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Abstract

We study the effect of the introduction of side information into the causal source coding setting of Neuhoff
and Gilbert. We find that the spirit of their result, namely the sufficiency of time-sharing scalar quantizers
(followed by appropriate lossless coding) for attaining optimum performance within the family of causal source
codes, extends to many scenarios involving availability of side information (at both encoder and decoder, or only
on one side). For example, in the case where side information is available at both encoder and decoder, we find
that time-sharing side-information-dependent scalar quantizers (at most two for each side-information symbol)
attains optimum performance. This remains true even when the reproduction sequence is allowed non-causal
dependence on the side information and even for the case where the source and the side information, rather than
consisting of i.i.d. pairs, form, respectively, the output of a memoryless channel and its stationary ergodic input.

Key words and phrases: Causal source codes, Entropy coding, Lossy source coding, Scalar quantization, Side

information.

1 Introduction

A (lossless or lossy) source code consists of two components: The encoder, which generates a bit stream upon

observation of the source sequence, and the decoder, which reproduces (a possibly approximate version of) the

source sequence based on its observation of that bit stream. A source code is causal if the k-th reproduction symbol

depends on the source sequence only through its first k components.

The most striking fact about causal source codes was established by Neuhoff and Gilbert in [12]. Their main

result is that for source coding of a memoryless source “if the future is not allowed to be looked into, the past is

useless”. More precisely put, the conclusion in [12] was that time sharing at most two scalar quantizers, followed

by lossless entropy coding, attains optimum performance for memoryless sources among all causal source codes. At

a first glance it may seem natural that, for a memoryless source, there is nothing to gain from the past sequence

for reconstruction of the present symbol. The strikingness of the result, however, accentuates when contrasted with

Shannon theory which renders other sequence components quite relevant for the coding of each symbol, even for i.i.d.

sources.

The theory of causal source coding has been expanded since [12]. Causal source codes for sources with memory

were considered to a limited extent in [2]. Recently, Linder and Zamir have extended the Neuhoff and Gilbert result
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to the case of a general stationary source, as well as the individual sequence setting, in the high resolution (low

distortion) limit [9]. The closely related setting of zero- and limited-delay source coding has also received attention

lately: From error exponents [11, 13], to zero- and limited-delay coding [8, 15, 6, 7] and joint-source-channel-coding

[10] in the individual-sequence setting. The reader is referred to [11] for a more comprehensive account of related

literature.

In this work we study some of the effect of the introduction of side information into the Neuhoff-Gilbert setting.

In particular, we seek to characterize optimum performance achievable by causal source codes in situations involving

side information. Our finding is that the spirit of the result of [12], namely the sufficiency of time-sharing scalar

quantizers for attaining optimum performance, extends, in senses that will be made precise, to many of the scenarios

involving side information. We find, for example, for the case where side information is available at both encoder and

decoder that time sharing side-information-dependent scalar quantizers attains optimum performance even when the

reproduced sequence is allowed non-causal dependence on the side information. Furthermore, this remains true even

when the source and the side information, rather than consisting of i.i.d. pairs, form, respectively, the output of a

memoryless channel and its stationary ergodic input.

For the case where side information is available at the encoder only we find that when the reproduction sequence

is restricted to causal dependence on both the source and the side information sequence, the side information is

useless. This, evidently, is like the case of non-causal source coding, where side information at the encoder alone

is useless. As is pointed out, however, this is no longer true when the reproduction sequence is allowed non-causal

dependence on the side information sequence.

As we argue in Section 5, causal source coding with side information at the decoder alone is most motivated,

from an operational viewpoint, when the reproduction is not allowed to depend on the side information. Using

Slepian-Wolf coding it is seen that, in this case, there is no penalty for the absence of side information at the

encoder.

Though the techniques underlying our proofs are similar in spirit to those of [12], various twists are necessary to

accommodate the different settings considered and we have not found one “meta-theorem” from which the results

can be derived as corollaries.

The remainder of this work is organized as follows. Section 2 presents the concrete problem formulation along

with its “operational” motivation. Section 3 is dedicated to the setting of causal source coding when side information

is available at both encoder and decoder. In Section 4 we look at causal source coding when side information is

available at the encoder only and show that the side information is useless when the reproduction is constrained to

causal dependence on the side information as well as on the source sequence. Section 5 addresses the case where

side information is available solely to the decoder. We conclude in Section 6 with a summary of our findings and a

mention of a few directions for related future work.
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Figure 1: Source coding system.

2 Notation, Preliminaries, and Problem Formulation

2-A Notation and Conventions

Random variables will be denoted by upper case letters while specific values they may take will be denoted by

the corresponding lower case letters. Double-sided infinite sequences will be denoted by boldface letters. Thus,

the random variable V may assume the value v and the stochastic process V = · · · , V−1, V0, V1, · · · may have a

specific realization v = · · · , v−1, v0, v1, · · ·. For j ≥ i let V
j
i denote the vector (Vi, . . . , Vj) and V j denote the

one-sided sequence (. . . , Vj−1, Vj). Throughout X ,Y, X̂ will denote, respectively, the source-, side-information-, and

reconstruction-alphabet. Y will be assumed finite1 while X and X̂ can be assumed quite arbitrary measurable spaces

(equipped with their σ-fields) . Mappings will be assumed measurable (with respect to the relevant σ-fields that will

be clear from the context). For any set A (equipped with a σ-field) we let M(A) denote the set of all probability

measures on A (and its σ-field). The inf of an empty set will be taken as infinity. H will denote the entropy (not

differential entropy) functional. Thus, for example, H(X̂k
1 ) will denote the entropy of X̂k

1 (being infinite if X̂k
1 is not

discrete valued) and H(X̂k
1 |Y) the conditional entropy of X̂k

1 given Y. A generic notation for a probability measure

will be µ, with the argument revealing the random variable(s) to which it relates. Finally, | · | will denote cardinality.

2-B The Original Neuhoff-Gilbert Setting

Consider a discrete-time double-sided stochastic process X = {Xk}
∞
k=−∞ with symbols in the alphabet X . A

source code (cf. Figure 1) operates as follows: The encoder accesses the source sequence X and creates a binary

representation Z = {Zk}k≥1. The decoder accepts Z and creates a reproduction X̂ = {X̂k}k≥1 of {Xk}k≥1 with

symbols in the reproduction space X̂ . The system induced by the cascade of the encoder and the decoder is referred

to as the reproduction coder. More precisely, the reproduction coder is characterized by a family of measurable

mappings {fk}
∞
k=1 such that the reproduction X̂k of the kth source output Xk is given by X̂k = fk(X).

When a source code with an induced reproduction code {fk} is applied to the source X, the average distortion

is defined by

d({fk}) = lim sup
k→∞

E
[

dk(Xk
1 , X̂k

1 )
]

, (1)

where dk(xk
1 , x̂k

1) = 1
k

∑k
i=1 d(xi, x̂i) is the block distortion induced by the single-letter distortion measure d : X×X̂ →

[0,∞). The average rate r is defined by

r = lim sup
k→∞

1

k
E [Lk(X)] , (2)

1While the proofs of the converse results in the sequel can readily be verified to carry over to the case of a quite general Y-alphabet,
the direct proofs for a general alphabet become more tedious and, in fact, for the results to hold certain conditions must be imposed.
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Figure 2: Equivalent representation of a source coding system

where Lk(x) denotes the cumulative number of bits received by the decoder at the time it produces x̂k, when the

source sequence is x. In other words, if z1, z2, . . . is the sequence of bits produced by the encoder in response to x,

and if x̂k is produced by the decoder after receiving zl but before zl+1, then Lk(x) = l.

That the rate of a source code with a given reproduction coder can be improved (or not worsened) by concatenating

the reproduction process with an appropriate lossless code follows from first information theoretic principles (cf. [12]

for a formal proof). This implies no loss of optimality in confining attention to systems that first generate the

reproduction process, and then losslessly encode it, as in Figure 2. This separation between the generation of the

reconstruction and its lossless coding is more than merely conceptual. It is the basis for practical lossy source coding

techniques [3].

Definition 1 A reproduction coder is causal if for any k ≥ 1,

fk(x) = fk(x̃) whenever xk
−∞ = x̃k

−∞. (3)

Fc will denote the class of all causal reproduction coders. A source code is causal if the reproduction coder it induces

is causal.

A point to note is that in the above definition it is not required that causal source codes operate without introducing

delay. This is because no restrictions are made on how the binary representation2 Z1, Z2, . . . is generated by the

encoder or on the way in which this sequence is used by the decoder. Thus, the class of delayless source codes is a

(small) subset of the class of causal source codes.

Optimum performance theoretically attainable (OPTA) by causal source codes for the source X is given by rc(D),

defined as the infimum of the average rates of all causal codes with average distortion ≤ D. It was argued in [12]

that rc(D) is determined solely by considering properties of reproduction coders (a consequence of the fact that for

a general system of the type in Figure 1 there is one of the type in Figure 2 doing at least as well). Specifically, it

was shown that rc(D) is given by

rc(D) = inf
{fk}∈Fc:d({fk})≤D

H(X̂), (4)

where

H(X̂) = lim sup
k→∞

1

k
H(X̂k

1 ) (5)

denotes the lim sup entropy rate of the reproduction process.

2Note that each Zi is allowed to depend on the whole of X.
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Figure 3: Source coding system with side information.

Define now

Q(PX ,D) = inf
f :X→X̂ :Ed(X,f(X))≤D

H(f(X)), (6)

where PX ∈ M(X ) and X on the right side is distributed according to PX . Q(PX ,D) is nothing but the R-D

function of the Entropy Constrained Scalar Quantizer (ECSQ) of the source PX (cf. [4, 5] and references therein).

The main result of [12] was the following.

Theorem 1 ([12]) For X = {Xk}, Xk i.i.d.∼ PX ,

rc(D) = Q(PX ,D),

where Q(PX , ·) denotes the lower convex hull of Q(PX , ·).

In words, time sharing (at most two) scalar quantizers, followed by lossless entropy coding, is optimal.

2-C Availability of Side Information

In this work we revisit the causal source coding setting of [12] for the case where side information is available (Figure

3). Thus, here and throughout we assume, in addition to the source X of the previous section, a side information

sequence Y, with components in the finite alphabet Y, jointly distributed with X. For this case, in general, the

reproduction sequence will depend on the side information as well as on the source sequence, i.e., the reproduction

coder is now characterized by a family {fk} such that X̂k = fk(X,Y). We make a distinction between an induced

reproduction coder depending causally on both the source and the side information and one depending causally on

the source yet non-causally on the side information.

Definition 2 A reproduction coder with side information is semi-causal if for any k ≥ 1 and y,

fk(x,y) = fk(x̃,y) whenever xk
−∞ = x̃k

−∞. (7)

A reproduction coder with side information is causal if for any k ≥ 1,

fk(x,y) = fk(x̃, ỹ) whenever xk
−∞ = x̃k

−∞, yk
−∞ = ỹk

−∞. (8)

Fsi,Fcsi will denote, respectively, the class of reproduction coders with side information that are semi-causal and

causal.

5



When a switch s1 or s2 is closed (cf. Figure 3), we assume that the side information sequence is available to the

corresponding system component in its entirety before the system begins operating. Note that it makes no sense

to restrict the availability of the side information sequence to causality or finite delay of any type, since no such

limitations are placed on the availability of the source sequence to the encoder (as in the original Neuhoff-Gilbert

setting).

Rx,s1,s2
(D) will represent the analogue of rc(D), from the previous subsection, corresponding to the case where

side information is available according to a switch configuration s1, s2 ∈ {0, 1} (with 0 and 1 denoting, respectively,

an open and a closed switch). More specifically, Rx,s1,s2
(D) will denote the infimum of the average rate attainable

by a causal source coding system as in Figure 3 with a switch configuration corresponding to s1s2, subject to the

average distortion constraint D. Here x ∈ {0, csi, si} according to whether the induced causal reproduction coder is

not allowed to depend on side information (x = 0), is allowed causal dependence on the side information (x = csi),

or non-causal dependence on the side information (x = si).

For the cases we address (in Sections 3 through 5 below) it will be seen that a “separation” holds, analogous to

that leading from the systems of Figure 1 to systems as in Figure 2. It can be argued that this separation is what

gave the result of [12] and, by analogy, what gives our results their operational significance. Viewed alternatively,

our results can be seen as characterizing optimum performance for “two-stage” source coding systems that operate

by first producing the reconstruction sequence, and then losslessly encoding it. Practical considerations may then

dictate causal dependence of the reconstruction on the source sequence (as in [12]), as well as, possibly, causal

dependence on the side information, or outright independence of it (if, say, the first stage is performed at a location

where there is no access to the side information or if complexity considerations dictate either causal dependence or

independence).

3 The Case s1 = s2 = 1

Assume throughout this section the case where both switches in Figure 3 are closed. Our goal is to characterize

optimum performance when the reconstructed sequence is constrained to causal dependence on the source sequence,

for the few possibilities of the way it is allowed to depend on the side information sequence. Arguing analogously

as in Subsection 2-B, there is no loss of optimality in confining attention to systems that start by generating the

reproduction process, followed by lossless coding (this time using the side information at both encoder and decoder),

as in Figure 4. The switch on the wire connecting the side information to the reproduction coder can be in three

different modes according to the value of x in Rx,1,1: completely open, closed but releasing the side information

causally (i.e., yt is released only after x̂t−1 has been produced), and closed with the whole side information sequence

released upfront.

3-A Information Theoretic Representation of the OPTA Functions

The OPTA functions Rx,1,1(D), x ∈ {0, csi, si}, can be given an information theoretic representation, analogous to

(4). Indeed, if X̂ is the reconstruction process associated with any source code for this case then, by the converse to
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Figure 4: Alternative source coding system for the case s1 = s2 = 1.

lossless source coding with side information, H(X̂|Y) = lim supk→∞
1
k
H(X̂k

1 |Y) lower bounds its average rate. On

the other hand, if the average rate of a source code with reconstruction process X̂ is not close to H(X̂|Y), it can be

replaced by one with the same induced reproduction coder, but with average rate arbitrarily close to H(X̂|Y) (by

concatenation of a lossless entropy coder accessing the side information). This implies that

Rx,1,1(D) = inf H(X̂|Y), (9)

where the infimum is over {{fk} ∈ Fc : d({fk}) ≤ D} if x = 0, over {{fk} ∈ Fcsi : d({fk}) ≤ D} if x = csi, and over

{{fk} ∈ Fsi : d({fk}) ≤ D} if x = si.

3-B Statement of Results

For PX,Y ∈ M(X × Y) and D ≥ 0 define

Qsi(PX,Y ,D) = inf
ρ:Y→R+:

∫

ρ(y)dPY (y)≤D

∫

Y

Q
(

PX|Y =y, ρ(y)
)

dPY (y), (10)

where PY and PX|Y =y on the right side denote, respectively, the Y -marginal and the conditional distribution of X

given Y = y, both induced by PX,Y (and Q on the right side was defined in 6). To see the operative significance

of Qsi(PX,Y ,D) fix ρ : Y → R
+ and consider, for each y ∈ Y, a time-sharing of at most two scalar quantizers for

the source PX|Y =y attaining distortion level ρ(y). The minimum attainable entropy rate for the quantizer output

process when the source is PX|Y =y is then Q
(

PX|Y =y, ρ(y)
)

. Suppose now that (X,Y) are formed by i.i.d. drawings

from PX,Y . Since the proportion of appearances of a symbol y ∈ Y is going to be ≈ PY (y), by time-sharing

such side-information-dependent scalar quantizers the minimum attainable conditional entropy rate (conditioned

on the side information) of the quantizers output process will be given by
∫

Y
Q
(

PX|Y =y, ρ(y)
)

dPY (y), while the

resulting distortion will be given by
∫

ρ(y)dPY (y). Thus, Qsi(PX,Y ,D) denotes the minimum conditional entropy

rate attainable by such side-information dependent time-sharing of scalar quantizers subject to a distortion constraint

D.

Theorem 2 Let (X,Y) be, respectively, the output of a memoryless channel and its stationary ergodic input. Then

Rsi,1,1(D) = Rcsi,1,1(D) = Qsi(PX1,Y1
,D). (11)
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In words (made precise in the formal proof of the direct part in the next subsection), time-sharing side-information

dependent scalar quantizers (at most two per each side information symbol) attains optimum performance when the

reproduction sequence is allowed causal, or even non-causal, dependence on the side information.

The fact that optimal performance is attained by memoryless quantizers in this generality, where the pair process

(Xi, Yi) may be far from memoryless and where the reproduction process may depend non-causally on the side

information, may seem surprising at first glance. To gain some intuition note that, conditioned on the side information

sequence, X is an arbitrarily varying source, the side information sequence being the state sequence. Thus, since

in the case considered here all system components access the side information sequence, for each realization of that

sequence the problem reduces to that of causal source coding in the original Neuhoff-Gilbert sense for the arbitrarily

varying source (AVS) with a known state sequence. The proof of the main result of [12] turns out to be extendable

to the AVS (due to the key feature which remains, namely, the independence of the components), asserting that

optimum performance is attained by state-dependent memoryless quantizers, time-sharing of at most two for each

state.

Turning to the remaining case where the reproduction coder does not access the side information, define, for

PX,Y ∈ M(X × Y),

Q01(PX,Y ,D) = min
f :Ed(X,f(X))≤D

H(f(X)|Y ), (12)

where the expectation and conditional entropy functionals on the right side of (12) assume (X,Y ) ∼ PX,Y .

Theorem 3 For (X,Y) such that (Xi, Yi) are i.i.d. ∼ PX,Y ,

R0,1,1(D) = Q01(PX,Y ,D),

where Q01(PX,Y , ·) denotes the lower convex hull of Q01(PX,Y , ·).

In words (which are made precise in the formal proof of the direct part in Appendix A), optimum performance in

this case is attained by time sharing at most two scalar quantizers, as in the Neuhoff-Gilbert setting. As the proof

of the converse shows, the result remains intact even if the reproduction coder is allowed to depend on past (but not

present) side information symbols, i.e., allowing such dependence will not result in improved performance.

The following subsection is dedicated to the proof of Theorem 2. The proof of Theorem 3, which has similar

components, is deferred to the Appendix.

3-C Proof of Theorem 2

Proof of Converse:

Lemma 1 For any PX,Y ∈ M(X × Y), Qsi(PX,Y , ·) is convex.

Proof of Lemma 1: Fix an arbitrary ε > 0, λ ∈ [0, 1] and D1,D2 ≥ 0. It will suffice to show that

Qsi(PX,Y , λD1 + (1 − λ)D2) ≤ λQsi(PX,Y ,D1) + (1 − λ)Qsi(PX,Y ,D2) + ε. (13)
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Let ρ∗i : Y → R
+ denote an ε-achiever of Qsi(PX,Y ,Di), i = 1, 2, i.e.,

∫

Y

Q
(

PX|Y =y, ρ∗i (y)
)

dPY (y) ≤ Qsi(PX,Y ,Di) + ε, (14)

and
∫

ρ∗i (y)dPY (y) ≤ Di. (15)

Define now ρ : Y → R
+ via ρ(y) = λρ∗1(y) + (1 − λ)ρ∗2(y) so that, by (15),

∫

ρ(y)dPY (y) ≤ λD1 + (1 − λ)D2. (16)

Consequently,

Qsi(PX,Y , λD1 + (1 − λ)D2) ≤

∫

Y

Q
(

PX|Y =y, ρ(y)
)

dPY (y)

=

∫

Y

Q
(

PX|Y =y, λρ∗1(y) + (1 − λ)ρ∗2(y)
)

dPY (y)

≤ λ

∫

Y

Q
(

PX|Y =y, ρ∗1(y)
)

dPY (y) + (1 − λ)

∫

Y

Q
(

PX|Y =y, ρ∗2(y)
)

dPY (y)

≤ λQsi(PX,Y ,D1) + (1 − λ)Qsi(PX,Y ,D2) + ε,

where the first inequality follows from (16) and the definition of Qsi, the second inequality follows from the convexity

of Q, and the last one is due to (14). 2

Proof of Converse Part of Theorem 2: Assume (X,Y) as in the statement of the theorem. Our goal is to show

that Rsi,1,1(D) ≥ Qsi(PX1,Y1
,D). To this end, fix a reproduction coder {fk}

∞
k=1 ∈ Fsi for which

d({fk}) ≤ D. (17)

It will suffice to show that

H(X̂|Y) ≥ Qsi(PX1,Y1
,D). (18)

For k ≥ 1,

H(X̂k
1 |Y) =

k
∑

i=1

H(X̂i|X̂
i−1
1 ,Y)

≥

k
∑

i=1

H(X̂i|X
i−1,Y)

=

k
∑

i=1

H(fi(X
i,Y)|Xi−1,Y), (19)

where the inequality follows since for the causal source code with non-causal side information (X̂i−1
1 ,Y) is uniquely

determined by (Xi−1,Y). Now,

H(fi(X
i,Y)|Xi−1,Y)

=

∫

H
(

fi((x
i−1 Xi),y)|Xi−1 = xi−1,Y = y

)

dµ(xi−1,y)

9



=

∫

H
(

fi((x
i−1 Xi),y)

∣

∣Yi = yi

)

dµ(xi−1,y) (20)

=

∫
[
∫

H
(

fi((x
i−1 Xi),y)

∣

∣Yi = yi

)

dµ(xi−1, yi−1, y∞
i+1|yi)

]

dµ(yi)

≥

∫
[
∫

Q
(

PXi|Yi=yi
, E[d(Xi, fi((x

i−1 Xi),y)|Yi = yi]
)

dµ(xi−1, yi−1, y∞
i+1|yi)

]

dµ(yi) (21)

≥

∫

Q

(

PXi|Yi=yi
,

∫

E[d(Xi, fi((x
i−1 Xi),y)|Yi = yi]dµ(xi−1, yi−1, y∞

i+1|yi)

)

dµ(yi) (22)

=

∫

Q
(

PXi|Yi=yi
, E[d(Xi, fi(X

i,Y))|Yi = yi]
)

dµ(yi)

≥ Qsi

(

PXi,Yi
,

∫

E[d(Xi, fi(X
i,Y))|Yi = yi]dµ(yi)

)

= Qsi

(

PXi,Yi
, Ed(Xi, fi(X

i,Y))
)

(23)

= Qsi

(

PX1,Y1
, Ed(Xi, X̂i)

)

(24)

where (20) follows since, by hypothesis (that X is the output of a memoryless channel whose input is Y), Xi is

conditionally independent of (Xi−1, Y i−1, Y ∞
i+1) given Yi. Inequality (21) follows from the definition of Q and (22)

follows from convexity. Inequality (23) follows directly from the definition of Qsi and the equality in (24) is due to

stationarity. Consequently,

H(X̂|Y) = lim sup
k→∞

1

k
H(X̂k

1 |Y)

≥ lim sup
k→∞

1

k

k
∑

i=1

H(fi(X
i,Y)|Xi−1,Y) (25)

≥ lim sup
k→∞

1

k

k
∑

i=1

Qsi

(

PX1,Y1
, Ed(Xi, fi(X

i,Y))
)

(26)

≥ lim sup
k→∞

Qsi

(

PX1,Y1
,
1

k

k
∑

i=1

Ed(Xi, X̂i)

)

(27)

≥ Qsi

(

PX1,Y1
, lim sup

k→∞

1

k

k
∑

i=1

Ed(Xi, X̂i)

)

(28)

= Qsi (PX1,Y1
, d({fk}))

≥ Qsi (PX1,Y1
,D) , (29)

where (25) follows from (19), (26) follows from (24), (27) is due to the convexity of Qsi(PX1,Y1
, ·) (recall Lemma 1),

(28) is due to the monotonicity of Qsi(PX1,Y1
, ·), and (29) follows from (17). This establishes (18) and completes the

proof. 2

The proof of the direct part is straightforward, formally establishing the fact that time-sharing side-information-

dependent scalar quantizers (at most two per each side information symbol) attains Qsi(PX1,Y1
,D), when X is the

output of a memoryless channel whose input is Y.

Proof of Direct: Fix an arbitrary ε > 0 and let {ρ(y)}y∈Y be an ε-achiever of Qsi(PX1,Y1
,D), so that both

∑

y∈Y

ρ(y) Pr(Y1 = y) ≤ D (30)

10



and
∑

y∈Y

Q
(

PX1|Y1=y, ρ(y)
)

Pr(Y1 = y) ≤ Qsi(PX1,Y1
,D) + ε (31)

hold. For each y ∈ Y, by the definition of Q
(

PX1|Y1=y, ρ(y)
)

, there exist λy ∈ [0, 1] and D
(0)
y ,D

(1)
y ≥ 0 such that

Q
(

PX1|Y1=y, ρ(y)
)

= λyQ
(

PX1|Y1=y,D(0)
y

)

+ (1 − λy)Q
(

PX1|Y1=y,D(1)
y

)

(32)

and

ρ(y) = λyD(0)
y + (1 − λy)D(1)

y . (33)

Let further f
(0)
y , f

(1)
y denote respective ε-achievers of Q

(

PX1|Y1=y,D
(0)
y

)

and Q
(

PX1|Y1=y,D
(1)
y

)

so that

E[d(X1, f
(0)
y (X1))|Y1 = y] ≤ D(0)

y , E[d(X1, f
(1)
y (X1))|Y1 = y] ≤ D(1)

y (34)

and

H(f (0)
y (X1)|Y1 = y) ≤ Q

(

PX1|Y1=y,D(0)
y

)

+ ε, H(f (1)
y (X1)|Y1 = y) ≤ Q

(

PX1|Y1=y,D(1)
y

)

+ ε. (35)

For each y ∈ Y let now {b
(y)
i } be a deterministic binary sequence such that

1

k

k
∑

i=1

b
(y)
i

k→∞
−→ 1 − λy. (36)

For k ≥ 1 let further:

N(Y k) = |{1 ≤ i ≤ k : Yi = Yk}|. (37)

Finally, let the reproduction coder be defined by

X̂k = f

(

b
(Yk)

N(Y k)

)

Yk
(Xk) (38)

(so that, in particular, it is a member of Fcsi). Now, for y ∈ Y∞,

E[dk(Xk
1 , X̂k

1 )|Y = y]

=
1

k

k
∑

i=1

E[d(Xi, X̂i)|Y = y]

=
1

k

k
∑

i=1

E

[

d

(

Xi, f

(

b
(yi)

N(yi)

)

yi (Xi)

)
∣

∣

∣

∣

∣

Y = y

]

=
1

k

k
∑

i=1

E

[

d

(

Xi, f

(

b
(yi)

N(yi)

)

yi (Xi)

)∣

∣

∣

∣

∣

Yi = yi

]

(39)

=
∑

y∈Y

E
[

d
(

X1, f
(0)
y (X1)

)∣

∣

∣
Y1 = y

] |{1 ≤ i ≤ k : yi = y, b
(y)
N(yi) = 0}|

k

+
∑

y∈Y

E
[

d
(

X1, f
(1)
y (X1)

)∣

∣

∣
Y1 = y

] |{1 ≤ i ≤ k : yi = y, b
(y)
N(yi) = 1}|

k
, (40)

11



where (39) follows by the conditional independence of Xi and (Y i−1, Y ∞
i+1) given Yi, and (40) follows by stationarity.

The ergodicity of Y, combined with (36), imply that for PY-almost every y and all y ∈ Y

|{1 ≤ i ≤ k : yi = y, b
(y)
N(yi) = 0}|

k

k→∞
−→ λy Pr(Y1 = y),

|{1 ≤ i ≤ k : yi = y, b
(y)
N(yi) = 1}|

k

k→∞
−→ (1− λy) Pr(Y1 = y).

(41)

Combining (41) with (40) gives, for PY-almost every y,

lim
k→∞

[

E[dk(Xk
1 , X̂k

1 )|Y = y]
]

=
∑

y∈Y

Pr(Y1 = y)
(

E
[

d
(

X1, f
(0)
y (X1)

)∣

∣

∣
Y1 = y

]

λy + E
[

d
(

X1, f
(1)
y (X1)

)∣

∣

∣
Y1 = y

]

(1 − λy)
)

. (42)

Consequently,

lim sup
k→∞

Edk(Xk
1 , X̂k

1 )

= lim sup
k→∞

E
[

E[dk(Xk
1 , X̂k

1 )|Y]
]

≤ E lim
k→∞

[

E[dk(Xk
1 , X̂k

1 )|Y]
]

(43)

=
∑

y∈Y

Pr(Y1 = y)
(

E
[

d
(

X1, f
(0)
y (X1)

)∣

∣

∣
Y1 = y

]

λy + E
[

d
(

X1, f
(1)
y (X1)

)∣

∣

∣
Y1 = y

]

(1 − λy)
)

(44)

≤
∑

y∈Y

Pr(Y1 = y)
(

D(0)
y λy + D(1)

y (1 − λy)
)

(45)

=
∑

y∈Y

Pr(Y1 = y)ρ(y) (46)

≤ D, (47)

where (43) follows by Fatou’s lemma, (44) follows from (42), (45) from (34), (46) from (33), and (47) from (30).

The conditional entropy rate can now be bounded analogously. For each y ∈ Y∞,

1

k
H(X̂k

1 |Y = y) =
1

k
H

((

f

(

b
(y1)

N(y1)

)

y1 (X1), . . . , f

(

b
(yk)

N(yk)

)

yk (Xk)

)∣

∣

∣

∣

∣

Y = y

)

=
1

k

k
∑

i=1

H

(

f

(

b
(yi)

N(yi)

)

yi (Xi)

∣

∣

∣

∣

∣

Y = y

)

(48)

=
1

k

k
∑

i=1

H

(

f

(

b
(yi)

N(yi)

)

yi (Xi)

∣

∣

∣

∣

∣

Yi = yi

)

(49)

=
∑

y∈Y

H
(

f (0)
y (X1)

∣

∣

∣
Y1 = y

) |{1 ≤ i ≤ k : yi = y, b
(y)
N(yi) = 0}|

k

+
∑

y∈Y

H
(

f (1)
y (X1)

∣

∣

∣
Y1 = y

) |{1 ≤ i ≤ k : yi = y, b
(y)
N(yi) = 1}|

k
, (50)

where (48) is due to the memorylessness of the process X when conditioned on Y, (49) follows by the conditional

independence of Xi and (Y i−1, Y ∞
i+1) given Yi, and (50) follows by stationarity. By (41) it now follows that for
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PY-almost every y

lim
k→∞

1

k
H(X̂k

1 |Y = y) =
∑

y∈Y

Pr(Y1 = y)
[

H
(

f (0)
y (X1)

∣

∣

∣
Y1 = y

)

λy + H
(

f (1)
y (X1)

∣

∣

∣
Y1 = y

)

(1 − λy)
]

. (51)

Consequently,

H(X̂|Y) = lim sup
k→∞

1

k
H(X̂k

1 |Y)

= lim sup
k→∞

1

k

∫

H(X̂k
1 |Y = y)dµ(y)

≤

∫
[

lim sup
k→∞

1

k
H(X̂k

1 |Y = y)

]

dµ(y) (52)

=
∑

y∈Y

Pr(Y1 = y)
[

H
(

f (0)
y (X1)

∣

∣

∣
Y1 = y

)

λy + H
(

f (1)
y (X1)

∣

∣

∣
Y1 = y

)

(1 − λy)
]

(53)

≤ ε +
∑

y∈Y

Pr(Y1 = y)
[

Q
(

PX1|Y1=y,D(0)
y

)

λy + Q
(

PX1|Y1=y,D(1)
y

)

(1 − λy)
]

(54)

= ε +
∑

y∈Y

Pr(Y1 = y)Q
(

PX1|Y1=y, ρ(y)
)

(55)

= Qsi(PX1,Y1
,D) + 2ε, (56)

where (52) follows from Fatou’s lemma, (53) follows from (51), (54) follows from (35), (55) follows from (32), and

(56) follows from (31). The arbitrariness of ε > 0 completes the proof. 2

4 The Case s1 = 1, s2 = 0

4-A Information Theoretic Representation of the OPTA Functions

Consider the case where switch s1 in Figure 3 is closed and s2 is open. For any source code of this type, if X̂ denotes

the reproduction sequence, then by the converse to lossless source coding the average rate is lower bounded by H(X̂).

This is because, as is well-known (cf., e.g., [14]), side information at the encoder alone does not enhance compression

performance3. On the other hand, if this particular source code does not come close to attaining rate H(X̂), it can

be replaced by one which does, essentially by concatenation of a lossless entropy coder. Thus we have

Rx,1,0(D) = inf H(X̂), (57)

where, similarly as in (9), the infimum is over {{fk} ∈ Fc : d({fk}) ≤ D} if x = 0, over {{fk} ∈ Fcsi : d({fk}) ≤ D}

if x = csi, and over {{fk} ∈ Fsi : d({fk}) ≤ D} if x = si. This implies also that for this setting there is no loss of

optimality in confining attention to systems of the type depicted in Figure 5 (where, as in the previous section, the

switch is in one of three modes corresponding to the value of x).

4-B Statement of Result

The fact that side information at the encoder alone does not enhance performance in the classical source coding

setting does not imply that this should be the case for causal source coding. Indeed, Rsi,1,0(D) will, in general, be

3The side information sequence in this case can be thought of as (useless) extra randomness available to the encoder.
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Figure 5: Alternative source coding system for the case s1 = 1, s2 = 0.

strictly less than rc(D) from the original setting of [12]. To see this note that, for example, in the extreme case

where the side information sequence perfectly reveals the source sequence (say Y ≡ X), Rsi,1,0(D) is nothing but

the classical rate distortion function of the source X. As it turns out, however, when the dependence on the side

information in the reproduction coder is constrained to causality, the side information can be discarded, with no

degradation in performance. More formally:

Theorem 4 For (X,Y) such that (Xi, Yi) are i.i.d. ∼ PX,Y , Rcsi,1,0(D) = Q(PX ,D).

4-C Proof of Theorem 4

The direct part of this result, given Theorem 1 is, of course, immediate as, by definition, Rcsi,1,0(D) ≤ rc(D).

Turning to the proof of the converse, define

Qr(PX ,D) = inf
f :U×X→X̂ :Ed(X,f(U,X))≤D

H(f(U,X)), (58)

where the infimum is over all joint distributions of the pair (U,X) consistent with the PX -marginal for X, where U

can take values in any measurable space U , as well as over all f : U × X → X̂ satisfying the indicated constraint.

Claim 1

Qr(PX ,D) = Q(PX ,D),

Qr(PX , ·) denoting the lower convex hull of Qr(PX , ·).

In words, when time-sharing is allowed, randomized scalar quantizers are not advantageous to non-randomized ones.

Proof of Claim 1: Trivially, by the definitions, Qr(PX ,D) ≤ Q(PX ,D) and therefore Qr(PX ,D) ≤ Q(PX ,D). It will

therefore suffice to show that

Qr(PX ,D) ≥ Q(PX ,D). (59)

To this end, assume Qr(PX ,D) < ∞ (otherwise there is nothing to prove), fix ε > 0, and let (PX,U , f) denote an

ε-achiever of Qr(PX ,D), i.e., assuming (X,U) ∼ PX,U and denoting Z = f(U,X),

H(Z) ≤ Qr(PX ,D) + ε, Ed(X,Z) ≤ D. (60)

Since Z is discrete-valued, it follows that PZ|X=x is a distribution of a discrete-valued r.v. for PX -a.e. x. For

U ′ ∼ U [0, 1] independent of X and all such x let gx : [0, 1] → X̂ be a mapping such that gx(U ′) ∼ PZ|X=x (such a
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mapping is of course given by the pseudo-inverse of the cumulative distribution function associated with PZ|X=x).

Define now g : [0, 1]×X → X̂ via g(u′, x) = gx(u′). Clearly (X, g(U ′,X)) and (X,Z) are identically distributed and

therefore

H(g(U ′,X)) ≤ Qr(PX ,D) + ε, Ed(X, g(U ′,X)) ≤ D. (61)

Thus, letting A ⊆ X̂ denote the discrete set where g(U ′,X) takes its values,

Qr(PX ,D) + ε ≥ H(g(U ′,X))

= −
∑

a∈A

Pr(g(U ′,X) = a) log Pr(g(U ′,X) = a)

= −
∑

a∈A

[
∫ 1

0

Pr(g(u′,X) = a)du′

]

log

[
∫ 1

0

Pr(g(u′,X) = a)du′

]

≥ −
∑

a∈A

∫ 1

0

Pr(g(u′,X) = a) log Pr(g(u′,X) = a)du′

=

∫ 1

0

H(g(u′,X))du′

≥

∫ 1

0

Q(PX , Ed(X, g(u′,X)))du′

≥ Q

(

PX ,

∫ 1

0

Ed(X, g(u′,X))du′

)

= Q (PX , Ed(X, g(U ′,X)))

≥ Q (PX ,D) ,

where the first and the last inequalities follow from (61), the second inequality from convexity of the function x log x,

the third inequality from the definition of the function Q(PX , ·) and the fourth from the convexity of Q(PX , ·). The

arbitrariness of ε > 0 implies (59). 2

Proof of Converse Part of Theorem 4: We need to prove that Rcsi,1,0(D) ≥ Q(PX ,D). To this end, fix any

reproduction coder {X̂k} in Fcsi, given by X̂k = fk(Xk, Y k), satisfying

d({fk}) ≤ D. (62)

It will suffice to show that

H(X̂) ≥ Q (PX ,D) . (63)

For k ≥ 1,

H(X̂k|X̂
k−1
1 ) ≥ H(X̂k|X

k−1, Y k−1)

= H(fk(Xk, Y k)|Xk−1, Y k−1)

=

∫

H
(

fk(xk−1,Xk, yk−1, Yk)|Xk−1 = xk−1, Y k−1 = yk−1
)

dµ(xk−1, yk−1)

=

∫

H
(

fk(xk−1,Xk, yk−1, Yk)
)

dµ(xk−1, yk−1)

≥

∫

Qr

(

PX , Ed(Xk, fk(xk−1,Xk, yk−1, Yk))
)

dµ(xk−1, yk−1) (64)
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Figure 6: Reproduction coding followed by essentially lossless coding with the side information at the decoder only.

≥ Q

(

PX ,

∫

Ed(Xk, fk(xk−1,Xk, yk−1, Yk))dµ(xk−1, yk−1)

)

(65)

= Q
(

PX , Ed(Xk, X̂k)
)

, (66)

where (64) follows from the definition of the function Qr, (65) follows by convexity, and (66) from Claim 1. Conse-

quently,

H(X̂) = lim sup
n→∞

1

n
H(X̂n

1 )

= lim sup
n→∞

1

n

n
∑

k=1

H(X̂k|X̂
k−1
1 )

≥ lim sup
n→∞

1

n

n
∑

k=1

Q
(

PX , Ed(Xk, X̂k)
)

(67)

≥ lim sup
n→∞

Q
(

PX , E
[

dk(Xk
1 , X̂k

1 )
])

(68)

= Q
(

PX , lim inf
n→∞

E
[

dk(Xk
1 , X̂k

1 )
])

(69)

≥ Q

(

PX , lim sup
n→∞

E
[

dk(Xk
1 , X̂k

1 )
]

)

(70)

= Q (PX , d({fk}))

≥ Q (PX ,D) , (71)

where (67) follows from (66), (68) by convexity, (69) and (70) by monotonicity and continuity of Q(PX , ·), and (71)

by monotonicity of Q(PX , ·) and (62). This establishes (63). 2

5 The Case s1 = 0, s2 = 1

Consider the problem of causal source coding when the decoder accesses the side information, yet the encoder does

not. Recall first from Section 3 that when side information is available to both encoder and decoder, attention can

be restricted to systems of the form depicted in Figure 4 (regardless of whether or not causality constraints are

imposed on the reproduction). However, the performance of the system in Figure 4 can also be attained when the

middle switch is open, as in Figure 6, using Slepian-Wolf coding [14, 1] in the lossless part in lieu of the conventional

conditional entropy coding performed when the switch is closed. This also leads to:

Observation 1 R0,0,1(D) = R0,1,1(D) = Q01(PX,Y ,D) .
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Proof: For the converse note that trivially R0,0,1(D) ≥ R0,1,1(D) and invoke Theorem 3. For the direct part, use the

same time sharing of at most two scalar quantizers used in the proof of the direct part of Theorem 3 (in Appendix A

below) to generate the side-information-independent reconstruction sequence. Then use Slepian-Wolf coding [14, 1]

to essentially losslessly encode the reproduction sequence using the side information at the decoder only. 2

Note that the reason why the system of Figure 6 is relevant in the setting corresponding to R0,0,1(D) (in which

case the x-switch is open) is that in this case the reproduction coder and the lossless encoder jointly play the role of

an encoder that has no access to the side information, thus forming a system complying with the allowed structure,

as depicted in Figure 3 with an open s1 and a closed s2. In contrast, when the x-switch in Figure 6 is closed (causally

or non-causally), the reproduction coder and lossless encoder cannot be thought of as jointly playing the role of the

encoder in Figure 3 (with an open s1) since their composition will, in general, depend on the side information. Thus,

the “separation” between reproduction coding and lossless coding that has prevailed throughout all the scenarios

considered thus far breaks down in the settings pertaining to Rcsi,0,1(D) and Rsi,0,1(D), the characterization of which

remains open.

6 Summary and Open Questions

We revisited the causal source coding setting of Neuhoff and Gilbert for the case where side information is present. For

the scenarios considered, the optimality of time sharing scalar quantizers (side-information dependent when possible)

was established. More specifically, for the case of side information at both encoder and decoder, all possibilities for

the dependence of the reconstruction on the side information were considered and the optimality of time-sharing

scalar quantizers was established. For the case where side information is available at the encoder only and the

reconstruction sequence is constrained to causal dependence on both the source and the side information, it was

shown that, similarly as in non-causal source coding, the side information sequence can be disregarded without loss.

Characterization of optimum performance when the reconstruction is allowed non-causal dependence on the side

information, namely, the characterization of Rsi,1,0(D), remains open. For the case where side information is at

the decoder only and the reproduction does not depend on the side information, a Slepian-Wolf coding argument

was seen to imply that there is no penalty for the absence of side information at the encoder. Characterization

of the remaining cases involving side information at the decoder remains open. These cases, however, seem less

motivated from a practical viewpoint. It is not clear for these cases whether confining the induced reproduction to

causal dependence on the source and (causal or non-causal) dependence on the side information has any operational

interpretation.

Our findings are summarized in the following table:

s1 = s2 = 0 s1 = 1, s2 = 0 s1 = 0, s2 = 1 s1 = s2 = 1

x = 0 R0,0,0(D) = Q(PX ,D) R0,1,0(D) = Q(PX ,D) R0,0,1(D) = Q01(PX,Y ,D) R0,1,1(D) = Q01(PX,Y ,D)

x = csi Rcsi,0,0(D) = Q(PX ,D) Rcsi,1,0(D) = Q(PX ,D) Rcsi,0,1(D) =? Rcsi,1,1(D) = Qsi(PX,Y ,D)

x = si Rsi,0,0(D) = Q(PX ,D) Rsi,1,0(D) =? Rsi,0,1(D) =? Rsi,1,1(D) = Qsi(PX,Y ,D)

The first column is the result in [12] (the bottom two lines following trivially), the middle line in the second column

is Theorem 4 (from which the first line in the second column follows trivially). The first line of the third column
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follows from Observation 1 in Section 5. The fourth column summarizes the results of Section 3: the first line is

Theorem 3, while the second two are Theorem 2.

Appendix

A Proof of Theorem 3

Proof of Direct Part: By definition, there exist λ ∈ [0, 1] and D0,D1 ≥ 0 such that D = λD0 + (1 − λ)D1 and

Q01(PX,Y ,D) = λQ01(PXY ,D0) + (1 − λ)Q01(PXY ,D1). (A.1)

Fix an arbitrary ε > 0 and let f (0), f (1) denote ε-achievers of Q01(PXY ,D0), Q01(PXY ,D1), respectively, so that

both

Ed(Xi, f
(0)(Xi)) ≤ D0, Ed(Xi, f

(1)(Xi)) ≤ D1 (A.2)

and

H(f (0)(Xi)|Yi) ≤ Q01(PXY ,D0) + ε, H(f (1)(Xi)|Yi) ≤ Q01(PXY ,D1) + ε (A.3)

hold. Let {bi} be a deterministic binary sequence satisfying

1

n

n
∑

i=1

bi
n→∞
−→ 1 − λ. (A.4)

Letting the reproduction coder be given by X̂i = f (bi)(Xi) (so that, in particular, it is a member of Fc), (A.4) and

(A.2) imply

Edk(Xk
1 , X̂k

1 )
n→∞
−→ λEd(X1, f

(0)(X1)) + (1 − λ)Ed(X1, f
(1)(X1)) ≤ λD0 + (1 − λ)D1. (A.5)

On the other hand

1

k
H(X̂k

1 |Y) =
1

k

k
∑

i=1

H(X̂i|X̂
i−1
1 ,Y)

=
1

k

k
∑

i=1

H(f (bi)(Xi)|Yi)

k→∞
−→ λH(f (0)(X1)|Y1) + (1 − λ)H(f (1)(X1)|Y1) (A.6)

≤ λQ01(PXY ,D0) + (1 − λ)Q01(PXY ,D1) + ε (A.7)

≤ Q01(PX,Y ,D) + ε, (A.8)

where (A.6) follows by (A.4) and stationarity, (A.7) follows from (A.3), and (A.8) from (A.1). The proof is complete

by the arbitrariness of ε > 0. 2

Proof of Converse Part of Theorem 3: As indicated in Section 3, we shall prove a result somewhat stronger than

the converse part of Theorem 3, allowing reproduction coders of the form X̂k = fk(Xk, Y k−1). More specifically, we
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shall show that if a reproduction coder of the form X̂k = fk(Xk, Y k−1) satisfies

d({fk}) ≤ D (A.9)

then

H(X̂|Y) ≥ Q01 (PX,Y ,D) . (A.10)

For k ≥ 1,

H(X̂k|X̂
k−1,Y) ≥ H(X̂k|X

k−1,Y)

= H(fk(Xk, Y k−1)|Xk−1,Y)

=

∫

H(fk(xk−1Xk, yk−1)|Xk−1 = xk−1,Y = y)dµ(xk−1,y)

=

∫

H(fk(xk−1Xk, yk−1)|Yk = yk)dµ(xk−1,y) (A.11)

=

∫
[
∫

H(fk(xk−1Xk, yk−1)|Yk = yk)dµ(y∞
k |xk−1, yk−1)

]

dµ(xk−1, yk−1)

=

∫
[
∫

H(fk(xk−1Xk, yk−1)|Yk = yk)dµ(yk)

]

dµ(xk−1, yk−1) (A.12)

=

∫

[

H(fk(xk−1Xk, yk−1)|Yk)
]

dµ(xk−1, yk−1)

≥

∫

Q01(PX,Y , Ed(Xk, fk(xk−1Xk, yk−1)))dµ(xk−1, yk−1) (A.13)

≥ Q01

(

PX,Y ,

∫

Ed(Xk, fk(xk−1Xk, yk−1))dµ(xk−1, yk−1)

)

(A.14)

= Q01

(

PX,Y ,

∫

E[d(Xk, fk(Xk, Y k−1))|Xk−1 = xk−1, Y k−1 = yk−1]dµ(xk−1, yk−1)

)

= Q01

(

PX,Y , Ed(Xk, X̂k)
)

, (A.15)

where (A.11) and (A.12) follow by the fact that the pairs (Xi, Yi) are i.i.d., (A.13) follows from the definition of the

function Q01, and (A.14) follows by convexity. Inequality (A.10) is now established using (A.15) and the assumption

(A.9) through a chain of inequalities analogous to that leading to (71). 2
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