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Abstract

This paper is concerned with the problem of finding the best of a set of possible solutions of a PDE-

based denoising process. We focus on either finding the proper weight of the fidelity term in the energy

minimization formulation or the optimal stopping time of a nonlinear diffusion process. A theoretical

analysis is carried out and several bounds are established on the performance of the optimal strategy

and a widely used method, wherein the variance of the residual part equals the variance of the noise.

An optimality condition is set to achieve maximal SNR, under quite general assumptions. We provide

two practical alternatives of estimating this condition and show that the results are sufficiently accurate

for a large class of images, including piecewise smooth and textured images.

I. INTRODUCTION

The use of Partial Differential Equations (PDEs) to regularize images is becoming a very ac-

tive field of research. The elegance of the formulation, frequently via the calculus of variations,

and the good results, attract researchers and users alike. Invariably, these methods require the

determination of a parameter in the process. This parameter is the time, or number of iterations,

in diffusion like processes, or the weight of the fidelity term of the energy functional, in the

calculus of variations approach. In both cases, a simplification of the image is achieved via a pa-

rameter dependent PDE. It is desirable that the “true” signal will not be degraded in the process

of this simplification while noise is removed. In fact, both noise AND signal are being altered

in the process. That the signal is changed is clear since an image without noise is also altered

in the process. The PDEs are constructed to reduce noise faster than the alteration of piecewise

smooth images. Yet, the process must be stopped when too much of the signal is altered, either

because there is very few noise left, or because the image contains texture.

It is thus important to decide on the optimal point to stop the process. This question is pertinent

in image processing but to our surprise was addressed by only few researchers in the nonlinear

diffusion context [5], [10], [3].

We present in this paper an analysis of the optimal parameter choice from a Signal to Noise

(SNR) perspective. We examine the very popular denoising strategy (suggested in [8]) where

the weight of the fidelity term is set such that the variance of the residual part equals that of the

noise. Lower bound on the SNR performance of this strategy is established as well as a proof of

non existence of an upper bound. Examples which illustrate worst- and best-case scenarios are

presented and discussed.
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Next, we derive a necessary condition for optimality in the SNR sense. From a theoretical

viewpoint, this facilitates the computation of upper and lower bounds of the optimal strategy.

From a practical viewpoint, the condition suggests the numerical method that should be followed

for the purpose of maximizing the SNR of the filtered image. Two algorithms for “on the fly”

parameter calculation are suggested based on the above condition, which give fairly accurate

estimates.

We demonstrate our method and show its superiority with respect to the methods of [8], [5]

and [10].

The paper is organized as follows: In Section II we present the model and discuss the lower

and upper SNR bounds that can be obtained in a �- process regularization [2]. An optimality

condition is derived in terms of the variances and covariances of the signal, noise and their

estimations. The covariance of the noise and the residual part is a key ingredient and is the

focus of Section III. Two practical methods are provided for its approximation. In Section

IV we explain that similar arguments, used for the �-process regularization, can be applied

to diffusion-like processes. We define the concepts and quantities that link between the two

types of regularization techniques and which are relevant to our analysis. A detailed comparison

to other stopping criteria is presented. The comparison is carried out from a theoretical and an

empirical points of view. A table that compares the results on benchmark images is presented.

We present our conclusions in Section V.

II. SNR BOUNDS FOR THE SCALAR � PROCESS

A. Denoising Model, Definitions and Assumptions

We assume that the input signal f is composed of the original signal s and additive white

Gaussian noise n of variance �2:

f = s+ n: (1)

It is assumed that s and n are uncorrelated. Our aim is to find a decomposition u; v such that u

approximates the original signal s and v is the residual part of f :

f = u+ v: (2)
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We accomplish that by finding the minimum to the following energy

~E�(u) =

Z



�
�(jruj) + ~�(f � u)2

�
d
: (3)

� is assumed to be convex in this paper. Some of the following results, though, can also apply to

the more general case of monotonically increasing �. The standard condition
R


fd
 =

R


ud


is set, (corresponding to the Neumann boundary condition of the evolutionary equations). ThenR


vdxdy = 0, rescaling ~� by the area of the domain j
j: � = ~�j
j, we get

E�(u; v) =

Z



�(jruj)d
 + �V (v); f = u+ v: (4)

where V (q) is the variance of a signal q

V (q)
:
=

1

j
j
Z



(q � �q)2d
;

and �q is the mean value

�q
:
=

1

j
j
Z



qd
:

The covariance of two signals is defined as

cov(q; r)
:
=

1

j
j
Z



(q � �q)(r � �r)d
:

We remind the identity

V (q + r) = V (q) + V (r) + 2cov(q; r):

Let us denote uz as the solution of (4) for f = z. For example, us is the solution where f = s.

The decorrelation assumption is taken also between s and n with respect to the � process:

cov(us; n) = 0; cov(un; s) = 0; 8� � 0: (5)

We further assume the � process applied to f = s + n does not amplify or sharpen either s or

n. This can be formulated in terms of covariance as follows:

cov(us+n; s) � cov(f; s); cov(us+n; n) � cov(f; n); 8� � 0: (6)

Definition 1—(s; n) pair: An (s; n) pair consists of two uncorrelated signals s and n which

obey conditions (5) and (6).
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Theorem 1: For any (s; n) pair and an increasing � (�0(q) > 0; 8q � 0) the covariance matrix

of U = (f; s; n; u; v)T has only non-negative elements.

For proof see Appendix. Theorem 1 implies that the denoising process has smoothing properties

and consequently, there is no negative correlation between any two elements of U . This basic

theorem will be later used to establish several bounds in our performance analysis.

We define the Signal-to-Noise Ratio (SNR) of the recovered signal u as

SNR(u)
:
= 10 log

V (s)

V (u� s)
= 10 log

V (s)

V (n� v)
; (7)

where log
:
= log10. The initial SNR of the input signal, denoted by SNR0, where no processing

is carried out (u = f , v = 0), is according to (7) and (1):

SNR0
:
= SNR(f) = 10 log

V (s)

V (n)
= 10 log

V (s)

�2
: (8)

Let us define the optimal SNR of a certain � process applied to an input image f as:

SNRopt

:
= max

�

SNR(u�) (9)

where u = u� attains the minimal energy of (4) with weight parameter � (for a given f , v

is implied). We denote by (uopt; vopt) the decomposition pair (u; v) that reaches SNRopt, and

define Vopt
:
= V (vopt).

Equivalently, the desired variance could be set as V (v) = P , where P is some constant, and

then (4) is reformulated to a constrained convex optimization problem

min
u

Z



�(jruj)d
 subject to V (v) = P: (10)

In this formulation � is viewed as a Lagrange multiplier. The value � can be computed using the

Euler-Lagrange equations and the pair (u; v):

� =
1

P

Z



div

�
�0 ru
jruj

�
vd
: (11)

The problem then transforms to which value P should be imposed.

A popular denoising strategy ([8]) is to assume v � n and therefore impose

V (v) = �2: (12)
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We define

SNR�2
:
= SNR(u)jV (v)=�2 : (13)

We denote by (u�2 ; v�2) the (u; v) pair that obeys (12) and minimizes (4). We will now analyze

this method for selecting u in terms of SNR.
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Fig. 1. Approaching best-case scenario in piece-wise constant images. In this example SNR increases by almost 20dB from

19.9dB to 39.6dB (variance of noise is � 1

100
of the input noise). Top: f (left), u (right). Bottom: v (left), SNR as a function of

V (v)=�2 (right).

Proposition 1—SNR lower bound: Imposing (12), for any (s; n) pair SNR�2 is bounded from

below by

SNR�2 � SNR0 � 3dB; (14)

where we use the customary notation 3dB for 10 log10(2).
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Fig. 2. Approaching worst-case scenario in a checkered-board image. SNR decreases by almost 3dB from 19.9dB to 17.0dB.

Top: f (left), u (right). Bottom: v (left), SNR as a function of V (v)=�2 (right).

Proof: From Theorem 1 we have cov(n; v) � 0, therefore,

SNR�2 = 10 log
V (s)

V (n�v)

� 10 log
V (s)

V (n)+V (v))

= 10 log
V (s)

2�2

= SNR0 � 3dB:

The lower bound of proposition 1 is reached only in the very rare and extreme case where

cov(n; v) = 0. This implies that only parts of the signal were filtered out and no denoising was

performed.

Proposition 2—SNR upper bound: Imposing (12), then there does not exist an upper bound

0 < M <1, where SNR�2 � SNR0 +M , that is valid for any given (s; n) pair.

Proof: To prove this we need to show only a single case where the SNR gain cannot be

bounded. Let us assume V (s) = h�2, 0 < h < 1. Then SNR0 = 10 logh. As signal and
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noise are not correlated we have V (f) = V (s) + V (n) = (1+ h)�2. We can write V (f) also as

V (u+v) = V (u)+V (v)+2cov(u; v). From (12), V (v) = �2, and from Theorem 1, cov(u; v) �
0, therefore V (u) � h�2. Since cov(u; s) � 0 (Theorem 1) we get V (u � s) � 2h�2. This

yields SNR�2 � 10 log 1
2

and

SNR�2 � SNR0 � 10 log
1

2h
:

Thus, for any M we can choose a sufficiently small h where the bound does not hold.

Simulations that illustrate worst- and best-case scenarios are presented in Figs. 1 and 2. A

signal that consists of a single very contrasted step function is shown in Fig. 1. This example

illustrates a best-case scenario for an edge preserving �. SNR resulting from the PDE-based

denoising is greatly increased (by � 20dB). Note that this case approximates an ideal decom-

position u � s, v � n which differs from the simple case used in the proof of Proposition 2. A

worst-case scenario is illustrated in Fig. 2 by means of the Checkered-board example. A very

oscillatory signal s is being denoised and, in the process, is heavily degraded. The reduction in

SNR, compared to SNR0, is � 2:9dB, close to the theoretical 3dB bound.

B. Condition for optimal SNR

We will now develop a necessary condition for the optimal SNR. As discussed, we have a sin-

gle degree of freedom of choosing V (v). We therefore regard SNR as a function SNR(V (v))

and assume that it is smooth. A necessary condition for the maximum in the range V (v) 2
(0; V (f)) is:

@SNR

@V (v)
= 0: (15)

Rewriting V (n� v) as V (n) + V (v)� 2cov(n; v), and using (15) and (7), yields

@cov(n; v)
@V (v)

=
1

2
: (16)

The meaning of this condition may not appear at first glance to be very clear. We therefore

resort to our intuition: let us think of an evolutionary process with scale parameter V (v). We

begin with V 0(v) = 0 and increment the variance of v by a small amount dV (v), so that in the

next step V 1(v) = dV (v). The residual part of f , v, contains now both part of the noise and part

of the signal. As long as in each step the noise is mostly filtered, that is @cov(n;v)
@V (v)

> 1
2
, then one
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should keep on with the process and SNR will increase. When we reach the condition of (16),

noise and signal are equally filtered and one should therefore stop. If filtering is continued, more

signal than noise is filtered (in terms of variance) and SNR decreases.

There is also a possibility that the maximum is at the boundaries: If SNR is dropping from

the beginning of the process we have @cov(n;v)
@V (v)

jV (v)=0 < 1
2

and SNRopt = SNR0. The other

extreme case is when SNR increases monotonically and is maximized when V (v) = V (f) (the

trivial constant solution u = �f ). We will see later (Proposition 3) that this can only happen when

SNR0 is negative or, equivalently, when V (s) < �2.

In light of these considerations, provided that one can estimate cov(n; v), our basic numerical

algorithm should be as follows:

1) Set cov0(n; v) = 0, V 0(v) = 0, i = 1.

2) V i(v) V i�1(v) + dV (v). Compute covi(n; v).

3) If covi(n;v)�covi�1(n;v)
dV (v)

� 1
2

then stop.

4) i i + 1. Goto step 2.

In the next section we suggest two ways to approximate the covariance term.

Definition 2—Regular SNR: We define the function SNR(V (v)) as regular if (16) is a suffi-

cient condition for optimality or if the optimum is at the boundaries.

Proposition 3—Range of optimal SNR: If SNR is regular, then for any (s; n) pair 0 � Vopt �
2�2.

Proof: Let us first show the relation cov(n; v) � �2: cov(n; f) = cov(n; n + s) =

V (n) + cov(n; s) = �2. On the other hand cov(n; f) = cov(n; u+ v) = cov(n; u) + cov(n; v).

The relation is validated by using cov(n; u) � 0 (Theorem 1).

We reach the upper bound by the following inequalities:

�2 � cov(n; v)jVopt =
Z

Vopt

0

@cov(n; v)
@V (v)

dV (v) �
Z

Vopt

0

1

2
dV (v) =

1

2
Vopt:

The inequality on the right is based on that @cov(n;v)
@V (v)

� 1
2

for V (v) 2 (0; Vopt).

The lower bound Vopt = 0 is reached whenever @cov(n;v)
@V (v)

jV (v)=0 < 1
2
.

Theorem 2—Bound on optimal SNR: If SNR is regular, then for any (s; n) pair and Vopt 2
f[0; �2); (�2; 2�2]g,

0 � SNRopt � SNR0 �
8<
:
�10 log(1 + Vopt=�

2 � 2
p
Vopt=�2); 0 � Vopt < �2

�10 log(Vopt=�2 � 1); �2 < Vopt � 2�2
(17)
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Fig. 3. Visualization of Theorem 2: Upper bound of SNRopt � SNR0 as a function of Vopt=�2. For Vopt ! �2 the bound

approaches1.

Proof: By the SNR definition, (7), and expanding the variance expression, we have

SNRopt � SNR0 = 10 log(
�2

�2 + Vopt � 2cov(n; vopt)
): (18)

For the lower bound we use the relation shown in Proposition 3: cov(n; vopt) � 1
2
Vopt. For

the upper bound we use two upper bounds on cov(n; vopt) and take their minimum. The first

one, cov(n; vopt) � �
p
Vopt, is a general upper bound on covariance. The second relation,

cov(n; vopt) � �2, is outlined in Proposition 3.

A plot of the upper bound of the optimal SNR with respect to Vopt=�2 is depicted in Fig. 3.

in practice, the flow is not performed by directly increasing V (v), but by decreasing the value

of �. Therefore, it is instructive to check the vary of V (v), as well as the other energies,with

respect to a vary in �. In the next proposition we show that as � decreases the total energy

strictly decreases, Ev(v)
:
= V (v) increases and Eu(u)

:
=
R


�(jruj)d
 decreases.

Proposition 4—Energy change as a function of �: The energy parts of Eq. (4) vary as a func-

tion of � as follows:

@E�

@�
> 0;

@Ev

@�
� 0;

@Eu

@�
� 0: (19)

The proof is in the appendix.
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III. ESTIMATING COV(n; v)

In order to estimate cov(n; v), we need an estimate of the noise. We may try to use only

segments of the image where we have high confidence that we are able to distinguish between

the noise and the image. These are typically the smooth regions. The problem is that generally

we do not know in advance which regions of the image are smooth and which are not. There

may be ways to overcome this problem by preprocessing the image (see [4] for an approach

suitable for distinguishing between textured and smooth regions by a � process).

A. Direct Estimation

Here we adopt a different method, assuming that we have access to a source of a synthetic

white Gaussian noise. Instead of finding regions in the image where we can estimate the noise,

we simply extend the image with a ”noise patch”. This patch is simply an extension of the image

in one direction, by a constant function with additive noise of variance �2 (as previously men-

tioned, we assume the noise variance is known a-priory or could be well estimated beforehand).

[See Fig. 5.] Knowing, for this patch, both v and n, we can compute their covariance.

B. Indirect Estimation

10
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−10
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λ
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v(
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)/

dλ

σ=5

σ=20

Fig. 4. Precomputed function for indirect estimation. @cov(n; v)=@� is plotted as a function of � (log scale). Graphs depict

plots for values of �: 5; 10; 15; 20, from upper curve to lower curve, respectively.

Another way of estimating cov(n; v) is by an indirect manner, which does not rely on physi-

cally attaching a synthetic patch to the image. Consequently, some minor inferences, which may
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occur on the image-patch boundary, causing some side affects on the processed image near the

patch and affecting the computations carried within the patch, are avoided.

The idea is to separate the computation to two phases. A patch of noise is processed and

cov(n; v) is measured with respect to �. Then the input image is processed and the behovior of

� with respect to V (v) is measured. Combining the information, it is possible to approximate

how cov(n; v) behaves with respect to V (v). In other words, this is simply the chain-rule for

differentiation:
@cov(n;v)
@V (v)

=
@cov(n;v)

@�

@�

@V (v)

� @cov(n;v)
@�
jf=patch @�

@V (v)
jf=s+n:

(20)

The first term on the right-hand-side is a precomputed function, or in the discrete case of � can

be regarded as a look-up table (see Fig. 4). The second term is computed on the fly as the image

is being processed.

In this scheme we rely on a very simplistic assumption that we can estimate the behavior of

cov(n; v) of any image based on the very degenerate case where the image is simply pure noise.

Quite extraordinarily, our numerical experiments show that our estimations are not so far from

the ground truth (see Fig. 7, right side). A more comprehensive approach could accommodate

the computation of the function @cov(n;v)
@�

based on a representative collection of natural images.

IV. EVOLUTIONARY FLOWS

This idea can be similarly implemented in evolutionary flows that do not have a fidelity term.

In this case one has to select the best stopping time T . Our definitions have to be changed

somewhat, but essentially have the same meaning. The process is

ut = div(c(jruj)ru; ujt=0 = f: (21)

We define v(x; t) = f(x) � u(x; t). In this formulation dV (v) is defined as dV (v(t)) =

V (v(t)) � V (v(t � dt)). Other similar changes in notations are straightforward. The detailed

algorithm for

A. Comparison to Previous Stopping Mechanisms

A comprehensive study of the stopping time problem is reported in [5]. Here we relate to the

most recent method proposed by Mrazek and Navara [5] and the more classical one discussed

by Weickert in [10].
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Ours Ours

Image SNR0 SNRopt SNR�2 SNRdir SNRind

Cameraman 15.86 19.56 19.32 19.50 19.50

Lena 13.47 18.19 17.65 18.13 18.18

Boats 15.61 20.23 19.83 20.16 20.22

Barbara 14.73 16.86 16.21 16.73 16.64

Toys 10.00 17.69 17.29 17.66 17.65

Sailboat 10.36 15.51 15.16 15.48 15.48

Average

difference

from SNRopt 4.67 0.00 0.43 0.06 0.06

TABLE I

DENOISING RESULTS OF SEVERAL IMAGES WIDELY USED IN IMAGE PROCESSING. THE ORIGINAL IMAGES

WERE DEGRADED BY ADDITIVE WHITE GAUSSIAN NOISE (� = 10) PRIOR TO THEIR PROCESSING.

The former aims at finding the point in time of minimal correlation between u and v:

T = argmin
t
fcorr(u(t); v(t))g ; (22)

where

corr(u; v)
:
=

cov(u; v)p
V (v)V (u)

:

The underlying assumption of the method is that v carries most of the noise at the beginning of

the denoising process. As corr(s; n) = 0 it is argued that a reasonable decomposition would be

at a time where the correlation between u and v is minimal (in practice, the first local minimum

is sought).

Weickert’s method requires that

V (u(T ))

V (f)
=

1

1 + V (n)=V (s)
(23)

or equivalently V (u) = V (s), which can also be written as

V (v) = V (n)� 2cov(u; v): (24)
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All three methods of imposing (12), [5] and [10], work well on piecewise smooth images

(without fine-scale features). In all three methods the decomposition is near V (v) = V (n),

which approaches the optimal decomposition in these cases. Using the method of [10] the

process is often stopped too early.

The other approaches differ from each other and from our proposed method in the non-ideal

cases of most natural images, where images contain textured regions.

The main advantage of the method proposed in [5] is that no knowledge of the noise variance

is needed. It is also easy to compute, without any need for estimations. However it is not always

practical to use this method for all classes of images. If the denoising process smoothes also

some significant components of the signal such, that we cannot assume v � n, the stopping

criterion of (22) may produce undesirable results. Actually, its performance in terms of SNR,

cannot be bounded from below such as is determined by Proposition 1. One can construct ex-

amples where the stopping time should be near t = 0, whereas corr(u; v) is decreasing for a

very long duration. This can be illustrated, for example, by the checkered-board image. The

graphs of the SNR and correlation are depicted in Fig. 9. In a more realistic example of pro-

cessing the Barbara image (Fig. 10), the results are not as extreme, but image is considerably

over-smoothed.

The method of [10] is similar in its spirit to imposing (12). Here, though, the term 2cov(u; v)

is being deducted, resulting in an early stopping of the process (esp. when u and v are highly

correlated as in the case of textured images). In any case, the stopping is in the ’safe’ regime

V (v) � �2 (and thus its performance has a lower bound).

The differences between our method and those of [10] and [5] are illustrated in In Figs. 10,

11 and 12. The Barbara image, contaminated by additive white Gaussian noise (� = 10) is

processed by the nonlinear diffusion equation (21), with c(s) = 1=
p
1 + s2. The image contains

smooth regions and highly textured ones. This breaks the underlying assumption, used by both

[10] and [5], which regards v as mostly containing noise. In partly textured images, v contains

both noise and texture. In the case of [10], the term cov(u; v) is large, and the process stops too

early. In the case of [5], the consequences are more severe and corr(u; v) is minimal only when

the texture is smoothed out (see Fig. 11 for a plot of the correlation function). In terms of SNR,

applying the method of [5] to this image results in a drop of more than 3dB below SNR0. The

SNR results are: SNR0 = 14:73, SNRopt = 16:65, method of [10] SNRW = 16:19, method
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of [5] SNRMN = 11:51. In the case of our direct estimation method (using a ’noise patch’)

SNRGSZ = 16:59.

V. CONCLUSION

Most image denoising processes are quite sensitive to the choice and fine tuning of various

parameters. This is a major obstacle for fully automatic algorithms. This problem motivated us

to develop a criterion for the optimal choice of the scale of interest, a significant parameter in

PDE-based denoising, represented by the weight of the fidelity term � in the variational formu-

lation, or by the stopping time T in evlutionary processes. Our criterion is to maximize the SNR

obtained as a result of the application of PDE-based denoising. Bounds on the SNR as well as

on the optimal variance are obtained. We compare the performance of our algorithm with those

obtained by means of previously proposed algorithms and demonstrate that ours achieves better

results on a series of benchmark images.

Our suggested method finds with sufficient accuracy the first local maximum of the SNR with

respect to the variance of the residual part v. In principle, there can be further local maxima

at larger scales with greater SNR. In practice, however, we have not managed to produce an

example, of either a synthetic or a natural image, where SNR has more than a single maxi-

mum. Current experience leads us to believe that these cases are quite rare in convex PDE-based

processing.

We should also comment that the SNR criterion is not always in accordance with human-

based quality evaluations. Other, more sophisticated criteria, may also be applied for parameter

selection using the spirit of the methods presented here.

We examine the classical case of additive white Gaussian noise. Filtering other types of noise

which are additive and uncorrelated with the signal, could be performed in a similar manner.

Generalizations to other regularization processes, and to spatially variant parameters [4], are

under current investigation.
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Fig. 6. Top row: f . Second row: s (left), n. Third row: u (left), v by our indirect estimation. Bottom row: u (left), v by

standard method (V (v) = �2).
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Fig. 7. SNR as a function of V (v)=�2 (left). dcov(n; v)=dV (v) as a function of V (v)=�2 (right), as computed by indirect esti-

mation (solid) and the ground truth (dashed). Graphs depict processing of the following natural images (from top): Cameraman,

Lena, Toys, Boats.
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Fig. 8. Processing a step image (as in Fig. 1). Left: SNR plot as a function of t. Right: dcov(n; v)=dV (v) as a function of t.

Stopping time is sufficiently close to the optimal selection by both methods of Mrazek-Navara and ours.
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Fig. 9. A checkered-board image (medium contrast) with noise: Left - SNR as a function of t, middle - corr(u; v) as a function

of t, right - dcov(n; v)=dV (v) as a function of t. Whereas the criterion of Eq. (22) cannot be used in this example (no local

minimum near 0), our estimation of the general criterion stated in Eq. (16) works well also on highly textured signals (stopping

time is T = 0:12 versus the optimal Topt = 0:09).
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Fig. 10. Processing Barbara image. Left: SNR plot as a function of t. Right: dcov(n; v)=dV (v) as a function of t.
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Fig. 11. Processing Barbara image. corr(u; v) as a function of t. The minimum is marked with ’X’. As seen in the SNR plot,

the minimum correlation is not attained near the time with largest SNR.
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Fig. 12. Effects of stopping criterion on processing results of different stopping times, processing Barbara image (head part is

shown). Top left: noisy image f ; Right - Weickert’s method (23). Bottom left: Mrazek-Navara (22), right - our method of direct

estimation.
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APPENDIX

PROOF OF THEOREM 1

Since cov(q; r) = cov(r; q), the matrix is symmetric. The diagonal is the variance of each

element, which is non negative. Therefore we have to check the covariance of the 10 elements

of the upper right triangle.

We recall the identity

cov(q + r; s+ t) = cov(qs) + cov(qt) + cov(rs) + cov(rt):

In the sequel we consider all 10 possible signal pairs and show that their covariance is non-

negative.

cov(s; n); cov(f; s); cov(f;n)

Since s and n are not correlated, we have cov(s; n) = 0, cov(f; s) = cov(s+ n; s) = V (s) �
0, cov(f; n) = cov(s+ n; n) = V (n) � 0.

cov(u; v); cov(f; u); cov(f; v)

Once we prove cov(u; v) � 0, then we readily have cov(f; u) = cov(u + v; u) = V (u) +

cov(u; v) � 0 and cov(f; v) = cov(u+ v; v) = V (v) + cov(u; v) � 0.

We follow the spirit of the proof of Meyer [6]. As the (u; v) decomposition minimizes the

energy of Eq. (4), we can write for any function h 2 BV and scalar � > 0 the following

inequality:
Z



�(jr(u� �h)j)d
 + �V (v + �h) �
Z



�(jruj)d
+ �V (v): (25)

Replacing V (v + �h) by V (v) + �2V (h) + 2�cov(v; h) we get

2��cov(v; h) �
Z



(�(jruj)� �(jr(u� �h)j)) d
� ��2V (h):

Replacing h by u and dividing both sides by � we get

2�cov(v; u) � 1

�

Z



(�(jruj)� �(jr(u� �u)j)) d
� ��V (u):

In the limit as � ! 0, the right term on the right-hand-side vanishes. Since � is increasing, the

term in the integral is non-negative.
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cov(s; u); cov(n; u)

Let us first examine an equivalent minimization problem to minimizing (4). Since v = s +

n� u, then u that minimizes E� is

u = argmin
u
fR



�(jruj)d
+ �V (s+ n� u)g

= argmin
u
fR



�(jruj)d
+ �(V (s) + V (n) + V (u)

+2cov(s; n)� 2cov(s; u)� 2cov(n; u))g:
We can disregard expressions that do not involve u and, therfore, the equivalent energy func-

tional to be minimized is:

Ê�(u) =

Z



�(jruj)d
 + �(V (u)� 2cov(s; u)� 2cov(n; u)); (26)

where u = argmin
u
fÊ�(u)g. Since cov(s; u) + cov(n; u) = cov(f; u) � 0 at least one of the

terms cov(s; u) or cov(n; u) must be non-negative. We will now show, by contradiction, that it

is not possible that the other term be negative. Let us assume, without loss of generality, that

cov(s; us+n) � 0 and cov(n; us+n) < 0. We denote the optimal (minimal) energy of (26) with

f = s+ n as Ê�
�jf=s+n. The energy can be written as

Ê�
�jf=s+n = Ê�jf=s+n(us+n)

=
R


�(jrus+nj)d
 + �(V (us+n)� 2cov(s; us+n)� 2cov(n; us+n)):

(27)

On the other hand, according to condition (5), cov(us; n) = 0 and we have

Ê�jf=s+n(us) =
R


�(jrusj)d
 + �(V (us)� 2cov(s; us))

= Ê�
�jf=s � Ê�jf=s(us+n) =

R


�(jrus+nj)d
 + �(V (us+n)� 2cov(s; us+n)):

In the above final expression, adding the term ��2cov(n; us+n) we obtain the right hand side of

expression (27). Since we assume cov(n; us+n) < 0, we get the following contradiction

Ê�jf=s+n(us) < Ê�
�jf=s+n:

Similarly, the opposit case cov(n; us+n) � 0 and cov(s; us+n) < 0 is not possible.

cov(s; v); cov(n; v)

This follows directly from condition (6) as cov(f; s) = cov(u; s)+ cov(v; s) and cov(f; n) =

cov(u; n) + cov(v; n).
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PROOF OF PROPOSITION 4

Proof:

Part I: E�

Let us define (u�0 ; v�0) as the solution for E� with � = �0. Then for any � = �0 � �, where

0 < � < �, we have

E�j�0 =
R


�(jru�0 j)d
 + �0V (v�0)

>
R


�(jru�0 j)d
 + (�0 � �)V (v�0)

� min(u;v)
R


�(jruj)d
+ (�0 � �)V (v)

= E�j�0��:

Part II: Eu; Ev

We examine both energies together and show that the only possible option is thatEu decreases

and Ev increases as � decreases. Let us state the four possible options as � decreases:

(a) Eu is increasing and Ev is nondecreasing.

(b) Eu is nonincreasing and Ev is decreasing.

(c) Eu is increasing and Ev is decreasing.

(d) Eu is nonincreasing and Ev is nondecreasing.

Option (a) is contradicted by setting the pair (u�0; v�0) in the energy with � = �0��, reaching the

contradictionEu(u�0)+(�0��)Ev(v�0) < E�j�0��. Option (b) is contradicted by setting the pair

(u�0��; v�0��) in the energy with � = �0, reaching the contradiction Eu(u�0��)+�0Ev(v�0��) <

E�j�0 .

Option (c) is somewhat more subtle. We assume that Ev(v�0��) decreases by some measure

K� > 0. Then Eu must be bounded by Eu(v�0��) < Eu(v�0)+ �K� (else we reach an immediate

contradiction similar to option (a)). In this case we get the following inequalities

Eu(u�0��) + �0Ev(v�0��)

< Eu(u�0) + �K� + �0Ev(v�0��)

= Eu(u�0) + �K� + (�0 � �)(Ev(v�0)�K�) + �(Ev(v�0)�K�)

= Eu(u�0) + �0Ev(v�0)� (�0 � �)K�:
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Since the term (�0 � �)K� is positive we reach the contradiction Eu(u�0��) + �0Ev(v�0��) <

E�j�0 .

Option (d) is, therefore, the only valid one.

DETAILED ALGORITHMS

We give below the general algorithm that covers both denoising methods (energy-based /

time-flow) and both estimations (direct / indirect). When there is a difference in the algorithm

we write the energy-based first and the time-flow second in curly brackets: fEnergygfFlowg.
Explanations about parameters and a few remarks appear hereafter.

Main

1) Parameters: szp;Np; f�0; �rgfDTg.
2) Set Ecov0 = 0, v0 = 0, i = 0.

3) Initialize according to method.

4) Loop

a) i i+ 1; f�i  �i�1�rgfg .

b) Compute ui by fEq. (4) with �i (use ui�1 as initial approximation)gfEq. (21),

evolving ui�1 by DTg.
c) vi  f � ui.

d) DEcovi  Estimated covariance derivative according to method.

e) until (DEcovi < 1
2

(or (i = Np))

5) (If direct method, remove patch from u)

6) Return ui�1

Direct method

Initialization: adding a patch to the right of the image.

1) mc mean value of right column of image.

2) np(k; l) patch of random noise with variance �2.

3) fp(k; l) mc+ np(k; l)

4) f  [ffp] (concatenate patch to right of image). We define 
 = 
0 [ 
p, where 
0

contains the input image and 
p contains the patch.
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Estimation of covariance:

1) vi
p
j
p
 f j
p

� uij
p
.

2) Ecovi  < vi
p
; np > (discrete covariance, see (28)).

3) DEcovi  (Ecovi � Ecovi�1)=(V (vi)� V (vi�1)) .

Indirect method

Precomputing a discrete estimation of @cov(n;v)
@f�gftg

.

1) Parameters: �2; Np; szp; f�0; �rgfDTg.
2) f  noise patch.

3) Loop (i 1; i++; i � Np)

a) f�i  �i�1�rgfg.
b) Compute ui; vi as in Main.

c) Ecovi  < vi; f > (see (28)).

d) DEcovi
pre
 (Ecovi � Ecovi�1)=f(�i � �i�1)gfDTg

4) Return vector DEcovpre

Estimation of covariance:

1) DEcovi  DEcovi
pre
� f(�i � �i�1)gfDTg=(V (vi)� V (vi�1)).

Remarks

� Parameters (in brackets are values used for processing natural images):

1) szp - size of patch (direct - 10�(image length) pixels, indirect 80� 80 pixels).

2) Np - number of precomputed points (different � values or time-points) for indirect

method. The main loop should do at most Np iterations.

3) �0 - initial � (1), �r - ratio of successive � (0.9).

4) DT - time between consecutive timepoints. (We used DT = 0:6, 3 iterations of

dt = 0:2 (where dt < CFL)).

� Discrete covariance:

< q; r >� 1

N

X
k;l

(q(k; l)� �q)(r(k; l)� �r); (28)

where N is the number of pixels in q (or r).
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� With regard to the indirect method, in the specific implementation presented here, where

the � values / time points of the Main phase are exactly as in the Precomputing phase, one

can actually omit the multiplication and division by f(�i��i�1)gfDTg in the computation

of DEcov and DEcovpre (we kept it to be consistent with our formulation).
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