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Abstract

Mobile ad-hoc networks (MANETs) are failure-prone environments; it is common for mobile
wireless nodes to intermittently disconnect from the network, e.g., due to signal blockage. This
paper focuses on withstanding such failures in large MANETs: we present Octopus, a fault-
tolerant and efficient position-based routing protocol. Fault-tolerance is achieved by employing
redundancy, i.e., storing the location of each node at many other nodes, and by keeping fre-
quently refreshed soft state. At the same time, Octopus achieves a low location update overhead
by employing a novel aggregation technique, whereby a single packet updates the location of
many nodes at many other nodes. Octopus is highly scalable: for a fixed node density, the
number of location update packets sent does not grow with the network size. And when the
density increases, the overhead drops. Thorough empirical evaluation using the ns2 simulator
with up to 675 mobile nodes shows that Octopus achieves excellent fault-tolerance at a modest
overhead: when all nodes intermittently disconnect and reconnect, Octopus achieves the same
high reliability as when all nodes are constantly up.
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1 Introduction

Mobile ad-hoc networks (MANETs) consist of mobile wireless nodes that communicate with each
other without relying on any infrastructure. Therefore, routing in MANETs is performed by the
mobile nodes themselves. Such nodes often intermittently disconnect from the network due to
signal blockage [8, 20]. Thus, an important challenge that ad-hoc routing protocols should address
is coping with such failures (disconnections) without incurring high overhead. Our goal is to provide
fault-tolerance, i.e., high routing reliability when many nodes frequently disconnect and reconnect,
without sacrificing efficiency in routing in large MANETs consisting of hundreds of mobile nodes.

We consider position-based routing protocols, in which each node can determine its physical
location. Such protocols scale better than non-position-based ones [23]. Typically, the location of
each node is stored at some other nodes, which act as location servers for that node [19, 23]. When
a node wishes to send packets to another node, it first issues a location query in order to discover the
target’s location, and then forwards packets to this location. In position-based protocols, reliability
is measured as the success rate of location queries [19].

Position-based protocols differ from each other mainly in how many location servers store each
node’s location [23]. E.g., in DREAM [7], each node acts as a location server for all nodes, and in
LAR [18], each node is a location server for its one-hop neighbors only. It has been argued that
neither of these extreme approaches is appropriate for large networks, since they both use flooding to
disseminate either position information (DREAM) or location queries (LAR) [19, 21, 17, 12]. Li et
al. [19] have proposed the Grid Location Service (GLS), which stores each node’s location at small
number of nodes. They have shown that this approach, called all-for-some [23], achieves good
tradeoff between reliability and load: each node updates its location at small number of nodes
without flooding the network, and location queries incur a reasonable overhead. Li et al. have
further shown that in a small network, GLS tolerates intermittent node disconnections well [19].
However, as we show in Section 5.3, in large networks, GLS’s fault-tolerance greatly degrades. For
example, in a grid of 2.3km by 2.3km, with an average of 400 nodes connected to the network at a
given time, when half the nodes intermittently disconnect and reconnect, GLS’s query success rate
is only 65%; when all the nodes intermittently disconnect and reconnect, it drops to 53%.

There is inherent tradeoff between fault-tolerance and load in GLS and other all-for-some pro-
tocols, e.g., [15], since fault-tolerance is achieved by constantly updating the location of each node
at multiple location servers, which are typically far from each other (in order to allow for quick lo-
cation discovery). Thus, each node updates each of its location servers separately, causing the load
to increase with the level of redundancy. Moreover, a location update packet is typically relayed
several times before it reaches the appropriate location server, and the number of relays increases
with the network area [19]. In order to reduce the location update overhead, in most all-for-some
routing protocols, e.g., [19, 15], remote location servers are updated less frequently than close ones.
In Section 5.3, we show that in large networks this approach greatly degrades the fault-tolerance
as routing often uses stale information.

In order to achieve a better tradeoff between load and fault-tolerance we introduce a new location
update technique called synchronized aggregation. In this technique, each location update packet
includes the location of several nodes and updates many location servers. Moreover, updates are
synchronized in the sense that only one node initiates the propagation of an aggregate update from
a given region, and hence no duplicate updates are sent. It is worth noting that such a synchronized
aggregation technique is not feasible in existing all-for-some protocols, e.g, [19, 15], in which the
locations of nearby nodes are stored at non-adjacent location servers.

In Section 4, we present Octopus, a simple and efficient all-for-some routing protocol that
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employs synchronized aggregation in order to achieve high fault-tolerance without incurring a high
load. Octopus divides the network area into horizontal and vertical strips, and stores the location
of each node at all the nodes residing in its horizontal and vertical strips. This approach naturally
supports synchronized aggregation: all the nodes in the same strip can learn each other’s locations
through the propagation of exactly two location update packets along the strip. Moreover, since
synchronized aggregation dramatically reduces the location update overhead, Octopus can update
all the location servers at the same high frequency.

On the one hand, Octopus enforces higher redundancy and more freshness of location informa-
tion than GLS, and hence achieves much better fault-tolerance. On the other hand, by aggregating
node locations, Octopus incurs lower overhead than GLS in typical scenarios.

Octopus has a third important advantage over most previous all-for-some protocols, e.g., [19, 15]:
In Octopus, the area in which nodes reside does not need to be pre-known or fixed; it can change
at run time. This feature is crucial for rescue missions and battle field environments, in which the
borders of the network are not known in advance and are constantly changing.

Finally, the redundancy of location information in Octopus has a fourth advantage: nodes use
information they have about strip neighbors in order to improve the forwarding reliability. Hence,
we eliminate the need to maintain designated information (e.g., two-hop neighbor lists as in [19])
for improving the forwarding reliability.

In Section 5, we evaluate Octopus’s performance using extensive ns2 simulations with up to
675 mobile nodes. Our results show that Octopus achieves high routing reliability, low overhead,
good scalability, and excellent fault-tolerance. For example, in a grid of 2.3km by 2.3km with
nodes that all intermittently disconnect and reconnect, and an average of 400 connected nodes at
a given time, Octopus achieves a query success rate of 95%, which is identical to the success rate
when all nodes are constantly up. We also compare Octopus to GLS, the position-based protocol
that achieved the best reliability-load tradeoff thus far. Our results indicate that in the absence of
failures, Octopus achieves slightly better reliability than GLS, at lower overhead (both packets and
bytes). In failure-prone settings, Octopus’s reliability is greatly superior to that of GLS.

In Appendix A, we prove Octopus’s correctness, and in Appendix B, we analyze Octopus’s
scalability: we prove that under a fixed node density, the number of location update packets per
node per second is constant, and the byte complexity grows as O(

√
N) with the number of nodes

N . We also analyze the probability for forwarding holes in Octopus’s horizontal and vertical strips,
and show that under reasonable density assumptions, the probability for holes is very small.

2 Related Work

Existing ad-hoc routing approaches can be roughly divided into two categories: topology-based and
position-based [23]. Topology-based protocols do not assume that each node can determine its
position. Such protocols usually employ global flooding to distribute either topology information
(e.g., DSDV [26]) or queries (e.g., AODV [27], DSR [16], TORA [25], and ZRP [14]), and hence
suffer from limited scalability [23, 19].

By assuming that each node can determine its location, position-based protocols achieve better
efficiency and scalability than topology-based ones [23]. In DREAM [7], every node acts as a
location server for all nodes. This approach is fault-tolerant, and is practical in small networks.
However, it has been argued that the overhead of this approach is prohibitive in large networks,
since location updates are flooded [19, 12]. In LAR [18], each node knows only the locations of
its immediate neighbors. This approach is efficient when the number of location queries is low.
However, when location queries are frequent, this approach is not practical, as location queries are
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globally flooded [19]. In [13, 31], some dedicated nodes act as location servers for some or all
other nodes. This approach is appropriate for failure-free networks, or for settings in which there
are reliable servers. However, such an approach is problematic in failure-prone networks, since it is
vulnerable to the movement or failure of a single dedicated location server (as explained in [19]).

Li et al. [19] have shown that by having each node act as a location server for some other nodes,
one can achieve a good tradeoff between reliability and load, and good scalability up to at least
600 nodes. A similar approach is taken in GRSS [15], Homezone [11, 28], and [29]. Of these, GLS
and GRSS are the only ones that were extensively evaluated in simulations with mobile nodes.
Moreover, only GLS was evaluated in settings in which nodes intermittently disconnect from the
network, and this study was only conducted in a small network.

Stojmenovic et al. [29] suggest a routing scheme in which each node periodically propagates
its position in the north and south directions, and location queries are sent in the east and west
directions. Similar approaches were suggested for other wireless services [30, 6, 24]. However, unlike
Octopus, none of these previous works aggregate updates, and they thus miss Octopus’s important
performance advantage; individually updating so many nodes is bound to induce a prohibitively
high overhead [5, 22]. Moreover, of these works, only [30] was evaluated with mobile nodes, and
none was evaluated in fault-prone settings. Another difference between Octopus and [29] is that
Octopus employs more redundancy by storing node locations at both their horizontal and vertical
strips. This additional redundancy yields a quadratic decrease in the probability for query failures.
Finally, [29] does not make additional use of the stored location information in order to improve
the reliability of forwarding. In fact, we are not aware of any previous ad-hoc routing protocol that
exploits location information for more effective forwarding.

The most thoroughly studied position-based protocol thus far, GLS [19], partitions the world
into a hierarchy of grids with squares of doubling edge sizes. In each level of the hierarchy, the
location of each node is stored at three location servers, for a total of O(log N) location servers
under uniformity and fixed density assumptions (see Section 3). Under the same assumptions,
Octopus stores the location of each node at O(

√
N) location servers. In contrast to Octopus, in

GLS remote location servers are updated less frequently than close ones. Thanks to the use of more
location servers and fresher information, Octopus achieves much higher fault-tolerance than GLS.
Thanks to aggregation, Octopus achieves this while incurring lower overhead. Moreover, Octopus
is a simpler protocol than GLS.

Although Octopus requires more memory than GLS for storing location information, Octopus’s
memory requirements are quite reasonable: in our largest experiment, with 675 nodes, location
information consumes less than 1KB of memory at each node. Note that in wireless networks,
reducing the number of transmissions is most crucial, and 1KB of memory overhead is a small price
to pay for the significant reduction in message overhead that Octopus achieves.

In almost all the previous location-based routing protocols, each location update packet includes
the location of a single node and updates a single location server. The only exception we are
familiar with is GRSS [15]. However, in contrast to Octopus, in GRSS location updates are not
synchronized, i.e., several nodes in the same region can initiate a location update simultaneously
causing to many duplicate packets to be sent. Consequently, as shown in [15], GRSS often fails to
achieve lower overhead than GLS. Moreover, as opposed to Octopus, in which each location update
packet contains identities of O(

√
N) nodes (assuming the system model described in Section 3), in

GRSS, a location update packet can contain O(N) node identities. In order to reduce the packet
size, GRSS uses Bloom filters. However, this technique may lead to incorrect routing due to false
positives [15].

Finally, some ad-hoc protocols, e.g., Span [10] and GAF [32], reduce energy consumption by
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allowing nodes to sleep for extensive periods, leaving a minimal set of nodes awake to perform
routing. Such an approach employs no redundancy, and hence is inherently not fault-tolerant.

3 System Model

The network consists of a collection of mobile nodes moving in a rectangular space. The set of
nodes can change over time as nodes connect and disconnect. The coordinates of the space can also
change over time. We assume that nodes are uniformly distributed in the space. Each node can
determine its own position, e.g., using GPS. Each node can broadcast packets to all its neighbors
within a certain radius r called the radio range. Packets can be lost due to MAC-level collisions or
barriers. In our simulations, we use the MAC layer provided by the ns2 simulator, which simulates
packet loss in typical MANETs. As in other protocols, a certain minimal node density throughout
the grid is required in order to ensure reliability. Thus, we assume that the number of nodes grows
proportionally with the area of the network.

Octopus divides the space into horizontal and vertical strips. The strip width, w, is constant
and known to all nodes. Knowing w, the zero longitude and latitude, and its current location,
each node can determine which horizontal and vertical strips it resides in at a given time. For
example, in Fig. 1, node S resides in the highlighted horizontal and vertical strips, and its radio
range neighbors are circled. Each strip has a unique identifier (of type StripID), identifying its
location relative to the global zero coordinates.

G

S

C

B

F

E

A

HD

Figure 1: Node S’s neighbors and strips. A, B, C,
and D are end nodes in the highlighted strips.

Types:
NodeID – a node identifier.
StripID – a strip identifier.
Direction – in {north= 0, south= 1, west= 2, east= 3}
Node – 〈NodeID id, Real x, Real y, Time time,

StripID hid, StripID vid, Real p x, Real p y〉
Data structures
Node this – this node.
Set of Node neighbors, strip[4], target locations.

Figure 2: Types and data structures.

4 Octopus

Octopus is composed of three sub-protocols: location update, location discovery, and forwarding.
The location update protocol maintains each node’s location at its designated location servers, as
well as at its radio range neighbors. When a node wishes to send packets to another node, it first
issues a location query to the location discovery protocol in order to discover the target’s location,
and then uses the forwarding protocol to forward packets to this location. Sections 4.1, 4.2, and 4.3
present Octopus’s location update, location discovery, and forwarding sub-protocols, respectively.
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We use limited retransmissions in order to partially overcome packet loss: Whenever a node A
sends a packet to a node B, and B is expected to send a packet in return (e.g., to propagate/forward
the packet further or respond to a location query), node A waits to hear the appropriate packet
from B. If A does not hear B’s packet within a retransmissions timeout, then A re-sends the packet.
Up to two retransmissions per packet are sent.

4.1 Location Update

The location update protocol is initiated by each strip’s end nodes. A north (south) end node is a
node that has no neighbors in direction north (respectively, south) in its vertical strip, and a west
(east) end node is a one that has no neighbors to the west (respectively, east) in its horizontal strip.
For example, in Fig. 1, A, B, C, and D are end nodes in S’s strips.

The location update protocol maintains two data structures at each node: neighbors – radio
range neighbors, and strip[i] for i ∈ {north, south, west, east} – nodes residing in direction i in the
node’s strip. Each element in these sets is of type Node. As shown in Fig. 2, this type is a tuple
including the following fields: id – the node’s identifier, x, y – the node’s last reported coordinates,
time – the time of the last received coordinates report, hid, vid – the node’s horizontal and vertical
StripIDs, and p x, p y – the node’s previous coordinates.

The neighbors set is updated upon receiving a short HELLO packet from another node. This
packet is broadcast by every node every hello timeout seconds, and it contains the broadcast-
ing node’s identity and physical coordinates. If a node does not hear from some neighbor n for
2hello timeout seconds, it removes n from neighbors.

The pseudo-code for maintaining strip[*] is presented in Fig. 3. The locations of all the nodes in
a given strip are propagated through the strip via the periodic diffusion of STRIP UPDATE packets
initiated by the end nodes of the strip every strip update timeout. An end node broadcasting a
STRIP UPDATE packet to direction d includes in the packet all its neighbors that are in the same
strip. A STRIP UPDATE packet also includes the strip identifier, the packet direction, and a
target node, which will forward this packet further.

Upon receiving a STRIP UPDATE packet, a node updates the appropriate entry in strip[*]. If
the node is designated as the packet target and is not the strip’s end-node, then it appends to the
packet all its neighbors that reside in the packet’s strip, chooses a new target, and broadcasts the
packet. The propagation of a STRIP UPDATE packet completes when it reaches an end node, i.e.,
when the farthest node in direction d is the current node (this = next). For example, in Fig. 1, a
STRIP UPDATE packet with direction south begins at node C and propagates to the south-most
node of the strip, D.

Forwarding holes

We define a forwarding hole to be a situation in which a node X cannot forward a STRIP UPDATE
packet to direction d in a strip s although there is another node in s that is in direction d of X. For
example, in Fig. 1, there is a forwarding hole north of node G. In a typical scenario, the probability
for a forwarding hole is small (less than 0.02, see Appendix B.2). Moreover, as we describe in
Section 4.2, storing each node’s location at both the horizontal and vertical strips quadratically
decreases the probability for query failures due to forwarding holes.

Although the probability for a routing failure due to forwarding holes is small, we have imple-
mented a simple bypass mechanism in order to overcome such failures: in this mechanism, a node
that cannot forward a STRIP UPDATE packet to direction d in a strip s forwards the packet to a
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loop forever
foreach Direction d do

if (I have no neighbors in direction d) then
StripID sid← get strip id (d)
set of Node set← get nodes in strip (sid)
bcast 〈STRIP UPDATE, sid, opposite direction to d,

set, farthest node in set〉
sleep (strip update timeout)

Event handler:
upon receive 〈STRIP UPDATE, sid, d, set, t〉 do

if (sid = this.vid
∨

this.hid) then
strip[opposite direction to d]← set

/* If I am the packet target */
if (this = t) then

set of Node set′ ← get nodes in strip (sid)
Node next ← farthest node

in direction d in set′
⋃{this}

/* If I need to forward the packet */
if (this �= next) then

bcast 〈STRIP UPDATE, sid, d, set
⋃

set′, next〉

Procedures:
set of nodes get nodes in strip (sid)

return {n ∈ neighbors|n.hid = sid
∨

n.vid = sid}

StripID get strip id (d)
if d ∈ {north, south} then

return this.vid
return this.hid

Figure 3: The strip update protocol.

forward (Packet p, Node target)
Node next← closest node to target ∈ neighbors

⋃{this}
if (next = this) then

target′ ← closest node to target from strip[∗]
next← closest node to target′ from neighbors

bcast 〈FORWARD, p, target, next〉

Event handler:
upon receive 〈FORWARD, p, target, next〉 do

if (target = this) then
deliver p

else if (next = this) then
forward (p, target)

Figure 4: The forwarding protocol.

locate (Node ID tid)
Node target← search locally (tid)
if (target = null) then

search location (this, tid, north)
search location (this, tid, south)
sleep (discovery timeout)
if (target /∈ target locations) then

search location (this, tid, west)
search location (this, tid, east)

Event handlers:
upon receive 〈QUERY, src, t id, d, next〉 do

if (next = this) then
search location (src, t id, d)

upon receive 〈REPLY, src, target, d, next〉 do
target locations← target locations

⋃{target}
if (next = this) then

send reply (src, target, d)

Macro:

strip neighbors[d] � (neighbors
⋂

strip[d])
⋃{this}

Procedures:
Node search locally (target id)

if (∃n s.t. n ∈ neighbors
⋃

strip[∗] ⋃ target locations∧
n.id = target id) then

return n
return null

search location (src, t id, d)
Node target← search locally (t id)
if (target = null) then

Node next← farthest node in strip neighbors[d]
in the same square as this
or in an adjacent square

if (next �= this) then
bcast 〈QUERY, src, t id, d, next〉

else if (src �= this) /* target found - send reply */
Direction d′ ← opposite direction to d
send reply (src, target, d′)

send reply (src, target, d)
Node next← closest node to src in strip neighbors[d]
if (next �= this) then

bcast 〈REPLY, src, target, d, next〉

Figure 5: The location discovery protocol.
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node that is in direction d of it that resides in an adjacent strip to s. Empirically, the additional
reliability achieved by this mechanism is negligible (less than 2%), since the basic Octopus’s im-
plementation already achieves high reliability. Therefore, for simplicity reasons, we present and
evaluate Octopus without the bypass mechanism.

In Appendix A.1 we prove the following lemma: In a run in which there are no node movements
or failures and no packet loss, if the strip width w ≤

√
3

2 r, then in every segment of a strip in which
there are no forwarding holes, every node knows the identities and locations of all the nodes that
reside in this segment after the propagation of STRIP UPDATE packets in this segment completes.

4.2 Location Discovery

The location discovery protocol uses the information stored in strip[*] and neighbors, as well as
the set target locations, which is a cache of recently discovered target locations. The cache entries
expire after strip update seconds. The code for this protocol is presented in Fig. 5.

The interface to the location discovery protocol consists of the function locate, which first
searches the target in one of the locally maintained sets (strip[*], neighbors, and target locations).
If the target’s location is not found in these sets, the protocol broadcasts two QUERY packets to the
node’s north-most and south-most neighbors in its square or in adjacent squares in its vertical strip.
The recipient of a QUERY packet continues the search in the same manner, forwarding the packet
in the same direction if needed. Once a QUERY packet reaches a node that knows the target, it
broadcasts a REPLY packet with its information about the target towards the source. Every node
that receives a REPLY packet adds the located target to its target locations. In rare cases in which
no REPLY packet is received within discovery timeout seconds, the search is repeated in the same
manner in a west-east directions.

In Appendix A.2 we prove the following lemma: Assume that there are no node movements,
node disconnections, or packet loss, and that w ≤

√
3

2 r. Consider a location query with nodes S
and T as the query’s source and target, respectively. Let square a (b) be the intersection between
S’s vertical (horizontal, respectively) strip and T ’s horizontal (vertical, respectively) strip. If there
are no forwarding holes between S and a and between T and a, or there are no holes between S
and b and between T and b, then S’s target locations eventually includes T ’s location.

4.3 Forwarding protocol

Upon a successful location discovery, the forwarding protocol forwards data packets to the tar-
get’s estimated location. This location is calculated according to the target’s last two reported
coordinates, which are included in the Node data structure sent in REPLY packets.

Octopus employs geographic forwarding [23] in order to forward data packets to their destina-
tions. The basic version of geographic forwarding works as follows: each node has knowledge of
its one-hop neighbors and their locations. Each intermediate node forwards a data packet to its
neighbor that is geographically closest to the packet’s destination. This protocol is efficient, but it
may fail if an intermediate node is a local maximum, i.e, it is closer to the destination than all of
its neighbors.

In case of a forwarding failure, Octopus chooses an alternative target, target′, which is the
closest node to the packet destination from the sets strip[*] and forwards the packet to its neighbor
that is geographically closest to target′. We illustrate this recovery technique in Fig. 6, where node
S needs to forward a data packet to node T . S is closer to T than all of its radio range neighbors.
S chooses node E (the closest node to T from S’s strip[*]) as an alternative target, and forwards
the packet to A (S’s closest neighbor to E). Note that the packet’s ultimate destination remains
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unchanged, and subsequent forwarding steps follow the basic geographic forwarding if possible.
In Section 5, we show that one-hop geographic forwarding using this recovery technique is very
effective, achieving the same reliability as two-hop geographic forwarding. The pseudo-code of the
forwarding protocol appears in Fig. 4.

D

C

B A

E S

T

Figure 6: Octopus’s forwarding protocol.

5 Evaluation

We now evaluate Octopus using simulations. Octopus is implemented in ns2 [4] with CMU’s
wireless extensions [2]. Each node uses the IEEE 802.11 radio and MAC model provided by the
CMU extensions, with a radio range r of 250 meters and a throughput of 1Mb

sec . The nodes are
initially placed uniformly at random in a square universe. In most of our simulations, there are
75 nodes per square kilometer. (Li et al. [19] have experimentally shown that such a node density
is required in order to achieve high forwarding reliability.) Each node moves using the random
waypoint model [9]: it chooses a random destination and moves toward it with a constant speed
chosen uniformly between zero and 10 m

sec . When a node reaches its destination, it chooses a new
destination and begins moving toward it immediately in the same speed. For each set of parameters,
we run five 300 seconds long simulations, and in each simulation, each node initiates an average of
one location query a minute to random destinations, starting 30 seconds into the simulation, and
ending at 270 seconds.

Octopus’s timeouts are set as follows: Each node broadcasts a HELLO packet every 2 seconds.
The strip update timeout is 10 seconds, and retransmissions timeout and discovery timeout are set
to 2 seconds.

In Section 5.1, we study the effect of the strip width on Octopus’s overhead and reliability. In
Section 5.2, we examine Octopus’s scalability as the number of nodes and network area increase.
In Section 5.3, we study Octopus’s fault-tolerance. In Section 5.4 we evaluate the reliability of
Octopus’s forwarding sub-protocol and compare it with two-hop geographic forwarding. Finally, in
Section 5.5, we compare Octopus’s reliability, overhead, and fault-tolerance to those of GLS.

5.1 The effect of the strip width

In Appendix A.1, we prove that when w ≤
√

3
2 r, location updates are guaranteed to cover all the

nodes residing in segments of the strip they propagate through. Increasing w beyond this threshold
may cause some nodes to be missed by location updates passing next to them. Nevertheless,
increasing w does not necessarily hamper Octopus’s reliability. This is so because it reduces the
probability for forwarding holes, as it increases the area of the intersection between nodes’ radio
ranges and their strips (denoted area A in Fig. 15), and thus reduces the probability that no nodes
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Figure 7: Octopus’s query success rates and overhead for different strip widths.

reside in this area. When r = 250m,
√

3
2 r = 216m. We experiment with strip widths of 200 and 250

meters. Fig 7(a) shows the query success rate as a function of the number of nodes and the grid’s
edge length for OCTOPUS-250 (where w = 250) and OCTOPUS-200 (where w = 200). In order
to ensure a fair comparison, we examine grid edge lengths that are divisible by both 250 and 200.
We see that the query success rate is very similar for both strip widths. We conclude that under
a density of 75 nodes per square kilometer, setting w = r does not reduce the reliability compared
to choosing w ≤

√
3

2 r.
At the same time, increasing w reduces the number of STRIP UPDATE packets sent, since there

are fewer strips. Although the size of each STRIP UPDATE packet increases as there are more
nodes in each strip, the total number of node locations sent in all STRIP UPDATE packets does not
change. Since each transmitted packet also includes a MAC header, sending the same information
in fewer packets reduces the total number of bytes sent by the protocol. Indeed, Fig. 7(b) and
Fig. 7(c) show that increasing the strip width from 200m to 250m reduces the per node packet and
byte complexities of Octopus. Henceforth, we fix the strip width at 250m.

5.2 Scalability

We now examine Octopus’s scalability. We first examine the effect of increasing the node density,
and then focus on the impact of increasing the network size while maintaining a fixed node density.

5.2.1 The effect of node density

We now examine what happens when the node density increases from 75 to 100 nodes per square
kilometer. Fig. 8(a) shows that the query success rate remains similar. This occurs because of two
opposing tendencies: On one hand, increasing the density reduces the probability for forwarding
holes, and thus improves reliability. On the other hand, as the node density increases, the prob-
ability for MAC-level collisions increases, and therefore more packets are lost, which reduces the
reliability.

In Fig. 8(b) and Fig. 8(c), we see that increasing the density reduces Octopus’s per node message
and byte complexity. The message complexity is reduced since the number of STRIP UPDATE
packets sent in each strip does not grow, while these packets are divided among more nodes.
Although the number of node locations sent in each STRIP UPDATE increases, sending fewer
packets per node reduces the MAC overhead, and the overall per node byte complexity is therefore
also reduced.
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Figure 8: Octopus’s query success rates and overhead for different node densities.

5.2.2 Increasing the network size

As the network area increases, the probability for forwarding holes in the update/query path
increases, and therefore, the reliability inevitably degrades. We observe that regardless of strip
width or density, this degradation is very gradual.

We further observe that the number of location update packets sent by Octopus is constant,
matching the analysis in Appendix B. The overall overhead gradually increases with the network
size and the number of nodes. The moderate increase in the per query overhead stems from the
increased failure probability of the first discovery attempt (in the north-south directions), which
leads to more cases in which locations are also searched in the east-west directions. Nevertheless,
this increase is gradual, because the failure probability is low even in large grids. We note that
similar phenomena occur in other all-for-some protocols [19, 15, 11, 28], where the probability for
query failures also increases with the network area. This, in turn, increases the overhead due to
query retries or trying alternative location servers.

5.3 Fault-tolerance

Octopus’s main design goal was to provide high fault-tolerance in the presence of intermittently
disconnecting nodes. We now examine whether this design goal is met. To this end, we introduce
unstable nodes, which alternate between being connected and disconnected [19]. Each time an
unstable node awakens, it remains connected for a time interval chosen uniformly at random in the
range [0, 120] seconds. And when it disconnects, it remains disconnected for a time interval chosen
uniformly at random in the range [0, 60] seconds. Thus, at any given time, an average of 2

3 of the
unstable nodes are connected. We experiment with a varying percentage p of unstable nodes. The
remaining nodes are connected throughout the simulation. We experiment in a fairly large grid of
2.3km by 2.3km. In order to isolate the effect of node disconnections without impacting the density,
we fix the average number of connected nodes at a given time at 400. That is, we run 400

1−p+ 2
3
p

nodes

(e.g., 480 nodes when p = 0.5). Note that although the average density of live nodes at any given
time is not reduced, it is still challenging to achieve high reliability, since part of the global state
is lost with each node disconnect, whereas new nodes connect without any location information.
Therefore, protocols that employ low redundancy, e.g., GLS, fail to achieve high routing reliability
in the face of disconnects (see Fig 9).

Clearly, location queries for nodes that are disconnected during the location query or shortly
beforehand or afterwards are bound to fail. Likewise, nodes that disconnect shortly after issuing a
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the percentage of the unstable nodes.

0  75 / 1 200 / 1.6 300 / 2 400 / 2.3 500 / 2.6 600 / 2.9
0  

0.2 

0.4 

0.6 

0.8 

1

F
or

w
ar

di
ng

 s
uc

ce
ss

 r
at

e

Number of nodes / Grid edge length (km)

OCTOPUS
TWO−HOP

Figure 10: Data forwarding reliability.

location query will inevitably not receive the query response. We therefore only take into account
queries whose target is connected during the interval [t − 10, t + 10] seconds, where t is the query
issue time, and whose query source is connected during the interval [t, t + 10] (the same approach
was taken in [19]). Note that we only require the source and query target to remain connected–
all other nodes, including the target’s location servers and the nodes along the search path, can
disconnect at any time.

Fig. 9 shows the query success rate as a function of the percentage of unstable nodes. We see
that Octopus achieves perfect fault-tolerance: its reliability does not degrade at all as we increase
the percentage of unstable nodes. This impressive fault-tolerance is achieved thanks to the high
level of redundancy in Octopus, and the freshness of the redundant information: Consider a source
S issuing a query for a target T . The query succeeds when it reaches a location server in the
intersection of S and T ’s strips. There are at least two such squares (one in S’s horizontal strip,
and one in its vertical strip). Every 10 seconds, T ’s location is stored at all the nodes residing
in these two squares (since strip update timeout is 10 seconds). Assuming there are no forwarding
holes, as long as one of the nodes in these squares remains connected during the 10 seconds interval,
the query should be successful. When the node density is 75, the average population of these two
squares is 9.375 nodes. Even when all the nodes in the network are unstable, the probability of all
these nodes failing within 10 seconds is negligible. Note also that the probability for holes does not
increase when nodes are unstable, since the average density is fixed.

5.4 Data forwarding

In order to evaluate the reliability of Octopus’s forwarding sub-protocol, we run simulations in
which data traffic is sent. Our simulation scenario follows the one in [19]. Each node’s radio
bandwidth is 2Mb

sec . In each simulation, data traffic is generated by a number of constant bit rate
connections equal to half the number of nodes; no node is a source in more than one connection;
no node is a destination in more than three connections. Each source sends four 128-byte data
packets each second for 20 seconds. Each simulation lasts for 300 seconds, and data packets are
sent at random times between 30 and 270 seconds into the simulation. All other parameters are as
in the simulations described above. We vary the number of nodes and the grid’s edge length, while
maintaining a node density of roughly 75 nodes per square kilometer.

We compare the reliability of Octopus’s forwarding sub-protocol with that of two-hop geographic
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Figure 11: Octopus versus GLS: query success
rates.
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Figure 12: Octopus versus GLS: data and pro-
tocol packet overhead.

forwarding, which is employed, e.g., by GLS. For both protocols, target locations are discovered
using Octopus’s location discovery sub-protocol. Fig. 10 shows that the forwarding reliability of the
two protocols is virtually identical. We conclude that the high redundancy of Octopus’s location
information is an adequate substitute for storing dedicated information for increasing forwarding
reliability. Note that the additional overhead for maintaining the two-hop neighbor lists needed for
two-hop forwarding is substantial, and it grows with the node density.

5.5 Comparison with GLS

We now compare the reliability, overhead, and fault-tolerance of Octopus to those of GLS. We use
the ns2 implementation of GLS from MIT [3]. We use the grid sizes and densities from [19], with
one exception: in the smallest grid (1km by 1km) we place 75 nodes instead of 100 in order to
maintain a similar node density of roughly 75 nodes per square kilometer in all grid sizes. Note that
these scenarios are not optimized for Octopus, since most of the grid edge sizes are not multiples
of Octopus’s strip width (250m).

Fig. 11 shows the query success rate for Octopus and GLS simulations. GLS-100 and GLS-
200 are GLS simulations with a location update threshold of 100m and 200m, respectively. In
GLS-d, a node updates its order-i location servers after each movement of 2i−2d meters. We see
that with either threshold, Octopus achieves similar reliability to GLS in a small network, and
better reliability than GLS in medium and large networks. Octopus’s advantage is most notable
in the largest grid, where Octopus’s reliability is roughly 4% and 7% higher than GLS-100’s and
GLS-200’s, respectively. The reliability gap between Octopus and GLS increases with the grid
size because of the lower freshness of location information stored at GLS’s remote location servers.
Whereas in Octopus, a node updates all its location servers at the same high frequency (every
10 seconds), in GLS, the average frequency at which a node updates its location servers grows
with the grid size. For example, in the 2.9km by 2.9km grid, a GLS-100 node updates its order-4
location servers only after moving 400 meters, and its order-5 location servers after a movement of
800 meters. Thus, a node moving at the average speed (5 m

sec) updates its order-4 (order-5) location
servers only every 80 (respectively, 160) seconds.

Fig. 13 compares Octopus’s overhead to that of GLS. Thanks to aggregation, Octopus sends a
smaller number of packets than GLS. Furthermore, as opposed to Octopus, in GLS, the message
complexity incurred by the location update protocol grows with the grid size, as on average each
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Figure 13: Octopus versus GLS: packet and byte overhead.

location update packet is relayed more times. Although Octopus’s location update packets are
larger than GLS’s, by sending fewer packets, Octopus reduces the number of bytes sent in MAC-
level headers. Therefore, overall, Octopus’s byte complexity is smaller than GLS’s (see Fig. 13(b)).

Octopus’s greatest advantage over GLS is its fault-tolerance. In Fig. 9, we contrast Octopus’s
fault-tolerance against that of the more reliable version of GLS, GLS-100. As explained in Sec-
tion 5.3, we experiment with an average of 400 connected nodes at a time, on a 2.3km by 2.3km grid.
Whereas Octopus’s reliability does not degrade when the percentage of unstable nodes increases,
GLS’s reliability greatly degrades with the number of unstable nodes. GLS is less fault-tolerant
than Octopus for two reasons: first, GLS employs less redundancy, and second, in GLS it takes
reconnecting nodes a long time to update their remote location servers.

Finally, we consider simulations with data traffic. In Section 5.4, we showed that the reliability of
Octopus’s forwarding sub-protocol is similar to the reliability achieved by the two-hop geographic
forwarding protocol employed by GLS. We now measure the total (data and protocol) packet
overhead incurred by both protocols in the simulation scenario of Section 5.4. Fig. 12 shows the
average per node per second number of packets sent by Octopus and the more efficient version of
GLS, GLS-200. We do not measure the byte overhead, because it is dominated by the data traffic.
As the figure shows, Octopus sends fewer packets than GLS.

6 Conclusions

We have presented Octopus, a simple fault-tolerant and efficient routing protocol for large MANETs.
We have proven Octopus’s scalability: the number of location update packets does not increase with
the network size, and the number of bytes in such packets grows like O(

√
N). Our extensive sim-

ulations have illustrated Octopus’s perfect fault-tolerance: in a large grid with hundreds of nodes
that intermittently disconnect and reconnect, Octopus achieves the same high reliability as when
all nodes are constantly up. Nevertheless, Octopus incurs less overhead than previous efficient
position-based routing protocols. This is achieved thanks to the use of aggregation. In general, we
believe that aggregation can be used to improve various additional protocols, e.g., by aggregating
queries or information about various searchable resources.
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A Correctness

A.1 Location update

We now identify circumstances under which Octopus’s location update protocol achieves 100% re-
liability, i.e., correctly stores node locations at all of their designated location servers. We note,
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however, that due to failures, movements, packet loss, parameter choices, and uneven node distri-
bution, these ideal circumstances are not always achieved. In Section 5, we showed that in typical
scenarios with frequent failures and movements, Octopus’s reliability is close to 95%.

Lemma 1. In a run in which there are no node movements or failures and no packet loss, if the
strip width w ≤

√
3

2 r, then in every segment of a strip in which there are no forwarding holes,
every node knows the identities and locations of all the nodes that reside in this segment after the
propagation of STRIP UPDATE packets in this segment completes.

Proof. Consider a segment of strip s with no holes. Assume that the segment’s end node A sends a
STRIP UPDATE packet m1 to node B, and then B sends a STRIP UPDATE packet m2 to node
C. Without loss of generality, assume that s is a horizontal strip. Consider a node N in s whose
x coordinate is between A’s and B’s, at distance ∆x from A’s x coordinate. If ∆x ≤ r

2 , then N is
in A’s radio range, and hence it receives m1. Since w ≤

√
3

2 r, m1 contains all the nodes in s within
r
2 meters of A in the direction of m1, as all these nodes are within A’s radio range (see Fig. 14).
Therefore, after receiving m1, N knows the identities and locations of all the nodes between it and
A. If ∆x > r

2 , then N receives m2 as it is in B’s radio range (see Fig. 14). According to the
protocol, m2 contains all the nodes in s that are within A’s and B’s radio ranges. Thus, in both
cases, after the broadcast of m2, N knows the identities and locations of all the nodes in s whose
x coordinates are between N ’s and A’s.

BA

rr

r/2r/2

w

Figure 14: A strip of width w =
√

3r
2 .

By induction, we get that after propagating a STRIP UPDATE packet from A to Z, the end
node at the other end of the segment, each node knows the identities and locations of all the nodes
in the segment between it and A. Likewise, after propagating a STRIP UPDATE packet from Z
to A, each node knows the identities and locations of all the nodes in s between it and Z.

A.2 Location Discovery

As in the previous section, we identify circumstances under which Octopus’s location discovery
service achieves 100% reliability.

Lemma 2. Assume that there are no node movements, node disconnections, or packet loss, and
that w ≤

√
3

2 r. Consider a location query with nodes S and T as the query’s source and target,
respectively. Let square a (b) be the intersection between S’s vertical (horizontal, respectively) strip
and T ’s horizontal (vertical, respectively) strip. If there are no forwarding holes between S and
a and between T and a, or there are no holes between S and b and between T and b, then S’s
target locations eventually includes T ’s location.

Proof. Without loss of generality, assume that there are no forwarding holes between S and a and
between T and a. Since QUERY packets never skip over squares (see search location in Fig. 5), a
QUERY packet propagating along the strip reaches some node N that resides in a. By Lemma 1,
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N knows T ’s location. N initiates a REPLY packet. Since there are no holes or packet loss, this
packet propagates back to S.

B Analysis

B.1 Scalability

In this section, we analyze Octopus’s scalability.

Lemma 3. Assuming a fixed node density ρ, the per node per second packet complexity of the
location update protocol does not grow with the network size.

Proof. We first observe that the average distance that a STRIP UPDATE packet traverses each
time it is forwarded is independent of the network size: this distance depends only on the radio
range, the node density, and the strip width. Denote this average distance by δ. Second, we observe
that the probability for a forwarding hole at any particular point in the strip is independent of the
network size. Therefore, the average percentage of the strip in which there are no forwarding holes is
constant with respect to the network size. Denote this portion by α. In a single iteration of the strip
update protocol, the propagation of STRIP UPDATE packet(s) along a strip of length l requires an
average of αl

δ transmissions in each direction. Denote σ = 1/strip update timeout. Then on average,
2αlσ

δ STRIP UPDATE packets per strip are sent in a second. In order to obtain the average per
node message complexity, we divide this number by the expected number of nodes in a strip, which
is ρlw, and multiply it by 2 since STRIP UPDATE packets are propagated in both horizontal and
vertical strips. Therefore, on average, each node broadcasts 4αlσ

δρlw = 4ασ
δρw STRIP UPDATE packets

per second, which is independent of the network size.
In addition to STRIP UPDATE packets, the location update protocol also sends HELLO pack-

ets. Since each node broadcasts HELLO packets at a fixed frequency, the total per node per second
message complexity incurred by the location update protocol is constant.

Lemma 4. Assuming a fixed density, the per node per second byte complexity incurred by the
location update protocol increases as O(

√
N) with the number of nodes.

Proof. Recall that in our model, we assume that N nodes are uniformly distributed in the network
area. Therefore, assuming a fixed node density, when we increase N , the number of nodes in each
strip increases like O(

√
N). Thus, the number of bytes in STRIP UPDATE packets increases like

O(
√

N). The size of a HELLO packet is constant.
From Lemma 3, we get that the number of packets sent per node does not increase with N ,

and therefore the overall per node byte complexity of the location update protocol increases like
O(

√
N).

B.2 Reliability

Forwarding holes in strips may hamper Octopus’s reliability, as they may prevent location updates
from propagating in the entire strip. We now analyze the probability for forwarding holes. We
show that under reasonable density assumptions, this probability is very small, which explains why
Octopus achieves excellent reliability in the simulations above.

A forwarding hole occurs when a node has no radio range neighbors in the strip in the direction
the packet is going, i.e., when there are no nodes in the intersection between the forwarding node’s
radio range and the strip in the packet’s direction. For example, in Fig. 15, a hole occurs if there
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are no nodes in the area denoted by A. The size of this area depends on w, r, and the node’s
location relative to the strip boundaries. Without loss of generality, let us examine a horizontal
strip. Consider a node whose y coordinate is at distance d from the south boundary of the strip.
Using the equation for the area of a circular segment [1], we compute A as follows:

As(d) = r2 cos−1
(d

r

)
− d

√
r2 − d2

A (d) =
Πr2 − (As(d) + As(w − d))

2

A

d

w−d

As(d)

As(w−d)

Figure 15: The probability for a forwarding hole.

For an asymptotic analysis, we use a Poisson node distribution. Since the expected number of
nodes in an area of size A is ρA, we get that the probability of no nodes residing in A is:

Prd = e−ρA(d)

Since this probability varies with d, in order to compute the average probability for a forwarding
hole we need to average Prd for d’s in [0, w]. We observe that Prd monotonically decreases when
d grows from 0 to w/2 (as the area gets larger), and then symmetrically increases as d grows from
w/2 to w. The highest probability occurs when d = 0 or d = w. We compute a coarse lower bound
of the probability for holes by considering two cases: first, when d is between w/4 and 3w/4, and
second when d is not in the middle half of the strip. We bound the probability for the first case
by looking at its minimum point, where d = w/4, and we bound the second case by looking at its
minimum point, where d = 0. We get the following:

Pr[hole] <
1
2
Prw/4 +

1
2
Pr0

When we instantiate the formulae above with ρ = 75, w = r = 0.25 (used in most of our
simulations), we get that Pr[hole] < 0.02.
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