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Abstract

In this work coding for the degrarded broadcast channel controlled by random parameters is stud-
ied. Two main paradigms are considered: where side information on the random parameters is provided
to the transmitter in a noncausal manner (termed here non-causal coding), and where side information
is provided in a causal manner (termed causal coding). Inner and outer bounds are derived on the
capacity region with non-causal coding. For the special case where the non-degrarded user is informed
about the channel parameters, we show that the inner bound is tight, thus deriving the capacity region
for that case. For causal coding, a single-letter characterization of the capacity region is derived. This
characterization is expressed via auxiliary random variables, and can also be interpreted by means
of Shannon strategies, as the formula for the capacity of the single-user channel with causal coding
derived by Shannon. The capacity region of a class of binary broadcast channels with causal coding
is computed, as an example. Applications to watermarking are suggested. In particular, our results
on non-causal coding can be used to derive the capacity region of a watermarking system where the
channel (attacker) is fixed, and the encoder is required to encode watermarks for both, private and
public users.

Index terms — Broadcast channel, causal coding, degraded broadcast channel, information hid-
ing, non-causal coding, side information, Shannon strategies, watermarking.

1 Introduction

Channels that depend on random parameters have been extensively studied, due to the wide range
of applications in which such models appear. In many cases, it is reasonable to assume that the
random parameters controlling the channel are known either to the receiver or to the transmitter.
When such knowledge is present at the receiver, the known parameters can be regarded as part of

the channel output, and hence, at least from theoretical point of view, this model does not differ
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from the classical (state-independent) model. Similarly, when the parameters are known at both
sides, the problem can be handled with classical (state-independent) methods, by splitting the
channel into many parallel channels, each with one (deterministic) state, constructing an optimal
codebook for that state, and combining the codebooks again according to the relative frequencies of
the corresponding states. A digress from state-independent methods appears when the parameters
are known only at the transmitter. A key factor in the study of coding for, and the capacity of, such
channels, is whether the parameters controlling the channel are known causally or non-causally at
the encoder. The capacity of the single-user channel with random parameters, known causally at
the encoder, was derived by Shannon [18]. Let Py x5 stand for the channel transition probability,
where Y is the channel output, X the channel input, and S the random parameters, distributed
according to Ps. Shannon showed that the capacity of this channel can be expressed as

¢ = max I(T;Y) (1)
where t(-) stands for strategy, i.e., a mapping from the state alphabet S to the channel input
alphabet X, and the maximization is over all distributions Pr(t) on the space of strategies. It
should be noted that evaluation of (1) for specific models is usually hard, as it involves maximization
with respect to distributions over the space of strategies. There are few cases, however, where (1)
admits a simpler form. These include cases where the state sequence known at the encoder is a
subset of the channel output [1], and the discrete memoryless modulo-additive channels, treated by

Erez and Zamir in [10]. We will refer to some of the derivations in [10] in our examples section.

Coding for state-dependent channels, where the state is known non-causally at the encoder, was
initiated by the work of Kusnetsov and Tsybakov [14], who considered this problem in the context
of coding for a storage unit, say a computer memory, with defective cells, where the location of the
defective cells is known a priori to the encoder. This application initiated a series of works that
dealt with specific coding schemes for computer memories — see, e.g., [22] and [15], and references
therein. A complete treatment, with a capacity formula for the general case (i.e., not restricted to
a computer memory model), was given by Gal’fand and Pinsker [11]. In their setting, a single user
channel Py |x g is controlled by random state S, whose realization s" is known non-causally to the
encoder, whereas the decoder is kept ignorant of it. Gel’fand and Pinsker showed that the capacity

of this channel is given by

C = max [[(U;Y) — I(U; §)] 2)

where U is an external random variable, and the maximum is over all random variables (U, S, X,Y),



where Y is connected to (U, S, X) via the channel Py |x g. In general, the evaluation of (2) for spe-
cific models is a difficult task. For the special case of Gaussian channel with additive Gaussian
interference S (that is, the state plays the role of an interferer), Costa [5] have shown that the ca-
pacity equals that of the same Gaussian channel, without the additive interference S. Costa’s result
was extended to vector Gaussian channels with additive interference in [27]. Although non-causal
coding might seem to be of limited applicability, it turned out that the Gel’fand and Pinsker result,
and the interesting observations made by Costa, has found numerous applications in various fields.
The non-causal coding model was recently extensively applied to the problem of watermarking and
information hiding ([4], [16], [17], [21] is only a partial list). In these models, the channel does not
explicitely depend on the state S. Instead, a host data, or a covertext into which the watermark is
to be encoded, is represented by S™. The channel input words X" satisfy a distortion constraint
with respect to the host data S™. Thus the capacity is given by the maximum in (2), with an
additional distortion constraint between X and S. Costa’s result [5], with its extension to the
vector case [27], has found applications in coding for the broadcast channel [2]. In particular, it
turned out that dirty paper coding for the vector broadcast channel, a technique based on Costa’s
construction, is optimal in the sense that it exhausts the whole capacity region of the general MIMO

broadcast channel [23], [24].

While for single user channels capacity formulas were derived for both, causal and non-causal
side information, much less is known for multiuser models. Das and Narayan [8] studied causal
coding for the state-dependent multiple access channel (MAC), with various degrees of side informa-
tion available at the encoders and decoder. They considered the most general model - i.e., general
channel statistics and general state process (need not be stationary and ergodic). Therefore, most
of the formulas obtained are expressed as unions of regions characterized by limits of information
quantities — that is, not a single-letter formula. The only case where these expressions collapse
into a single-letter formula is when the following conditions are fulfilled: (a) the side information
available to the encoders is a subset of the channel output, (b) the channel is memoryless and time
invariant, (c¢) the state is stationary and ergodic, and (d) the coding starategies are restricted to
depend only on a finite window of the respective side information. Condition (d) can be relaxed if
we restrict the class of state processes: if the state is memoryless, then a single letter formula can
be obtained even if the coding strategies have infinite memory with respect to the encoders side

information.



Coding for multiuser models, with non-causal side information, was studied recently in two
aspects: capacity regions for specific channel models, and random coding error exponents. Inner
and outer bounds on the capacity region of the degraded broadcast channel were presented in [20].
The inner bound presented is tight for a special class of broadcast Gaussian channels, treated later
in [13]. In addition, the inner bound of [20] is tight for the scenario where the stronger user has
full side information, as the encoder. In [13], Kim, Sutivong, and Sigurjénsson derived the capacity
region for three Gaussian channels with additive interference known non-causally at the encoders -
the Gaussian multiple access channel, the Gaussian broadcast channel, and the physically degraded
Gaussian relay channel. For the broadcast channel, it was assumed that the same interference
appears at the two marginal channels, so the channel remains a degraded one. Similarly for the
physically degraded relay channel: an interference signal is added to both, the direct and the rely
path. For these three models, it was demonstrated that once the interference in known non-causally
to the encoders, no loss in capacity is incurred relative to the case of no interference. The authors
termed it as the WDP property. It should be noted that due to the WDP property, no converse has
to be proved, that is, once a coding scheme is devised, that achieves that capacity of the channel
without interference, it is clear that this scheme is optimal. In [12], a model is suggested, where
one transmitter wishes to convey the same message to many different users via binary channels,
each of which suffers from its own additive interference. All the interfering signals are known to the
encoder. Under certain conditions on the joint statistics of the interfering signals, inner and outer
bounds are derived on the capacity, which are tight for the case of two users. Random coding error

exponents for the single-user and multiple access channels were derived in [19].

In this work we study the degraded broadcast channel with random parameters, with non-causal
and causal coding. We provide the full proofs, with extensions, of the results presented in [20]. A
general description of such channel is given in Figure 1. Inner and outer bounds are derived, on the
capacity region of the degraded broadcast channel with random parameters known non-causally at
the encoder. As a result of the bounds presented, a full characterization of the capacity region is
given for the special case that the stronger user (the non-degraded component) has full knowledge
about the state S. For the causal case, a full characterization of the capacity region is derived.
This characterization is given in terms of auxiliary random variables, and can also be interpreted

via Shannon strategies, as (1) for the single-user case.

In analogy to the single-user case, our results on non-causal coding can be applied to problems of



watermaking, when one encoder is required to encode watermarks for more than one user, or when
the encoded information is supposed to pass several stages of attacks, thus resulting in a degraded
channel model. Another situation in which our results can be applied is where the encoder is
supposed to convey information without a priori knowledge whether the decoder has an access to
the host data S (the private version in the terminology of waternarking) or is ignorant of it (the
public version). In this case a tradeoff exists between information that can be sent to public and
that for private users. This is well represented by the capacity region of our degraded broadcast

model.
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Figure 1: The broadcast channel with random parameters

This work is organized as follows. In Section 2 the basic definitions and notation are pre-
sented. All our main results, for causal and non-causal side information, are presented in Section 3.
Section 3.1 is devoted to non-causal side information, and Section 3.2 to coding with causal side
information. In Section 4 examples are given. In particular, the results of Section 3.2 are used to
derive the capacity region of a certain class of binary broadcast channels. Finally, the proofs of our

main results are given in Section 5.



2 Definitions

Let X, S, ), Z be finite sets, and let Pg(-) be a probability mass function (PMF) on S. A broadcast
channel with random parameters (S, Ps(s), X, W (y, z|s,z),Y, Z) is a channel with input alphabet
X, state space S, output alphabet ) x Z, and transition probability matrix W (y, z|s, z), where the
states s are random, taking values in § according to the PMF Pgs. When the choice of the alphabets
and of Pg is clear, we will refere to the broadcast channel just by W(y, z|s,z). Throughout, we
let y* denote the vector (Ym,Ym+1,---,Yn). When the choice of n is clear, we use boldface letters
to denote n-vectors, i.e., y = yI' = y". We assume memoryless, time invariant channel and state

parameters. l.e.,
n

W™y, z|s, @) = [[ W (yi, zilsi, ),
i1

and
Pi(s) = [[ Ps(si)-
i=1

We denote the marginals by Wy g x(y|s,z) and W5 x(z|s,z). A broadcast channel W (y, z|s, z)

is said to be physically degraded if we can write

Wy, zls,z) = Wy\s,x (yls, 2) Wy (2]y) (3)

for some transition probability matrix Wy, in which case Z is said to be the degraded component.
Note that according to this definition, the state parameter s controls only the non-degraded chan-
nel, whereas Wyy, the channel from Y to Z, is independent of the states. A broadcast channel
Wy, z|s,x) is said to be stochastically degraded if there exists some transition probability matrix

W’Z‘Y such that
Wais,x(2]s,2) =Y Wy s.x (yls, €)Wy (2]y)- (4)
y

Definition 1 An (n, My, Mz, \) noncausal code for the broadcast channel with random parame-

ters W (y, z|s, z) is an encoder map
f+ AL 2,..., My} x{1,2,... Mz} xS8" — &", (5)
and a pair of decoding maps

gy V' —{1,2,..., My},
g, 2" —{1,2,..., Mz},



such that the probability of error in decoding the messages is not larger than A, i.e.,

My Mz

>3 Y PEW (197 (my) x g5 (m) | 5, flmysma,s) <A (6)

my=1m,=1s"cS"

1
My My

The rate pair (Ry,Rz) of the code is defined as (Ry,Rz) = 1/n(log My,log Mz). A rate pair
(Ry,Ryz) is said to be A-achievable if for any v > 0 and sufficiently large n there exists an
(n, 2By =1) on(Rz=7) X) code for W (y,z|s,z). The closure of all A-achievable rate pairs is the
A-capacity region C(\). The capacity region C is the closure of all rate-pairs (Ry, Rz) that are
A-achievable for every A > 0.

The definition of an (n, My, Mz, \) causal code for the channel W (y, z|s, x) is similar to that of
the noncausal code in Definition 1, except that the encoder consists of a sequence of maps {fi}i" ,

where f; is the mapping at time i. Thus, the encoder mapping f in (5) is replaced by
fio {1,2,..., My} x{1,2,... Mz} xS — X, i=1,2,...,n, (7)

and, accordingly, the probability of error (6) is replaced by

1 My

Mz
S Y PEsW oy (my) x g7 (o)) | s, f(my,mai8)) SA(8)

my=1m,=1s"eS"

My Mz

where f is the sequence of encoder outputs, i.e.,

f(myamzas) =T = (fl(myamzaSl)an(myamZaSQ)a' .- afn(myamzasn)) .

The definitions of achievable rates and capacity region remain as in the noncausal case. We denote
the capacity region of the channel W with causal coding by C., where the subscript ¢ stands for

causal.

In this work we confine attention to the degraded broadcast channel with random param-
eters. Similar to the situation in the classical broadcast channel, the capacity regions (causal
and noncausal) depend on W (y, z|s, z) only via the marginal channels Wy (y|s, z) and Wg(z|s, z).
Therefore, no distinction has to be made between stochastically degraded and physically degraded
broadcast channels, and hereafter they will be termed as degraded broadcast channels with random

parameters.



3 Main Results

3.1 Non-causal Side Information

Let P stand for the collection of all random variables (RVs) (K, S, X,Y, Z) such that K and X

take values in the finite alphabets K and X , respectrively, X’ is the input alphabet of the channel

W, and

Pf(,S’X,Y’Z(];aSaxayﬂz) = PI”(’X,S(I;?,(II,S)W(y,ZkE,S)

Y Py gk, 9) Ps(s).
oyt

By (9), the following Markov relations hold
Ko (S,X)e (Y, Z).
Define R; to be the set of all rate pairs (Ry, Rz) such that

Rz
Ry < I(U;Y|K)-1I(U;S|K) forsome ((K,U),X,S,Y,Z)

IN

I(K;Z)—-I(K;S)

We have the following properties of R;.

Proposition 1

1. The set R; is convex.

(11)

eP. (12)

2. To exhaust R;, it is enough to take X to be a deterministic function of the triple (K,U,S).

3. To ezhaust R;, it is enough to restrict K and U to satisfy

Kl < IS]1a) + 1,
Ul < ISIIX(S]*] + 1)

The proof is given in Section 5.1.

We have the following inner bound.



Theorem 1 For any discrete memoryless degraded broadcast channel with random parameters,

R; CC.

The proof is based on a random code consisting of a combination of the code construction for the

degraded broadcast channel [6] and that of Gel’fand and Pinsker [11]. It is given in Section 5.2

We state now the outer bound. Define R, to be the set of all rate pairs (Ry, Rz) such that

Rz

IN

I(K; Z) - I(K;S),
Ry < I(U;Y|K,V)-I(U;S|K,V),

Ry + Ry < I(K,V,U;Y)—I(K,V,U;S), forsome ((K,V,U),S,X,Y,Z)eP. (15)

Proposition 2 The set R, is convex. Moreover, in order to exhaust the whole set R,, it is enough

to restrict the alphabets of K, U, and V to satisfy

Kl < XS] +2

N

VI
U]

[ X[ISI(X[IS]+2) +1

IN

(1X[[SIAXNS] +2) + 1) (|X]S] + 2)[X]|S] + 1

The proof is similar to the proof of Proposition 1, and is omitted.

Theorem 2 For any discrete memoryless degraded broadcast channel with random parameters,

C CR,.

The proof is deferred to Section 5.3.

The cases where the state S is available to decoder Y, or to decoder Z, or to both, are special
cases of definition 1. This can be viewed by incorporating the state as part of the corresponding
channel output, Y, or Z, or both (see, for example, [3]). If decoder Z is informed, while decoder Y

is kept ignorant, then (3) is not satisfied, and the channel is not a degraded one.

In what follows we restrict attention to a model where the state S ia available to Y but not

to Z. It turns out that in such a case, the inner bound R;, given in (12), is tight, and admits a



simpler form. Define the set R to be the collection of all pairs (Ry, Rz) such that

Rz < I(K;Z)—I(K;S),
Ry

IN

I(X;Y|K,S), (K,S X,Y,Z)¢€P. (16)

Similarly to the statements made in Proposition 1 and Proposition 2, the following can be shown

Proposition 3 1. The set R is convez
2. To exhaust R, it is enough to take X to be a deterministic function of the pair (K, S)

3. To exhaust R, it is enough to limit the alphabet of K to

Kl < |S]]%] + 1. (17)

The proof of Proposition 3 follows exactly the lines of the proof of Proposition 1, and is therefore
omitted. We have the following result for the capacity region in case that the non-degraded user is

informed

Theorem 3 For any discrete memoryless degraded broadcast channel with random parameters and
informed Y decoder

C=R.

The proof is given in Section 5.4. A possible application of this model is a watermarking system [16]
where the encoder is required to encode watermarks without knowing a priori whether the decoder
has an access to the covertext S. I.e., two kinds of users are expected to decode the watermarks:
private and public users. The covertext S is available to the Y decoder, and the channel from Y
to Z, Wz)y, 1s an identity channel. This corresponds to the case where the switch in Figure 1 is

closed.

3.2 Causal Side Information

For the case that the SI is provided to the encoder in a causal manner, we can characterize the

transmission capacity region when both decoders are not informed. Let P, be the collection of RVs

10



(K,S,X,Y,Z) such that

(K,8,X,Y,Z) € P (18)
Pis = PiPs, (19)

that is, the subset of P where K is independent of S. We define the region R, as the collection of
all pairs (Ry, Rz) satisfying

R; < I(K;Z)
Ry < I(U;Y|K) forsome ((K,U),S,X,Y,Z) € P.. (20)

Similarly to Propositions 1 and 3, the following properties of R. hold.

Proposition 4 1. The set R. is convex
2. To exhaust R, it is enough to take X to be a deterministic function of the triplet (K,U,S)

3. The alphabets of K and U can be bounded as

K < |S|lal+1 (21)
u

IN

|SIXI(S]1X] + 1) (22)

The proof follows the lines of the proof of Proposition 1 and is omitted. We have the following

result for causal transmission.

Theorem 4 For any discrete memoryless degraded broadcast channel with random parameters

The proof is given in Section 5.5.

Due to Proposition 4, it is possible to express the region R, (and hence the capacity region C.)
in terms of strategies, as in Shannon’s formula for causal transmission via the single user channel.
To that end, we first view briefly the result for the single user channel. The capacity of the single

user channel with causal transmission is give by

C =max I(U;Y) (23)

11



where the maximization is over all random variables U independent of S, and where X is a deter-

ministic function of the pair (U, S), i.e.,

Pys = PyPs (24)

)

z = f(u,s), forsome deterministic function f. (25)

(The direct part follows easily from (20), with Rz = 0. For the converse, substitute again Ry = 0,
and use I(U;Y|K) < I(U,K;Y), defining a new auxiliary RV U = (U, K).) Denote by T the

familiy of all Shannon strategies, i.e., mappings from S to X
T=A{t|t:S — X}. (26)

Note that for a fixed u, f(u,-) € T. Hence {f(u,-)}, is a family of strategies, indexed by a

u
parameter u € U. A distribution Py on U induces a distribution Pr(t) on the family of all strategies
T Moreover, since U is independent of S, so is the ditribution of strategies, i.e., Prs(t|s) = Pr(t).
By the channel structure, we have

Us (T,S)e Y (27)

and since the pair (T,U) is independent of S, we also have
UeToY. (28)
To see (28), observe that
Pyrsy © Pyr.sPyir,sPrPs = Pyp sPurPs = Py sirPur (29)

where (a) follows from (27), and (28) follows by summing (29) over s. For fixed f, a letter u
defines an element ¢ € 7. A simple application of the data processing inequality and the chain
rule for entropy, shows that if 7' is a deterministic function of U, and (28) holds, then necessarily
I(U;Y) = I(T;Y). Since T is independent of S, we conclude that (23)-(25) is equivalent to

Shannon’s formula.

We now give a similar interpretation of the capacity region C.. By Proposition 4, we can write
X = f(K,U,S), for some deterministic function f. For fixed k£ and u, we have f(k,u,-) € T. Let
us fix k, and put a distribution Py g (-|k) on Y. This induces a conditional distribution Prx (t[k)

on T, conditioned on k. By the channel structure, we have

(U,K)e(T,S)eY (30)

12



from which we also have, as (U, K) is independent of S,
(U,K)eTeY (31)

For fixed f, a pair of letters (u, k) defines a unique ¢t € 7. Again, by (31), the fact that T is a

deterministic function of (U, K), and the chain rule, we deduce that
I(U;Y|K) = I(U,K;Y|K) = I(T; Y |K). (32)
Therefore the region R, an be written as

Re= |J {(Bv,Rz): Rz < I(K;Z)
Pk Pr i
Ry < I(T;Y|K)} (33)

where K is an auxiliary random variable, Ppx(-|k) is a conditional distribution on the set of

Shannon strategies 7, conditioned on K = k, and the pair (T, K) is independent of S.

4 Examples

The Gaussian broadcast channel, with additive interference, is modeled as

= X+S5+VWy
Z = X454V, (34)

where the state S is Gaussian, known non-causally at the transmitter, and Vy, Vz are Gaussian
noise, unknown to all parties. Since the state S is common to the two channels, this model falls
within the category of the channels treated in this paper. It was shown in [13] that the capacity
region of the channel (34) with S known noncausally at the transmitter equals the capacity region
of the Gaussian broadcast channel without interference. This can be shown by following closely
the arguments of Costa [5] - either directly by suggesting a specific coding scheme, or by a proper
choice of the random variable U and K that appear in R; of Theorem 1, following the choice of
the auxiliary random variable in [5]. Note that once it is proved that the capcity region without
interference is achievable also in the model (34), there is no need to prove a converse. As this is

already a known result, the details are omitted.

13



4.1 The Symmetric Broadcast Channel

Let ¥ =Y =Z =W, =W, ={0,1,...,|X| — 1}. The symmetric, state dependent, degraded
broadcast channel can be described as

= XpW (35)

Z = YoWo=XoW, oW =XoW (36)

where W1 is a state dependent noise, with conditional distribution Py, g(w1]s), W2 is an additive

noise independent of Wy and of the state S, and @ is the modulo-|X| addition. We denote by Py s

the distribution of W = W7, & W5 conditioned on S. The channel is assumed memoryless, that is,

) Ps (si) Pw, (wa,;) (37)

n no.mn . ny __
PS,Wl,WQ(S 7w17w2) -
=1

We now use (33), to characterize the capacity region of this channel with causal SI. Following the

approach employed in [10] for the single user channel, we can write
Py (z|k) = ZPS 8)Pr g (tk) Py k1 5(2 |k, t, )
= ZPS $)Pr i (t|k) Py (s (2 © 1(s)]s)

= ZPT\KtIk (W @ H(S) = Z) (38)

where © stands for modulo-|X| subtraction. In a similar manner,

Py g (ylk) = ZPT\K (t|k) P, (W1 @ t(S) = y) (39)
and
Py r(ylk,t) = ZPS (8) Py k,1,s(ylk,t,s) ZPS (8) Py, s(y © t(s)]s)
= r(W1 Dt(S) =y). (40)

Using (38)-(40) in (33), we arrive at the following characterization
Re= |J {(Bv,Rz): Rz < H(Z)—HW &T(5)K)
Py Prix

Ry < H(W, ®T(S)|K)— H(W, &T(S)|T)}. (41)

Note that the (random) strategy T'(S) appears in both, the equation for R, and the equation for

Ry . Following [10], we can interpret ¢ as a noise predictor, that strives to minimize the noise

14



entropy (see also [9]). In contrast to the single-user case, we run here into some difficulties. First,
the derivation of the capacity region of the broadcast channel composed of two cascaded symmetric
DMCs is not an easy task, even for the case of no random parameters. This is due to the fact
that there is no “Mrs. Gerber’s Lemma” for the general alphabet case [25], [26]. Thus, although an
achievability result can be suggested, proving the converse, i.e., that a certain input distribution
exhausts the whole capacity region, is quite a hard problem. Returning to the case of random
parameters, note that in general, the predictor that minimizes the entropy of Wi @ t(S) need not
coincide with the one that minimizes W @ ¢(S). Moreover, the random predictor 7" depends on the
random variable K, which controls the tradeoff between the rates Rz and Ry. Nevertheless, for

the binary case, we can further obtain from (41) an explicit formula for the capacity region.

Binary channel (|X| = 2), with @ = Py, (w2 = 1) < 0.5. Let § = {1,2}, and let the state-
dependent noise distribution be Py, (W1 = 1|s) = 0, with 61 < 0.5 < 6. It is easy to verify,
by direct calculation, that the strategy (state predictor) that minimizes the entropy of Wi & ¢(.5),
minimizes also the entropy of W & ¢(S). Moreover, the optimal strategy ¢* is given by

(s) = { LT, (42)

that is, ¢* flips the input if s = 2, i.e., if the probability of having w; = 1 is greater than 0.5.

Accordingly, we have

HWiet™(5)) = h([6:1Ps(1) + (1 —62)Ps(2)]) (43)
HW @t*(S)) = h([6hPs(l)+ (1 —02)Ps(2)] x ) (44)
where a xb = a(1 —b) + (1 — a)b, and h is the binary entropy fuction
h(a) = —aloga — (1 — a)log(l — ).

Let K be a binary random variable, with Pg (0) = Pk (1) = 0.5, fix § € (0, 1), and define

Py (Hk) = { f—,@ EE Zigi where k= (1— k). (4)
We have for the conditional entropies
HW, @ T(S)|K) = H(W,&T(S)|K =0)Pg(0) + HW, & T(S)|K = 1)Px(1)
— (iP5 (1) + (1 - 02)P5(2)] % ) (46)
HWeT(S)|K) = h([01Ps(1) + (1 — 62)Ps(2)] % ax ) (47)
HWeaT(S)|T) = h([61Ps(1) + (1 —62)Ps(2)]) (48)
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where (48) is due to the fact that all the realizations of the strategy are entropy minimizing, as
they differ from t* by a constant shift, k¥ or k (see (45)). Next, since K is unifrmly distributed,
the entropy of Z is maximized, regardless of the value of 3. Substituting H(Z) = 1 and (46)-(48)

in (41), we arrive at the following achievable region, parametrized by (3:

Ry < 1—h@*ax*p) (49)
Ry < h(@%p)—h(b) (50)
with
Be(0,1), (51)
where
0 = 0,Ps(1) + (1 — 63) Ps(2). (52)

We claim that this achievable region is actually the capacity region. To prove this, we have to show

that if a pair (Ry, Rz) is achievable, and

Ry > h(0x 3) — h(0) (53)
for some 3 € (0,1), then necessarily

Rz <1—h(0%ax*p) (54)

Indeed, since min, H(W; @ t(S)) = H(W; @ t*(S)) = h(#), the bound on Ry in (41), with (53),
imply
H(W,®T(S)|K) > h(f ). (55)

To proceed, we have to invoke a monotonicity argument. As W = Wy & Wy and Py, (1) = «, (55)
in turn implies that

HW @ T(S)|K) > h(0xaxp), (56)
where we have used [25, Corollary 4]. Since H(Z) is upper bounded by 1, the bound on Ry in (41)

together with (56) yield (54).

The capacity region given by (49)-(51) coincides with the capacity region of the broadcast
channel composed of two cascaded BSCs, with crossover probabilities 6 for the first channel (from
X to Y) and « for the second channel (from Y to Z) (see [26], or [6, Section 14.6]). This suggests

an optimal coding scheme that resembles the one suggested by Erez and Zamir in [10]: design a
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code for a broadcast channel without random parameters, with crossover probabilities 6 and a. Use
this code for the current channel, followed by a state dependent noise predictor ¢(s), that minimizes

H(W; & t(S)). This completes the binary example.

5 Proofs
5.1 Proof of Proposition 1

We start with the proof of convexity, that is, with the proof of Part 1 of the proposition. Introduce

a time-sharing random variable (), and define the joint distribution

PQ,K,U,X,S,Y,Z(Qakauaxasayaza) = PQ,K,U,X,S(qakaua$7s)W(y7z|x78) (57)
Z PQ,K,U,X,S(Qa k,u,x, 3) = PQ(q)PS(S)? (58)
k,u,x

that is, S is independent of @ (since the state distribution is fixed and cannot be controlled by

time-sharing scheme). Denote by (Rg, Rg) the rates resulting from time sharing. Then
RY = I(K;Z|Q)—I(K;S|Q) = I(K; Z|Q) — I(K,Q; ) < I(K,Q; Z) — I(K,Q; S)
= I(K; Z) - I(K;5),
RY = I(UY|K.Q)~I(U:S|K,Q) = I(U;Y|K) ~ I(U; S|K), (59)
where K = (K, Q), that is, we have incorporated the time sharing random variable @ into the

auxiliary random variable. Therefore, we conclude that time sharing cannot yield rates that are

not included in R; defined above, and hence R; is convex.

We proceed to prove Part 2 of Proposition 1. For that end, define
JN) =1(K;Z)-1(K;S)+ AI(U;Y|K) - I(U; S|K)]. (60)

To prove Part 2 of Proposition 1, it is enough to show that for every fixed A > 0 and Pk s, J())
is maximized when X is a deterministic function of (K, U, S). In turn, to show this, it is enough to

prove that J()) is a convex U function of Px |k s for fixed Pk s and A > 0. Thus, observe that

J(A) = H(K|S) + \H(U|K, S) + 1(Px|k,v,5) + M2(Px|k,0,5) (61)
where
1(Pxikus) = —H(K|Z)
Yo(Px|k,us) = —H(UIK,Y),

17



and where we have used the special notation v; and vy instead of the entropies, to stress the
dependence on Px |k y,s. To complete the proof we have to show that ¢ and 1) are convex U
functions of Py y,s for fixed Pk y,s. But this follows from the concavity of the entropy function.

Indeed, let

1 2
Px\ku,s = ap)(q)K,U,s + (1= a)P)((|)K,U,S (62)
and let

PO, h2) = 3 Prusthu,s)Py g s(alkus)Przix sy 2le,s), i=12 (63)

u?‘g,x,y
PO uyyyk) = S Prus(kyu, )P o(@lky u, 5) P (y,2|z,s), =12 (64)

UY,K » Y, K,US\k,U,S X|K,U,S TR, U, S Y,Z|X,S Y,2\Z,S8), ? y Lo
8,Ty2

Now note that

(1) (2)
aPp,(k,z)+ (1 a)PKZ(k,z)
1 (Pxikus) = PP (k,2) + (1 — &) PP, (k, 2)] log — 52 5
| kz ok ol )] aPP (2) + (1 — )PP (2)
(a)
< o (PY g ps) + (1= ) (P ps) (65)

where (a) is due to the log-sum inequality. Similar argument holds for 5. This completes the

proof of Part 2 of Proposition 1.

Next, we prove Part 3 of the proposition. To prove that the region R; is not altered if we bound
the alphabet sizes as in (13), (14), we use the support lemma, which is a result of Carathéodory’s
theorem (see [7, p. 310]). Thus, let Pyxs stand for the (U, S, X) marginal of some distribution
P € P. Without loss of generality, let us denote the product set X xS = {1,2,...,m}, m = |X xS§]|.

Define the following functionals

'r'i(PU,S',X) = ZPU,S,X(’U,,S,IL‘):PS,X(S,:E), i:1,2,...,m—1,
U

'm (PU,S,X) = H(Z) - H(S) - Z PU,Syx(u, S, J?) lOg (Z PU,S,X (u', S, :L‘,)>

U,S,T u'x!

+ Z PU,Syx(u,s,w)W(y,zm,s)log( Z PUyg,X(u',s',w')W(y',z|x',s'))

UyTyS,Y,2 ’u/,w’,y’,s’

rm1(Prsx) = Y Pusx(u,s z)log (Z PU,S,X(U,75a$I))

U,,$ u’,LL"

Yo Pusx(u,s z'")
+ Py s x(u,s,z)lo ’ 2
u,z@*;s () log Yo Puys x (u, s, ")
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Z PU,57x(U,8,£E)W(y,Z|£E,S)log( Z PU7S,X(U’,3/’x/)W(y,z’|x/,3/))

UyTyS,Y,2 u’,x’,s’,z’

S Pus,x(u,5,2)W(y, 2|, s) log

u7x7s7y7z

s Pusx(u,s',z")
Dot s Pysx(u, s,z \W(y, 2|z, s")’
(66)

and observe that
ZPK(k)ri(PU,S,X(-m)) = Psx(s,z), i=12,....,m—1,
ZPK )rm(Pusx (k) = I(K;Z) - I(K;S),
ZPK )rmi1(Pusx (k) = I(U;Y|K) - I(U;S|K)

Therefore, by the support lemma [7, p. 310], the alphabet of the random variable K can be restricted
as indicated in (13). Once the alphabet of K is fixed, we apply similar arguments to bound the
alphabet of U, where this time we have |S||X|(|S||X|+ 1) — 1 equations to preserve the joint
distribution of S, X, and K, and one more equation to preserve I(U;Y |K) — I(U; S|K), yielding
the bound indicated in (14). U

5.2 Proof of Theorem 1

Before proving the direct part, we need some additional notation, and an elementary result that
will be used in the random coding argument. Given a distribution Pk, we denote by T?( the set

of all n-tuples k that are d-typical according to Pk, i.e.,
. = {kek": ‘n (k|k) — (k)‘<5 VkeKk,
and N (k|k) = 0 whenever Pk (k) = 0},
where N (k|k) is the number of occurances of the letter k in the n-tuple k. Similarly, we denote by

T5

Ul i (k) the set of all u that are Py i d-typical conditioned on a given k, that is

1 1
T{5]|K(k) = {u eu: ‘EN(k,uUs:,u) - EN(k|k)PUK(u|k)‘ <6 VkeK,uel,
and N (k,ulk,u) = 0 whenever Py g (ulk) = 0}.
We will need the following known auxiliary results [7]. For any s € T2 and any &' > §

exp (—nl(K;S) — neg) < Z Py (k) < exp (—nI(K;S) + ne) (67)
k: (k,S)GTf{'S
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where € — 0 as 6,0’ — 0, and ¢, — 0 as 4,8’ — 0, but ¢, depends on Pk, thus the lower bound

in (67) in not uniform over all Pg. Similarly, for any pair (k,s) € Ty and any §” > &'

exp (~nI(UsSIK) —nn) < Y Puiclulk) < exp(—nI(Us SIK) +nm)  (68)

u: (u,s)eTg’;lK(k)

where 7, 7, — 0 as ¢',6"” — 0, but 7, depends on Py g, and thus the lower bound in (68) is not

uniform over all conditional distributions Pyx-.

We use a random code consisting of a combination of the code construction for the degraded
broadcast channel [6] and that of Gel'fand and Pinsker [11]. Fix a joint distribution P € P.
Fix an arbitrary v > 0, define Jy 2 exp(nl(U; S|K) + nvy), Jz 2 exp(nI(K;S) + nvy), My 2
exp(nl(U;Y|K) —nI(U; S|K) — 2n7), and My 2 exp(nl(K;Z) —nI(K;S) — 2nvy). Generate an
auxiliary collection a of k-vectors

a = {ka,mza jz € {1,2, . Jz}, m, € {1,2,. .. Mz}} (69)

iid, independently of each other, according to Pg. For each vector k € a, generate a collection b of

u-vectors
b(ka,mz) = {’u,jy,my(ka,mz), jy € {1,2,...Jy}, my € {1,2,...My}} (70)
independently of each other, according to Ppyix(ui(kj, m.):)- Reveal the collection a and the

collections b to the encoder and decoder.

Encoding: Fix arbitrary parameters 0 < § < d;. Given a state vector s and a pair of messages
indices my, m., let j,(s,m,) be the smallest integer j, such that (k;, mn.,s) € Tf(ls. If such j, does
not exist, set j,(s,m,) = Jz. Let jy,(s,my, m,) be the smallest j, such that
20
(ujy,my (ka(s,mz),mz)v S) € TU§|K(ij(S,mz),mz)' (71)
If such j, does not exist, set j, = Jy. For convenience, denote the pair (k,u) satisfying (71)
by ku(s,my,m,). Finally, generate a vector of input letters & € X™ acording to the memoryless
distribution defined by the n-product of Px|kys
P)T{L'|KUS('|ku(37my7mZ)as)'
Decoding: We start with receiver Z. For convenience, define the parameters
do = 201(|S] +2)|US]
3 = 60(S]+2)
0y = 451(|S| +2)|S|
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Given a vector z € Z", the receiver looks for the set of all k;, ,,,, € a such that (k;  n.,2) € T?(Qz-
Denote this set by Ez(z). If this set is nonempty, and all its elements have the same index message,
say m',, then g,(z) = m/. Otherwize, i.e., if Ez(z) is empty, or has multiple elements with different

message indices, set g,(z) = Mz and the decoder declares an error.

Receiver Y: Given a channel output vector y, the decoding of the Y message is done in two steps.
First, the decoder looks for a vector k;,_,,, € a such that (kj, ,.,¥y) € Tffy. If such a vector does
not exist, or there are more than one such vector, an error is declared. Denote the corresponding
vector by k. Note that we have performed a full decoding of the index message m, and also the
index j,. In the second step, the Y decoder looks for the set of all vectors u;, i, (127) € b(l::) such that
(ijymy(];?) y) € TgY‘K(l;). Denote this set by Ey(y). If Ey(y) is nonempty and all its elements
have the same message index, say m, y> set gy(y) = m;/ Otherwize, the decoder declares an error.
Note that the Y receiver performs decoding of the full vector k;, ,,., and not only the message
index m,. The fact that Z can actually decode the full vector k can be proved following [11], with
minor modifications. This fact was extensively used, for example, in [21]. Since Z is the degraded

user, this can be done also by Y.

Probability of error: We analyse first the probability of error of receiver Z. For any s € S",

k € a, and any pair of message indices my, m,, define the sets

(8 m,) = {there is no j, € {1,2, ey JZ} s.t. (ka,mz,s) € T?(IS}
{there isno j, € {1,2,...,Jy} s.t. (uj, m,(k),s) € Tg‘g‘K(k)}
= { §2(8,mz),m, % )QT?(QZ}

dkjm €as.t. m’, # m, and (kj;,m;,Z)EngZ}'

)
Ay(s,mylk) =
As(s,m;)

)

A4(S my

The probability of error of the Z decoder can be upper bounded as

>3 Po(s) [P(A1) + P(As(s,mylkj. (8,m.).m. ) |AS)

+ P(As|AS, A5(8,my Ky (5.m0)m.)) + P(A4lAS, A5 (8,70 K. (5.m.).m. )» A5))|
+ P(TL°). (72)

For any message index m,, any s € Tg and § < d7:

Jz
P(Ai(s,ms)) = P ( N { (k. m..s) €T}‘Ss})

szI

21



Jz

= [P (19 £ T5)]
= [1=P (ki) €T

[1 —exp(—nlI(K;S) — nek)]eXP(nl(K;SHm)

exp (-2”(’7*%)) 73)

IN

IN

where

e, — 0 as 5, 01 — 0, (74)
and where the first inequality in (73) is due to the lower bound in (67).

Conditioned on A{(s,m.), the vector k;_(g m.) m, is in Tf(ls, and since Jy = exp(nI(U; S|K) +

n7y), we have
P (As(s,malk.(8.m.)m.) | At(s,ms)) =

Jy
= P ( ﬂ {(ujy,my (k]k(s m),m; ) ) QT[%(;‘K( jh(s,mz),mz)})

Jy=1

[1 —-r ((ulamy(ka(s,mz))v s) € T5?|K(ka(3,mz),mz))]h
)]eXP(nI(U;S\K)er)

IN

[1 — exp (—nI(U; S|K) — nmyk

< exp(—2mM k) (75)

where

Nuk — 0 as 6,01 — 0, (76)

and the first inequality in (75) is due to the lower bound in (68).

Conditioning on A§, AS, we have kus € TKUS Therefore,
P ({kusz € TI2(6(?}SZ} | Af,Ag) —1 as n— o0 (77)

Moreover, the event kusz € Tf(‘sf}s , implies kz € Tf(zz. Using this fact and (77), we have

P (Asz(s,m;)| AT, A5) — 0 as n — oo. (78)

o2|K|

To evaluate P(A4|Af, AS, AS), observe that conditioned on Af, A5, AS, we have z € T, In

addition, for any m/, # m,, the vector kj: m: was generated independently of the output vector z.
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Therefore

P(A4(s,mz)|Af, gaAg) =

_ p(' U {(kj;m;,z)eTi?z})
jim/!

U mf:;émz

< J;MzP ((kj;mrz,z) € T?(QZ)

= JzMy > Pg (k)
k: (k,z)eT2,
< JzMzgexp (—nl(K; Z) + ne)

= exp(—n(y —¢)) (79)
where the second inequality is due to the upper bound in (67), and

e — 0 as d,0p — 0. (80)

Clearly, for any 6 > 0
Ps ((T8)°) —0 asn — oo, (81)

Collecting (73)-(81), we conclude that for any v > 0 and sufficiently small §, 01 (§ < d1), the right
hand side of (72) tends to 0 as n — oo.

As mentioned above, the decoding process in reciever Y is composed of two steps: in the first,
the vector k is fully decoded. Then, based on the knowledge of k, the message index m,, is decoded.
Note that events A; and As deal with the encoding process, and thus are relevant for both, Z and

Y decoders. We define now the following events, analogous to events As, Ay:

Bi(s,my) = {(ka(s,mz),mzay) ¢ Tfs(zY}

Bo(s,my) = {EI kji m. € as.t. m!, # m, and (kjrm.,y) € Tf(?y}
By(s.my.malk) = { (1, (am,mopm, (0 ) & T (K)
By(s,my,m,|k) = {EI wjr i (K) € b(k) s.t. my, # my, and (wjy mi»Y) € T[(S]E‘Y‘K(k)}

The probability of error of decoder Y can be upper bounded as

S S Po(s) [P(AY) + P(Aa(s, my k(5,0 m. )1 AS)

My Mz seTt;

Pey

<
- MyMZ

4
+ > P(B;|AS, AS,Ni_ %Bz)]
i=1

+ Ps(T8°). (82)
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The first and second terms in the right hand side of (82) are treated in (73) and (75), and vanish as

n — 0o. As for the third and fourth terms, note that Z is the degraded user, therefore the claims

Tim P(BAS, A5, B) = 0 59

are proved similar to (78), (79), and the details are omitted.

We treat now the fifth term, P(B3|A§, AS, Bf, BS). Conditioned on A§A$B{BS, we have kus €

ng’US, and k was decoded correctly. Moreover, k € Tf(l‘s‘, and uy € Tyy| & (k)%. Therefore,

similarly to (77) and (78), we have

Tim P(By(s, my,m.|k)|AS, A5, B, BS) = 0. (85)
It remains to evaluate the probability of the event By. Conditioned on A{ASB{BSBS, the vector
y is typical. More precisely, y € Tffm. Moreover, for any m'y # my, the vector Ui m, (k) was

generated independently of the output vector y. Therefore

3
P <B4(samyam2 | k)|A§Ag ﬂ Blc> =
=1

= P ( U {(Uj;,m'y(k%y) € T(6]4YK(k)}>

Jymy: myFmy
< Iy My P ((wjym (k). y) € T o (k)

= JyMy > Py i (ulk)

U (U, Y)ET, ) ()

< JyMy exp(—nI(U;Y|K) + nn)
= exp(—n(y — 1)) (86)
where the second inequality is due to the upper bound in (68), and
n—0 asn — oo. (87)

Collecting (81) and (83)-(87), we conclude that for anyy > 0 and sufficiently small §,d; (6 < d1),
the right hand side of (82) tends to 0 as n — oo. L

5.3 Proof of Theorem 2

For the proof of Theorem 2, we need an auxiliary result. Let (n,exp(nRy),exp(nRz),\) be a code

for the broadcast channel with random parameters, and denote by m,, m, the random messages
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indices. Define the random variables

_ i—1 an
Ki = m.Z i+1
‘/i — Yi—l
Uy = my.

Observe that the random variables so defined satisfy
((Kl7 sz_’ Uz)a Sia Xia Yvia ZZ) € Pa Vi € {]-7 27 s 7n}' (88)

We have

Lemma 1 The following inequalities hold

I(my; Z2") — I(my; 8™) < Y I(Ky Zy) — I(K;; S;) (89)
=1
ln

I(my§Yn|mz)_I(my§Sn|mz) < ZI(UUYHKiVi)_I(Ui§si|KiVi) (90)
im1
n

I(mymz;Y") — I(mym.; ™) < > I(KViUyY;) — I(K; ViU S;). (91)
im1

Proof The proof of (89) and (91) follows exactly the lines of the proof of Lemma 4 of [11], and
is omitted. To show (90), we decompose the terms in the left hand side as

n

I(my; Y™ my;) < I(my; Y"Z%my) = > H(my; Vi Z| Y™ 2 'm,), (92)
=1

I(my; S™mz) = > I(my; Si| Spyms). (93)
=1

Each of the terms in these sums can be further written as

I(my;YiZs| Y 2" m,) = I(mySP YiZilY' ' 25 ms) — I(SP 3 Y Zi| Y 20 Pmym,)
= (S YiZiY' 7 2 my) + Iimy; YiZi| SP Y 27 )
— I(SP 3 YiZi| Y 25 mym) (94)
I(my; S;|SPam,) = I(m,Y'"'Z'71 8|S0 ymy,) — (Y™ 21, 8,182, ymym,)
= LY 28| SPms) + I(my; Sil ST Y T 2 imy)
— 1Y 271 Si| S ymym.) (95)
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Thus

n

I(my;Y"|my) < 3 I(my YiZi|SPAY 125 P my) + Ay — Ay

=1
n
= > I(my; Yi|S] Y 12 ) + A — Ay (96)
=1
n . .
I(my; S™mz) = > I(my; Si|SPA Y ™' 27 m,) + AT — A (97)
i=1

where in the equality in (96) we have used the Markov structure of the channel, and where

n
A o= Y IS Yz 2 )
=1
n
Ny = D ISP YiZi|Y' 2 mymy)
i=1
n
AT = N I 2 SST  me)
i=1
n

Ay = > I 2 8|S myms)

i=1

We claim that
A = A} (98)
Ay = A} (99)

To see (98), observe that

IS YiZ Y ™ 2 m,) = Xn: I(S;;Y:2,|Y" ' 27187 ymy) (100)
Y7L 880 m) = iI(szj;si|Yf*IZHS;11mz> (101)

and therefore
Ay = Zn: Zn: I(S;;YiZi|Y'=' 271 S}, ym.) (102)
AY = XH:Z I(Si;Y;Z; Y7 297182 im,) = Ay (103)
The equality (99) is shown similarly. Equations (96), (97), (98), and (99) imply (90). L

26



Proof of Theorem 2 Let (n,exp(nRy),exp(nRz),\) be a code for the broadcast channel with
random parameters, and denote by m,,, m, the random messages indices. We can write the following

chains of inequalities

—~
s
~

nRyz —ne, < I(my; Z") — I(my; S™)
b
$ S IR Z) - I ) (104
=1
(¢
nRy —ne, < I(my; Y"my) — I(my; S™m;)
d
< Y I(UiYilK:V;) — I(Us; Si| K Vi) (105)
i=1
(e)
n(Ry + Rz) —ne, < I(mymy,;Y™) — I(mym,; S™)
5 &
< D I(K ViU Y) — (K ViU Si) (106)
i=1

where ¢, — 0 as A = 0, (a) (c) and (e) follow from Fano inequality and the fact that the messages
are independent of each other and of the state sequence, (b) (d) and (f) result from Lemma 1.
The statement of Theorem 2 follows now by applying to (104), (105) and (106) the standard time-
sharing argument and taking the limits of large n and small probability of error A. We show it here
briefly. Let @) be a random variable independent of S, and uniformly distributed over {1,2,...,n}.
We can rewrite (104), (105), and (106) as

Ry —en < 1(Kq;Zg|Q) — I(Kq; SIQ) (107)
Ry —en < I(Uqg;YqlKq,Vq,Q) — I(Ug; S|Kq, Ve, Q) (108)
Ry + Rz —en < 1(Kq,Vo,Uq; YolQ) — I(Kq, Vo, Ug; S|Q). (109)

For every realization of @, Q = 4, ¢ € {1,2,...,n}, the relation (88) holds. Therefore, by the
convexity of the set R, (Proposition 2), we can replace the convex combination in (107)-(109)
by the union over all random variables ((K,V,U),S, X,Y,Z) € P. This completes the proof of
Theorem 2. ]

5.4 Proof of Theorem 3

Since the state S is available to the Y decoder, we can incorporate it into the output sequence Y.

Set

=

Y 2YS. (110)



We start with the converse part. Each of the terms in the right hand side of (105) can be written

as

HUs Y| KY'™") = I(U; S| KY'™) = I{UY'™LY|K;) — I(UY'™; 55| K;)
— (1L YK — 1V Si K )
= I(UsYi|K;) — I(Us; Si| K;)
- (H(f/i*wsim) - H(?Hmm)) (111)

Therefore we get from (105) and (111)

n
nRy —ne, < Y IUY"LYSi|K) — I(UY™Y S|K;)
i=1
=Y (HOISTYSiK) - H(YTESTY;SK3)
=1
S IUYTLYS K — IUY Y S| K)
=1
ln 3
= > (UYL Y|K;S;)
i=1
n
< Y I(X4 Y5 KiSy) (112)
i=1

IN

The upper bound on Rz remains as in (104). The converse of Theorem 3 follows from (104)

and (112), and the standard time sharing principle.

The direct part of Theorem 3 results from Theorem 1 by substituting U = X in R;, and
using (110). U

5.5 Proof of Theorem 4

As in the single-user channel, the coding theorem for the causal case can be proved along the lines
of the proof for the case of noncausal coding. Therefore, we do not give here the full proof, as it
parallels many of the arguments used in the proofs of Theorems 1 and 2. Instead, we only highlight

the points where the arguments differ from those used in the noncausal case.

We start with the direct part. Recall that in the proof of Theorem 1, the collections a and b
of (69), (70) are generated independently of the realization of the state vector s. Given a state vector

s and a pair of message indices (m,,m.), the encoder seeks vectors kj, ., € a and wj, m, (kj, m.) €
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b(kj..m.), so that kj, m. and w;, m, (k. m.) are jointly typical with the state vector s. This is the
point where the noncausality comes into account. If the pair (U, K) is independent of S, with high
probability any pair of vectors kj, .. and w;, ., (Kj.m.) are jointly typical with the realization of
the state vector s, so the encoding can proceed without reference to the specific realization of the

states. From this point on, the encoding and decoding proceed as in the noncausal case.

As for the converse part, observe that if the encoder is causal, the random variables Y,
K;, V;, and U; in the proof of Theorem 2, are independent of S;. Therefore the terms I(Kj;;S;)
and I(U;; S;|K;Y'"™!) in equations (104) and (105), respectively, can be dropped. We obtain the

inequalities
n
nRy —ne, < > I(KjZ) (113)
=1
nRy —ne, < > IUzY|KY'"™) <Y (UYL Yi|K)), (114)

Define now a new auxiliary random variable U, = (U;, Y*=1). From this point on, we proceed as in
the proof of the outer bound for the noncausal case (Theorem 2), with U; replacing U; there. The

details are omitted. O
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