link i.e., for 
each ,e p�  link e is operational.  
 
Definition 2.9 Given a network � �,G V E  and a pair of nodes s and t, a survivable 

connection is a pair of paths � � � � � �, ,
1 2, s t s tp p P P� 	 . 

 
Definition 2.10 Given are a network � �,G V E  and a survivable connection � �1 2, .p p  

We say that the connection � �1 2,p p is operational if either 1p  or 2p  are operational. 
 
The following definition quantifies the quality of a survivable connection.  Since 
protection schemes focus on the capability to recover from network failures, the 
quality of survivable connections is determined according to their probability to 
remain operational upon network failures. Since we assume a single link failure 
model, we determine the quality of a survivable connection as the connection's 
probability to remain operational following a single failure event. This is formalized 
as follows. 
 
Definition 2.11 Given are a network � �, ,G V E  a failure probability 0ep �  for each 

link e E� , and a survivable connection � �1 2, .p p  We say that � �1 2,p p  is p-
survivable connection if, upon a link failure, it remains operational with a probability 
of at least p. 
 
We are now ready to formulate the main problems considered in this study, which 
minimize the network congestion factor subject to different considerations. We saw 
that, in the single commodity case, minimizing the network congestion factor is 
equivalent to maximizing the total throughput. Therefore, all these problems remain 
equivalent for the single commodity case if we consider a different objective criterion, 
namely that of maximizing the throughput. However, as opposed to the multi-
commodity case, minimizing the network congestion factor is well defined also for 
the multi-commodity cases. 
 
We proceed to present the first problem. We are given a network and a flow demand 
to be transferred through a survivable connection. The goal is to route two duplicates 
of the original flow demand along two paths that constitute the most survivable 
connection, while keeping the congestion of the network below some specified level. 
This is formulated as follows. 
 
Problem MSC (Most Survivable Connection Problem) Given are a network 
� �,G V E , a pair of nodes s and t, a congestion constraint 0 � , a demand 0
 � , and, 

for each link e E� , a capacity 0ec �  and a failure probability 0ep � . Find a 

survivable connection � � � � � �, ,
1 2, s t s tp p P P� 	  with the maximum probability to remain 

operational upon a link failure, such that assigning the demand 
  to the paths 1p   and 

2p  produces a network congestion factor of at most  . 
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We shall establish an efficient polynomial solution for Problem MSC. We shall also 
show that this solution can be employed in order to define a pair of maximally link 
disjoint paths [19],[20] i.e., a pair of paths that have a minimum number of common 
links. Finally, note that, in cases where no pair of disjoint paths exists in the network, 
it is hard to identify the paths that together form the most survivable connection. In 
such cases, the solution to Problem MSC can determine the most "resilient" pair of 
paths, by setting the congestion constraint to infinity i.e.,  !" . 
 
Although Problem MSC establishes the most survivable connection subject to a 
congestion constraint, in practice it is often preferable to have a reasonable degree of 
survivability and a minimum level of congestion. Accordingly, we formulate the 
following problem. 
 
Problem LCSC (Least Congested Survivable Connection Problem) Given are a 
network � �,G V E , a pair of nodes s and t, a survivability constraint 0p � , a demand 

0
 � , and, for each link e E� , a capacity 0ec �  and a failure probability 0ep � . 

Find a p-survivable connection � � � � � �, ,
1 2, s t s tp p P P� 	  such that assigning the demand 


  to the paths 1p   and 2p  produces the minimal network congestion factor.  
 
We shall later establish a polynomial solution for Problem LCSC. 
 
As can be seen both problems MSC and LCSC focus on the 1+1 protection 
architecture. However, in Section 4, we reformulate all these problems to correspond 
to the 1:1 protection as well. 
 
Problems MSC and LCSC focus on survivability, and their solutions enable the use of 
multipath routing in order to increase the tolerance to network failures. However, as 
was already explained in the Introduction, multipath routing bares another major 
benefit, namely load balancing. Accordingly, we turn to consider the increased 
vulnerability to failures when multipath routing is employed in order to balance the 
network's load. As was already explained in the Introduction, the use of multipath 
routing for such purposes must be made through highly reliable paths. Specifically, 
we present the following problem that seeks a path flow that minimizes the 
congestion under end-to-end reliability requirements.  
 
Problem ReMP (Reliable Multipath) Given are a network � �,G V E , for each link 

e E� , a failure probability 0ep �  and a capacity 0ec � , and, for each commodity 

� �,i j V V� 	 , a demand � �, 0i j
 �  and a success probability restriction � �,i j� . Find a 

path flow � �: 0f P �� ��  that minimizes the network congestion factor such that, if 
� �,i jp P�  and � � 0f p � , then � � � �,1 i j

e
e p

p
�

� � �� . 

 
Note that, whereas Problems MSC and LCSC focused on the ability to recover from 
network failures, Problem ReMP considers how to avoid network failures by routing 
only over reliable paths. In Section 5, we show that Problem ReMP is 
computationally intractable and establish an efficient � � optimal approximation 
scheme.  
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3. Background and Related Work 
 
In recent years, transmission capabilities have increased to rates of 10 Gbit/s and 
behind [17]. With this increase, any failure may lead to a vast amount of data loss. To 
deal with such situations, pre-planning a protection path with a sufficient bandwidth 
for each working path has been widely accepted as an efficient effective strategy [12]. 
 
Protection schemes that enhance network's survivability have been extensively 
studied in recent years [5],[8],[11],[15]. Many studies have proposed end-to-end 
protection against single link failures by employing the restrictive path disjointedness 
survivability criterion, which enables a quite limited selection (if any) of routing 
paths. Other studies suggested a "local protection" strategy. The latter approach 
divides the working path into several segments and protects each such segment using 
a protection path segment. While this approach increases the range of feasible 
solutions, it takes extra signaling effort and imposes high requirements on the 
hardware responsiveness [12].  
 
The idea to provide various degrees of survivability (as opposed to either 0% or 
100%) was already considered in [9],[10],[18]. However, in contrast to our study they 
still require that paths be disjoint. The additional flexibility is obtained there by 
allowing a restricted number of connections to have unavailable backup paths when a 
fault occurs. Thus, a restricted (controlled) portion of the bandwidth of the backup 
paths is saved for other purposes. While this is a potentially useful alternative for 
providing a continuous survivability, no systematic approach with proven guarantees 
for general topologies has been considered. Rather, the latter model was mainly 
considered for ring networks and attained mostly heuristic solutions. In addition, it 
entirely corresponds to 1:1 protection architectures, and cannot be employed in 
architectures of 1+1 protection.  
 
Some studies did relax the requirement of path disjointedness [19],[20] into the 
related concept of maximally disjoint paths. Specifically, a pair of paths from a source 
to a destination is said to be maximally link disjoint if the number of links common to 
both is minimum. This was applied by [19],[20] in order to improve the blocking rate 
of connection-oriented networks that support calls with multiple QoS requirements. 
We will later show that our approach, of establishing p-survivable connections, can be 
used in order to establish such pairs of paths. 
 
4. Solution to Problems MSC and LCSC 
 
In this section we present polynomial solutions to the problems that consider the 
tradeoff between the degree of survivability and the level of congestion. To that end, 
we first explore some properties of survivable connections. 
 
4.1 Properties of Survivable Connections 
 
In section 2, we defined a survivable connection as a pair of paths 
� � � � � �. .

1 2, s t s tp p P P� 	 . Also, we defined such a connection to be operational if either 

1p  or 2p  are operational paths i.e., at least one of the paths is functioning correctly. 



 	


Therefore, since we consider the single link failure model, it follows that a link that is 
not common to both paths can never cause a survivable connection to break. On the 
other hand, if there is a common link that is not operational, then the entire connection 
is not operational. We summarize this in the following corollary. 
 
Corollary 4.1  A survivable connection � �1 2,p p  is operational iff for each 

1 2e p p� #  it holds that e is an operational link i.e., all the links that are common to 
both paths are operational. 
 
An important consequence of Corollary 4.1 is that the probability that a survivable 
connection remains operational upon a link failure is equal to the probability that all 
its common links are operational upon that failure. Therefore, since we assume that 
link failure probabilities are independent, it follows that the probability of a 
survivable connection to survive a failure is equal to the product of all conditional 
success probabilities of the links that are common to both paths.  
 
Corollary 4.2 Given are a survivable connection � �1 2,p p  and, for each ,e E�  its 

failure probability �ep  under the condition of a failure event. The probability that 

� �1 2,p p  is operational upon a failure is equal to �� �
1 2

1 e
e p p

p
� #

�� . 

 
Given the conditional failure probability �ep  under an event of a failure, Corollary 4.2 
provides a quality measure for survivable connections. However, standard statistics 
regarding failure probabilities usually consist of merely records of unconditional 
probabilities. Therefore, we express the value of all conditional failure probabilities 
�� �ep (defined in Corollary 4.2) in terms of the available unconditional failure 

probabilities � �ep , namely �
� �'

'

1 1
e

e
e

e E

p
p

p
�

�
� ��

 for each e E� .  

 
The following corollary summarizes the above discussion and provides a simple way 
to determine the quality of survivable connections. 
  
Corollary 4.3 Given are a survivable connection � �1 2,p p , and for each ,e E�  a 

failure  probability ep . The probability that � �1 2,p p  is operational within an event of 

a failure is equal to 
� �

1 2 '
'

1
1 1

e

e p p e
e E

p
p� #

�

$ %
& '�& '� �& '
( )

� �
. 

 
4.2 Problem MSC 
 
In this section we present a polynomial solution to Problem MSC i.e., the problem 
that seeks the most survivable connection while producing a congestion of at most   
when a duplicate of the original demand is assigned to each of the connection's path.  



 		

Before we introduce the formal description of the algorithm, we explain its main idea. 
The algorithm is given a network � �,G V E , a pair of nodes s and t, a congestion 

constraint 0 � , a demand 0
 � , and, for each link e E� , a capacity 0ec �  and a 
failure probability 0ep � . The algorithm reduces this instance of Problem MSC into 
an instance of the Min Cost Flow problem. In essence, the reduction is based on a 
network transformation that considers three different cases, as illustrated in Fig 4.1. In 
the case of a link  e E�  with a capacity ec  that satisfies ec 
� * , it is easy to see 
that link e cannot be used by any path that transfers 
  flow units without violating the 
congestion constraint   i.e., without having link utilization larger than  . Therefore, 
this link can be discarded from the network without any influence on the optimal 
solution. On the other hand, each link e E�  that satisfies 2ec 
� � �  can be used by 
both of the connection's paths in order to transfer 
  flow units over each path without 
violating the congestion constraint  . In that case, the corresponding link is 
transformed into two parallel links, each with a capacity 
 ; however, whereas the 
first is assigned with a zero weight the other link is assigned with a weight that is a 
function of the link's failure probability. The reason for that stems from corollary 4.3 
that shows that the degree of survivability of each connection is solely determined by 
its common links. More specifically, only when both of the connection's paths share 
the same link e, the link's failure probability ep  should be considered. Indeed, a Min 
Cost Flow over the constructed network ensures that, when a single path traverses link 
e, the incurred cost is zero, whereas when both paths traverse through e, the cost is 
� �ef p . The third case corresponds to links that satisfy 2 .ec
  

 � * �  In that case, 

at most one path can traverse through such a link without violating the congestion 
constraint  . Thus, these links can be transformed into links that have a capacity 
  
without any effect on the optimal solution. In addition, since these links can be used 
by at most one path, their failure probability should not be considered and therefore 
the transformed links are assigned zero weight.  



 	�

 
 
 
Denote the transformed network as � � �� �,G V E . The algorithm identifies a min cost flow 

with a flow demand of 2 
�  flow units over the network � � �� �,G V E  by employing any 

standard Min Cost Flow algorithm that returns an integral link flow when all 

capacities are integral. Since all link capacities in � � �� �,G V E  are integral in 
 , the 

returned link flow is 
 -integral. Therefore, since the total traffic equals to 2 
�  flow 
units, the flow decomposition algorithm [1] can be applied in order to decompose the 

 -integral link flow into a flow over two paths 1 2,p p  such that each carry 
  flow 
units from s to t.  Moreover, since the flow has minimum cost, it follows that 
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. Thus, the connection � �1 2,p p  maximizes 
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Fig 4.1: Reducing Problem MSC to the Min Cost Flow Problem 
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 which, according to Corollary 4.3, equals to the probability 

that the connection � �1 2,p p  is operational upon a failure. The formal description of 
the algorithm appears in Fig. 4.2.  
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Fig. 4.2 Algorithm MSC 
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Definition 4.1 We say that Algorithm MSC succeeds whenever it does not return Fail. 
 
Theorem 4.1 If Algorithm MSC succeeds for the input � � � � � �, , , , , , ,e eG s t c p 
   then 

the returned connection is an optimal solution for the instance 
� � � � � �, , , , , ,e eG s t c p 
   of Problem MSC. 

 
Proof  Since Algorithm MSC succeeds for the input � � � � � �, , , , , , ,e eG s t c p 
  it 

follows by construction that there is a feasible solution for the Min Cost Flow instance 
� � �� � � � �� � �� � �, , , , , ,  

e e
G V E s t c w 
� �  of Step 1. Therefore, since the capacities and the 

demand of the min cost flow instance are integral in ,
  it follows that the output of 

the Cycle Canceling Algorithm (link flow �� �e
f ), executed in step 2, is integral in 
  

(see [1]). Moreover, since all links in the network � � �� �,G V E  have a capacity of 
 , it 

follows that, with the link flow �� �e
f  each link transfers either zero or 
  flow units. 

Thus, as � 2
 
� � , it follows by the flow decomposition theorem [1], that link flow 

�� �e
f  can be decomposed into a pair of paths in � � �� �,G V E  that corresponds to a pair of 

paths � �,
1 2, s tp p P�  in � �, ,G V E  such that each transfers 
  flow units. Finally, by 

construction, it is easy to see that the flow over the paths � �,
1 2, s tp p P�  does not 

violate the congestion constraint  . We only need to show that � �1 2,p p  has the 
maximum probability to remain operational upon a link failure with respect to all 
connections that satisfy the congestion constraint   for a demand of 
  flow units. 
 

To that end, we employ the fact that the total cost of the link flow �� �e
f  is minimal 

with respect to all link flows that transfer 2 
�  flow units from s�  to t�  in network 
� � �� �,G V E . Therefore, since we have shown that � � �0,

e
f 
�  for each � �e E� , it follows 

that � �
�

�

� 0e

e e e
fe E

f w w

,�

� � �� �
�

 is minimal with respect to link flows that transfer 2 
�  

flow units from s�  to t� ; hence, �

� 0e

e
f

w
,
�  is also minimal with respect to link flows that 

transfer 2 
�  flow units from s�  to t� .  
 
Consider now an expensive link � �:xe u v E� �� �  (as defined in Step 1.c), where 

� 0
xe

f , . It follows by construction that there exists a parallel cheap link � �:ye u v E� �� �  

such that � 0
ye

w � . Therefore, since �� �e
f  is a min-cost flow, it follows that �

ye
f 
� . 

Thus, it is easy to see that there exists a link xye E�  that corresponds to the links �xe  

and �ye  in � � �� �,G V E  such that 1 2xye p p� # . Conversely, since 1p  and 2p  are 
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decomposed out of the link flow that corresponds to �� �,
e

f  it follows that, if  

1 2 ,xye p p� #  then there exists a corresponding pair of parallel links � � �,x ye e E�   such 

that � �0, 0
x ye e

f f, , . Thus, it holds that 1 2xye p p� #  in network � �,G V E  iff the 

corresponding expensive link �xe  in network � � �� �,G V E  satisfies � 0
xe

f , . Therefore, 

since the expensive links are the only non-zero cost links in �E , and since each 
expensive link �e E��  that corresponds to the link e E�  has a cost 
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Thus, since we have shown that  �

� 0e

e
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w
,
�  has the minimal value with respect to all 
 -

integral link flows that transfer 2 
�  flow units from s�  to t�  in � � �� �,G V E , it follows by 

construction that the decomposed path flow that constitutes the pair of paths 1p , 2p  

has the minimum value for 
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 among all 
 -integral path 

flows that transfer 2 
�  flow units from s to t without violating the congestion 
constraint   in network � �,G V E . Thus, we conclude that 
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 is maximal with respect to all the pairs of paths  

that each transfer 
  flow units from s to t without violating the congestion constraint 
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 is maximal and, by corollary 4.3, the theorem 

follows. � 
 
Theorem 4.2 If Algorithm MSC fails for the input � � � � � �, , , , , , ,e eG s t c p 
   then 

there is no solution for the instance � � � � � �, , , , , ,e eG s t c p 
   of Problem MSC. 

 
Proof Since Algorithm MSC fails for the input � � � � � �, , , , , , ,e eG s t c p 
   it follows 

by construction that there is no feasible solution for the Min Cost Flow instance 
� � �� � � � �� � �� � �, , , , , ,  

e e
G V E s t c w 
� �  of Step 1. Thus, it is impossible to transfer 2 
�  flow 

units from s�  to t�  in the network � � �� �,G V E . Hence, by construction, it is impossible to 



 	�

transfer 2 
�  flow units from s to t over the network � �,G V E  without violating the 
congestion constraint  . In particular, it is impossible to transfer 2 
�  flow units 
from s to t over a pair of paths that carry 
  flow units each without violating the 
congestion constraint  . � 
 
Theorems 4.1 and 4.2 establish that Algorithm MSC solves Problem MSC. Note that 
the time complexity of the solution is determined by the min cost flow algorithm of 
Step 2. Thus, Algorithm MSC can achieve the same time complexity as any standard 
solution of the Min Cost Flow problem.  
 
4.3 Problem LCSC 
 
In this section we present a polynomial solution to Problem LCSC i.e., the problem 
that seeks p-survivable connections with minimum congestion when a duplicate of the 
original demand is assigned to each of the connection's paths. To that end, we employ 
the solution to Problem MSC as follows. Given an instance � � � � � �, , , , , ,e eG s t c p p
  

of Problem LCSC, we search for the smallest   such that the solution to the instance 
� � � � � �, , , , , ,e eG s t c p 
   of Problem MSC consists of a p-survivable connection. 

Obviously, in order to perform this within polynomial complexity, we must solve a 
polynomial number of instances of Problem MSC. In the following, we present two 
important observations that enable us to consider at most � � � �log 2 1 logM O N� � �  
instances of Problem MSC.  
 
Our first observation states that, for any instance of Problem LCSC, the optimal 
network congestion factor, denoted as * , belongs to a given set of at most 2 1M� �  
elements. More specifically, we claim that each link e E�  in any solution to Problem 
LCSC can admit only three possible link congestion factor values: the first is zero, 
which corresponds to cases where the connection is not using the link at all; the 

second is 
ec



, which corresponds to cases where exactly one of the connection's path 

employs the link e ; the third value equals to 
2

ec

�

 and corresponds to cases where 

both of the connection's paths employ the link e . Thus, the optimal network 

congestion factor *  must be a member of the following set , 0,1,2
e

i
e E i

c

� ��

� �� �
� �

. 

Note that this set consists of at most  2 1M� �  members.  
 
Our second observation enables to speed up the search process by employing a binary 
search. To that end, note that, for each *,  �  the solution to the instance 

� � � � � �, , , , , ,e eG s t c p 
   of Problem MSC produces a connection that is survivable 

upon a link failure with a probability of at least p; on the other hand, for each *,  *  
the solution to the instance � � � � � �, , , , , ,e eG s t c p 
   of Problem MSC, produces a 

connection that is survivable upon a link failure with a probability that is less than p. 
Thus, the above strategy to search for a p-survivable connection that minimizes the 



 	�

network congestion factor  , can employ a binary search over , 0,1,2
e

i
e E i

c

� ��

� �� �
� �

 

and therefore consider at most � � � �log 2 1 logM O N� � �  instances of Problem MSC. 
In Fig. 4.3 we provide the formal description of the algorithm.  
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Fig. 4.3: Algorithm LCSC 



 	�

Finally, we consider the complexity of Algorithm LCSC. The algorithm conducts a 
binary search over the set  , hence it considers � � � �log 2 1 logM O N� � �  values. For 
each considered value, it executes Algorithm MSC that solves a single instance of the 
min-cost flow problem. Therefore, the complexity of Algorithm LCSC is 

� �� �, logO T N M N�  where � �,T N M  is the running time of any standard min-cost 
flow algorithm for an N-node M-link network. 
 
4.4 QoS Extensions 
 
For an instance of either Problem MSC or Problem LCSC, there may be several 
optimal solutions. Among them, we may be interested in those that optimize some 
QoS target, such as end-to-end delay, jitter, cost, etc.  Accordingly, we add to the 
definitions of Problems MSC and LCSC a secondary objective function which, among 
the corresponding optimal solutions, seeks the one that minimizes the sum of the 
weights of the paths that constitute the survivable connection. Starting with Problem 
MSC, its modified version is as follows. 
 
Problem Weighted-MSC  Given are an instance � � � � � �, , , , ,e eG s t c p   of Problem 

MSC and a weight ew  for each e E� . Find a survivable connection � �1 2,p p  that has 

the minimum weight � � � � � �1 2 1 2,W p p W p W p��  such that � �1 2,p p  is an optimal 

solution to the instance � � � � � �, , , , ,e eG s t c p   of Problem MSC. 

 
Informally, the goal of Problem Weighted-MSC is to route the duplicates of the 
original demand along the connection that has the maximum survivability to failures 
while keeping the congestion of the network below some specified level; subject to 
this goal, the problem seeks a connection that has the minimum weight � �1 2,W p p .  
 
The definition of Problem Weighted-LCSC is similar and therefore omitted.  
 
In the following, we outline the solution methodology for Problem Weighted-MSC, 
which is a modification of Algorithm MSC. As before, we transform the instance of 
Problem Weighted-MSC into an instance of the min-cost flow problem using a very 
similar reduction to the one presented in Fig. 4.1 for Problem MSC. The only 
difference lies in the weight that each link is assigned in the reduced instance of the 
min-cost flow problem. More specifically, if K denotes a large number, then the 
weight that each link is assigned in the reduced instance of the min-cost flow problem 

is incremented in ew
K

 with respect to the original reduction. The modified reduction is 

illustrated in Fig. 4.4.  
 



 �


 
 
 
The value of K must be large enough such that a min-cost flow with respect to the 
new costs will also be optimal with respect to the original costs. Note that, for 
K �" , the new costs converge into the old costs and a min-cost flow with respect to 
the new instance is also a min-cost flow with respect to the original instance. 
Therefore, by choosing arbitrarily large K we can arbitrarily get closer to the optimal 
solution of Problem MSC.  
 
However, in practical settings, the cost of each e E�  is represented as rational 

number e

e

m
n

 where em  and en  are integers. Therefore, by multiplying all costs by 

e
e E

n
�
� , we obtain integral costs. Hence, for the resulting integral costs if it holds that  

1e

e E

w
K�

*�  then it is easy to see that a min-cost flow with respect to the original costs 

is a min-cost flow with respect to the new costs. Thus, by choosing e e
e E e E

K w n
� �

� �� � , 

we obtain an optimal solution for Problem MSC i.e., a solution that optimizes the 
survivability of the connection as the primary objective.  
 
Obviously, in order to maintain polynomial complexity K must have a polynomial 
representation with respect to the input. Indeed, we show now that e e

e E e E

w n
� �

�� �  is 

polynomial. To that end,  define � �max max ee E
n n

�
�  and � �max max ee E

w w
�

� . The number 

of bits that are required in order to decode  e e
e E e E
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�� �  is at most 

� � � �
2 2

, e
e e e

w
c w f p

K

$ %� � �& '

( )
 

2 :ec 
� � �  

� �
1 1

, e
e e

w
c w

K

$ %� �& '

( )
 

2 :ec
  

 � * �  
� �, ,e e ew c p  

� �, e
e e

w
c w

K

$ %� �& '

( )
 

:ec 
� *  
� �, ,e e ew c p  Discard the link 

from the network 

� �, ,e e ew c p  

Fig. 4.4: Reducing Problem Weighted -MSC to the Min Cost Flow Problem  
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this number is polynomial in the input.  
 
We present a sketch of the proof, which shows that this modification provides the 
optimal solution to Problem Weighted-MSC. As was explained, for each 

e e
e E e E

K w n
� �

� �� � , a min-cost flow with respect to the new costs is a min-cost flow 

with respect to the original costs. Thus, for such a K, a min cost flow with respect to 
the new costs is a min cost flow with respect to the original costs such that the 

increment in the total cost 
1 2

e e
e e

e E e p p

w w
f f

K K� � �

� � �� �  is minimal. Therefore, this min-

cost flow corresponds to the optimal solution of Problem MSC that has the minimum 
value for 

1 2

e e
e p p

f w
� �

�� . Finally, since each of the connection's paths transfer  
  flow 

units from s to t, it follows that 
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( )
� � � � � . Thus, the 

min-cost flow with respect to the new costs corresponds to a survivable connection 
� �1 2,p p  that has the minimum weight � �1 2,W p p , such that � �1 2,p p  is an optimal 
solution to Problem MSC; hence, the min-cost flow corresponds to the optimal 
solution of Problem Weighted-MSC. 
 
We conclude this section with the solution to Problem Weighted-LCSC. Given an 
instance � � � � � � � �, , , , , , ,e e eG s t c w p p
  of Problem Weighted-LCSC, we employ a 

strategy that is very similar to the one presented for Problem LCSC. The strategy 
searches for the smallest   such that the solution to the instance 

� � � � � � � �, , , , , , ,e e eG s t c w p 
   of Problem Weighted-MSC consists of a p-survivable 

connection. Using the same arguments as in Sec. 4.3, it follows that the optimal 
network congestion factor *  of any given instance of Problem Weighted-LCSC must 

be a member in the set , 0,1,2
e

i
e E i

c

� ��

� �� �
� �

. Since this set consists of a polynomial 

number of elements, we only need to solve a polynomial number of instances of 
Problem Weighted-MSC in order to determine the p-survivable connection with the 
smallest  . Finally, as the solution to Problem Weighted-MSC optimizes a secondary 
objective namely, the weight of the returned connection, it follows that the output of 
this scheme consists of a p-survivable connection that has the minimum network 
congestion factor   such that the total weight of the returned connection is 
minimized as a secondary goal. Thus, the output of the latter strategy is the optimal 
solution to Problem Weighted-LCSC. 
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4.5 Extensions to Other Protection Architectures  
 
Thus far, we focused on the 1+1 protection architecture. The 1:1 protection 
architecture is an alternative approach that establishes two paths while sending the 
data only over one active path, while the backup path is activated only if the active 
path fails. In this subsection we show that the alternative 1:1 protection architecture 
can also be addressed using a similar reduction to the one presented in the previous 
subsections. Then, we show that our relaxation of the standard requirement of disjoint 
paths gives rise to an efficient third protection architecture, which is a hybrid 
approach that combines 1:1 protection and 1+1 protection architectures.  
 
4.5.1 The Survivable Connections in 1:1 Protection Architecture 
 
We begin by reformulating Problems MSC and LCSC in order to correspond to a 1:1 
protection architecture.  
 
Problem MSC_1:1  Given are a network � �,G V E , a pair of nodes s and t, a 

congestion constraint 0 � , a demand 
 , and, for each link e E� , a capacity 0ec �  

and a failure probability 0ep � . Find a survivable connection � � � � � �, ,
1 2, s t s tp p P P� 	  

with the maximum probability to remain operational upon a link failure, such that 
transferring the demand 
  along path 1p  or along path 2p  produces a network 
congestion factor of at most  . 
 
Problem LCSC_1:1 Given are a network � �,G V E , a pair of nodes s and t, a 
survivability constraint 0p � , a demand 
 , and, for each link e E� , a capacity 

0ec �  and a failure probability 0ep � . Find a p-survivable connection 

� � � � � �, ,
1 2, s t s tp p P P� 	  such that transferring the demand 
  along path 1p  or along 

path 2p  produces the minimal network congestion factor. 
 
In the following, we outline the solution to Problem MSC_1:1, which is a 
modification of Algorithm MSC. As before, we transform the instance of Problem 
MSC_1:1 into an instance of the min-cost flow problem using a similar reduction to 
the one presented in Fig. 4.1 for Problem MSC. Since the solution to Problem 
MSC_1:1 refers only to the cases where at most one path is active, it holds that at any 
given time at most one path is assigned with 
  flow units. Therefore, only two cases 
should be considered, namely ec 
� *  and ec 
� � . Clearly, as before, all the links 
that satisfy ec 
� *  should be discarded from the network since they cannot be used 
in order to transfer 
  flow units without exceeding the congestion constraint  . On 
the other hand, in contrast with the solution to Problem MSC all other links can 
concurrently be employed by the pair of paths that constitute the solution to Problem 
MSC_1:1. More specifically, the only difference between the solution to Problem 
MSC (that corresponds to a 1+1 protection architecture) and the solution to Problem 
MSC_1:1 is the type of links that can be used by both paths; whereas the solution to 
Problem MSC cannot employ a link e E�  that satisfies 2ec
  

 � * �  for both paths 
(since each path alone transfers 
  flow units), in the solution to Problem MSC_1:1 
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such a link can be shared by the pair of paths that constitute the survivable 
connection. The reduction for the 1:1 protection architecture is illustrated in Fig. 4.5.  
 

 
 
 
We omit the specification of the algorithms that solve Problems MSC_1:1 and 
LCSC_1:1. 
 
4.5.2 An Hybrid (1:1 and 1+1) Protection Architecture 
 
Thus far, we have focused on 1+1 and 1:1 protection architectures. However, the 
relaxation of the path disjointedness requirement considered in this work, enables to 
define a third, hybrid, protection architecture. More specifically, we present a new 
architecture that, for a connection � �1 2,p p , transfers 
  flow units over the links in 

1 2p p# , as in 1:1 protection, while over the links in 1 2 1 2\p p p p� #  it transfers 
  
flow units, as in 1+1 protection. This new protection architecture is illustrated through 
the following example. 
 
Example: Consider the network depicted in Fig. 4.6. Suppose that we are given a 
survivable connection � �1 2,p p  such that  � �1 1 3 4, ,p e e e�  and � �2 2 3 5, ,p e e e� .  
 

 
 
 
 
 

� �� �2 2, ec w f p
� �  

:ec 
� �  
� �,e ec p  

� �1 1, 0c w
� �  

:ec 
� *  
� �,e ec p  Discard the link 

from the network 

S u v T 

e1 

 

e2 

e3 

e4 

 

e5 

Fig. 4.5: Reducing Problem MSC_1:1 to the Min Cost Flow Problem  

Fig. 4.6: Hybrid Protection  
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Hybrid Protection transfers one duplicate of the original flow demand through link 
1 1e p�  and another duplicate through link 2 2e p� . While both duplicates arrive to 

node u, only the first to arrive is assigned to link  u v�  and the other one is 
discarded. When the duplicate that was assigned to u v�  arrives to v, Hybrid  
Protection transfers one duplicate through link 4 1e p�  and another through link 

5 2e p� . Finally, as before, node t considers only the duplicate that is the first to 
arrive. Note that such an assignment of traffic to links is not a link flow.  
 
Hybrid protection architecture has several important advantages. First, it reduces the 
congestion of all links that are shared by both paths with respect to 1+1 protection 
architecture. At the same time, upon a link failure, it has a faster restoration time with 
respect to 1:1 protection. Finally, it provides the fastest propagation of data with 
respect to the propagation time of all paths that can be constructed from the links in 

1 2p p� . We demonstrate this property on the above example. Assume that the link 
propagation delays satisfy 

1 2e ed d*  and 
5 4e ed d* . Then, by construction, node u 

assigns over link 3e  the incoming flow of link 1e , and node t considers only the 
duplicate of link 5e . Thus, data is propagated through the path � �1 3 5, , ,p e e e�  which has 
the minimum propagation delay among all the paths that employ links out of 1 2p p� . 
 
Problem MSC_Hybrid  Given are a network � �,G V E , a pair of nodes s and t, a 

congestion constraint 0 � , a demand 
 , and, for each link e E� , a capacity 0ec �  

and a failure probability 0ep � . Find a survivable connection � � � � � �, ,
1 2, s t s tp p P P� 	  

with the maximum probability to remain operational upon a link failure, such that 

1 2

max
e p p

ec



 
� �

� �

� �

� �
 i.e., assigning the demand 
  to each link 1 2e p p� �  produces a 

network congestion factor of at most  . 
 
The solution to Problem MSC_Hybrid can be obtained through the solution to 
Problem MSC_1:1. More specifically, an optimal solution for Problem MSC_Hybrid 
is an optimal solution for Problem MSC_1:1. The latter follows from the following 
observation. For a given survivable connection � �1 2,p p , employing the 1:1 protection 

architecture that transfers 
  flow units through either 1p  or 2 ,p  produces a network 

congestion factor of at most   iff 
1 2

max   max
e p e p

e ec c

 


  
� �

� � � �

 
� � � �

� � � �
and . Therefore, it 

holds that transferring 
  flow units through either 1p  or 2p  produces a network 

congestion factor of at most   iff 
1 2

max
e p p

ec



 
� �

� �

� �

� �
. Thus, by the definition of 

Problems MSC_Hybrid and MSC_1:1, it holds that a survivable connection � �1 2,p p  
is an optimal solution to Problem MSC_1:1 iff it is an optimal solution to Problem 
MSC_Hybrid. However, it is important to note that, while 1:1 protection assigns 
traffic only to the links that belong to either 1p  or 2p , the hybrid protection assigns 
traffic to all the links in 1 2p p� . 
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4.6 Do We Need Survivable Connections that Consist of More Than Two Paths? 
 
In this subsection we show that, under the single failure model, there is no protection 
architecture that needs more than two paths in order to achieve either the desired 
degree of protection or the desired level of congestion. More precisely, we cannot 
improve the degree of protection or the level of congestion, by admitting more than 
two paths for each survivable connection. Thus, there is no reason to define 
survivable connections that consist of more than two paths. Moreover, since all the 
protection schemes that we present in this work produce the optimal solution for 
survivable connections that consist of at most two paths, our solutions are optimal for 
any number of paths. The above is established through the following theorem. The 
theorem focuses on 1:1 protection (hence, also on hybrid protection), and we later 
extend it to 1+1 protection.  
 
Theorem 4.3 Given are a network � �,G V E , a pair of  nodes � �,s t  and, for each 

e E� ,  a failure probability 0ep � . Let � � � � � � � �, , ,
1 2, , , s t s t s t

kp p p P P P� 	 	 	� �  be a 
p-survivable connection that produces a network congestion factor of at most   when 
a demand of 
  flow units is transferred through one of the connection's paths. If at 
any given time at most one link is not operational (i.e., single link failure), then there 
exists a p-survivable connection � � � � � �, ,

1 2, s t s tp p P P� 	  such that, transferring the 

demand 
  along 1p  or 2p  produces a network congestion factor of at most  . 
 

Proof Let 	
1

k

i
i

E e e p
�

� �
�� �

� �
� �  i.e., the collection of all links that are employed by the 

paths of the given survivable connection � �1 2, , , kp p p� . We shall construct a 

survivable connection � � � � � �, ,
1 2, s t s tp p P P� 	  such that 	

1 2p p E� � . Since 

transferring 
  flow units through any single path that belongs to the survivable 

connection � � � � � � � �, , ,
1 2, , , s t s t s t

kp p p P P P� 	 	 	� �  produces a network congestion 

factor of at most  , it holds that transferring 
  flow units through each 	e E�  
produces a network congestion factor of at most  . Thus, since we shall construct the 
survivable connection � �1 2,p p  only from links in 	E , it holds that transferring the 

demand 
  along path 1p  or along path 2p  produces a network congestion factor of at 
most  . 
 
We now construct a pair of paths � �,

1 2, s tp p P�  from links in 	E  such that the 
probability that at least one path remains operational upon a link failure is not less 
than the probability that some path in � �1 2, , , kp p p�  is operational upon that failure. 

To that end, we first determine the probability of � �1 2, , , kp p p�  to remain 
operational upon a failure. 
 



 ��

In subsection 4.1, we showed that for each ,e E�  the failure probability under the 

condition of a failure �ep  satisfies  �
� �'

'

1
1 1

e
e

e
e E

p
p

p
�

� �
� ��

. Given a survivable 

connection � �1 2, , , kp p p� , denote by E  the set of all links that are common to the 

paths 1 2, , , kp p p�  i.e., 
1

k

i
i

E e e p
�

� �
�� �

� �
� 
 .  Since we assume the single link failure 

model, it follows that only a link e E�  i.e., a that is common to all the paths of the 
given survivable connection � �1 2, , , kp p p� , can break the connection upon a link 

failure. Thus, the probability that at least one path in � �1 2, , , kp p p�  remains 
operational under the condition of a failure, equals to the probability that all of the 
common links are operational under that condition. Thus, since we assume 
independent failure probabilities, it holds that the probability that at least one of the 
connection's path remains operational under an event of a failure equals to 

�� �1 e
e E

p
�

�� . Thus, the connection � �1 2, , , kp p p�  is  a �� �1 e
e E

p
�

�� -survivable 

connection. 
 
Since � �1 2, , , kp p p�  is  a �� �1 e

e E

p
�

�� -survivable connection it follows that in order to 

establish the theorem we only need to show that there exists a pair of paths 
� �,

1 2, ,s tp p P�  	
1 2p p E� �  such that the probability that at least one of them remains 

operational under an event of a failure is at least �� �1 e
e E

p
�

�� . According to corollary 

4.2 the probability that either 1p  or 2p  remains operational upon a link failure is 

equal to �� �
1 2

1 e
e p p

p
� #

�� . Therefore, we have to show that �� � �� �
1 2

1 1e e
e p p e E

p p
� # �

� � �� � . 

Thus, it is enough to show the existence of a pair of paths � �,
1 2, s tp p P�  that satisfies 

	
1 2p p E� �  and 1 2p p E# � . 

 
Remove from the network all the links that are not used by the paths of 

� �1 2, , , kp p p�  i.e., all the links that are not in 	E . We have to show that there exists a 

pair of paths � �,
1 2, s tp p P�  over �� �,G V E  such that 1 2p p E# � . To that end, we 

employ the following construction that transforms �� �,G V E  into a flow network. 

Assign to each ,e E�  two units of capacity, and assign to each 	e E E� �  one unit of 

capacity. We prove now that there exists a pair of paths � �,
1 2, s tp p P�  over �� �,G V E  

such that 1 2p p E# �  iff it is possible to define an integral link flow that transfers 

two flow units from s to t over �� �,G V E .  

 



 ��

:-  Assume that there exists a pair of paths � �,
1 2, s tp p P�  over �� �,G V E  such that 

1 2p p E# � . Assign one unit of flow to each path. Obviously, if the capacity 
constraints are satisfied, the corresponding link flow is an integral link flow that 

transfers two flow units from s to t over �� �,G V E . It is left to be shown that such an 

assignment satisfies the capacity constraints. To that end, observe that assigning one 
unit of flow to each path produces two units of flow over the links in 1 2p p#  and one 

unit of flow over the links in 1 2 1 2/p p p p� # . Since 1 2 ,p p E# �  it follows by 

construction that all the links in 1 2p p#  are assigned with two units of capacity; 
hence, the capacity constraints are satisfied for these links. Similarly, since  

	
1 2 1 2/ ,p p p p E� # �  it follows that all the links in 1 2 1 2/p p p p� #  are assigned 

with at least one unit of capacity; hence the capacity constraints are also satisfied for 
the links in 1 2 1 2/p p p p� # . 
 

:.  Assume that it is possible to define an integral link flow that transfers two flow 

units from s to t over �� �,G V E . Hence, by the flow decomposition theorem [1], it is 

possible to define a pair of paths such that each path transfers one flow unit from s to t 

over �� �,G V E . Moreover, the corresponding paths can intersect only on the links that 

have two units of capacity; hence, by construction, these paths intersect only on links 

that belong to E . Thus, there exists a pair of paths  � �,
1 2, s tp p P�  over �� �,G V E  such 

that 1 2p p E# � . 
 
Hence, in order to prove the theorem, it remains to be shown that it is possible to 

define an integral link flow that transfers two flow units from s to t over �� �,G V E . 

However, since all the links have an integral capacity, the maximum flow that can be 
transferred from s to t under the integrality restriction is equal to the maximum flow 
that can be transferred from s to t when the integrality restriction is omitted [1]; hence, 
it is sufficient to show that it is possible to transfer two flow units from s to t over 

�� �,G V E .  

 
Suppose by way of contradiction, that it is impossible to transfer two flow units from 

s to t over �� �,G V E . Thus, according to the max-flow min-cut theorem [7], there 

exists a cut � �,S T  with s S�  and t T�  such that � �
,

, 2x y
x S y T

C S T c �
� �

*�� . 

Therefore, since the capacity of all links is integral, it follows that � �, 1C S T 
 . Thus, 
since each link has at least one unit of capacity, it follows that at most one link 

�x y E� � , such that  and ,x S y T� �  crosses � �,S T . However, since each path in 

� �1 2, , , kp p p�  is a path from s to t, it follows that there exists at least one link that 
connects some node in S to some node in T. Thus, it follows that exactly one link 



 ��

� ,x y E� �   and ,x S y T� �  crosses the cut � �,S T . Denote this link by e . Since 

� �, 1,C S T 
  it follows that 1ec 
 . Obviously, each path from s to t must traverse 

through the link e. In particular, all the paths of  � �1 2, , , kp p p�  must traverse the link 

e. Hence, by definition, it follows that e E� . Since 1,ec 
  it follows that there is a 

link in �� �,G V E  that belongs to E  whose capacity is at most 1. However, this 

contradicts the fact that 2ec �  for each e E� .  Thus, it is possible to transfer two 

flow units from s to t over �� �,G V E .   � 

 
Theorem 4.3 allows that, for 1:1 and hybrid protections, there is no benefit in 
maintaining survivable connections with more than two paths. We now show that the 
same can be concluded for 1+1 protection. To that end, we observe that, for 1+1 
protection, it holds that a connection � �1 2, , , kp p p�   transfers  k 
�  flow units over 

each link 
1

k

i
i

e p
�

�
 ; moreover, the flow over the rest of the links in 
1

k

i
i

p
�
�  equals to at 

least 
 . In the proof of Theorem 4.3, we showed that there exists a pair of paths 

� �1 2,p p  that intersect only on links that belong to 
1

k

i
i

p
�

  and employ only links that 

belong to 
1

k

i
i

p
�
� . Note that, under the 1+1 protection, the connection � �1 2,p p  transfers  

2 
�  flow units over the links in 
1

k

i
i

p
�

  and 
  flow units over the rest of the links in 

1

k

i
i

p
�
� . Thus, the traffic that each link e E�  carries under the connection � �1 2,p p  is 

never larger than the traffic that is carried by link e  under the connection 

� �1 2, , , kp p p� . Thus, employing 1+1 protection over � �1 2,p p  produces a network 

congestion factor that is not larger than over � �1 2, , , kp p p� . Moreover, since 

1 2
1

,
k

i
i

p p p
�

# �
  it follows that the degree of survivability of � �1 2,p p  is at least the 

degree of survivability of � �1 2, , , kp p p� .Hence, Theorem 4.3 is valid also for 1+1 
protection.  
 
Finally, we show that, with more than a single link failure, the property that was just 
established does not hold. To that end, consider the following example. 
 
Example: Consider the network depicted in Fig. 4.7. Suppose that each of the links 
has a failure probability of 0.1 under the condition of a failure. Moreover, assume that 
we seek a survivable connection that, upon a link failure, has a probability of at least 
0.999 to survive. In such a case, if we employ only two links � �, 1,2,3 ,  i j i j� , , we 

have a probability of 1 0.99i jp p� � �  to survive the failure. The requirement for a 
survivability of at least  0.999 is achieved only if we employ all three links.  
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5. Solution of problem ReMP 
 
In this section we aim at solving problem ReMP, i.e., the problem of minimizing 
congestion under end-to-end reliability requirements. First, we establish that the 
problem is intractable. 
 
5.1 Intractability of Problem ReMP. 
  
Theorem 5.1 Problem ReMP is NP-hard. 
 
Proof  First, let us define the single-commodity case of problem ReMP as a decision 
problem. 
 
Given are a network � �,G V E , for each link e E� , a failure probability 0ep �  and a 

capacity 0ec � , and, for some commodity � �,s t V V� 	 , a demand 0
 �  and a 
(minimal) success probability � . Is there a path flow with network congestion factor 
of at most   such that, for path p  that transfers a positive amount of flow, it holds 

that � �1 e
e p

p
�

� � �� ? 

 
In [3] we considered the following problem, termed as Problem RMP (Restricted 
Multipath): given are a network � �,G V E , for each link e E� , a weight 0ew �  and a 

capacity 0ec � , and, for some commodity � �,s t V V� 	 , a demand 0
 �  and a 

weight restriction W . Is there a path flow  � �: 0f P �� ��  with a network 

congestion factor of at most   such that, for path p that transfers a positive amount 
of flow, it holds that � �W p W
 ? 
 
In [3], we have shown that Problem RMP is NP hard. Given an instance 

� � � � � �, , , , ,e eG V E w c W
  of Problem RMP, we transform it into an instance 

� � � � � �, , , , ,e eG V E p c 
 �  of Problem ReMP as follows:  

S T 

 �1 0.1p �  

 �2 0.1p �  

 �3 0.1p �  

Fig. 4.7: Survivability outside the Single Link Failure Model  
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� Define a failure probability 1 2 ew
ep ���  for each link e E�  with a weight 

0ew � . 

� Define a success probability restriction 2 W��� . 
 
We now prove that it is possible to transfer 
  flow units over paths whose success 
probabilities are not smaller than �  without exceeding the network congestion factor  
  iff it is possible to transfer the same flow demand over paths whose weights are not 
larger than W  while satisfying the same restriction   on the network congestion 
factor. To that end, we prove that every path flow that is a solution to the given 
instance of Problem RMP is also a solution to the transformed instance of Problem 
ReMP and vice versa. Thus, we have to show that each feasible path with respect to 
the instance � � � � � �, , , , ,e eG V E w c W
  of Problem RMP is also feasible with respect 

to the transformed instance � � � � � �, , , , ,e eG V E p c 
 �  of Problem ReMP and vice 

versa. i.e., for each path � �,s tp P�  it holds that � � � �p W p W� � � / 
 . Indeed: 
 

� � � � � �� �

� �

1 1 1 2 2 2 2

2 2 ,  thus Problem ReMP 

is NP hard.  
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e
e p
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5.2 Approximation Scheme for Problem ReMP 
 
In this section we establish an � -optimal approximation scheme for Problem ReMP. 
We are given a network � �,G V E , for each link e E�  a failure probability 0ep �  and 

a capacity 0ec � , and, for each commodity � �,i j V V� 	  a demand � �,i j
  and a 

success probability restriction � �,i j� . We construct a quantized instance of Problem 
ReMP where each link has discrete failure probability and each commodity has a 
discrete restriction on the success probability. To that end, we first define a set of 

classes 
1 2

1, 1 , 1 ,
N N
� �

� �� �0 0$ % $ %� �� �& ' & '
( ) ( )0 0� �

�  where 0� �  is a given approximation parameter. 

Then, we quantize the link success probability 1 ,ep�  
� �1

1 1 1
i i

ep
N N
� �

� � �
$ % $ %� 
 � 
 �& ' & '
( ) ( )

 into a discrete success probability �1 ep�  where 

�1 1
i

ep
N
�

�
$ %� � �& '
( )

. In addition, we quantize the restriction on the success probability 

� , 
� �1

1 1
i i

N N
� �

� � �
$ % $ %� 
 � 
 �& ' & '
( ) ( )

 into a discrete restriction ��  where 

�
� �1

1
i

N
�

� �
$ %� � �& '
( )

. Note that the new (quantized) instance relaxes the original instance 

and therefore the optimal solution to the quantized instance produces a network 
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congestion factor that is not larger than the optimal network congestion factor of the 
original instance. We will later establish that the success probability of each routing 
path is violated by at most a factor of 1 �� . Unless stated otherwise, in the following 
we refer to the quantized instance.  
 
In order to solve the quantized version of Problem ReMP, we employ linear 
programming. To that end, we need some additional terminology.  
 
Given is a quantized instance of Problem ReMP, and let   be the network congestion 
factor of its solution. Define � �, ,i j

ef
1  as the flow of commodity � �,i j  over link 

� �,e u v E� �  that has traversed through paths � �,i up P�  with a success probability 

� �p 1� � . Finally, for each v V� , denote by ( )O v  the set of links that emanate from 

v , and by ( )I v  the set of links that enter that node, namely 

� � � � � �� �, ,O v v l v l E� � and � � � � � �� �, ,I v w v w v E� � . Then, the quantized version 

of Problem ReMP can be formulated as the following linear program: 
 
  



 ��

 
 
 

Note that the variables of the linear program are the link flows � �� �, ,i j
ef
1  and the 

network congestion factor  . 
 
In the linear program, the objective function is to minimize the network congestion 
factor. Constraints (1), (2) and (3) are nodal flow conservation constraints. Equation 
(1) states that the traffic flowing into node v , through paths � �,i up P�  and links 

� �,e u v E� �  such that � � ,p 1� �  has to be equal to the traffic flowing out of node 

v  through paths � �,' i vp P�  that have a success probability � � �� �' 1 ep p1� � � � ; since 

� ��, ,1i j1 2 3� �4 56 7
, the restriction on the probability to success is preserved for each 

commodity � �,i j �� ; finally, equation (1) must be satisfied for each node other than 
the source node and the destination node for each commodity with a positive demand. 
Equation (2) extends the validity of equation (1) to hold for traffic that encounters the 
source node i  after it has already traversed over paths with a non-zero probability of 
failure. Informally, equation (2) states that "old" traffic that was already traversing 
over at least one link must satisfy equation (1) (that focuses only on nodes in 

� �,V i j� ) when it emanates from source i  not for the first time. Equation (3) states 

that, for each commodity � �,i j �� , the traffic flowing out of source i  that has not 

traversed through any path yet (thus 11 � ), must be equal to the demand � �,i j
 . 
Equation (4) is the link capacity constraint. Expression (5) rules out non-feasible 
flows, and Expressions (6) and (7) restrict all variables to be non-negative. 
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Fig 5.1 Program Quantized ReMP 



 ��

We can solve Program ReMP using any polynomial time algorithm for linear 
programming [14]. The solution to problem ReMP is then achieved by decomposing 

the link flow � �� �, ,i j
ef
1  into a path flow that satisfies the success probability 

restrictions. This is done by Algorithm PFC, specified in Fig. 5.2, which is an 
(elaborated) generalization of the Flow Decomposition Algorithm [1].  
 

For each commodity � �, ,i j V V� 	  Algorithm PFC uses the link flow � �� �, ,i j
ef
1  in order 

to define paths with a success probability of at least � ��,i j�  that transfer a total flow of 
� �,i j
  flow units. To that end, at each iteration the algorithm selects a commodity 

� �,i j V V� 	  with a demand � �, 0i j
 � . Then, it employs Procedure Path Construction, 

specified in Fig. 5.3, that returns a collection of pairs � �� �, ,k kS e 1�  such that the 

corresponding set � �� �, ,k

k

i j
ef
1  is a set of positive variables that identifies a path 

� �1 2, , , Sp e e e� �  from source i to destination j with a success probability of at least 

� ��,i j� . The flow over the path p is defined to be equal to the smallest variable � �, ,k

k

i j
ef
1  

that belongs to p i.e., 
� �

� �,( , )

,
min  k

k
k k

s t
ee S

f 1
1 �

. Then, the algorithm subtracts the flow that 

traverses through p from the demand � �,i j
  and from each variable in the path i.e., from 

each variable � �, ,k

k

i j
ef
1  such that � �,k ke S1 � . The algorithm stops when the demand 

� �,i j
  is zeroed for each � �,i j V V� 	 . Thus, for each � �,i j V V� 	 , the resulting path flow 
transfers � �,i j
  flow units from source i to destination j over paths with a success 

probability of at least � ��,i j� .  
 
 



 ��

Fig 5.2: Algorithm Path Flow Construction (PFC) 
 

 
 
 
We turn to explain the main idea behind Procedure Path Construction, specified in 
Fig. 5.3. Given a commodity � �, ,s t V V� 	  the procedure identifies a collection of 

pairs � �� �
1

,
h

k k k
S e 1

�
�  whose corresponding variables � � � � � �� �1 2

1 2

, , , , , ,, , , k

k

s t s t s t
e e ef f f1 1 1

�  are 

all positive such that  1 2
0 1 2 1

hee e
h hu u u u u�: � ::� ::��  is a path from s to t, and for each  

1 k h
 
  it holds that �� � �� � 	� �1 2 1
1 1 1

kk e e ep p p1
�

� � � � �� . This is done by employing 

the following property that characterizes the solution to Program Quantized ReMP. If 

a positive flow � �, ,s t
ef
1  enters through link e=(u,v) into a node v�V-{s,t}, then there 

exists a positive flow 
�� �1 ,( , )

'
ep s t

ef
1 � �

 that emanates out of v through a link e'=(v,w). Since 

each positive flow � �, ,s t
ef
1  must satisfy � ��,s t1 � �  it follows that, if we follow these 

positive flows from the source s, we establish a path that satisfies the success 
probability restriction � �	,s t� . Unless we follow these positive flows on some cycle C 

such that �� �1 1ep� �  for each e C� , we establish in Lemma 5.1 that we must 

discover a positive flow that enters into the destination i.e., we must identify a 
directed path from s to t. Otherwise, if we follow the positive flows on a 1-probabilty 
cycle C  (i.e., a cycle that consists of only links with a success probability of 
�� �1 1ep� � ), then we eliminate the cycle as follows. First, we determine the flow over 

the cycle to be equal to the smallest variable � �, ,k

k

i j
ef
1  that belongs to C. Then, we 

subtract the flow that traverses through C from each variable in the cycle and repeat 
the above process of establishing a path of positive variables from source s to 
destination t. Note that since each time we identify a 1- probability cycle we zero at 

� �� � � �� �� �, , ,( , ), ,i j i j
eG V E f 1 
Algorithm PFC   

   Initialization: 
         For each commodity ( , )i j V V� 	  and each  path � �( , ) :   0.s tp P f p� !  
    
  For each commodity  ( , )s t V V� 	 : 

         � �,While 0 do:s t
 �  

1. � � � �� �� �, ,Path_Construction ( , ), , , i j
eS G V E s t f 1! .  

2. 
� �
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,
 min  , for each ,k k k

k k k
k k

s t s t s t
e e e k ke S

f f f e S1 1 1

1
1

�
! � � . 

3. � � � �
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s t s t s t
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f 1
1


 

�
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see e
sp s v v v t: � ::� ::�� � , where ke  corresponds to the 

pair � �,k ke S1 � . � �
� �

� �,( , )
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min  k
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k k

s t
ee S

f p f 1
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   Return the path flow f. 
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least one variable, the number of times that such 1- probability cycles can be detected 

is at most the number of variables in � �� �, ,i j
ef
1 . Therefore, after at most � �� �, ,i j

ef
1  

times that we detect and eliminate flow cycles, we must obtain a directed path from s 
to t by following positive flows from the source s. Finally, note that since "regular" 
cycles are not detected, the constructed path is not necessarily simple.  
 

 
 
 
Lemma 5.1: Consider the returned set S (Fig. 5.3) and define 1k k ke u u ���  for each 

� �,k ke S1 � . If � �,s t
 >0, then there exists an h, � � � �	,

1
1 log s t

N

h M �
�


 � � � �  such that the 

sequence (u0,u1,…,uh) is a path from s to t with a succsess probability of at least � �	,s t� . 
 
Proof: Since � �,s t
 >0, it follows from constraint (3) (of Program Quantized ReMP) that 
there exists at least one link e0=(u0,u1) such that the variable 

0

1,( , )s t
ef  is positive; by 

construction the algorithm selects one such variable and assigns its corresponding pair 
� �0 0,e 1 , 0 11 �  to the set S. Then, from constraints (1) and (2), it follows that unless 

u1=t, there exists at least one link e1=(u1,u2) such that the variable 
�

0

1

1 (1 ),( , )ep s t
ef
� �  is 

positive; like before the pair � �1 1,e 1  that corresponds to 
�

0

1

1 (1 ),( , )ep s t
ef
� �  is assigned to S. 

Thus, applying constraints (1) and (2) for any index k, it follows that, if the set S 
contains a pair � �,k ke 1  that corresponds to some positive variable ,( , )k

k

s t
ef
1  where 

� � � �� �,( , ) ( , ), , , i j
eG V E s t f 1Procedure Path Construction   

 Initialization 
S ;! , 0u s! , 0 01 ! , 0k !  

While  doku t,  
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k

s t
ef
1  such that ek�(uk,uk+1)�E. 

2. If � �,k ke S1 �  (i.e., a 1-probability cycle was detected) then 

a. Let � � � � � �� �1 1 1 1, , , , , ,i i i i k kC e e e1 1 1� � � �� �  be a subset of S such that 

� � � �, ,i i k ke e1 1� . 

b. 
� �
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 min  , for each ,k k k
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s t s t s t
e e e k ke C

f f f e C1 1 1

1
1

�
! � � . \* the cycle 

flow was eliminated *\ 

c.  � � � �� �� �, ,Path_Construction ( , ), , , i j
eS G V E s t f 1!  

d. Return S 

3. � � �� �1, ,  1
kk k k k eS S e p1 1 1�! � ! � � , 1k k! � . 

Return S 

Fig 5.3: Procedure Path Construction 
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[0, 1]

1
lk e

l k

p1
� �

���  and 1( , )k k ke u u �� , then, unless uk+1=t, it holds that S must contain 

some pair � �1 1,k ke 1� �  where �� �1 1
kk k ep1 1� � � �  and ek+1=(uk+1,uk+2) such that 1

1

,( , )k

k

s t
ef
1 �

�
 

is positive. Therefore, if S consists of a pair � �,k ke 1  where �� �
[0, 1]

1
lk e

l k

p1
� �

���  and 

1( , )k k ke u u �� , and lacks a pair � �1 1,k ke 1� �  where �� �1 1
kk k ep1 1� � � �  and 

ek+1=(uk+1,uk+2), it follows that uk+1=t; hence, the sequence (u0,u1,…,uk+1) that 

corresponds to � � � � � �0 1

0 1

, , , , , ,, , , k

k

s t s t s t
e e ef f f1 1 1

�  is a path from s to t. Thus, in order to 

prove the Lemma, it is sufficient to show that � � � �	,

1
1 1 log s t

N

k M �
�

� 
 � � � � . More 

specifically, we have to show that there is no pair � �,k ke S1 �  such that 

� � � �	,

1
1 log 1s t

N

k M �
�

� � � � � � .  

 
Suppose, by the way of contradiction, that there exists a pair � �,k ke S1 �  such that 

� � � �	,

1
1 log s t

N

k M �
�

� � � � � . Since it follows by construction that the path 

p=(u0,u1,…,uh+1) that corresponds to the pairs � � � � � �0 0 1 1, , , , , ,h he e e S1 1 1 ��  has no 

1-probability cycle, it follows that k m1 1�  for each � � � �, , ,k k m me e S1 1 �  that satisfy  

k me e�  and k m* . Thus, since any subpath 'P P� , 'p M�  has at least two links 

1 2, 'e e p�  such that 1 2e e� , it follows that k m1 1�  for each � � � �, , ,k k m me e S1 1 �  that 

satisfy m k M� � ; hence, since  , 1 ,
i

k m i
N
�

1 1
� �0 0$ %� � �� �& '
( )0 0� �


  it follows that 

1k mN
�

1 1$ %� � �& '
( )

. Therefore, since by construction 0 11 � , it follows that 

1

1 1M N
�

1
�

�
$ %* �& '
( )

. In general, it is easy to see that � �1 1
i

i M N
�

1
�

� �

$ %* �& '
( )

. Thus, since we 

assume that there exists a pair � �,k ke S1 �  such that � � � �	,

1
1 log s t

N

k M �$ %�& '
( )

� � � � � , it 

follows that there exists a pair � �,k ke S1 �  such that 
� �	

� �	
,

1
log

,1

s t

N s t
k N
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1

$ %�& '
( )

�
$ %* � � �& '
( )

. 

Thus, since the pair � �,k ke S1 �  identifies a positive variable ,( , )k

k

s t
ef
1 , it holds that 

there exists a positive variable ,( , )s t
ef
1  such that � �	,s t1 * � . However, this contradicts 

constraint (5) of Program Quantized ReMP that zero each variable ,( , )s t
ef
1  with a 

success probability  � �	,s t1 * � . Thus, we have established that there exists an h, 

� � � �	,

1
1 log s t

N

h M �
�


 � � � �  such that the sequence (u0,u1,…,uh) is a path from s to t. 



 ��

 
It is only left to prove that path (u0,u1,…,uh) has a succsess probability of at least 

� �	,s t� . However, as S corresponds only to positive variables ,( , ) ,s t
ef
1

 it follows from 

(5) and (6) that 	( , ) ,1s t1 2 3� �4 56 7
 i.e., it follows that the path (u0,u1,…,uh) has a success 

probability of at least � �	,s t� .           �  
 
We are now ready to specify the approximation scheme for Problem ReMP. Given an 
instance of Problem ReMP and an approximation parameter � , the scheme solves the 
corresponding quantized instance using Program Quantized ReMP. The output of the 
program (i.e., the link flow � �,( , )i j

ef
1 ) is decomposed by Algorithm PFC into a path 

flow that satisfies the end-to-end reliability requirements. Finally, we convert each 
non-simple path in the output of Algorithm PFC into a simple path by eliminating 
loops; this is essential, since the total error in the evaluation of the success probability 
of each path depends on the hop count. In theorem 5.2, we establish that the resulting 
path flow violates the reliability requirement of each path by a factor of at most  
� �1 ��  and has a network congestion factor that is not larger than the optimal network 
congestion factor. Fig. 5.4 specifies this approximation scheme for Problem ReMP.  
 



 ��

 

 
 
We now establish the performance of ReMP Approximation Scheme. First, we show 
that the complexity of the scheme is polynomial with respect to the input and � . 
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Fig 5.4 ReMP Approximation Scheme 
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Theorem 5.2 Given an instance � � � � � �� � � �� �i,j i,j, , , ,e eG c p 
 �  of problem ReMP and 

an approximation parameter � , the ReMP Approximation Scheme has a polynomial 
complexity with respect to the input and the approximation parameter � . 

 
Proof    Clearly, the complexity of the ReMP Approximation Scheme is determined 
by steps (2) and (3). Thus, in order to prove the theorem, we have to prove that both 
steps have a polynomial complexity with respect to the input and the approximation 
parameter � .  

 
In step (2), (the linear) Program Quantized ReMP, which was defined in Fig. 5.1, 

solves the instance �� � �� � �� � � �� � � �	� �i,j i,j, ,  ,  , , e eG V E p c 
 � . The complexity incurred by 

solving that program is polynomial in the number of variables � �,( , )i j
ef
1  [14].  Thus, it 

is sufficient to show that the number of variables of Program Quantized ReMP is 
polynomial with respect to the input and � .  
 
Obviously, the number of variables in � �,( , )i j

ef
1  is the product of the number of links 

in �E , the number of commodities V V	  and the number of different values that 1  
can take. Therefore, we only have to show that 1  can take a polynomial number of 
different values with respect to the input and the approximation parameter � . To that 

end, consider the set of classes 
1 2

1, 1 , 1 , , 1 ,
k

A
N N N
� � �

� �� �0 0$ % $ % $ %� � �� �& ' & ' & '
( ) ( ) ( )0 0� �

� � � . It follows 

by construction that all the success probabilities �� �� �1 ep�  and all the restrictions 

� �	� �i,j�  of the quantized instance are in A . Therefore, by the construction of Program 

Quantized ReMP, it holds that, for each variable ,( , ) ,i j
ef
1  there exists an i��  such 

that 1
i

N
�

1
�

$ %� �& '
( )

. On the other hand, since Program Quantized ReMP refers only to 

variables � �,( , )i j
ef
1  such that � �	, ,1i j1 2 3� �4 56 7

 it holds that, for a commodity � �,i j V V� 	  

and a link ,e E�  the number of different variables � �,( , )i j
ef
1  is at most the number of 

different values in the interval � �	, ,1i j2 3�4 56 7
 that can be expressed as 1 ,

i

N
�

�
$ %�& '
( )

 where 

i�� . In other words, if 
� �

� ��� �,min

,
min i j

i j V V� 	
� ��  then, for each variable ,( , ) ,i j

ef
1  it holds 

that 
1 2
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k

N N N
� � �

1
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min

1+
log

N

k �� �  and therefore 1  can take at most min

                    

min

1+
log 1 log

N

N
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�
$ %� � � �& '
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different values. Therefore, we established that 1  can take a polynomial number of 
different values with respect to the input and the approximation parameter � .  



 �


 
We turn to consider Step (3). There, we employ Algorithm PFC (Fig. 5.2) in order to 
decompose the link flow � �,( , )i j

ef
1  into a corresponding path flow. Note that each 

iteration of Algorithm PFC zeroes at least one variable ,( , )i j
ef
1 . Therefore, Algorithm 

PFC iterates for no more than the number of variables � �,( , )i j
ef
1 . However, as was just 

shown, this number is polynomial with respect to the input and the approximation 
parameter � . Thus, we only have to prove that each iteration consists of a polynomial 
number of operations. 

 
It is easy to see that the complexity of each iteration is determined by Procedure Path 
Construction, specified in Fig. 5.3. The procedure seeks a collection of pairs 

� �� �
1

,
h

k k k
e 1

�
 such that the corresponding set � �� �, ,

1

k

k

hs t
e

k
f 1

�
 is a set of positive variables 

that identify a path (u0,u1,…,uh) from s to t. As the procedure is recursive, we first 
show that the number of recursive calls is polynomial. By construction, we perform a 
new recursive call whenever we pick a positive variable that was already assigned to 
S. Thus, since the recursive call is executed only after we zero at least one positive 

variable in � �,( , )i j
ef
1 , the number of recursive calls is at most � �,( , ) ,i j

ef
1  which was 

shown to be polynomial with respect to the input and � ; hence, the number of calls is 
polynomial as well. Next, we show that each recursive call has a polynomial 
complexity. To that end, observe that we terminate each recursive call when a positive 
variable that was already selected and assigned to S, is selected again. Thus, each 
variable is identified at most twice; hence, since identifying each positive variable 

� �, ,s t
ef
1  consumes O(1) operations, it follows that each recursive call consumes 

� �� �,( , )i j
eO f 1  operations. Therefore, the complexity of each recursive call is 

polynomial with respect to the input and the approximation parameter � .  
 

Thus, steps (2) and (3) have a polynomial complexity with respect to the input and �  
and the Theorem is established.  � 
 
Theorem 5.3  Given an instance � � � � � � � �� � � �� �i,j i,j, , , , ,e eG V E c p 
 �  of Problem ReMP 

and an approximation parameter � , the ReMP Approximation Scheme, specified in 
Fig. 5.4, outputs a path flow f that satisfies the following: 
 

a. For each commodity � �,i j V V� 	 , � �
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� �

,

,

i j

i j

p P

f p 

�

��   i.e., the flow demand 

requirements are satisfied for all commodities. 
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c. For each commodity � �,i j V V� 	 , if � �,i jp P�  and � � 0,f p �  then 

� �
� �

� �

,

1

i j

p
�

�
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�
 i.e., the restriction on the probability of success is violated by 

a factor of at most (1 )�� .  
 

Proof    
a. Follows from constraint (3) of Program Quantized ReMP. 

 
b. Since the algorithm rounds up the success probability of each link and rounds 

down the restrictions on the minimum success probability, it follows that the 

resulting quantized instance �� � �� � �� � � �� � � �	� �i,j i,j, ,  ,  , , e eG V E p c 
 �  of problem 

ReMP relaxes the original constraints. Hence, the resulting network 
congestion factor is at most  <>=

 
c. We now prove that, if a path � �,i jp P�  is assigned with a positive amount of 

flow by the ReMP Approximation Scheme, then � �
� �

� �

,

1
1

i j

e
e p

p
��

�
� �

�� .  

Consider the original instance � � � � � � � �� � � �� �i,j i,j, , , , ,e eG V E p c 
 �  of Problem 

ReMP and the corresponding quantized instance 
�� � �� � �� � � �� � � �	� �i,j i,j, ,  ,  , , e eG V E p c 
 �  . 

 
Suppose that a path � �,i jp P�  transfers a positive amount of flow in the output 
of the ReMP Approximation Scheme. Therefore, by construction, it follows 

that p is a simple path that satisfies the quantized restriction on � ��,i j�  i.e., 
�� � � ��,(1) 1 i j

e
e p

p
�

� � �� . By the construction of the quantized instance (Step 

1), it holds that �� � � �1 1 1 .e ep p
N
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simple, it holds that 1p N
 �  and, therefore, 
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construction of the quantized instance it follows that � � � ��, , 1i j i j

N
�$ %� 
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for each � �, ,i j V V� 	  we employ inequality (2) in order to obtain that 
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6. Conclusions and Future Research  
 
Multipath routing is a potentially powerful tool in two major aspects of data networks, 
namely load balancing and resilience to network failures. However, its practical 
deployment requires to efficiently handle both aspects. Accordingly, we investigated 
two classes of problems, both aimed to optimize the congestion state of the network. 
However, whereas the first class considers ways to avoid network failures, the second 
class considers ways to recover from failures.  
 
Standard survivability schemes enhance the ability to recover from network failures 
by establishing pairs of disjoint paths. However, as this strategy is restrictive, it often 
leads to the selection of poor routing paths (if any). Accordingly, we relax the 
standard requirement of path disjointedness into a "continuous" survivability 
requirement. Somewhat surprisingly, yet as the standard requirement of disjoint paths, 
the new requirement can also be accommodated by efficient polynomial schemes. 
However, as opposed to the standard requirement, the new requirement allows a 
flexible choice of the desired degree of survivability, hence enabling to consider 
important tradeoffs. Note that, although this study has focused on the resilience-
congestion tradeoff, the new more flexible, requirement can be employed also when 
considering other interesting tradeoffs (e.g., resilience-delay, resilience-jitter, etc).  
 
We have employed the continuous survivability concept both for the 1:1 and the 1+1 
protection architectures. Moreover, the new concept enabled to define a third hybrid 
protection architecture, which was also accommodated through an efficient 
polynomial scheme. Finally, we established that, under the single link failure model, 
multipath routing schemes that enhance the ability to recover from failures should not 
employ more than two paths for each connection. Since the single link failure 
assumption is practically valid in many cases of interest, this finding suggests an 
important network design rule in terms of survivability.  
 
Another important contribution of this study is the establishment of a multipath 
routing scheme that avoids network failures by routing over reliable paths exclusively. 
To that end, we investigated the congestion minimization problem under end-to-end 
reliability requirements. After showing that this problem is intractable, we established 
an efficient � -optimal approximation scheme.  
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While this study has established efficient solutions to some fundamental multipath 
routing problems that consider the resilience-congestion tradeoff, there are still 
several challenges that remain for future work. One major challenge is to restrict the 
number of paths that each commodity is allowed to employ when the focus is on 
congestion minimization under end-to-end reliability requirements. The latter 
restriction is important due to several reasons. First, the complexity of the schemes 
that distribute the traffic among multiple paths considerably increases with the 
number of paths. Second, since each path is prone to network failures and each such 
failure results in a failure of the entire transmission, the vulnerability of the 
connections may increase when the traffic is splitted among too many paths. Finally, 
there may be a limit on the number of paths that can be set up between a pair of 
nodes, as is the case with label-switched paths in MPLS. Since it was observed that 
congestion is largely reduced when either one or two paths are identified in addition 
to the traditional single path [6], future research in this context should mainly focus 
on multipath routing schemes that balance the network's load while usually employing 
no more than a small number (e.g., three) reliable paths per connection. 
  
Other challenges and ideas for future work that were identified during the evaluation 
of this study and are behind the scope of this paper are described as follows.  
 
Multipath Routing and Diversity Coding 
 
Consider the two objectives of multipath routing that are the subject of this study. 
Although focusing on each objective alone severely deteriorates the quality of the 
other, it is possible to combine between these objectives by employing the idea of 
diversity coding [21]. The latter concept increases fault tolerance by adding redundant 
information, like error detection and correction codes, into the data stream. Then, the 
redundant information is routed along paths, which are disjoint to the paths that 
transfer the original data flow. Employing diversity coding in order to combine 
between the above objectives can be done by developing new schemes that minimize 
congestion and satisfy the fundamental property that restricts each path that transfers 
some positive flow to have an adequate set of disjoint paths with enough bandwidth to 
protect this flow.  
 
Fast Recovery Schemes for Multipath Routing 
 
Multipath routing can provide additional benefits in networks where resource 
reservation must be made before data can be sent along a route (e.g. ATM). Consider 
for example a routing scheme that uses multipath routing in order to reduce 
congestion. Then, in case of a failure in one of the paths, we may split the data stream 
that was traveling over the failed path among the remaining paths, without any 
additional path computation or resource reservation. This fast recovery property can 
be obtained in several ways. For example, it may be employed by imposing a 
restriction that, upon a path failure, the sum of the spare capacities of the remaining 
paths is not smaller than the flow that was traveling over the failed path.  
 
Survivability in Wireless Networks 
 
Standard protection schemes that employ multipath routing in order to enhance the 
survivability to failures may be inappropriate for wireless networks. This is due to the 
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fact that electrical interferences (noises) usually cause highly correlated network 
failures. Thus, the single link failure model is no longer valid. For example, for 
survivable connections that establish a pair of paths, a single random noise can cause 
concurrent failures on the two paths. Since survivability is a major consideration in 
such networks, protection schemes that address the specific properties of wireless 
networks are called for.  
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