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Abstract

Gossip based multicast is a scalable and reliatdeog@ol for dissemination of
information within a group of interconnected users.

Upon receiving or producing a message the procasdsspushes) it to a small
constant subset of processes which is randomlycteeleout of the group of
members. Some implementations of gossip basedaasi$ poll a small subset
of processes for new information, effectivgdylling, instead ofpushing it. In
this manner, each message is eventually deliverexvery process, with a high
degree of probabilityl]].

An intrusion-tolerant version of a gossip-basedticast algorithm, developed by
G. Badishi, I. Keidar and A. Sasso?],| employs several schemes in order to
minimize the effect of DoS attacks on a member.

One possible attack on this protocol is one in Whi& malicious (or a
malfunctioning) process acts normally, but actudibes not forward any useful
messages, and replies poll requests with null entries, thus affecting the
performance of the protocol. In this project wegesg a failure detector for such
a malfunction or attack and a way to overcome it.

Introduction

"This Discourse, of human indifference, it's shouting out its
urgently preparing for the worst, this conversation is at an
end my brother, and this time the fear is kicking in, my
enemy."
- This Discourage. The Silent Attack

Gossip-Based Multicast Algorithms

As described in [1],gossip-based multicast protocols are a class of epidemiologic
protocols, which have been introduced as an alieendo the "traditional" reliable
multicast protocols. The main motivation is to &atle reliability guarantees offered by
costly deterministic protocols against probabitistliability guarantees, but in return
obtain very good scalability and fault-toleranceparties. The reliability of gossip-
based protocols suffers lightly as more procesasésHurthermore, these algorithms are
adaptable, meaning that they support dynamic axhdé@nd removal of group members
and are also relatively easy to implement and geplo

Decentralization is the key concept underlyinggbalability properties of gossip-based
broadcast protocols. In contrast to sender-reliaptetocols or receiver-reliable
protocols, gossip-based multicast protocols aret pérthe class of peer-to-peer
protocols. While retransmission requests in tradai algorithms can be handled by any
process but lead to the re-broadcasting of a messppsip-based protocols rely on
interaction between peers.

In typical gossip-based algorithms, messages asediinated by having every process
periodically exchange information with a randomlyosen subset of processes inside
the system\{ew). In each gossip-round, a process may send mesgadiee processes
in its view (push-based protocols) and may also request messagapfacesses in the
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view (pull-based protocols). Each message is gossiped famdoer of rounds. These
gossip rounds are initiated locally by every precaad no global synchronization is
required.

A possible reliability characteristic of gossip-bdsnulticast protocols is the probability
that a message reaches a randomly chosen prodégs maounds. The redundancy in
sending messages to multiple processes increaseslifbility in the face of message
loss and process crash failures. In this mannessigaalgorithms may achieve high
probability of spreading the message to the entinticast group.

In order to maintain a set of active processes ¢hat be chosen as gossip partners,
gossip protocols are often complementedniigmbership protocols. These protocols
may be a part of the gossip protocol, or implenestparately.

Drum

Basic gossip-based multicast protocols are vulderdb attacks on the system.
Messages can be forged, senders impersonatedra@respes may be flooded with pull
and push requests. The Drum system, presente?],imffers improved immunity by
deploying several attack hindering schemes.

Digital signatures are used in order to authergi¢he integrity of messages and the
identity of senders. However, due to the complexfy generating and verifying
signatures, further measures should be taken ierdadprevent attackers from easily
launching adenial of service (DoS) attack by forcing processes to exhaust {G&lU
while generating and verifying signatures of uselagssages.

Since every process has a limited amount of aJailatesources (buffers,
communication bandwidth) in each round, a groupathckers might choose to
overload the push or pull mechanisms of one or nvarem processes, thus causing
them to malfunction. Therefore, Drum uses a contlmnaof pull and push operation in
order to disseminate messages. Moreover, Drumdlirtiie amount of resources a
process utilizes in each round: Only a certain amhaf resources is dedicated to
sending messages in a push operation and anothewnarns dedicated to sending
messages in reply to pull requests. Similarly,ahmunt of resources used by a process
to receive and process messages pushed by otleaspes, or to receive messages that
were sent in response to pull requests is limited.

Drum also makes use of randomly chosen communicgtots in order to increase the
complexity of possible attacks. Further discussibthis issue is available i2].

Silent Attack

One possible attack on this protocol is one in Wha group of malicious (or
malfunctioning) processes act "normally” (i.e., rast failure detector will consider
then correct), but actually do not forward any meessages and reply to pull requests
with null entries. Since any other process canmstimdjuish between these processes
and correct ones using only Drum operations, thiopaance of the protocol might be
affected. In this work we quantify the degradatadrDrum'’s performance due to such
attacks using measurements of a real system. Wgestg failure detector for such a
scenario and ways to mitigate the effects of subklavior on the system. We operate
under the strong assumption that an attacker knows failure detector's inner
workings.

Assumptions

» All of the assumptions presented in [2] hold fas thlgorithm.
» The workings of the failure detector are well kngwa that the attacker can
exploit them to maximize the attack's effect.
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» There can be more than one attacking processhélattacking processes can
share information and coordinate their attack.

» [Each process has a crash failure detector.

Proposed Algorithm

Insuring delivery using the pushechanism seems hard or impossible. The reason is
that in order to identify a process which doesawwnply with Drumwe need to gather
information from all of the processes in the systéve need to ask each process which
processes delivered messages to it using push tmperaAfter we gather enough
information for a long period of time, we can penfiostatistical calculations and reach a
conclusion as to which process is, statisticalgt, following the protocol. This is highly
inefficient, depends on the message generationimathe system and is very slow.
Moreover, an incorrect process can cause corremiepses to suspect other correct
processes, by falsely reporting incorrect stasgstic

The problem of detecting a process that does mbonpe its pull requests according to
Drum is equivalent to the problem of detecting acpss that does not perform its push-
offers, described above.

Due to the above reasons, we propose a failuretdettor the correct behavior of the
pull-reply mechanism.

SAH - Silent Attack Hindering

The main assumptions and characteristics with dsg&rthe SAH mechanism are:

» Each process holds a list of suspected proce3desobjective of the attacker is
not to be included in any of these lists, so amaximize its effect.

« If possible, the attacker will try and cause a eotrprocess to add correct
processes to its suspects list.

* The proposed algorithm insures correct deliverynadssages using the pull
mechanism. The list of suspected processes igftier a list of processes that
do not perform the pull-reply operation as the Drpmtocol stipulates. This
may be due to a malicious attack, or as a malfanatf the process. Either way
— When a process randomly selects/isvy (the view for the pull operations)
it excludes the suspected processes, since igidyhprobable that the suspected
processes will not deliver any new messages im pugi-reply.

* The push operation of the suspecting process dmeshange due to the list of
suspects. The only thing that is affected is thié gueration. This is due to the
fact that the failure detector gathers informatimty about the correct behavior
of the pull-reply mechanism for each process. tincé know anything about the
behavior of the push mechanism of the process.slibpected process might be
a malfunctioning one, but not necessarily an attackrocess, thus we need to
propagate information to that process as well. ®hly mechanism that can
achieve that is the push mechanism. Moreover -esihe probability of false
detection is not zero, we need to examine the behat suspected processes,
so that we can remove them from the suspectsflighdeed, they are not
malfunctioning.

Overview

The algorithm is based on sharing information rdijey the messages that a process
holds and then cross-checking the process' behatfter the initiating procesp
completes its push-operation to the processes i€y, (the view used for the push
operation), it asks one of these procesgis a list of the messages that it holds. Since
p just delivered a set of messagesjtot knows what messagesshould have at the
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very least (if it does not hold these messagescgssp might suspect). It then
forwards this information as is (includingis signature) to a randomly chosen set of
processes. Consider one of these processes, demotéds process, in turn, performs a
regular pull-request on. It includes a list of the messages thaholds, as would a
regular request. The only difference is thabmits a message which it knogsolds,

so thatq will be forced to respond to the pull-request wih least one message.
Otherwise,w will suspect thag is a silent attacker. The message flow is illusttan
Figure 1.

Looking at the algorithm from the attacker's pafiview, it cannot distinguish between

a regular pull-request and one that is aimed actieq silent attackers, thus it is forced
to react the same way to all pull-request messdgashermore, the attacker does not
know which of the messages it holds is the onerdlgiesting process expects. Since
one of the goals of the attacker is not to be stisegeby any of the processes, it has to
respond to any pull-request as a regular processiwo

An attacking process cannot forcefully create anade in which a correct process,
adds another correct procegsto w's suspects list. I is a correct process, then the list
of the messages it holds will be a correct one. attecking process cannot change the
message containing that list, since it is signedjbior can he fabricate a list of its
own, for the same reason.

Figure 1 — The messages in therum/SAH algorithm

Detailed Description
The algorithm description makes use of the follaywiotations:

Members - The set of all processes in the system.

CrashSuspect - The set of the processes that progessspects of crashing.
This list is maintained by the crash failure datecf each
process.

AttackSuspect,, - The set of processes that processispects of being silent
attackers.

Msgs, - The messages that procedsolds in its buffer.

prMsg, - The set of messages that proagselivered during the pull-

reply.
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SEND(rc,dest,msg) - A primitive that sends a messagsg with src = source port
anddest = destination port

gport - A well-known port of each process on which it lissefor
queries.

gfport - A well-known port of each process on which it lrssefor
forwarded query-responses.

digest(Msgs) A list containing the IDs (sequence number and@® D) of

the messages Msgs.

Every procesg performs the following algorithm:

Task 1:
Every once in a while, after conpleting a push operation do
src <- choose a random port nunber
SEND(src, gport ,"query",) message to a randomy chosen
process q O Vi €Wpysh
Vait for "query-response"y on port src OR g O CrashSuspect,
If g O CrashSuspect, then exit
Forward the message as is to the gfport of a set of R randomy
chosen processes from (Menbers \ (CrashSuspect, O
Att ackSuspect ) )

Task 2:
Upon receiving a "query-response"y on qfport do
m <- random y chosen nessage from (Msgs, n Msgs,)
Msgs <- Msgs, \ m
Send a pull-request to q with digest(Msgs)
Upon receipt of "pull-reply"q(prMgs, do
[f mO prMgsq then
Di scredit(q)

The function of discrediting a process can meanynthimgs. Some of the proposed
methods for discrediting a process:
1. Add it to the list of suspected processes, sotti@process will never be chosen

for the view,,,, in the suspecting process.

2. Decrement aonfidence indicator that is attached to each of the process IDs in
the set. When this confidence indicator is less tha@onfigurable threshold, the
process associated with that confidence indicatdr not be chosen as a

member of theiew,,, .

3. Decrement a&onfidence indicator that is attached to each of the process IDs in
the set. The members ofew,,, andview, , chosen in a random method which

ensures that processes with lowenfidence indicator will have less of a chance
to be included in the view.

4. Exponential Backoff — similar to the former methedch of the process IDs in
the set has eonfidence indicator (Cl) attached to it. When a process is detected
as a silent attacker, the Cl attached to the Ibhaf process is incremented by 1

and the process will not participate in pull opienas for the nex2” rounds.

The discrediting function should be complementedlfynction that updates the credit
of a process that performed a pull-reply correctBtherwise, once a process is
identified as an attacker, it will stay in the sesis list forever. Since there are falsely
suspected processes, especially in an erroneouwsnketand since processes might
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malfunction for a limited period of time, this i®thacceptable. Gaining back credit
could be achieved by a timeout mechanism, i.e. @npeocess is suspected, its credit
will be increased after a timeout, the length ofickhcould be determined by the

number of times the process was suspected in tee paother method is to keep

checking the behavior of suspected processese¥f were falsely suspected, and are
behaving correctly later, their credit will be upethaccordingly.

Possible Attacks

One possible attack that can be employed is omdnioch the attacking processg, wants

to "frame" other correct processes. In order t@alg collects digests from a number of
processes it want to "frame", using query messagetsholds the query-responses for a
period of time that insures that all the messagethdse digests are supposed to be
flushed out of theVisgBuf of all the processes due to the TTL parameter[@&geThen

it forwards these digests to as many processdsadmsshes. Since the messages in these
digests are no longer in tivsgBuf of these processes, they will be suspected ofgbein
silent attackers.

Another attack is one in which an attacking procgsswould like to refrain from
performing correct pull-replies (i.e. sending baekwv messages), but does not want to
be discredited for it. It can do so by faking thegvess of its own round counter or
timer. Since each message is supposed to be sigragrocess for a limited time, the
attacker can abuse this behavior. Wigereceives a pull-request, it acts as if its round
counter or timer advanced far beyond the numberoahds that the messages are
supposed to be saved. That way, to any processyiqgeg, this would seem a
legitimate reason not to forward any messages.

The attacker could use the following tactics: odl-prguests it does not return any
message (thereby, having a negative effect on igmemhination of information). To
keep from being detected as a silent attacker, BaEhthe attacking process needs to
send a digest (e.g., as a response for a push;dffects as if for every sender in the
system (we assume that the number and identitiyeo$énders is known to the attacker)
it already received all of the sender's messages$,atready discarded them from its
buffer.

Code Overview
In this and the following sections, the terms beloare used:

shitch message - Forwarded query-response.
snhitch operation -
"check" - The pull-request that is initiated upegeiving a snitch.

Drum Code Overview

As explained, the Drum protocol belongs to the faraf gossip protocols. The aim of
Drum is to reliably deliver messages between psEesver the network.

In order to deliver the messages between procéxsas uses pull and push methods.
Each process listens on two different ports to-pdluests and push-offers.

The Drum code is composed of 15 files:
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FRAG.java

The main class of the Drum protocol.
Creates threads to perform the protocol.
The name is FRAG for historical reas@s

Gossiper.java

Activate and manage the puller and pusher.
Activate buffer management routines every round.

Puller.java One of the two classes that do the actual gossiping
This class is in charge of the pulling procedure.
Pusher .java The second class that does the actual gossiping.

This class is in charge of the pushing procedure.

PullWaiter.java

In charge of receiving a response on a recently se
pull-request.

=}

PushWaiter.java

In charge of receiving a response on a recently se
push-offer.

=)

PullReceiver .java

In charge of receiving pull requests and sendirak b
responses.

j*Y

PushReceiver.java

In charge of receiving push offers and sending bag
responses.

k

MsgBuf.java Hold and manage the buffer of stored messages
recently received.

MsgGaps.java Hold and manage the buffer of information on
messages in MsgBuf.

FRAGMsg.java The Drum messages. (The name FRAG is for

historical reasons).

RoundThread.java

Counts the rounds.

Certificate.java

The process certificate.

AsyncSender .java

The thread that sends the Drum messages.

Configuration.java

All the parameters needed for Drum protocol.

Focusing on Drum main methods pull and push, thiePand Pusher send several pull-
requests and push-offers with random views in eachd

Upon sending those offers and requests, a PullWaitea PushWaiter is spawned,
according to the sending operation, for a short #indted lifetime (which is
configurable). The Gossiper initiates the Pulled &usher which send the pull-request
and push-offer messages (types of FRAGMsQ) usiag\gyncSender.

In order to receive the pull-requests and pushreffiee PullReceiver and PushReceiver
listen on the pull and push ports respectively

Upon receiving a valid push-offer, the digest & #iored messages is sent back to the
offering process and a PullWaiter is spawned

Upon receiving a valid pull-request, PullWaiter cketo see if MsgBuf holds messages
that are not contained in the received digest, @mbses a random subset of these
messages. This subset is sent to the requestioggso

Code Modifications and Additions

To implement SAH using the Drum source code, séwdesses and methods were
added to the code. The main structure of the Dras preserved and the modifications
were done according to it.

The credit mechanism implemented in our code felésvs:

A counter value (scale) is associated with eadh@processes in the set. The counter is
initialized to 50 at the beginning of the experimeBach time a "check" fails for a
process, its counter value is decremented, andteaeta "check" succeeds, the counter
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value is incremented. When the counter values falsw a threshold, the process is
declared as a silent attacker. If a process isestisg as a silent attacker, its counter
value should exceed a different, higher, thresholdbe considered a correct process.

Another mechanism implemented in the code is ahcfasdure detector. This failure
detector is similar to the credits used for thergilattacker failure detector. Again, a
counter (scale) is associated with each procegheanset. When a process fails to
respond to messages sent to it (such as pull-regndspush-offer), its counter value is
decremented. If the response comes in a timelydastr a message is initiated by that
process, the counter value is incremented. Thezetwo threshold values for this
mechanism. If the counter value falls below the dowhreshold, the process is
considered to be inactive (crash failure). Onceozgss is suspected of being inactive,
its counter should exceed the upper threshold tohsidered active.

Below is a summary of the changes made to the [auoke:

Additions to the Drum code

1. Add a snitch port to the existing ports.
2. Add a set of parameters necessary for SAH impleatientand operation.

Nsnitch Number of digests to send to each
snitch recipient.

Nsnitchrecipients Number of snitch recipients.

Nacceptsnitch Number of snitch messages to accept in
a single round.

Rroundsbetweensnitch Number of rounds between snitch
operations.

Rwaitsnitchreply Number of rounds to wait for a
snitching procedure.

Naceptsnitchreply Number of pull-response messages to

accept after as part of a "check".
Rroundsbetweensameattacker | Minimum number of rounds between
consecutive "checks" to the same

process.
AtckHighTH Attacker’s upper threshold.
AtckLowTH Attacker’s lower threshold.
LiveHighTH Liveliness upper threshold.
LiveLowTH Liveliness lower threshold.

3. The ability to send a snitch to other processesasdsd to the Gossiper.

4. A buffer was added to hold digests received frohepprocesses.

5. Every Rroundsbetweensnitch rounds the Gossiper randomly seledisnitch

snitch messages from the digest buffer, and sevely enessage to a random

Nsnitchrecipients processes selected from the current view.

A SnitchReceiver class was added to deal with simgcmessages.

The SnitchReceiver accepldacceptsnitch snitch messages at most in each

round.

8. Upon receiving and accepting a snitch messagdjigest is extracted from the
message and a pull-request message addressedctwettied process is created
with a special digest according to the local digesd the extracted one. This
message is sent using the AsyncSender. In additi@mitchWaiter thread is
spawned.

No
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9. The checked process is recognized according tocénéficate in the snitch
message.

10. A SnitchWaiter class that analyzes the respontefttacker to the pull-request
was added. The snitch on the attacker will be cordd if the attacker doesn't
cooperate, meaning the attacker does not sendthackessages that were in its
digest and were deleted from the special digesttednm

11.adjustDigest method creates the special digestsrdiog to the checked
process' digest received from the snitching proaessthe local digest.

12.A database (hash table) that holds the historyhefahecking procedure was
added.

13.A method that manages the scales of every proce®isystem according to
results of the snitching procedure.

14.A database (hash table) that holds the scalesqgirtitesses in the system.

15.The Puller was modified to support the use of ttedesdatabase.

Changes in the existing Drum code

1. In Configuaration.java:
a. Add a snitch port, PORTOFFSET_SNITCH_RECEIVER.
b. Add snitch parameters Nsnitch, Nsnitchrecipients, Nacceptsnitch,
Rroundsbetweensnitch,  Rwaitsnitchreply,  Naceptsnitchreply — and
Rroundsbetweensameattacker.

c. Add scale parameteratckHighTH, AtckLowTH, LiveHighTH and

LiveLowTH.
2. In Gossiper.java:

a. Add a methodsendSnitch(RecipientView,Attacker View, rawData)

b. Add to run() method the activation 8ndSnitch method in every
Nroundsbetweensnitch.

c. The Gossiper will activateSendSnitch every Nroundsbetweensnitch
rounds. TheSendSnitch will send a snitch on each attacker included in
AttackerView toNsnitchrecipients of the processes in RecipientView.

3. In MsgGaps.java:
a. Add a new methoflndSameMessages(Vector checkedSerials)
The findSameMessages method is activated on a local gap vector to
create a new gap vector that will hold all messdgeated in both the
local vector and theheckedSerials vector.
4. In FRAG java:
a. Add anAttacker Scale database.

New Classes
Sni t chRecei ver. j ava

This class is responsible for receiving snitch ragss. Upon receiving a snitch
message (maximum dflacceptsnitch messages per round) ttandleSnitch
method is called. This method validates the mesaagdecreates a pull-request
to be sent to the checked process with a specgdstlicreated using the
adjustDigest method.Before sending the special pull-requeShischWaiter is
spawned

Sni tchRecei ver.java Vari abl es
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Hasht abl e attacker sChecked
Hash table which holds for each process that wasksd the round
number of the last "check”. This data is used anwhlidation processes
in handleSnitch method. A process will be checked only if morentha
Rroundsbetweensameattacker elapsed from the last checking procedure.

Sni t chRecei ver. java Met hods
handl eSni t ch( FRAGVEg nsQ)
Validate the message.
Check ifRroundsbetweensameattacker rounds passed.
UpdateattackersChecked database.
Create a special digest usiagjustDigest method.
Send the digest to the checked process usingptiaul|Request method.
sendPul | Request (at t acker, di gest, r awDat a)
This method is adopted from tpallReceiver class.
Send a pull-request to the checked process withgheial digest.
Spawn &nitchWaiter on the selected port.
adj ust Di gest (AttackerDi gest)
Adjust the local digest according to the checkamtess' digest.
This method will return a new and special digest.
The operation of this method can be described as:
L \(oneof (L n A))

Here L is the local set of messages aAds the checked process' set of
messages.

The special digest hold the messages that areslbaatboth the local set and
the alleged attacker set. From this intersectioa oressage is randomly
selected and deleted. The selection algorithm mposed of three phases,
the first random selection of the source procdss,second phase a gap is
selected and in the third phase one message fresetbcted gap is deleted.
In order to be consistent with previous pull-requiserations all messages
located only in the local database are added todibest, this way the
attacker will have more difficulties to know whemetmessage is a real a
pull-request or one triggered by a snitching opematlf Ln A=0 the
snitch is canceled.

snitchWaiter.java

This class waits for a certain process to respoitld & certain message on the
pull-request sent due to a snitch. After receiMNageptsnitchreply messages or
Rwaitsnitchreply rounds elapsed, it checks whether the expected agess
located in the buffer. Thus it decides whetherdhecked process' scale should
be decremented or not. ThatchWaiter runs for a short and limited time.

Sni tchWai ter.java Met hods

SnitchWai ter (Drum port, Certificat e, Rounds, nessages, exp

ect edMessages)
This method listens to the given port for a givarmber of rounds and
expects to receive from the process with the gigertificate a certain
expected message. If it doesn’t receive the exgemtessage during its

lifetime, the process' scale is decremenfiuke checking procedure is done
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by thehandleSnitchReply method. According to the result of this method the
scale of the checked process is adjusted.

handl eSni t chRepl y( Vector nmsgsOf At t acker)
This method checks whether the deleted message reasved, if the
message wasn't received the interrogated procedsciared as an attacker,
if it was received the process is declared as norma

Sni tcher.j ava
The Snitcher class implements the basic snitch etésnand various operations
that are related to logging and debugging. Its o@thwvere separated from the
Drum’s implementation in order to enable easy iraégn when a new Drum
version is released.
If Rroundsbetweensnitch rounds have elapsed since the last snitch opardtie
sendShitches method is called for each host in the snitch i@awandomly group
of chosen hosts). This method semdsnitch messages (that are actually
previously stored push reply messages) to eacheohosts. The messages are
sent unchanged, since there is no need to valitiatesignatures or to sign it
again.

Sni tcher.java Vari abl es
Hasht abl e pushRepl yTabl e
This hash table stores the digests that were redérom other hosts in reply to
push offers. This digests are later sent as sniessages.

Sni tcher.java Met hods
sni tch(Vector viewSnitch)
This method checks whethRroundsbetweensnitch round have passed since the
last snitch operation. If so, it uses tieRandomDigests method to randomly
selectNsnitch digests, and calls trsendSnitches method to send each digest to
every host inviewSnitch.

sendSnitches(Certificate cert, Vector snitchs)
This method uses the asyncSender object to sehdsedch message in the
Shitchs vector to the host that owns the certifices.

addDi gest (String senderl D, FRAGVsg nsgQ)
This method adds the push reply messaggto the hash table that stores push
reply messagep(shReplyTable).

get RandonDi gest s(i nt nunDi gest)
Returns a vector afumDigest randomly chosen digests frgoushReplyTable. If
the table holds less thammDigest digest, all available digest are returned.

The following methods are used for logging and dgjng, and may be omitted
without damaging the snitching capabilities:

initLogs(String fil enamne)
Initializes both log files (.exp and .log) by wrig a message to the files
indicating the host’'s own ID.

gapsToString(Vector gap)
Converts thegap vector to a string for logging purposes.
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di gest ToStri ng(Hasht abl e di gest)
Converts each digest in the hash talitgest to a string for logging purposes.

writeToLog(StringBuffer text, int verboselLevel)

Writes thetext to the host’s .log file, if the verbose level igher (numerically
equal or lower) thafonfiguration.VerboseLevel. Thetext is also written to the
screen if the screen verbose level is numericajlaeor lower than
VerboselLevel.

writeToExpLog(StringBuffer text)
Writes thetext to the host’s .exp file, if the verbose level ighter (numerically
equal or lower) thaRonfiguration.VerboselLevel.

writeToLogRound(StringBuffer text, int verboselLevel)
Similar to writeToLog, but adds the current rounanioer and the host’s ID to
the printed text.

get OmDi gest ()
Returns the host’'s own digest table, which hol@sntessage gaps for each
known sender in the system.

TTLsToStri ng( Vector TTLS)
Returns a string that corresponds to the veEtas, which indicates the TTL
value of each message of a particular senderdlwafrrently stored.

TTLsTabl eToSt ri ng( Hasht abl e MsgBuf Tabl e)
Converts the hash tab\dsgBufTable to string, for logging purposes.

attacker Scal eToSt ri ng(Hasht abl e scal eTabl e)
Converts the hash tabdealeTable to string, for logging purposes.

sender sToSt ri ng( Hasht abl e sender sTabl e)
Converts the hash tabdendersTable to string, for logging purposes.

attacker Scal e. j ava

The AttackerScale class manages two values a begskfor each of the other
hosts. The first value indicates the livelinesshef host. This value is incremented
when a host communicates with another host, adddsemented when the other
host fails to reply. If the value is equal or I#sanConfiguration.LiveLowTH the

host is considered dead. The host will be consttelige again when the value
equalsConfiguration.LiveHighTH. The second value reflects how much the other
host is suspected to be an attacker. It is updateshever a host is tested using the
"snitch" mechanism. The value is increased if thet neplies with the message that
was artificially removed and decremented otherwisine value is equal or less
thanConfiguration.AtckLowTH the host is considered an attacker. The host will b
considered correct again when the value edDaifsiguration.AtckHighTH. Each of
the counters also stores the last round numbehiohathe counter was updated and
whether that update was an increase or decreasatiope These parameters enable
employing complex strategies to determine whichtagse dead or attackers.
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Sni t chRecei ver.java Vari abl es
Hasht abl e SendersScal e
A hash table that stores the two scales of eatineobther hosts.

Hasht abl e attackersVi ew
A hash table that stores the Ids of each of théshbat are considered to be
attackers.

Hasht abl e deadSender s
A hash table that stores the Ids of each of théshhat are considered dead.

attacker Scal e. j ava Met hods

updat eSni tchScal e(String sender| D, bool ean i sOK)

Increases the attacker scale of the rsestlerID if isOK is true, decreases it
otherwise. This method also stores the currentdowmber and the direction of
the update in order to facilitate future improvemémn the mechanism that
distinguishes between a correct process and arkattaf the scale falls below
Configuration.AtckLowTH, the hostsenderID is considered an attacker. If the
scale is equal to or grater th@onfiguration.AtckHighTH the host is considered
correct.

updat eLi vel i nessScal e(String senderl D, bool ean i sCK)

This method is identical to the updateSnitchScaéthiod, but it updates the
liveliness scale and uses Configuration.LiveLowTH and
Configuration.LiveHighTH as thresholds. Using these thresholds the method
decides whether the host is dead or alive and apdtiackersView accordingly.

Hasht abl e get Attacker ()

Returns a hash table that holds the Ids of the gms®s that are currently
considered to be attackers.

Hasht abl e get Dead()

Returns a hash table that holds the Ids of the gms®s that are currently
considered to be dead.

Hasht abl e get Att acker Scal e()
Returns a hash table that holds the scales of@fabtle other hosts.

New Packages
Sil ent Att acker

The package SilentAttacker implements a silentkéa It is almost identical to
the Drum’s implementation, but some minor modificas and additions were
necessary to enable the required attacker’'s behd&he most notable
modification is to the PullReceiver.java classiéasl of replying to a pull
request as a correct host would, the attacker ttedlsnethod
sAttacker.deliverMessage for each of the messdgéshould be sent. This
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method decides whether to send the message oopdtdthus implementing a
silent attack.

SAt t acker. java

In addition to Drum's classes, SAtacker.java imgata some of the silent
attacker's behavior. It holds the list of the dt&tprocesses and controls the
attacking probability.

SAtt acker.java Vari abl es

Hasht abl e att ackedTabl e
A hash table that stores the Ids of the hostssthaitild be attacked.

SAtt acker.java Met hods

addVictim(String I D)
Adds hostD to the list of processes that should be attacked.

isVictim(String ID)
Returns true if host ID is attacked, false otheewis

del i ver Message(String sourcel D, String destlD)

This method decides whether to send a messageddephossourcelD as part
of a push reply to hoskestID. The decision can be based upon any of the
parameters available in the Drum code. In the cagiireplementation, this
method always returns false, which implements gpkrmilent attacker that
never responds to a pull request.

Implementation Issues

Response to a pull-request even if there are nsages

A problem that we discovered during our implemeatais that a process that
doesn’t have new messages to send upon receptmuilagequest will be
detected as a dead process and thus its scaleendicreased. A way to solve
this is to add a special message that indicatéghbarocess has no new
messages. This solution was implemented in the Droge during our
implementation of SAH.

Gaps

During the implementation of SAH on the Drum code,detected a possible
problem with the implementation of the digests sbrdugh the pull and push
operations. Due to the fact that messages areeddi®m the buffer using age
based purging, these deleted messages no longeirettie buffer but they need
to be included in the digests. Therefore, virtugpgare created and inserted into
these messages. We discovered that these virtpalagen influence our decision
algorithm. This happen when thdjustDigest method opts to discard a message
from the virtual gap, thus the interrogated proazsst send the necessary
message back and it is declared as an attackewewamit is a correct process.
To correct this problem the digest presentation etesiged and instead of a
virtual gap we have added thenAcceptableSerial parameter.

Scale for attackers

In our implementation we used a linear scale, megttat when a process is
declared an attacker or a correct process its $galecreased or increased by
one respectively. Another scale that can be impftetkis an exponential scale
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in which when a process is declared an attackesciase changed exponentially
and when the process is declared normal its ssathanged linearly. This kind
of implementation is well known from Van-JacobsoiM® (additive increase
multiplicative decrease) strategy used in TCP wimaddgorithms.

The implemented linear scale is much more forgivewmpared with the AIMD
scale, to false declarations that can occur duetwork problems or overload in
the pullReceiver method. But on the other handeigstion to detection is slow,
and an attacker will be discarded from the normalwvonly after several
detections. Another improvement that can be maddoigive priority to
processes already declared as attackers, this hese tprocesses would be
checked more often and their scale would be changwe aggressively.

* The detection algorithm and scales
Another option to improve the detection algoritherby discarding more than a
single message. This way the scale can be modbiedhe percentage of
messages return by the checked process.

* Threshold
Obviously the thresholds can affect the performaridee SAH
implementation. According to the thresholds proessse discarded from and
added to the normal view. Future work must incledeeral experiments on the
affects of the threshold on the SAH performances.

* Smart coordinated attack by two processes.
Two attackersa andb, that coordinate their attack can overcome ouedalien
algorithm and influence the Drum/SAH performanchisTattack is possible if
both attackers are sources and create their ovgushanessages. The processes
update each other on the new messages creately.ldnahddition both of the
processes do not cooperate during the other puspuwhoperation triggered by
normal processes, that is to say, they discard agess created by other
processes. However, they do respond to pull-regaastcan even initiate push-
offers. This way both of the attackers hold the sages created locally and the
messages of the second attacker. Wdherants to increask's credit in the scale
of a correct processep, it forwardsb's digest top. p, in turn, will perform a
"check" ona, and receive a response which is correct. Thid kinattack needs
further investigation.

- TTL
An option to attack the system using the new featdiminAcceptableSerial is
by using this parameter and adjusting it in thackitr's digest to show that all
messages were deleted from the buffer. A countesureas to implement the
use of TTL, counting the rounds passed since tresage was created, this way
an attacker won't be able to use thimAcceptableSerial and impersonate as a
normal process. This method must be investigatéldriuture.

Experiments

The main goal of the analysis is to check the impawarious network parameters and
processes' parameters.

The experiment parameters that can affect the tperaf the algorithm include the
total number of processes, the ratio between thabeu of attackers and the total
number of processes and the influence of our stggedgorithm parameters such as
thresholds and the decision algorithm. In additibe, packet loss rate of the network is
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an important parameter that can affect not onlydbmunication between processes
but can also make the distinguishing between attacko other normal processes
harder.

Using specific fixed network architecture we wilist evaluate how these parameters
affect the performance of the non-modified alganitfbrum) then we will compare the
results to our suggested algorithm.

Using the results of this comparison we will beeabb evaluate the impact of the
parameters on our suggested algorithm and contiheetests on several modified
versions of the algorithm.

Emulation Results

To measure the performance of our algorithm we tisedEmulab TestBed [3].
We performed all our experiments using the follagyparameters and conditions
(unless otherwise noted):

e All'links are error-free links £ =0)

* Thepushfanoutis 3

¢ Practically, there is no bound on the number ofsagss that a process sends

another process inpush or apull operation.
¢ The number of rounds between consecutive messades i
¢ The length of the simulation is 1000 rounds (20@sages for each source)

In all experiments where the SAH mechanism wav@acthe following parameters
were used:

* The initiating process forwards the digest to dhlyther processk=1)

¢ The number of accepted snitch message at eachsgrizce

* Snitching is performed every round

* The number of digests sent is 1

The snitching mechanism is used by the "checkimgtess to gather information it
does not have from the process it is checking. fbee, performing a "check” on a
process is somewhat identical to performingpéll operation. To compare the
performance of a system with attackers using thel @/gorithm and the same system
without using the SAH, we used the following parsens

* When using the SAH mechanism, the fanout ofpiliié operation is 2

¢ When the experiment did not include activating $#&H mechanism, the fanout

is3

To verify that, indeed, the comparison between stesy with apull fanout of 3 is
identical to a similar system with the SAH activdgteand apull fanout of 2, we
performed some experiments to compare the two gordtions. The following graph
shows the average number of processes that recaive@ssage vs. the number of
rounds from the creation of the message. In thaplyr a single source was used.
Experiments with different number of sources arftedent number of processes show
the same results, and are presented in Annex A.
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Comparing Fanouts

Average Number of Receivers

5 6 7

Round Number

Figure 2 - Fanout Comparison

We can conclude from the above comparison, andgthphs that are presented in
Annex A, that we are performing a fair comparisosing the above fanout
configuration, regardless of the number of processed number of sources in the
experiment. However, this conclusion is only viaiMeen there are no attackers in the
system. The effect of the SAH mechanism on thermé&tion propagation rate when
there are attackers in the system is investigatekd section describing the silent attack
effect.

When there are no attackers in the system, alptbeesses participate in the snitching
mechanism. This means that every process sendest @if some other process (chosen
randomly and uniformly) to one process, chosen aarid and uniformly from the set
of participating processes. If each process redeilethe digests and performed checks
upon receiving each of them, the average numbéchecks" that would be performed
by each process would be 1. Since each "checkhdassame as performing pll-
operation, we get that the performance of a system withukh fanout of 3 closely
resembles the performance of the same system vpithl &anout of 2 but with the SAH
mechanism active.

The graph is only slightly lower when using the SAt¢chanism, since the average
number of "checks" that each process performs ah eaund is slightly less than 1.
This is due to the fact that the number of "chec¢kat a process performs in each round
is bounded by 1. Since there is a probability ti@misnitch message will reach a given
process in a given round, the average must be |tdveer 1. Another reason is that the
received digest ("snitch") is the digest of a pescthat was chosen to be polled in the
pull-operation in the same round. In that case, no new informaisoavailable to the
checking process.

Silent Attack Effect

To inspect the effect of silent attackers on aesysive performed several experiments
with different number of sources. The results &f éixperiments with a single source are
presented in Figure 3.
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Figure 3 - Silent Attack Effect

The results of the experiments with 20 and 50 sssiappear in Annex A.

It is clear that the effect of a small percentafjattacking processes is negligible. Even
when 20% of the total number of processes aretslitsckers, only a mild effect can be
noticed. When this number increases to 50%, thecef$ clearly evident. Experiments
with different number of sources show the samelt®su

The following graphs show the same effect but wathdifferent total number of
processes. The results are normalized to theriataber of processes.
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Figure 4 - Silent Attack Effect with 100 and 50 Proesses

To inspect the effect of the silent attack on infation propagation when the SAH

mechanism is active, but while no attackers argexted, we ran experiments with

thresholds set to 0. During the experiment the t&uassociated with each suspected
processes do not reach 0, so none of the attagkimcpsses are actually declared as
such. Figure 5 shows the information propagatida véth 20 and 50 attackers, when

the SAH is active, but with thresholds set so thistineffective.
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Information Propagation - 50 Attackers Information Propagation - 20 Attackers
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Figure 5 - Silent Attack Effect with SAH enabled

As seen in the above graphs, the performance gbt@rm with the SAH mechanism
active is slightly poorer than the performance siystem with no snitching. This stems
from the fact that the comparison is made usintediht values of pull fanouts. In the
system with no snitching, the pull fanout is 3, hhe other system uses a pull fanout
of 2. The results do not follow those presentedrigure 2, Figure 12, Figure 13 and
Figure 14 since the attacking processes do noicpmate in the SAH mechanism. For
the case of a system with 50 attackers, this mdaisonly 50 processes send digests.
Each of those processes sends one digest ("srifctee®ne other process chosen
randomly from the list of unsuspected processesthla experiment none of the
processes is suspected, so the digest is sentetofotine processes in the system. On
average, this means that each process receivekge$is ("snitches") every round. The
outcome of this analysis is that the effective patiout when the SAH is active is about
2.5, which is lower than the pull fanout of the sasystem without the SAH, resulting
in poorer performance.

Detection Rate

Figure 6 depicts the detection rate of the SAH raa@m. The graph shows the average
percentage of attackers detected vs. the round ewuailihe experiment. The average is
over the correct processes, and the experimenhdagih all the processes initialized
with a counter value of 50.
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Detection Rate
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Figure 6 - Detection Rate

Similar graphs were produced with different numbesources. They are presented in
Annex A. All show that the number of sources does influence the rate at which
attackers are identified.

We also investigated the influence of the total hamof processes on the behavior of
our failure detector. The following figure demoiasés the results:
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Figure 7 - Detection Rate with Different Number ofProcesses

As can be seen, when the total number of procés¢aser, the rate at which attackers
are detected is higher. We can see that the pageiof attackers is not the only
parameter that influences the detection rate. Algtuaoking at graph that depicts the
number of detected attackers, rather than the graphdigyaitts thepercentage of
detected attackers, we can see that more attagieedetected in the beginning of the
experiment in a system with a smaller number otpsses when compared with a
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system with the same percentage of attackersylice as many processes. To explain
this phenomenon, a more precise analysis shoutddue.

The graphs do not reach the maximum detection 6¢%d.r the following reasons: In
the experiment with 100 total processes, the expeni's duration was not enough to
reach the maximum average number of detected atmclkn the experiments with a
total of 50 processes, the maximum average numbeetected attackers is limited,
since the source cannot detect any attackers.i§Hiecause the source cannot send a
modified digest to a suspected process withoutdtier processes identifying the
modified digest (it cannot omit its own message®y. that reason, the maximum average
number of detected attackers in experiments witbingle source is given by the
following formula:

#Correct Processes # Attackers
#Correct Processes )

In the above experiments this number is presemtéiki following table:

Total number, Number of | Max. average % of Max. average
of processeg Attackers detected attackers| number of detected
attackers
50 10 97.5% 9.75
50 25 96% 24
100 20 98.75% 19.75
100 50 98% 49
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The influence of transmission errors was investigainly when a single source is used
and the total number of processes is 100.

Detection Rate - Different Error Rate
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Figure 8 - Detection Rate vs. BER

The results show that the effect of reasonabler erates on the detection rate is
minimal. We also notice that as the error rate dases, the percentage of detected
attackers in each round is somewhat decreased.iSthe results of lost "snitches". If
"snitches" were not lost, the detection rate wdaddthe same as the detection rate in a
system with no errors.

False Detection

Several experiments were performed to investigatefalse detection of the failure
detector. The following graphs show the resultshef experiments with different BER
and different number of attackers. The total nuntdfgorocesses in the experiments is
100.
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False Detection - Different Error Rate False Detection - Different Error Rate
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Figure 9 - False Detection with BERs

The number of correct processes falsely suspedtdmbing silent attackers is bigger

when the BER increases, which is to be expected.al¥e see that the number of

processes falsely detected is bigger when the nuwofhettackers is smaller. There are
two things that contribute to this behavior. Finshen there are fewer attackers, there
are more correct processes that are checked ByAkemechanism. Assuming that the

probability of falsely detecting any process isnitilgal, this results in a higher average.
Second, when there are more correct processes, ither higher rate of "checks" that

are performed in the system. This also contribtdeke higher average.

We see that for all cases investigated, the avenageber of correct processes, even
when the BER is 0.05, stays under the reasonahle v 1.2

Failure Detector Performance

The following graphs depict the information propéga rate when the failure detector
is active and compare it with the performance alystem without a failure detector.
The information propagation is also compare to @emali system, in which only the
correct processes exist.

The information propagation is sampled 3 timesmuthe simulation: at the start of the
simulation, where the failure detector still does affect the performance, at the middle
of the experiment and at the end of it. The greghteavn are averages of 50 messages at
the beginning, middle and end of the experiment.

Figure 10 shows the outcome of running an experiméth 50 attackers.
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Information Propagation - 50 Attackers
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Figure 10 - 50 Attackers, 50 Correct Processes

As can be seen above, the information propagatitanis improved as the experiment
advances. At the beginning of the experiment, tte rs identical to the experiment
with a low threshold for detecting an attacker.sTisi expected, since at the beginning
of the experiment no attacker, or a very small neindd attackers, is detected. We can
see that the performance at the end of the expstinseimproved. However, the
performance is not identical to the performance alystem with 50 correct processes
and no attackers. This is also expected, as thie mezhanism is not affected by the
SAH mechanism. In addition, on average, half of"ttfeeck” operations are performed
on attackers, which do not contribute to the prapag of information in the system.
Figure 11 depicts the results when running the exm@ant with 20 attackers.
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Information Propagation - 20 Attackers
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Figure 11 - 20 Attackers, 80 Correct Processes

Further Improvements

In Drum/SAH we have implemented new detectors fasgp based protocol. These
detectors will find both dead processes (procetisgisdo not function at all) and

silent attackers, which smartly exhaust the systesources by misleading normal
processes and keeping its attacks stealth. WeyzthIDrum/SAH performances
and saw the differences between Drum with no smigchmechanism and

Drum/SAH. Although Drum/SAH improves the systemfpanances the snitch and
detection mechanisms can be extended to suppexttaet of more intelligent silent

attacks. We will conclude with several improvemesssies:

Different Thresholds

Examining the effect of the thresholds is importamd explained in the
implementation section. Further tests and analydgishelp to understand the
best way to adjust these parameters to a gossgul lsgystem.

Scale function

In our implementation we used a simple linear sdalection. Other scale

functions such as exponential functions or hybuections such as AIMD

should be implemented and analyzed.

Improvements and adjustments to the detection nmesina

As explained in the implementation sections theeenaany ways to improve the
performance of the detection mechanism which vaBult in a better overall
system performance. Several ways to do that argrowing the digest

adjustment function to discard several messag@sstaty the scale according to
the cooperation of the checked process; implemgratipriority mechanism for
snitching on known attackers.

Different attacker strategies
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An important issue that must be further investigaie the ability of the
implemented detection mechanism to detect othercledt not tested in our
work, and extend the detection mechanism to sugpertietection of the attacks
that are invisible to the implemented detector.

Crash failure performance and effects

The performance of the crash failure detector shbelinvestigated.
Dynamically change the numbermill Fanout

As seen in the experiments we performed, when duerattackers in the
system, the performance of a system with a pubd&f 3 is not identical to a
system with SAH mechanism and a pull fanout ofir;esthe average number
of snitches per correct processes is less tham Im@tfrovement to our algorithm
could be to change the pull fanout dynamicallyp¢coommodate the "missing”
pull-requests.

Conclusions and Summary

In our work we measured the effect of silent attackler various circumstances. We
saw that the effect of silent attacks on Drum protas minor unless the percentage of
the attacker is relatively high. In those casessivaw that implementing our algorithm
for detecting silent attackers indeed improves riessage propagation latency over
time. Future work on the subject might include iepenting the improvements we
suggest in this paper, and further experiment withtems whose properties change
over time. As an example, one might consider aesyswith 20 attackers for the first
hour of operation and 50 attackers for the secanul.h
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Annex A

Fanout Comparison

The following graphs show the comparison betweenrnformation dissemination rates
of the twopull fanouts (2 with the failure detector active, andt&n it is not) used in
the simulations:
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Figure 12 - Comparing Fanouts with a Single Source

Figure 12 and Figure 2, presented above in pagedvér all the experiments we ran
using a single source, with different number ofgasses in the experiment. Figure 13
depicts the results when there are 20 source®inytstem.
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Figure 13 - Comparing Fanouts using 20 sources

The same results can be observed when 50 soueeseu:



28 DrunVSAH —Drum with Silent Attack Hindering

Comparing Fanouts - 100 Processes, 50 Source Comparing Fanouts - 80 Processes, 50 Source
100 80 — — — — e N ————§
‘ e L CEAREN
2 80 2 I | I I |
8 | 8 60 - - - [ N T
@ 4] /
4 | ool (I R I
5 60f 5 177 i i i i
| T R
£ [ %
Z 40k Zel---H L L]
o | | q, VAl | | | |
g | | Soob -4
o 20 | 3 | | |
| | 2oL/ 4. _1L[-© SAHwihpulFO=2
| | I | = DRUM with pull FO =3 | | I | —— DRUM with pull FO =3 |I
I I T T | I I I
0 1 2 3 4 5 0 1 2 3 4 5
Round Number Round Number

Comparing Fanouts - 50 Processes, 50 Source
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Figure 14 - Comparing Fanouts using 50 sources

Silent Attack Effect

The following graphs display the effect of the sileattack on the information
dissemination rate. Several experiments were rih 20 and 50 attackers and with 20
and 50 sources. In all the experiments, the totamhber of processes is 100. This
includes the attacking processes as well as threaqorocesses.
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Detection Rate

Figure 15 presents the results of the experimemtwith 20 and 50 sources. The total
number of processes in all experiments is 100.



DrunVSAH —Drum with Silent Attack Hindering

29

Detection Rate - Different Sources
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Figure 15 - Detection Rate with 20 and 50 Sources
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Annex B

The results with a different number of processés i(Stead of 100), produced false
detection figures that were too small to analyzke Thaximum average number of
processes detected was 0.1, in an experiment witkahof 50 processes, 10 of which
were silent attackers.
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Figure 16 - False Detection with Different Number bSources

As can be seen from the above graphs - the fatseti®n is higher when the number of
sources increases.
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