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Abstract- In this paper, we develop a single-letter lower bound on the error exponent for

the problem of trellis source coding. We demonstrate that for the case of a binary source

with the Hamming distortion measure, and for rates close to the rate-distortion curve,

this bound is superior to Marton’s block coding exponent, for the same computational

complexity.

Index Terms - Block source coding, block source coding error exponent, computational

complexity, rate-distortion function, relative entropy, trellis source coding, trellis source

coding error exponent, Viterbi algorithm.

1 Introduction

Historically, trellis source codes were developed in analogy to trellis channel codes (specifi-

cally, convolutional codes), whose performance/complexity tradeoff was shown to be better

than that of block channel codes [22]. Trellis channel codes also serve as building blocks

for nowadays state-of-the-art channel codes, like Turbo codes. Thus, it should not be sur-

prising that trellis source codes are superior to block source codes in terms of having better

performance/complexity tradeoff, as demonstrated empirically, e.g., [5], [6], [9], [14], [15],

[24], [25], [26], and analytically [21], [29].

Jelinek [13] was the first to conjecture that trellis source codes are asymptotically opti-
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mal, i.e., the code performance asymptotically achieves the rate-distortion function as the

constraint length grows without bound. Omura [17] also demonstrated that optimal trellis

source encoding can be done by using the Viterbi algorithm [20]. Viterbi and Omura [21],

have proven the Jelinek conjecture to be true. They have proven a trellis source coding

theorem for memoryless sources. Using a random coding argument, they proved that there

exists a time-varying trellis code that is asymptotically optimal. They also provided the

rate at which the code performance converges to the rate-distortion function, showing it

to be better than the one corresponding to block source codes. Gray [8], extended the

trellis source coding theorem to stationary and ergodic sources. Using various theorems on

sliding-block source codes [7], [10], [11], he proved that there exists a time-invariant trellis

code that is asymptotically optimal. However, since he considered general ergodic sources,

he could not provide an estimate on the convergence rate of the distortion towards the

distortion-rate function. The theorem of Viterbi and Omura and the theorem of Gray are

both existence theorems, and do not provide an indication on how to design a good trellis

source code. Stewart, Gray, and Linde [18], have developed an algorithm for the design of

good trellis codes. Simulation results show the algorithm perform better than vector quan-

tizer with the same complexity [9]. Having the reduction of the computational complexity

of trellis source codes in mind, Marcellin and Fischer [14] have suggested a new trellis source

coding technique called trellis coded quantization (TCQ). TCQ is a form of trellis source

coding that was motivated by the analogy to Ungerboeck’s [19] trellis coded modulation

(TCM). Their simulation results indicate that TCQ is superior to block source coding in

the sense of having better performance/complexity tradeoffs. A generalization of TCQ to

the vector case (referred to as TCVQ) was presented in [6] and [24]. Fischer and Wang [5],

Marcellin [15], and Yang and Zhang [26], combined entropy coding with TCQ to obtain fur-

ther improvement. An analytical proof for the superiority of trellis source codes over block

source codes in terms of performance/complexity, was provided by Zhou and Zhang [29].

They showed, for memoryless sources, that for the same computational complexity Cc, the

redundancy (the difference between the code distortion and the distortion-rate function) for
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a trellis source code is smaller than the redundancy of a block source code [28] by a factor

of roughly ln lnCc. Yang and Zhang [27], further showed that a universal trellis source code

has a redundancy which is at the same order as the redundancy of a trellis source code with

known statistics [29].

Motivated by the performance/complexity tradeoff superiority of trellis source codes

over block source codes, we investigate the error exponent for trellis source coding. By

employing Viterbi and Omura’s ”forbidden” trellis technique [21], we develop a single-letter

lower bound on the trellis source coding error exponent. For the same computational com-

plexity, we compare this bound with the error exponent of block source coding previously

obtained by Marton [16]. In that case, the bound on the trellis error exponent is given

by 1
cR(R − R(D)), where c is a constant depending on the source alphabet’s cardinal-

ity, R is the code rate, and R(D) is the source rate-distortion function. For the binary

source with Hamming distortion measure, and for rates close to the rate-distortion curve,

R = (1 + ε)R(D), ε << 1, we show that the ratio between the trellis error exponent and

the block error exponent is lower bounded by a term of the order O
(

1
ε

)

. This means that

the ratio between the trellis error exponent and the block error exponent grows without

bound as ε → 0. This is yet another indication on the superiority of trellis source codes

over block source codes.

The outline of the paper is as follows. In Section 2, we review the problem of trellis

source coding and introduce the notation. In Section 3, we derive the lower bound on the

trellis source coding error exponent. In Section 4, we compare the bound on the trellis

exponent with Marton’s exponent and calculate the ratio between the two exponents for

rates close to the rate-distortion curve. Section 5 contains some concluding remarks and

directions for future research.

2 Problem Formulation

We begin by setting up the notation. Random variables are denoted by capital letters, their

realizations by the corresponding lower case letters, and their alphabets by script letters.
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Similarly, random vectors, their realizations, and their alphabets are denoted, respectively,

by boldface capital letters, the corresponding boldface lower case letters and by script letters

superscripted by the vector dimension. A substring of vector x = (x1, . . . , xn) is written

as xj
i = (xi, . . . , xj), i ≤ j. Let X be a finite set. The cardinality of X is denoted by

|X |. We denote a probability mass function (pmf) of random variable X by a capital

letter subscripted by X, e.g., PX = {PX(x), x ∈ X}. Similarly, a conditional pmf from

a random variable X ∈ X to another random variable Y ∈ Y is denoted by PY |X =

{PY |X(y|x), (x, y) ∈ X × Y}. For a given pmf PX , the joint pmf of the random variables

X, Y induced by the conditional pmf PY |X , is denoted by PXY = {PX(x)PY |X(y|x), (x, y) ∈

X ×Y}. The rate-distortion function of a discrete memoryless source (DMS) with a general

pmf QX is denoted by R(QX , D). But when QX is the pmf of the underlying source, it will

sometimes be denoted simply by R(D).

Next, we describe the problem of trellis source coding. The considered trellis source

coding scheme is described in Fig 1. We assume a DMS {Xi} with a finite alphabet X , and

pmf PX . The encoder, g : X nL → {0, . . . , q−1}L, encodes a sequence of nL source symbols,

x ∈ X nL, into a codeword w of length L with components chosen from the alphabet

{0, . . . , q − 1}, w ∈ {0, . . . , q − 1}L. The coding rate is defined as:

R =
ln q

n

[

nats

symbol

]

. (1)

The decoder, FL, time-varying in general, consists of a sequence of L functions (one function

for each time instant),

FL , {fi : {0, . . . , q − 1}K → Yn, i = 0, 1, . . . , L − 1}, (2)

where K is the constraint length, and Y is the reproduction alphabet assumed to be finite.

For a given codeword w ∈ {0, . . . , q − 1}L the decoder’s output at time instant i is a vector

of length n, y
(i+1)n−1
in = fi(w

i
i−K+1), i = 0, 1, . . . , L − 1. Let

α ,
K

L
< 1. (3)
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We consider an additive distortion measure

d(x, y) =
1

nL

nL−1
∑

i=0

d(xi, yi), (x, y) ∈ X nL × YnL, (4)

where d(x, y) is bounded distortion measure,

d(x, y) ≤ dmax < ∞, ∀(x, y) ∈ X × Y. (5)

Let xi , x
(i+1)n−1
in , yi , y

(i+1)n−1
in , and define

dn(xi, yi) ,
1

n

n−1
∑

j=0

d(xni+j , yni+j), (6)

then,

d(x, y) =
1

L

L−1
∑

i=0

dn(xi, yi). (7)

For a given decoder FL, the optimal encoder g is clearly given by

g(x,FL) = arg min
w∈{0,1,...,q−1}L

d(x, y(w,FL)), (8)

which is practically implemented using trellis search algorithm such as the Viterbi algorithm

[22]. Let w∗ and y∗(x,FL) be the minimum distortion path sequence and the corresponding

decoder output respectively. Let {FL} denote a sequence of decoders {F1,F2,F3, . . .}. We

are interested in evaluating the error exponent,

ET (R, D, α, {FL}) , lim inf
L→∞

−
1

nL
ln Pr {d(X∗, Y ∗(X,FL)) > D} , (9)

where D > 0 is some given distortion level, when averaging over an ensemble (described

next) of {FL}.

3 Lower Bound on the Error Exponent

In the following theorem, by averaging over an ensemble of decoders sequences, we obtain

a lower bound on (9). Clearly, this bound must also hold for at least one specific sequence

of decoders.
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Figure 1: Trellis source coding scheme.

Theorem 3.1. For every conditional pmf

PY |X ∈ P(R, D) ,
{

PY |X : R > I(X; Y ), D > Ed(X, Y )
}

, (10)

there exists a sequence of decoders {FL} that satisfies

ET (R, D, α, {FL}) ≥ ET (R, D, α, PY |X) > 0, (11)

where,

ET (R, D, α, PY |X) , min

{

inf
{QXY :Ed(X,Y )=D}

D(QXY ||PXY ),
α

c
R(R − I(X; Y ))

}

, (12)

QXY is an arbitrary joint pmf , PXY is the joint pmf induced by PY |X , D(QXY ||PXY ) is

the relative entropy between QXY and PXY , I(X; Y ) is the mutual information with respect

to the joint pmf PXY , and c , 2 + 16(ln |X |)2.

Proof. We use the following random coding argument due to Viterbi and Omura [21]. For

an arbitrarily chosen conditional pmf PY |X :

1. Randomly select the decoder FL by independently selecting the vectors fi(x
i
i−K+1),

xi
i−K+1 ∈ qK , i = 0, 1, . . . , L − 1, according to the pmf

PY (yi) =
n−1
∏

j=0

PY (yij), (13)
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where yij is the j-th component of the vector yi and,

PY (y) =
∑

x∈X

PX(x)PY |X(y|x), (14)

(essentially, independent random selection of nLqK variables according to PY (y)).

2. For the selected decoder FL and a given source sequence, x, replace the branch outputs

of the all-zero state path (represented by fi(0), i = 0, 1, . . . , L− 1) of the trellis by an

output sequence, y0, which is randomly selected according to the density

PY 0|X (y0|x) =
nL−1
∏

j=0

PY |X(y0j |xj). (15)

The trellis diagram with the replaced all-zero state path is referred to as the “forbidden”

trellis diagram. Let y′′ = y′′(x,FL, y0) be the output of the minimum distortion path of

the forbidden trellis diagram. y′′ defines a path through the forbidden trellis diagram. Let

y′ = y′(x,FL, y0) be the output of the corresponding path in the original trellis diagram.

y′ and y′′ are the same except for the outputs on the branches of the all-zero state path.

From the definition of y∗(x,FL) we have that

d(x, y∗(x,FL)) ≤ d(x, y′(x,FL, y0)). (16)

Let

I , {i : y′
i(x,FL, y0) is a branch output vector of the all-zero state path}. (17)
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Then,

d(x, y′(x,FL, y0)) =
1

L

L−1
∑

i=0

dn(xi, y
′
i(x,FL, y0)) (18)

=
1

L

∑

i/∈I

dn(xi, y
′′
i (x,FL, y0)) +

1

L

∑

i∈I

dn(xi, y
′
i(x,FL, y0)) (19)

≤
1

L

L−1
∑

i=0

dn(xi, y
′′
i (x,FL, y0)) +

1

L

∑

i∈I

dn(xi, y
′
i(x,FL, y0)) (20)

≤
1

L

L−1
∑

i=0

dn(xi, y0i) +
1

L

∑

i∈I

dn(xi, y
′
i(x,FL, y0)) (21)

= d(x, y0) +
1

L

∑

i∈I

dn(xi, y
′
i(x,FL, y0)) (22)

≤ d(x, y0) +
dmax

L
|I|, (23)

where |I| is the cardinality of I. Substituting (23) into (16), we have

d(x, y∗(x,FL)) ≤ d(x, y0) +
dmax

L
|I|. (24)

We show that the bound in (11) holds when averaging on {FL}, thus there exists {FL} for

which the bound holds. Averaging over FL, we have

EFL
Pr {d(X, Y ∗(X,FL)) > D|FL} = Pr {d(X, Y ∗(X,FL)) > D} . (25)

From (24), we have

Pr {d(X, Y ∗(X,FL)) > D} ≤ Pr

{

d(X, Y 0) +
dmax

L
|I| > D

}

= Pr

{

d(X, Y 0) +
dmax

L
|I| > D,

dmax

L
|I| ≥ ε

}

+ Pr

{

d(X, Y 0) +
dmax

L
|I| > D,

dmax

L
|I| < ε

}

, (26)

for every ε. Since

Pr

{

d(X, Y 0) +
dmax

L
|I| > D,

dmax

L
|I| < ε

}

≤ Pr

{

d(X, Y 0) > D − ε ,
dmax

L
|I| < ε

}

≤ Pr {d(X, Y 0) > D − ε} , (27)

and since

Pr

{

d(X, Y 0) +
dmax

L
|I| > D,

dmax

L
|I| ≥ ε

}

≤ Pr

{

dmax

L
|I| ≥ ε

}

, (28)
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we obtain

Pr {d(X, Y ∗(X,FL)) > D} ≤ Pr {d(X, Y 0) > D − ε} + Pr

{

dmax

L
|I| ≥ ε

}

. (29)

As for the first term of (29), using Chernoff bound [3] we get,

Pr {d(X, Y 0) > D − ε} = Pr

{

nL−1
∑

i=0

d(Xi, Y0i) > nL(D − ε)

}

≤ inf
s≥0

{

exp {−snL(D − ε)}E exp

{

s
nL−1
∑

i=0

d(Xi, Y0i)

}}

= inf
s≥0

{

exp {−snL(D − ε)} (E exp {sd(X, Y )})nL
}

(30)

= exp

{

−nL sup
s≥0

[s(D − ε) − ln(E exp(sd(X, Y )))]

}

(31)

Equation (30) is due to the fact that {(Xi, Y0i)} are i.i.d. Using Jensen’s inequality [4] one

can obtain that

sup
s≥0

[s(D − ε) − ln(E exp(sd(X, Y )))] = inf
{QXY :Ed(X,Y )=D−ε}

D(QXY ||PXY ), (32)

resulting in that,

Pr {d(X, Y 0) > D − ε} ≤ exp

{

−nL inf
{QXY :Ed(X,Y )=D−ε}

D(QXY ||PXY )

}

. (33)

Note that

inf
{QXY :Ed(X,Y )=D−ε}

D(QXY ||PXY ) > 0, (34)

for

D − ε > Ed(X, Y ). (35)

As for the second term of (29), taking ε > 0 and using Markov’s inequality, we have

Pr

{

dmax

L
|I| ≥ ε

}

≤
dmax

εL
E|I|. (36)

Let pji be the probability that y′ merges with the all-zero state path at node j and remains

merged for exactly i branches. Using the results of Viterbi and Omura [21], we have

E|I| ≤
L−1
∑

j=0

L−j−1
∑

i=1

ipji, (37)
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where,

pji ≤ exp
{

−(K − 1)E(R, PY |X) ln q
}

exp

{

−i
nE2(R, PY |X)c

2

}

, (38)

E(R, PY |X) ,
R − I(X; Y )

c
(39)

Substituting (38) into (37), we get

E|I| ≤ exp
{

−(K − 1)E(R, PY |X) ln q
}

L−1
∑

j=0

L−j−1
∑

i=1

i exp

{

−i
nE2(R, PY |X)c

2

}

≤ exp
{

−(K − 1)E(R, PY |X) ln q
}

L
L−1
∑

i=1

i exp

{

−i
nE2(R, PY |X)c

2

}

≤ exp
{

−(K − 1)E(R, PY |X) ln q
}

L

∞
∑

i=1

i exp

{

−i
nE2(R, PY |X)c

2

}

= L
exp

{

−
nE2(R,PY |X)c

2

}

(

1 − exp
{

−
nE2(R,PY |X)c

2

})2 exp
{

−(K − 1)E(R, PY |X) ln q
}

(40)

= L
exp

{

−
nE2(R,PY |X)c

2 + E(R, PY |X) ln q
}

(

1 − exp
{

−
nE2(R,PY |X)c

2

})2 exp
{

−KE(R, PY |X) ln q
}

. (41)

Equation (40) holds for R − I(X; Y ) > 0, otherwise the sum does not converge. Let

ψ(ε) ,
dmax

ε

exp
{

−
nE2(R,PY |X)c

2 + E(R, PY |X) ln q
}

(

1 − exp
{

−
nE2(R,PY |X)c

2

})2 , (42)

then, substituting (41) into (36), we obtain

Pr

{

dmax

L
|I| ≥ ε

}

≤ ψ(ε) exp
{

−LαE(R, PY |X) ln q
}

= ψ(ε) exp
{

−nLαE(R, PY |X)R
}

. (43)

Substituting (33) and (43) into (29), we obtain

Pr {d(X, Y ∗(X,FL)) > D} ≤ 2 max [1, ψ(ε)] exp
{

−nLE′(R, D, α, PY |X , ε)
}

, (44)

where

E′(R, D, α, PY |X , ε) , min

{

inf
{QXY :Ed(X,Y )=D−ε}

D(QXY ||PXY ),
α

c
R(R − I(X; Y ))

}

. (45)
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Taking ε > 0 to be a function of L, ε = ε(L), satisfying

lim
L→∞

ε(L) = 0 (46)

and

lim
L→∞

1

L
ln ε(L) = 0 (47)

(e.g., ε(L) = 1/L), we obtain that,

ET (R, D, α, {FL}) ≥ ET (R, D, α, PY |X) (48)

From (40) and (34) we have that,

E(R, D, α, PY |X) > 0, (49)

for

D > Ed(X, Y ) and R > I(X; Y ). (50)

This concludes the proof ¥.

Theorem 3.1 actually tells that we can get arbitrarily close to the rate-distortion curve

while maintaining a positive error exponent. This can be easily verified by choosing PY |X

to be the pmf that achieves the rate-distortion function. However, this pmf is not necessarily

the one that achieves the maximal error exponent, given by

sup
PY |X∈P(R,D)

ET (R, D, α, PY |X). (51)

.

Example - Binary source with Hamming distortion measure

Let X = Y = {0, 1}, PX(1) = p < 0.5, and d(x, y) = 1− δ(x− y). Let us define the random

variable A as

A =











1 X 6= Y

0 X = Y.
(52)
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Let QA and PA be the pmf’s of A when (X, Y ) are distributed according to QXY and PXY

respectively, i.e.,

QA(1) = QXY (0, 1) + QXY (1, 0), (53)

PA(1) = pPY |X(0|1) + (1 − p)PY |X(1|0) = Ed(X, Y ). (54)

Using the data processing theorem for relative entropy we have

D(QXY ||PXY ) ≥ D(QA||PA), (55)

and thus clearly

min
{QXY :Ed(X,Y )=D}

D(QXY ||PXY ) = min
{QA:QA(1)=D}

D(QA||PA)

= D ln
D

Ed(X, Y )
+ (1 − D) ln

1 − D

1 − Ed(X, Y )

= −h2(D) − D ln(Ed(X, Y )) − (1 − D) ln(1 − Ed(X, Y )),

(56)

where h2(D) , −D lnD − (1 − D) ln(1 − D) is the binary entropy function. Substituting

(56) and c = 2 + 16(ln 2)2 = 9.6872 into (51) we obtain that,

ET (R, D, α, {FL}) ≥ sup
{PY |X :R>I(X;Y ), D>Ed(X,Y )}

min

{

− h2(D) − D ln(Ed(X, Y ))

− (1 − D) ln(1 − Ed(X, Y )),

0.1032αR(R − I(X; Y ))

}

, (57)

which can be easily evaluated numerically.

4 Comparison with the Error Exponent for Block Source

Coding

We would like to compare the lower bound on the trellis error exponent with the error expo-

nent corresponding to block source codes for the same computational complexity. Marton
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[16] has shown that the best block code satisfies,

EB(R, D) , lim
N→∞

−
1

N
ln Pr {d(X, Y ) > D}

= min
{QX :R(QX ,D)≥R}

D(QX ||PX), (58)

where the code rate satisfy R(D) < R < maxQX
R(QX , D). For block source codes, the

encoder computational complexity grows exponentially fast with exponent of NR, while

for trellis source codes it grows exponentially fast with exponent of αnLR. For the same

computational complexity exponent 1

αnLR = NR, (59)

the error exponent for block source codes is given by EB(R, D), while for trellis source codes

it is given by

1

α
ET (R, D, α, {FL}) ≥

1

α
sup

PY |X∈P(R,D)
ET (R, D, α, PY |X). (60)

Striving for the highest exponent we define,

ET (R, D, {FL}) , sup
0<α<1

1

α
ET (R, D, α, {FL}). (61)

Using (60) we have that,

ET (R, D, {FL}) ≥ sup
0<α<1

sup
PY |X∈P(R,D)

1

α
ET (R, D, α, PY |X)

= sup
0<α<1

sup
PY |X∈P(R,D)

min

{

1

α
inf

{QXY :Ed(X,Y )=D}
D(QXY ||PXY ),

1

c
R(R − I(X; Y ))

}

= sup
PY |X∈P(R,D)

1

c
R(R − I(X; Y ))

=
1

c
R(R − inf

PY |X∈P(R,D)
I(X; Y ))

=
1

c
R(R − R(D)) (62)

1Note that the trellis codeword length is actually L+K−1. This is because the codeword must be ended

by a tail of K − 1 zeros that reset the decoder memory. At first look one might think that this leads to a

reduction in the coding rate. However, the code rate being defined as ln(size of codebook) (ln qL) divided

by the length of the source input sequence (nL), there is actually no rate loss. When comparing between

the block code and trellis code, the penalty of using an additional K −1 channel uses in the trellis code does

not matter since anyway we have that L = N

nα
>> N .
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for R > R(D). The trellis exponent is superior to the block exponent if

ET (R, D, {FL})

EB(R, D)
≥

R(R − R(D))

c min{QX :R(QX ,D)≥R} D(QX ||PX)
> 1. (63)

We now return to the binary example. Marton has shown [16] that

EB(R, D) = q ln
q

p
+ (1 − q) ln

1 − q

1 − p
, (64)

where q < 0.5 is the solution to the equation,

h2(q) = h2(D) + R, (65)

where,

h2(p) − h2(D) = R(D) < R < ln 2 − h2(D), D ≤ p. (66)

Without generality loss, assume that

R = (1 + ε)R(D), (67)

where

0 < ε <
ln 2 − h2(D)

h2(p) − h2(D)
− 1. (68)

We now derive an explicit expression for the lower bound on ET (R, D, {FL})/EB(R, D)

(63). Substituting (67) into (65), we have

h2(q) = h2(p) + εR(D). (69)

Let q(ε, p, D) < 0.5 denote the q that solves equation (69). Using Lagrange’s mid-value

theorem we have

q(ε, p, D) − p =
h2(q(ε, p, D)) − h2(p)

dh2(x)
dx

∣

∣

∣

x=ξ(ε,p,D)

=
εR(D)

ln
(

1
ξ(ε,p,D) − 1

) , (70)

where ξ(ε, p, D) is a point satisfying

p < ξ(ε, p, D) < q(ε, p, D) < 0.5. (71)

Note that

0 < ln

(

1

q(ε, p, D)
− 1

)

< ln

(

1

ξ(ε, p, D)
− 1

)

< ln

(

1

p
− 1

)

. (72)
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Substituting (70) into (64) we obtain that

EB(R, D) =



p +
εR(D)

ln
(

1
ξ(ε,p,D) − 1

)



 ln



1 +
εR(D)

p ln
(

1
ξ(ε,p,D) − 1

)





+



1 − p −
εR(D)

ln
(

1
ξ(ε,p,D) − 1

)



 ln



1 −
εR(D)

(1 − p) ln
(

1
ξ(ε,p,D) − 1

)



 . (73)

Using Taylor’s series expansion we can write that

(p + x) ln

(

1 +
x

p

)

+ (1− p− x) ln

(

1 −
x

1 − p

)

=
1

2p(1 − p)
x2 +

2(p + c) − 1

6(1 − (p + c))2(p + c)2
x3,

(74)

where c is a point satisfying

0 < c < x. (75)

In our case

x =
εR(D)

ln
(

1
ξ(ε,p,D) − 1

) > 0, (76)

and since

p + c < p + x = p +
εR(D)

ln
(

1
ξ(ε,p,D) − 1

) = q(ε, p, D) < 0.5, (77)

we have that the most right-most term in equation (74) is negative, and thus

EB(R, D) <
(εR(D))2

2p(1 − p)
[

ln
(

1
ξ(ε,p,D) − 1

)]2 . (78)

On the other hand, using (62) we have

ET (R, D, {FL}) ≥
1

c
R(R − R(D)) = 0.1032(1 + ε)ε(R(D))2. (79)

Substituting (78) and (79) into (63), we obtain that

ET (R, D, {FL})

EB(R, D)
> 0.2064p(1 − p)

[

ln

(

1

ξ(ε, p, D)
− 1

)]2 (

1 + ε

ε

)

. (80)

Let us now choose some ε0 satisfying (68), and let q(ε0, p, D) < 0.5 be the solution to

equation (69) when ε = ε0. For ε ≤ ε0, using (72) and since h2(x) is increasing function of

x for x < 0.5, we have that q(ε, p, D) ≤ q(ε0, p, D) < 0.5, and therefore

0 < ln

(

1

q(ε0, p, D)
− 1

)

< ln

(

1

ξ(ε, p, D)
− 1

)

< ln

(

1

p
− 1

)

. (81)
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Using (81) we obtain that for ε ≤ ε0,

ET (R, D, {FL})

EB(R, D)
> O

(

1

ε

)

. (82)

Thus, for small enough ε, i.e, for rates close to R(D), the trellis exponent is superior to

the block exponent. Fortunately, keeping in mind we are interested in achieving maximum

possible compression, the region where R is very close to R(D) is of the most interest. For

ε << 1, we have that ξ(ε, p, D) → p, and we can approximate the bound in (80) by

0.2064p(1 − p)

[

ln

(

1

ξ(ε, p, D)
− 1

)]2 (

1 + ε

ε

)

≈ 0.2064p(1 − p)

[

ln

(

1

p
− 1

)]2 1

ε
(83)

In Table 1 we have numerically calculated the lower bound on ET (R, D, {FL})/EB(R, D)

(63) for p = 0.3. The number in the brackets is the approximation of the lower bound

calculated according to (83). We can see that the approximation is very accurate.

For coding rates that are more remote from R(D), the lower bound on the trellis exponent

was not always found larger than the block exponent. We conjecture that this should be

attributed to the possibility that the bound may be loose for these rates, rather than to the

possibility that the real trellis exponent is inferior to the block exponent.

ET (R,D,{FL})
EB(R,D) > R = 1.01R(D) R = 1.001R(D) R = 1.0001R(D)

D = 0.05 3.0669 (3.1437) 31.0813 (31.1569) 311.2140 (311.2895)

D = 0.10 3.0906 (3.1437) 31.1045 (31.1569) 311.2372 (311.2895)

D = 0.15 3.1088 (3.1437) 31.1224 (31.1569) 311.2550 (311.2895)

D = 0.20 3.1232 (3.1437) 31.1369 (31.1569) 311.2691 (311.2895)

D = 0.25 3.1347 (3.1437) 31.1482 (31.1569) 311.2805 (311.2895)

Table 1: The ratio between the error exponents for several rate-distortion pairs.

Essentially, we showed that for small ε the trellis exponent scales linearly with ε, whereas

the block exponent is quadratic in ε, so when ε vanishes, the ratio between them grows

without bound. This was done for the binary case which is just an example, but the natural

question that arises is whether this behavior applies more generally than in the binary case.
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It is not difficult to show that the answer is affirmative provided that the minimizer of

D(QX ||PX) s.t. R(QX , D) ≥ (1 + ε)R(D) is always close to PX (in the variational distance

sense) for small ε, because then the divergence will be quadratic in ε, similarly as in the

binary example. However, it is not always true that the minimizing QX is close to PX even

if ε is very small. A problematic case may arise when R(QX , D), as a functional of QX for

fixed D, has local maxima which are not global maxima [1]. If PX is such a local maximum,

then the minimizer QX of D(QX ||PX) might be far away from PX and the above technique

does not apply.

For a source PX and a distortion measure which meet the Shannon lower bound (SLB)

[2], the above–mentioned local maximum problem does not exist, and so, our analysis

for the binary example can essentially be extended. To demonstrate this, consider, for

simplicity, the special case where X = Y and where d is a difference distortion measure, i.e.,

d(x, y) = ρ(x− y) for a well–defined subtraction between members of X . Then, the SLB is

given by (H(QX) is the entropy corresponding to QX)

R(QX , D) ≥ H(QX) − φ(D) (84)

where the function φ is defined as

φ(D) = max
{Z: Eρ(Z)≤D}

H(Z) (85)

Z being a random variable that takes all values of differences between members of X . Now,

since we are assuming that the SLB is tight for PX , inequality (84) becomes an equality for

QX = PX . Thus,

EB(R, D) = min
{QX :R(QX ,D)≥(1+ε)(H(PX)−φ(D))}

D(QX ||PX)

≤ min
{QX :H(QX)−φ(D)≥(1+ε)(H(PX)−φ(D))}

D(QX ||PX)

≤ min
{QX :H(QX)−φ(D)=(1+ε)(H(PX)−φ(D))}

D(QX ||PX)

= min
{QX :H(QX)−H(PX)=ε(H(PX)−φ(D))}

D(QX ||PX). (86)

Since H(QX) is concave functional of QX it has only one local maximum which is also the

global maximum. For most sources, H(QX) being within ε close to H(PX), also indicates
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that the distance between QX and PX is also proportional to ε (this can be checked for a

specific source by calculating the partial derivatives of H(QX) for QX = PX). Examples

for such sources are all finite alphabet non-uniformly distributed sources with the Hamming

distortion measure [2], note however, that for those sources the SLB is usually tight only

below some distortion level.

5 Concluding Remarks and Future Research Directions

In this paper we developed a lower bound on the trellis source coding error exponent.

For binary sources with Hamming distortion measure, for rates close to the rate-distortion

curve, and for the same computational complexity, we showed the bound to be superior

to the block source coding error exponent. This result can also be extended to sources

with distortion measures for which the SLB is tight, e.g., all finite alphabet non-uniformly

distributed sources with the Hamming distortion measure and for small values of distortion.

An interesting future research direction would be to look into tightness of the trellis error

exponent bound. This may be done by exploring more powerful bounding techniques and

perhaps also devise upper bounds to the trellis exponent.
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