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Abstract

Consider a source, {Xi, Yi}
∞

i=1
, producing independent copies of a pair of jointly

distributed RVs. The {Xi} part of the process is observed at some location, say A, and
is supposed to be reproduced at a different location, say B, where the {Yi} part of the
process is observed. Similarly, {Yi} should be reproduced at location A. The commu-
nication between the two locations is carried out across two memoryless channels in K

iterative bi-directional rounds. In each round, the source components are reconstructed
at the other locations based on the information exchanged in all previous rounds and
the source component known at that location, and it is desired to find the amount of
information that should be exchanged between the two locations in each round, so that
the distortions incurred (in each round) will not exceed given thresholds. We first de-
rive a single-letter characterization of achievable rates for a pure source-coding problem
with successive refinement. Then, for a joint source-channel coding setting, we prove
a separation theorem, asserting that in the limit of long blocks, no optimality is lost
by first applying lossy (two-way) successive-refinement source coding, regardless of the
channels, and then applying good channel codes to each one of the resulting bitstreams,
regardless of the source.

Index terms - two-way communication, source coding, joint source-channel coding,
successive refinement, channel capacity.

1 Introduction

In recent years, communication over distributed networks has been developed greatly. In-

tensive research was carried out in both theoretical and practical directions, analyzing

∗This work is part of A. Maor’s Ph.D. dissertation.
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performance of computer networks, telecommunication (such as broadcast TV) and wire-

less networks, where the most notable examples are of cellular communication and wireless

computer networks. The model, generally used in most of these analyzes is that of one-way

communication between different network components, where each component transmits

information to its neighbors in one transmission [1].

In many practical scenarios, two or more communication units (for example, sonar

systems) have access to some noisy descriptions of information that is of interest to all

units. Frequently, such units collaborate and wish to exchange their data reliably, in order

to enhance the retrieval of the source information in each of the units. In a one-way

communication scenario, each unit would send all its data to all the other units, and their

transmission rates would fit the well-known model of communication with side information

at the decoder [2] (the source description originally received in each of the units would

serve as side information upon receiving transmissions from the other unit). Not only do

these multiple one-way communications intuitively seem to be inefficient and wasteful in

the sense of using transmission rates higher than required (as is, indeed shown in [3] for a

pure source-coding problem), but, unfortunately, in many cases, physical constraints of the

units (e.g., limited memory) and of the transmission media (e.g., capacity) do not allow

such a one-way communication, and an interactive communication between units is to be

implemented instead. In the sequel, we confine ourselves to the case of two such units.

The interactive two-way communication problem (over a noise-free medium) was orig-

inally studied by Kaspi [3] in the context of lossy source coding, and to the best of our

knowledge, this is the only paper related to the lossy two-way source-coding with a fidelity

criterion. The following communication model was studied in [3]: Two encoding/decoding

units (codecs) have access to certain sources. Codec 1 has access to a discrete memoryless

source (DMS) X = (X1, X2, ...) and codec 2 has access to another DMS, Y = (Y1, Y2, ...),

correlated to X. In the first communication step, one of the codecs, say codec 1, initiates

the data exchange protocol by transmitting to codec 2 some partial description of X (in the

form of a compressed bitstream) based on the fact that codec 2 observes Y as side infor-

mation [2]. Codec 2, in turn, produces a description of Y based on the received bitstream

from codec 1 and based on the fact that codec 1 has X as side information. In the second

round, codec 1 transmits an additional portion of a description of X to codec 2, on the basis

of the information available to both codecs thus far. Then, codec 2 replies similarly, etc.
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This process repeats K times. Kaspi [3] found a single-letter description of the achievable

region of all cumulative communication rates after K rounds, i.e., the total rates used by

each codec, such that after K steps, each one of the codecs would be able to reproduce the

other source within given distortion levels.

Another part of the background for this work has to do with the successive refinement

of information. In [4], the (one-way) problem of successive coding is studied for the Wyner-

Ziv setting: The encoder transmits a source sequence, X, to two decoders in two successive

steps. In the first step, a coarse description of the source is transmitted to the first-stage

decoder at a relatively low rate, and the reconstruction at the decoder should satisfy a

certain distortion constraint. The reconstruction is based on the received bitstream and on

side information, correlated to the source, which is available at the decoder. At the second

decoder, which has access to additional bits of description of X, as well as to the first step

bitstream, a higher quality of reconstruction of X is required. In other words, in the second

stage, the encoder transmits refinement bits to the second-stage decoder and the decoder

reconstructs X based on the bitstreams of both stages and on side information known to

it. In general, the second-stage side information differs from this available at the first-

stage decoder. Necessary and sufficient conditions are provided, in terms of single-letter

formulas, for the achievability of information rates corresponding to given distortion levels

of each communication step. For stochastically degraded sources, the two-stage coding

scheme is extended to include any finite number of steps. Special attention is devoted in [4]

to the case where the side information streams at the decoders are identical, and a notion of

successively refinable sources is introduced along with conditions for successive refinability.

In [5], the noise-free setting of [4] is extended into a joint source-channel coding setting,

considering communication across independent memoryless channels. Similarly as in [4], the

output of the channel corresponding to the coarse (first) description of X is also available

to the refinement (second) decoder and each of the decoder may have access to different

side information correlated with the source. The main result of [5] is a separation theorem

asserting that asymptotically no optimality is lost by first applying lossy successive source

coding, regardless of the channels and then applying good channel codes to each of the

resulting bitstreams, regardless of the source and the side information.

In this paper, we extend the setups of [5] and [3] in a combined manner: We consider

the scenario of [3], where the communication between the two codecs is conducted via noisy

3



channels, and furthermore, unlike in [3], where the reconstruction of both sources is carried

out only after K rounds, here, distortion constraints are imposed after each round, and in

this sense, it extends the scenario of [5]. To simplify the exposition, we begin with the pure

source coding part. We provide a single-letter description of the achievable region of all per-

round communication rates. A special case of our setting arises when only codec 1 allowed

to transmit and codec 2 is “silent”. In this case, the achievable rate-region derived in this

paper degenerates to that of [4] for the case of identical side information at both decoders.

The result of [3] can be derived from our scheme by relaxing the intermediate distortion

constraints and summing the transmission rates used in K rounds in each direction.

We next extend the noise-free setting of two-way lossy source coding with a fidelity

criterion into a joint source-channel coding setting. In our model, we consider the problem

where the communication between the two codecs goes over two independent memoryless

channels. The main result of this paper is a single-letter characterization of the achievable

region of distortions achieved in each round. The main feature of this characterization

is that it admits a separation principle, which tells that no optimality is lost if at each

communication step, one first applies optimum two-way lossy successive-refinement source

coding, independently of the channels, and then applies good channel coding [1] for each

one of the compressed bitstreams, independently of the source descriptions available at each

of the codecs.

It should be pointed out that this separation theorem is not trivial. As is well known,

source-channel separation does not always exist even in non-interactive communication (see,

e.g., [1, pp. 448–449]). A-fortiori, in our communication model, which is interactive, the

optimality of source-channel separation is not self-evident since information flows bidirec-

tionally and in several rounds. This separation theorem also motivates the design of good

practical source codes which are independent of channel coding, and gives rise to various

algorithmic approaches to the interactive communication problem. Similarly as in the noise-

free scenario, if only codec 1 transmits, our results degrade to these of [5] for a special case

of identical side information available at both decoders.

The outline of the paper is as follows. In Section 2, we define the notation conventions

as well as some terminology used throughout the paper. A formal definition of the problem

is provided in Section 3. In Section 4, we give the characterizations of the achievable rate-

regions and formulate the coding theorems for the successive-refinement two-way source
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coding and the joint source-channel coding. As source-coding is a special case of joint

source-channel coding, to avoid redundancy, the proofs of the coding theorems are provided

jointly in Section 5.

2 Notation Conventions and Preliminaries

We begin by setting up the notation. Throughout this paper, scalar random variables

(RVs) will be denoted by capital letters, specific values they may take will be denoted by

the corresponding lower case letters, and their alphabets, as well as most of the other sets,

will be denoted by calligraphic letters. Similarly, random vectors, their realizations, and

their alphabets will be denoted, respectively, by boldface capital letters, the corresponding

boldface lower case letters, and calligraphic letters, superscripted by the dimensions. The

notations x
j
i and X

j
i , where i and j are integers and i ≤ j, will designate segments (xi, ..., xj)

and (Xi, ..., Xj), respectively, where for i = 1, the the subscript will be omitted. For

example, the random vector X = XN = XN
1 = (X1, ..., XN ), (N -positive integer) may take

a specific vector value x = xN = xN
1 = (x1, ..., xN ) in XN , the Nth order Cartesian power

of X , which is the alphabet of each component of this vector. The cardinality of a finite set

X will be denoted by |X |. For i > j, x
j
i (or X

j
i ) will be understood as the null string.

Sources and channels will be denoted generically by the letter P subscripted by the name

of the random variable and its conditioning, if applicable, e.g., PX(x) is the probability

of X = x, PY |X(y|x) is the conditional probability of Y = y given X = x, and so on.

Whenever clear from the context, these subscripts will be omitted. The notation E will

denote the expectation operator. Information-theoretic quantities will be denoted using the

conventional notations [6]-[7]: For a pair of discrete random variables (X,Y ) with a joint

distribution PXY (x, y) = PX(x)PY |X(y|x), the entropy of X will be denoted by H(X), the

joint entropy - by H(X, Y ), the conditional entropy of Y given X - by H(Y |X), and the

mutual information by I(X; Y ), where logarithms are defined to the base 2. In this paper,

we use the definitions from [7] for all the calculations related to the method of types.

3 System Description and Problem Definition

We refer to the communication system depicted in Fig. 1: Consider a source, {Xi, Yi}
∞
i=1,

producing N independent copies of a pair of RVs, (X,Y ), taking values in X ×Y, and drawn
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Figure 1: Two-way communication scheme.

under a joint distribution PXY . The {Xi} part of the {Xi, Yi} process is observed at the

codec 1 and is supposed to be reproduced at the other side (codec 2), where the {Yi} part

of the process is observed. Similarly, the process {Yi}, which is observed at codec 2, is to be

recovered at codec 1. The reproductions take values in the finite sets, X̂ and Ŷ, respectively.

The communication between the two codecs is carried out over two memoryless channels,

channel 1, PV |U , from codec 1 to codec 2, and channel 2, PB|A, from codec 2 to codec 1.

We denote by C1 and C2 the capacities of channel 1 and channel 2, respectively.

The following protocol for exchange of information is considered in this paper: Codec

1 starts the information exchange by sending some amount of information to codec 2.

We consider block coding only, i.e., an N -vector x is encoded by codec 1 into the block

sequence u1 = (u1,1, ..., u1,m1,1
) of length m1,1. Codec 2 receives a noisy version of u1,

denoted by v1 = (v1,1, ..., v1,m1,1
), and replies to codec 1 with some information about

y, which is a1 = (a1,1, ..., a1,m2,1
), of length m2,1, that is a function of y and v1. This

information is distorted by the memoryless channel PB|A, and thus, reaches codec 1 as

b1 = (b1,1, ..., b1,m2,1
). Then, codec 1 sends additional information to codec 2, of length

m1,2, now basing the generation of u2 on x and b1, etc. The process is repeated K times.

In each communication step k, k = 1, 2, ..., K, codec 1 uses codewords of length m1,k and

codec 2 generates codewords of length m2,k, and each codec produces an estimation of

the respective part of the source, based on all information currently available. In other

words, after step k, codec 1 reconstructs ŷk = (ŷk,1, ..., ŷk,N ) ∈ ŶN based on (x, b1, ..., bk−1)

and codec 2 reproduces x̂k = (x̂k,1, ..., x̂k,N ) ∈ X̂N based on (y, v1, ..., vk). The quality of

reconstruction after step k is judged in terms of the expectation of an additive distortion
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measure

dx,k(x, x̂k) =
1

N

N∑

l=1

dx,k(xl, x̂k,l), (1)

and

dy,k(y, ŷk) =
1

N

N∑

l=1

dy,k(yl, ŷk,l), (2)

where dx,k(x, x̂k) ≥ 0, dy,k(y, ŷk) ≥ 0, x ∈ X , x̂k ∈ X̂ , y ∈ Y, ŷk ∈ Ŷ, are given bounded

distortion measures used in each communication step k.

The source PXY generates block of N independent pairs {Xi, Yi} each T seconds, thus

operating at the rate of ρs
△
= N

T
source symbols per second. The duration of a block, T , is

divided between K communication rounds, with each round consisting of two one-directional

transmissions. The two channels operate at constant rates of ρc1 and ρc2 channel symbols

per second, respectively. For each iteration, k = 1, 2, ...,K, we denote the transmission

duration from codec 1 to codec 2 by T1,k and from codec 2 to codec 1 by T2,k. Thus,

T =
K∑

k=1

(T1,k + T2,k). (3)

For the k-th iteration, the operation rates of channel 1 and channel 2 can be given in terms

of the block lengths of channel sequences and the duration of the iteration, i.e.,

ρc1

△
=

m1,k

T1,k

=
T

T1,k

·
m1,k

T

△
= β1,k ·

m1,k

T
(4)

and

ρc2

△
=

m2,k

T2,k

=
T

T2,k

·
m2,k

T

△
= β2,k ·

m2,k

T
, (5)

where β1,k and β2,k denote the relative duration ratios of each of the one-directional trans-

missions.

Definition 1. An (N, {m1,k}
K
k=1, {m2,k}

K
k=1, {∆x,i}

K
k=1, {∆y,i}

K
k=1), K-step joint source-

channel code for the source PXY and the channels PV |U and PB|A, consists of 2K encoder-

decoder pairs {(fk, Gk)}
K
k=1 and {(gk, Fk)}

K
k=1:

fk : XN × Bm2,1 × ... × Bm2,k−1 → Um1,k , (6)

Gk : YN × Vm1,1 × ... × Vm1,k → X̂N , (7)
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and

gk : YN × Vm1,1 × ... × Vm1,k → Am2,k , (8)

Fk : XN × Bm2,1 × ... × Bm2,k → ŶN , (9)

such that for every k = 1, 2, ..., K,

Edx,k(X, Gk(Y,V1, ...,Vk)) ≤ N∆x,k, (10)

Edy,k(Y, Fk(X,B1, ...,Bk)) ≤ N∆y,k. (11)

Definition 2. The distortions {(∆x,k, ∆y,k)}
K
k=1 are said to be achievable if for every

ǫ > 0, and sufficiently large block-lengths N , {m1,k}
K
k=1 and {m2,k}

K
k=1 there exists an

(N, {m1,k}
K
k=1, {m2,k}

K
k=1, {∆x,k + ǫ}K

k=1, {∆y,k + ǫ}K
k=1) K-step joint source-channel code

for the source PXY and the channels PV |U , PB|A, with operation rates ρs, ρc1 and ρc2. The

distortion region, denoted D, is the closure of the set of all vectors {(∆x,k, ∆y,k)}
K
k=1.

The characterization of the achievable region of D is intimately related to the definition

of the successive source coding. Consider then the following definition for the corresponding

pure source coding problem (with noise-free channels):

Definition 3. An (N, {M1,k}
K
i=1, {M2,k}

K
i=1, {∆x,i}

K
i=1, {∆y,i}

K
i=1), K-step source code with

successive refinement for the source PXY , consists of 2K encoder-decoder pairs {(fk, Gk)}
K
k=1

and {(gk, Fk)}
K
k=1:

fk : XN × {1, 2, ...,M2,1} × ... × {1, 2, ..., M2,k−1} → {1, 2, ..., M1,k}, (12)

Gk : YN × {1, 2, ..., M1,1} × ... × {1, 2, ...,M1,k} → X̂N , (13)

and

gk : YN × {1, 2, ..., M1,1} × ... × {1, 2, ..., M1,k} → {1, 2, ..., M2,k}, (14)

Fk : XN × {1, 2, ..., M2,1} × ... × {1, 2, ...,M2,k} → ŶN , (15)

such that for every k = 1, 2, ..., K,

Edx,k(X, Gk(Y, f1(X), ..., fk(X))) ≤ N∆x,k, (16)

Edy,k(Y, Fk(X, g1(Y), ..., gk(Y))) ≤ N∆y,k. (17)
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The K rate-pairs {(Rx,k, Ry,k)}
K
k=1 of the (N, {M1,k}

K
k=1, {M2,k}

K
k=1, {∆x,k}

K
k=1, {∆y,k}

K
k=1)

successive-refinement code are given by

Rx,k
△
=

1

N
log M1,k (18)

and

Ry,k
△
=

1

N
log M2,k (19)

for each k = 1, 2, ...,K. Here we adopt the incremental definitions of information rates used

in [4] and [5] for one-way successive communication, which are different from those used in

[8] and [9], where the achievable rate-region is given via cumulative communication rates

after each iteration. The differences between these two approaches are detailed in [4], and,

as is thoroughly explained in [4], the characterization of achievable region used in [4] and

[5] is more suitable to describe actual systems operating over rate-limited channels (which

is the case analyzed in this paper) than that of [8] and [9].

In parallel to Definition 2, we define the following:

Definition 4. The rate-distortion (4K)-tuples {(Rx,k, Ry,k,∆x,k, ∆y,k)}
K
k=1 are said to be

achievable if for every δ > 0, ǫ > 0, and a sufficiently large blocklength N , there exists an

(N, {2N(Rx,k+δ)}K
k=1, {2

N(Ry,k+δ)}K
k=1, {∆x,k +ǫ}K

k=1, {∆y,k +ǫ}K
k=1), K-step source code with

successive refinement for the source PXY . The collection of all {(Rx,k, Ry,k,∆x,k,∆y,k)}
K
k=1-

achievable rate-distortion quadruples is the achievable rate-distortion region, and is denoted

by RD.

Our first objective is to provide a single-letter characterization of RD and to propose

strategies for (asymptotically) achieving any given point in RD. The main objective of this

work, is to provide a single-letter characterization of D, and in particular, to show that any

given point in D can be achieved by separate source coding of the source PXY , achieving

rates is RD, used in tandem with an optimal channel code [1, 6, 7] (independently of the

source).

Since the characterization of RD is strongly related to the coding theorem of [3], we now

pause to provide a brief description of this theorem. As mentioned in the Introduction, in

[3], Kaspi considers the special case of the presented model, where the channels are clean,

namely, the problem of pure source coding. The distortion constraints considered in [3] are
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degenerated to two constraints only (∆x,K , ∆y,K), i.e., the reconstruction of the source PXY

in each codec is performed only after K steps. In terms of our definition of the problem,

the allowed distortions of [3] are given by ∆x,k = ∞ and ∆y,k = ∞ for k = 1, ..., K − 1,

and the distortions (∆x,K , ∆y,K) are finite. The main result of [3] (in the notation of the

present paper) is given in terms of overall compression rates achievable in the scheme,

Rx
△
=

K∑

k=1

Rx,k, (20)

and

Ry
△
=

K∑

k=1

Ry,k, (21)

rather than achievable rates in each communication step.

Theorem 1. [3] A rate-distortion quadruple (Rx, ∆x,K , Ry, ∆y,K) is achievable if and only

if there exists a (2K)-tuple of random variables (Z1, ..., ZK ,W1, ...,WK), taking values in

finite alphabets Z1, ...,ZK ,W1, ...,WK , respectively, such that the following conditions are

satisfied:

1. The following Markov chains are satisfied:

Z1 ÷ X ÷ Y, (22)

W1 ÷ (Y, Z1) ÷ X, (23)

and for k = 2, ..., K,

Zk ÷ (X, Z1, ..., Zk−1,W1, ..., Wk−1) ÷ Y, (24)

Wk ÷ (Y,Z1, ..., Zk,W1, ..., Wk−1) ÷ X. (25)

2. There exist deterministic decoding functions FK : X ×Z1× ...×ZK ×W1× ...×WK → Ŷ

and GK : Y × Z1 × ... ×ZK ×W1 × ... ×WK → X̂ , such that

Edx,K(X,GK(Y, Z1, ..., ZK ,W1, ..., WK)) ≤ ∆x,K , (26)

and

Edy,K(Y, FK(X,Z1, ..., ZK ,W1, ..., WK)) ≤ ∆y,K . (27)
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3. The rates Rx and Ry satisfy

Rx ≥ I(X; Z1, ..., ZK ,W1, ...WK |Y ), (28)

and

Ry ≥ I(Y ;Z1, ..., ZK ,W1, ...WK |X). (29)

The necessary sizes of the alphabets of {Zk}
K
k=1 and {Wk}

K
k=1 are not specified in [3].

4 Main Result

In this section, we consider the problem of two-way joint source-channel coding with a

fidelity criterion. For the clarity of exposition, we begin with a pure source coding problem

and then extend the setup to include communication over two memoryless rate-limited

channels, and formulate coding theorems for each of the cases.

4.1 Source Coding with Successive Refinement

In this subsection, we give a single-letter characterization of RD for a given source PXY and

a K-step two-way interactive coding. Let a distortion (2K)-tuple D
△
= {(∆x,k,∆y,k)}

K
k=1 be

given. Define R∗(D) to be the set of (2K) rate-tuples {(Rx,k, Ry,k)}
K
k=1 for which there exists

a (2K)-tuple of random variables (Z1, ..., ZK ,W1, ..., WK), taking values in finite alphabets,

Z1, ...,ZK ,W1, ...,WK , respectively, such that the following conditions are satisfied:

1. The following Markov chains are satisfied:

Z1 ÷ X ÷ Y, (30)

W1 ÷ (Y, Z1) ÷ X, (31)

and for k = 2, ..., K,

Zk ÷ (X, Z1, ..., Zk−1,W1, ..., Wk−1) ÷ Y, (32)

and

Wk ÷ (Y,Z1, ..., Zk,W1, ..., Wk−1) ÷ X. (33)
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2. There exist 2K deterministic decoding functions for k = 1, 2, ..., K, Fk : X × Z1 × ... ×

Zk ×W1 × ... ×Wk → Ŷ and Gk : Y × Z1 × ... ×Zk ×W1 × ... ×Wk → X̂ , such that

Edx,k(X, Gk(Y, Z1, ..., Zk,W1, ..., Wk)) ≤ ∆x,k, (34)

and

Edy,k(Y, Fk(X, Z1, ..., Zk,W1, ..., Wk)) ≤ ∆y,k. (35)

3. The alphabets (Z1, ..., ZK ,W1, ..., WK) satisfy

|Zk| ≤ (|X | · |Y| + 2)2k−1 (36)

and

|Wk| ≤ (|X | · |Y| + 2)2k. (37)

4. The rates Rx,k and Ry,k satisfy

Rx,k ≥ I(X; Zk,Wk|Y,Z1, ..., Zk−1,W1, ...Wk−1), (38)

and

Ry,k ≥ I(Y ; Zk,Wk|X, Z1, ..., Zk−1,W1, ...Wk−1). (39)

The main result of this subsection is the following:

Theorem 2. For any DMS PXY ,

R(D) = R∗(D). (40)

The proof of Theorem 2 appears in Section 5.

Discussion:

First, let us notice that the lower bounds to per-step compression rates Rx,k and Ry,k

given in (38) and (39) equal to

Rx,k ≥ I(X; Zk|Y, Z1, ..., Zk−1,W1, ...Wk−1), (41)

and

Ry,k ≥ I(Y ; Wk|X, Z1, ..., Zk, W1, ...Wk−1), (42)
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as immediately follows from definition of the Markov structures (30)-(33). We provide

the compression rates in the form of (38)-(39) in order to emphasize the relation of The-

orem 2 to Theorem 1. Specifically, by omitting all the intermediate distortion constraints

{(∆x,k, ∆y,k)}
K−1
k=1 of Theorem 2 (for example, by allowing them all to be infinite), we ob-

tain that Theorem 2 degenerates to Theorem 1, since the cumulative coding rates after K

transmissions equal Rx and Ry, as defined in (20) and (21), respectively. Our characteri-

zation is more suitable to describe actual systems than that of [3]. Specifically, in the next

subsection, we consider a case where the bitstreams of each of the communication steps are

transmitted via two separate rate-limited channels. Then, the coding rates of each step are

separately compared to the capacities of the corresponding channels, an analysis which is

not possible with the original problem characterization of [3].

The results of Theorem 2 relate directly to the problem of one-way successive refinement

for the Wyner-Ziv problem, investigated in [4]. Specifically, for the setting defined in this

paper, assume that only codec 1 transmits information to codec 2 and codec 2 is “silent”.

This scenario can be modelled by taking Ry,k = 0 and allowing ∆y,k to be infinite for all

k = [1, 2, ..., K]. Then, we end up with a one-way communication scheme with successive

refinement from codec 1 to codec 2, with identical side information Y available at all re-

finement stages [4]. Note that here, codec 2 represents solely all the per-stage decoders of

[4]. Since we can satisfy the above Ry,k and ∆y,k by choosing all auxiliary random variables

{Wk}
K
k=1 to be constants, under the constraints imposed on {Zk}

K
k=1, we obtain that R(D)

turns out to be that of [4].

4.2 Joint Source-Channel Coding

We now present the main result of this paper, which is a necessary and sufficient condition

for {∆x,k, ∆y,k}
K
k=1 to be the achievable distortion levels of the scheme depicted in Fig. 1.

Theorem 3. Given a DMS PXY , the distortion levels {∆x,k, ∆y,k}
K
k=1 are achievable for

the two-way K-step communication over noisy stationary memoryless channels PV |U and

PB|A if and only if there exist auxiliary RVs {Zi}
K
i=1 and {Wi}

K
i=1, taking values in finite

alphabets {Zi}
K
i=1 and {Wi}

K
i=1, of cardinality denoted by (36) and (37), respectively, and

satisfying (30) - (33), and deterministic decoding functions {Fk}
K
k=1 and {Gk}

K
k=1, satisfying

(34) and (35), respectively, such that for all k = 1, 2, ...,K,
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ρsI(X; Zk,Wk|Y, Z1, ..., Zk−1,W1, ...Wk−1) ≤
ρc1

β1,k
C1, (43)

ρsI(Y ; Zk,Wk|X, Z1, ..., Zk−1,W1, ...Wk−1) ≤
ρc2

β2,k

C2. (44)

The similarity between the characterization of the region of achievable distortion levels

of Theorem 3 and the characterization of D is self evident. In fact, the only difference is that

in each communication step k, the coding rates Rx,k and Ry,k of the former are replaced

by
ρc1

ρsβ1,k
C1 and

ρc2

ρsβ2,k
C2, respectively. The immediate conclusion from this observation is

that the separation principle applies to our model.

The proof of the converse part of Theorem 3 appears in Section 5. The proof of direct

part comes directly from considering an asymptotically optimum K-step two-way source

code (independent of the channel) followed by a reliable transmission code for each of

the channels (independent of the source), i.e., separate source and channel coding. If the

distortion level of the two-way source code, presented in Section 4.1, is chosen such that

ρsRx,k <
ρc1

β1,k
C1 and ρsRy,k <

ρc2

β2,k
C2, one may select constants Rs,x,k, Rc,x,k, Rs,y,k and

Rc,y,k such that for every k = [1, 2, ..., K]

NRx,k < NRs,x,k = m1,kRc,x,k < m1,kC1 (45)

and

NRy,k < NRs,y,k = m2,kRc,y,k < m2,kC2. (46)

In each communication step, each codec may then compress the information about X (Y )

into Rs,x,k (Rs,y,k) bits per symbol within distortion ∆x,k (∆y,k), and then map the resulting

NRs,x,k-bit (NRs,y,k-bit) codewords into channel codewords of the same number of bits

m1,kRc,x,k < m1,kC1 (m2,kRc,y,k < m2,kC2). Since Rc,x,k < C1 and Rc,y,k < C2, there exist

reliable channel codes which cause asymptotically negligible additional distortion. Since D

can be chosen in this way, such that ρsRx,k is arbitrary close to
ρc1

β1,k
C1 and ρsRy,k to

ρc2

β2,k
C2,

all distortion levels for which ρsRx,k <
ρc1

β1,k
C1 and ρsRy,k <

ρc2

β2,k
C2 are achievable.

5 Proofs

The pure source-coding problem is a special case of the joint source-channel problem. We

begin with the direct part of the proof of Theorem 2. We then provide a proof of the
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converse part of Theorem 3, which includes the converse of Theorem 2 as a special case.

Nonetheless, we emphasize the nuances which are special for the noise-free case.

5.1 Proof of the Direct Part of Theorem 2

The proof of the direct part follows the lines of the proof provided in [3]. Given some

constants ǫ > 0 and δ > 0, we require the deterministic functions {Fk, Gk}
K
k=1 and RVs

X, Y , {Zk}
K
k=1 and {Wk}

K
k=1 (all of finite cardinality) to satisfy a single-letter distortion

constraints (34) and (35) in each step k = 1, ...,K. We use the definitions of the variables

and functions of [3]. The only difference in notations is that of denoting indexes as a

subscript rather than superscript, for example, auxiliary RVs of [3] {Zk}K
k=1 and {W k}K

k=1

are referred to in our proof as {Zk}
K
k=1 and {Wk}

K
k=1.

It was shown in [3], that the probability of failure in the coding scheme proposed therein

(asymptotically) vanishes. The outline of the coding algorithm is as follows: A random

coding tree is generated and kept in both codecs. After codec 1 receives an N -vector x and

codec 2 receives an N -vector y, the two codecs follow a common path from the root to a

leaf. Suppose that just before the k-th transmission from codec 1, both codecs are on a

node 2(k − 1) branches from the root. Codec 1 makes a decision upon the next node and

transmits it to codec 2 using NRx,k bits. Both sides move to the next node and codec 2

makes and transmits the next decision using NRy,k bits. The reproduction vectors X̂k and

Ŷk are generated after both codec 1 and codec 2 make their move to the next nodes.

We show that under the additional constraint added to the original problem of [3], over

the ensemble of code trees, at each communication step k, the expected distortions can

be made arbitrary close to {∆x,k + δ}K
k=1, {∆y,k + δ}K

k=1 and the compression rates can

approach {Rx,k + ǫ}K
k=1 and {Ry,k + ǫ}K

k=1 as close as desired.

The proof of the achievability of coding rates is based on the properties of δ-strongly

joint typicality [7]. It is similar to this of [3] and thus omitted. We rewrite the results of [3]

using the Markov chains (30)-(33): The value of Rx,k in [3], given by eq. (3.7), equals

Rx,k = I(X; Zk|Y, Z1, ..., Zk−1,W1, ..., Wk−1) + 2α

= I(X; Zk|Y, Z1, ..., Zk−1,W1, ..., Wk−1) + I(X; Wk|Y, Z1, ..., Zk, W1, ..., Wk−1) + 2α

= I(X; Zk,Wk|Y, Z1, ..., Zk−1,W1, ..., Wk−1) + 2α, (47)

as immediately follows from the Markov structures (31) and (33). In terms of [3], the
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component 2α is a payoff for using typical sequences. Similarly, the value of Ry,k in [3], is

given by

Ry,k = I(Y ; Wk|X, Z1, ..., Zk, W1, ..., Wk−1) + 2α̃

= I(Y ; Wk|X, Z1, ..., Zk, W1, ..., Wk−1) + I(Y ; Zk|X, Z1, ..., Zk−1,W1, ..., Wk−1) + 2α̃

= I(Y ; Zk,Wk|X, Z1, ..., Zk−1,W1, ..., Wk−1) + 2α̃, (48)

as follows from the Markov chains (30) and (32), and 2α̃ is a payoff due to typicality.

To complete the proof, it remains to show that the distortion constraints (34) and

(35) are satisfied. We do this by upper bounding the average distortions in each step

k = 1, 2, ..., K by means of the typicality properties of the scheme. Specifically:

Edx,k(x, x̂k) =
1

N

N∑

i=1

∑

x,y,{zk′ ,wk′}
k
k′=1

Pr{(xi, yi, {zk′,i, wk′,i}
k
k′=1) = (x, y, {zk′ , wk′}k

k′=1)}

· dx,k(x, Fk(x, {zk′ , wk′}k
k′=1)) (49)

≤
∑

x,y,{zk′ ,wk′}
k
k′=1

Pr{(x, y, {zk′ , wk′}k
k′=1)} · dx,k(x, x̂k) + δ max

x,x̂k

{dx,k(x, x̂k)}

≤ ∆x,k + δ max
x,x̂k

{dx,k(x, x̂k)},

and similarly,

Edy,k(y, ŷk) =
1

N

N∑

i=1

∑

x,y,{zk′ ,wk′}
k
k′=1

Pr{(xi, yi, {zk′,i, wk′,i}
k
k′=1) = (x, y, {zk′ , wk′}k

k′=1)}

· dy,k(y, Gk(y, {zk′ , wk′}k
k′=1)) (50)

≤
∑

x,y,{zk′ ,wk′}
k
k=1

Pr{(x, y, {zk′ , wk′}k
k′=1)} · dy,k(y, ŷk) + δ max

y,ŷk

{ρy,k(y, ŷk)}

≤ ∆y,k + δ max
y,ŷk

{dy,k(y, ŷk)},

which completes the proof of the direct part.

5.2 Proof of the Converse Part of Theorem 3

In order to prove the converse part, we first prove the following lemma which extends the

results of Lemma 1 of [3] to stochastic functions:

Lemma 1. Let J1, J2, E1 and E2 be random variables with joint probability P (J1, J2, E1, E2) =

P (J1, E1)P (J2, E2) and suppose that {Vk} and {Bk}, k = [1, 2, ...], are any stochastic func-

tions with domain structure Vk(J1, J2,B1, ...Bk−1) and Bk(E1, E2,V1, ...Vk). Then
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I(J2;E1|V1, ...,Vk,B1, ...,Bk, J1, E2) = 0. (51)

Proof of Lemma 1

In the sequel we use the convention that V0 = 0 and B0 = 0. Then,

0 ≤ I(J2; E1|V1, ...,Vk,B1, ...,Bk, J1, E2) (52)

= H(J2|V1, ...,Vk,B1, ...,Bk, J1, E2) (53)

− H(J2|V1, ...,Vk,B1, ...,Bk, J1, E1, E2) (54)

= H(J2|V1, ...,Vk,B1, ...,Bk−1, J1, E2) (55)

− I(J2;Bk|V1, ...,Vk,B1, ...,Bk−1, J1, E2) (56)

− H(J2|V1, ...,Vk,B1, ...,Bk−1, J1, E1, E2) (57)

+ I(J2;Bk|V1, ...,Vk,B1, ...,Bk−1, J1, E1, E2) (58)

(a)
= H(J2|V1, ...,Vk,B1, ...,Bk−1, J1, E2) (59)

− I(J2;Bk|V1, ...,Vk,B1, ...,Bk−1, J1, E2) (60)

− H(J2|V1, ...,Vk,B1, ...,Bk−1, J1, E1, E2) (61)

= I(J2; E1|V1, ...,Vk,B1, ...,Bk−1, J1, E2) (62)

− I(J2;Bk|V1, ...,Vk,B1, ...,Bk−1, J1, E2) (63)

≤ I(J2; E1|V1, ...,Vk,B1, ...,Bk−1, J1, E2) (64)

= H(E1|V1, ...,Vk−1,B1, ...,Bk−1, J1, E2) (65)

− I(E1;Vk|V1, ...,Vk−1,B1, ...,Bk−1, J1, E2) (66)

− H(E1|V1, ...,Vk−1,B1, ...,Bk−1, J1, J2, E2) (67)

+ I(E1;Vk|V1, ...,Vk−1,B1, ...,Bk−1, J1, J2, E2) (68)
(b)

≤ I(J2; E1|V1, ...,Vk−1,B1, ...,Bk−1, J1, E2) (69)

... (70)

≤ I(J2; E1|J1, E2) (71)

(c)
= 0, (72)

where:

(a) follows from the Markov chain

J2 ÷ (J1, E1, E2,V1, ...Vk,B1, ...,Bk−1) ÷Bk, which implies
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I(J2;Bk|V1, ...,Vk,B1, ...,Bk−1, J1, E1, E2) = 0,

(b) from the Markov chain

E1 ÷ (J1, J2, E2,V1, ...Vk−1,B1, ...,Bk−1) ÷Vk, which implies

I(E1;Vk|V1, ...,Vk−1,B1, ...,Bk−1, J1, J2, E2) = 0,

and from non-negativity of mutual information, and

(c) from independence of (J1, E1) and (J2, E2).

¤

Similarly as in [3], the proof of Lemma 1 provides two immediate conclusions:

Corollary 1.

I(E1;Vk|V1, ...,Vk−1,B1, ...,Bk−1, J1, E2) = 0, (73)

and

I(J2;Bk|V1, ...,Vk,B1, ...,Bk−1, J1, E2) = 0. (74)

We proceed now with the proof of the converse part of Theorem 3. Let ({fk, gk, F̃k, G̃k}
K
k=1)

be given encoder and decoder functions for which Edx,k(X, X̂k) ≤ N∆x,k and Edy,k(Y, Ŷk) ≤

N∆y,k for each k = 1, 2, ..., K. In the proof, for the k-th step of the communication proto-

col, we examine the mutual informations I(X,B1, ...,Bk−1;Vk) and I(Y,V1, ...,Vk;Bk).

We focus on the k-th transmission from codec 1 to codec 2 only, as the proof of the com-

plementary transmission from codec 2 to codec 1 exactly the same.

Due to the physical structure of the communication scheme, there exists a Markov chain

(X,B1, ...Bk−1) ÷Uk ÷Vk, and therefore, by the data processing inequality, we obtain

I(X,B1, ...,Bk−1;Vk) ≤ I(Uk;Vk)
(a)

≤ m1,kC1, (75)

where (a) follows from the capacity formula for a stationary memoryless channel [1]. On

the other hand,

I(X,B1, ...,Bk−1;Vk) (76)

(a)
= I(X,B1, ...,Bk−1;Vk) + I(Y;Vk|X,B1, ...,Bk−1) (77)

= I(X,Y,B1, ...,Bk−1;Vk) (78)

(b)
= I(X,Y,V1, ...,Vk−1,B1, ...,Bk−1;Vk) (79)
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≥ I(X;Vk|Y,V1, ...,Vk−1,B1, ...,Bk−1) (80)

(c)
= I(X;Vk,Bk|Y,V1, ...,Vk−1,B1, ...,Bk−1) (81)

=
N∑

i=1

I(Xi;Vk,Bk|X
i−1
1 ,Y,V1, ...,Vk−1,B1, ...,Bk−1), (82)

where:

(a) follows from the Markov chain Y÷ (X,B1, ...,Bk−1) ÷Vk,

which implies I(Y;Vk|X,B1, ...,Bk−1) = 0,

(b) from the Markov chain

Vk ÷ (X,Y,B1, ...,Bk−1) ÷ (V1, ...,Vk−1), and

(c) from the Markov chain

X÷ (Y,V1, ...,Vk,B1, ...,Bk−1) ÷Bk.

Defining auxiliary RVs:

Z1,i
△
= (V1, X

i−1
1 , Y N

i+1), (83)

for k = 2, ..., K

Zk,i
△
= Vk, (84)

and for k = 1, ..., K

Wk,i
△
= Bk, (85)

we obtain from (76)-(82) the following lower bound to I(X,B1, ...,Bk−1;Vk):

I(X,B1, ...,Bk−1;Vk) (86)

≥
N∑

i=1

I(Xi;Zk,i,Wk,i|Yi, Y
i−1
1 , Z1,i, ..., Zk−1,i,W1,i, ..., Wk−1,i) (87)

=

N∑

i=1

[
I(Xi; Zk,i,Wk,i|Yi, Z1,i, ..., Zk−1,i,W1,i, ..., Wk−1,i) (88)

+I(Xi;Y
i−1
1 |Yi, Z1,i, ..., Zk,i, W1,i, ..., Wk,i) (89)

−I(Xi;Y
i−1
1 |Yi, Z1,i, ..., Zk−1,i,W1,i, ...,Wk−1,i)

]
. (90)

Now, applying Lemma 1, we can show that the values of (89) and (90) are zero. Specifically,

let us examine (89):
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0 ≤ I(Xi; Y
i−1
1 |Yi, Z1,i, ..., Zk,i,W1,i, ..., Wk,i) (91)

≤ I(Xi, X
N
i+1; Y

i−1
1 |Yi, Z1,i, ..., Zk,i,W1,i, ...,Wk,i) (92)

= I(Xi, X
N
i+1; Y

i−1
1 |Yi, X

i−1
1 , Y N

i+1,V1, ...,Vk,B1, ...,Bk) (93)

= 0, (94)

where in the last step, we have used Lemma 1 with the substitutions J1
△
= Xi−1

1 , J2
△
=

(Xi, X
N
i+1), E1

△
= Y i−1

1 and E2
△
= (Y1, Y

N
i+1). The proof of equality of (90) to zero follows

the same lines. Similarly, the choice of J1
△
= (Xi, X

i−1
1 ), J2

△
= XN

i+1, E1
△
= (Yi, Y

i−1
1 ) and

E2
△
= Y N

i+1 serves to prove the rate constraints of the complementary k-th transmission from

codec 2 to codec 1. And so, we obtain

I(X,B1, ...,Bk−1;Vk) ≥

N∑

i=1

[
I(Xi; Zk,i, Wk,i|Yi, Z1,i, ..., Zk−1,i,W1,i, ..., Wk−1,i)

]
. (95)

Consider now a time-sharing random variable S, distributed uniformly over {1, 2, ..., N},

independently of all other random variables in the system, and let us denote 2(k+1) random

variables:

(X, Y, Z̃1, Z2, ..., ZK , W1, ..., WK)
△
= (XS , YS , Z1,S , Z2,S , ..., ZK,S ,W1,S , ..., WK,S). (96)

By denoting Z1
△
= (Z̃1, S), and combining the definitions of (96) with the result of (75), we

obtain that

m1,kC1 ≥ I(X,B1, ...,Bk−1;Vk) (97)

≥ NI(X;Zk,Wk|Y, Z1, ..., Zk−1,W1, ...,Wk−1). (98)

Of course, a similar analysis can be performed for I(Y,V1, ...,Vk;Bk), showing that

m2,kC2 ≥ I(Y,V1, ...,Vk;Bk) (99)

≥ NI(Y ; Zk,Wk|X, Z1, ..., Zk−1,W1, ..., Wk−1). (100)

Now, from (4) and (5), it follows that

ρsI(X; Zk, Wk|Y, Z1, ..., Zk−1,W1, ..., Wk−1) ≤
ρc1

β1,k
C1 (101)

and

ρsI(Y ;Zk,Wk|X,Z1, ..., Zk−1, W1, ..., Wk−1) ≤
ρc2

β2,k

C2. (102)
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We pause to adjust the above bounds to prove the necessity part of Theorem 2. In the

noise-free case, fk = Uk = Vk and gk = Ak = Ak. Thus, for each k = 1, ...,K, we can

lower-bound the intermediate compression rates as follows:

Rx,k ≥
1

N
H(Uk) (103)

≥
1

N
I(X,A1, ...,Ak−1;Uk)

≥ I(X; Zk,Wk|Y,Z1, ..., Zk−1,W1, ..., Wk−1)

and

Ry,k ≥
1

N
H(Ak) (104)

≥
1

N
I(Y,U1, ...,Uk;Ak)

≥ I(Y ;Zk,Wk|X,Z1, ..., Zk−1, W1, ..., Wk−1),

with the auxiliary RVs from (83)-(85) obtaining the form of

Z1,i
△
= (U1, X

i−1
1 , Y N

i+1), Z2,i
△
= U2, ... ZK,i

△
= UK (105)

and

W1,i
△
= A1, W2,i

△
= A2, ... WK,i

△
= AK . (106)

The proof that the distortion constraints are met, is based on the fact that in each

communication step k, the RVs {Zk′}k
k′=1 and {Wk′}k

k′=1 contain ({Vk′}k
k′=1, X

i−1
1 , Y N

i+1)

and ({Bk′}k
k′=1, X

i−1
1 , Y N

i+1), respectively. Therefore, we choose following functions Fk and

Gk:

Fk(Z1, ..., Zk,W1, ..., Wk, X) = F̃k,S(V1, ...,Vk,B1, ...,Bk,X), (107)

Gk(Z1, ..., Zk,W1, ..., Wk, Y ) = G̃k,S(V1, ...,Vk,B1, ...,Bk,Y), (108)

where, after the k-th step, F̃k,S and G̃k,S denote the outputs of the Decoders in Codecs 1

and 2, respectively, at time S. Then, for the distortions we have

Edx,k(X, Fk(Z1, ..., Zk,W1, ...,Wk, X)) = (109)

=
1

N

N∑

s=1

Edx,k(X,Fk,s(V(1), ...,V(k),B(1), ...,B(k),X)) ≤ ∆x,k,
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and similarly,

Edy,k(Y, Gk(Z1, ..., Zk, W1, ..., Wk, Y )) = (110)

=
1

N

N∑

s=1

Edy,k(Y,Gk,s(V(1), ...,V(k),B(1), ...,B(k),Y)) ≤ ∆y,k.

It remains to show that the above defined RVs maintain the Markov structures (30) - (33)

and that their alphabet sizes are as specified. To prove the Markov structures between X, Y

and appropriate {Zk}
K
k=1 and {Wk}

K
k=1, it is enough to prove these for every i = 1, 2, ..., N

among Xi, Yi, {Zk,i}
K
k=1 and {Wk,i}

K
k=1. We begin with the proof of Z1,i ÷ Xi ÷ Yi, (30):

0 ≤ I(Z1,i;Yi|Xi) (111)

= I(Xi−1
1 , Y N

i+1,V1; Yi|Xi) (112)

≤ I(Xi−1
1 , XN

i+1, Y
i−1
1 , Y N

i+1,V1; Yi|Xi) (113)

= I(Xi−1
1 , XN

i+1, Y
i−1
1 , Y N

i+1; Yi|Xi) + I(V1; Yi|Xi, X
i−1
1 , XN

i+1, Y
i−1
1 , Y N

i+1) (114)

= 0, (115)

where the last equality is because the sources are memoryless, which implies

I(Xi−1
1 , XN

i+1, Y
i−1
1 , Y N

i+1; Yi|Xi) = 0, (116)

and because of the Markov chain Yi ÷ (X, Y i−1
1 , Y N

i+1) ÷ V1. Similarly, (31) is proved as

follows:

0 ≤ I(W1,i; Xi|Z1,i, Yi) (117)

≤ I(W1,i; Xi, X
N
i+1|Z1,i, Yi) (118)

= I(B1;Xi, X
N
i+1|X

i−1
1 , Y N

i+1,V1, Yi) = 0, (119)

due to Corollary 1, (74), for J1
△
= Xi−1

1 , J2
△
= (Xi, X

N
i+1), E1

△
= Y i−1

1 , E2
△
= (Yi, Y

N
i+1).

For k = 2, ...K, from Corollary 1, eq. (73), we obtain that for the choice J1
△
= (Xi, X

i−1
1 ),

J2
△
= XN

i+1, E1
△
= (Yi, Y

i−1
1 ), E2

△
= Y N

i+1, we have:

0 ≤ I(Vk;Yi|Xi, X
i−1
1 , Y N

i+1,V1, ...,Vk−1,B1, ...,Bk−1) (120)

≤ I(Vk;Yi, Y
i−1
1 |Xi, X

i−1
1 , Y N

i+1,V1, ...,Vk−1,B1, ...,Bk−1) (121)

= 0. (122)
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Finally, due to Corollary 1, eq. (74), for J1
△
= Xi−1

1 , J2
△
= (Xi, X

N
i+1), E1

△
= Y i−1

1 , E2
△
=

(Yi, Y
N
i+1), we obtain

0 ≤ I(Bk;Xi|Yi, X
i−1
1 , Y N

i+1,V1, ...,Vk,B1, ...,Bk−1) (123)

≤ I(Bk;Xi, X
N
i+1|Yi, X

i−1
1 , Y N

i+1,V1, ...,Vk,B1, ...,Bk−1) (124)

= 0. (125)

In order to complete the proof, it is left to show that the cardinality of the alphabets

of auxiliary RVs {Zk}
K
k=1 and {Wk}

K
k=1 is limited. To this end, we will use the support

lemma [6], which is based on Carathéodory’s theorem, according to which, given J real

valued continuous functionals qj , j = 1, ..., J on the set P(X ) of probability distributions

over the alphabets X , and given any probability measure µ on the Borel σ-algebra of P(X ),

there exist J elements Q1, ...QJ of P(X ) and J non-negative reals, α1, ..., αJ , such that
∑J

j=1 αj = 1 and for every j = 1, ..., J

∫

P(X )
qj(Q)µ(dQ) =

J∑

i=1

αiqj(Qi). (126)

Before we actually apply the support lemma, we first rewrite the relevant conditional mutual

informations and the distortion functions in a more convenient form for the use of this

lemma, by taking advantage of the Markov structures. We begin with the lower bound to

Rx,1:

I(X;Z1,W1|Y )
(a)
= I(X; Z1|Y ) (127)

= H(Z1|Y ) − H(Z1|X, Y ) (128)

(b)
= H(Z1|Y ) − H(Z1|X) (129)

= H(Z1, Y ) − H(Y ) − H(Z1, X) + H(X) (130)

= H(Z1) + H(Y |Z1) − H(Y ) − H(Z1) − H(X|Z1) + H(X) (131)

=
[
H(X) − H(Y )

]
+

[
H(Y |Z1) − H(X|Z1)

]
, (132)

where, (a) follows from the Markov chain W1 ÷ (Y, Z1)÷X, and (b) from the Markov chain

Z1 ÷ X ÷ Y . In the same manner, the lower bound to Ry,1 obtains a form of

I(Y ;Z1,W1|X)
(a)
= I(Y ;W1|X,Z1) (133)

= H(W1|X,Z1) − H(W1|X, Y, Z1) (134)
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(b)
= H(W1|X, Z1) − H(W1|Y, Z1) (135)

= H(W1, Z1, X) − H(X, Z1) − H(W1, Z1, Y ) + H(Y, Z1) (136)

= H(W1) + H(X, Z1|W1) − H(X, Z1) −

− H(W1) − H(Y, Z1|W1) + H(Y, Z1) (137)

= H(Z1|W1) + H(X|Z1,W1) − H(Z1) − H(X|Z1) −

− H(Z1|W1) − H(Y |Z1,W1) + H(Z1) + H(Y |Z1) (138)

=
[
H(Y |Z1) − H(X|Z1)

]
+

[
H(X|Z1, W1) − H(Y |Z1,W1)

]
, (139)

where, (a) follows from the Markov chain Z1 ÷ X ÷ Y , and (b) from the Markov chain

X ÷ (Y,Z1) ÷ W1. For a general k ∈ [1, ...,K], by similar considerations, we obtain

I(X; Zk,Wk|Y,Z1, ..., Zk−1,W1, ..., Wk−1) = (140)

=
[
H(X|Z1, ..., Zk−1,W1, ...,Wk−1) − H(Y |Z1, ..., Zk−1,W1, ..., Wk−1)

]

+
[
H(Y, Z1, ..., Zk−1,W1, ..., Wk−1|Zk) − H(X, Z1, ..., Zk−1,W1, ...,Wk−1|Zk)

]
,

and

I(Y ;Zk,Wk|X,Z1, ..., Zk−1, W1, ..., Wk−1) = (141)

=
[
H(Y |Z1, ..., Zk−1, W1, ..., Wk−1, Zk) − H(X|Z1, ..., Zk−1,W1, ..., Wk−1, Zk)

]

+
[
H(X|Z1, ..., Zk−1,W1, ..., Wk−1, Zk,Wk) − H(Y |Z1, ..., Zk−1,W1, ..., Wk−1, Zk,Wk)

]
.

For a given joint distribution of (X,Y ), H(X) and H(Y ) are both given and unaffected by

{Zk}
K
k=1 and {Wk}

K
k=1. Therefore, in order to preserve prescribed values of lower bounds

to Rx,k and Ry,k it is sufficient to preserve the associated values of

[
H(X|Z1, ..., Zk−1,W1, ..., Wk−1) − H(Y |Z1, ..., Zk−1,W1, ..., Wk−1)

]
(142)

+
[
H(Y, Z1, ..., Zk−1,W1, ..., Wk−1|Zk) − H(X, Z1, ..., Zk−1,W1, ...,Wk−1|Zk)

]
,

and

[
H(Y |Z1, ..., Zk−1,W1, ..., Wk−1, Zk) − H(X|Z1, ..., Zk−1,W1, ..., Wk−1, Zk)

]
(143)

+
[
H(X|Z1, ..., Zk−1,W1, ..., Wk−1, Zk,Wk) − H(Y |Z1, ..., Zk−1,W1, ..., Wk−1, Zk,Wk)

]
.

Now, it can be shown that for a certain k = k̃, the values of (142) and (143) are preserved

if preserving the values of (142) and (143) for k = 1, 2, ..., k̃−1. Thus, for each k = 1, ..., K,
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it remains to preserve the values of

H(Y,Z1, ..., Zk−1,W1, ..., Wk−1|Zk) − H(X,Z1, ..., Zk−1,W1, ...,Wk−1|Zk), (144)

and

H(X|Z1, ..., Zk−1,W1, ..., Wk−1, Zk,Wk) − H(Y |Z1, ..., Zk−1,W1, ..., Wk−1, Zk,Wk). (145)

We first invoke the support lemma in order to reduce the alphabet size of Z1, while pre-

serving the value of H(Y |Z1)−H(X|Z1). The alphabets of {Zk}
K
k=2 and {Wk}

K
k=1 are still

kept intact at this step. Define the following functionals of a generic distribution Q over

X ×Y, where X ×Y is assumed, without loss of generality, to be {1, 2, ..., m}, m
△
= |X | · |Y|:

qi(Q) = Q(x, y), i
△
= (x, y) = 1, 2, ..., m − 1, (146)

and

qm(Q) =
∑

x,y

Q(x, y) log

∑
y Q(x, y)

∑
x Q(x, y)

. (147)

Applying now the support lemma, we find that there exists a random variable Z1 (jointly

distributed with (X, Y )), whose alphabet size is |Z1| = m = |X | · |Y| ≤ |X | · |Y| + 2 and it

satisfies simultaneously:

∑

z1

Pr{Z1 = z1}qi(P (·|z1)) = PXY (x, y), i = 1, 2, ..., m − 1, (148)

and

∑

z1

Pr{Z1 = z1}qm(P (·|z1)) = H(Y |Z1) − H(X|Z1). (149)

Having found a random variable Z1, we now proceed to reduce the alphabet of W1 in

a similar manner, where this time, we have m = |X | · |Y| · |Z1| − 1 constraints to pre-

serve the joint distribution of (X, Y, Z1) just defined, one more constraint to preserve

H(X|Z1, W1) − H(Y |Z1,W1), and two more constraints to preserve the distortions at the

first communication round k = 1:

qm+1(Q) = min
x̂

∑

X,Y,Z1

Q(X, Y, Z1)dx,1(x, x̂), (150)

and

qm+2(Q) = min
ŷ

∑

X,Y,Z1

Q(X,Y, Z1)dy,1(y, ŷ). (151)
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Applying the support lemma, we obtain that W1 satisfies (145), and also

∑

w1

Pr{W1 = w1}qm+1(P (·|w1)) = min
G1

Ed(X,G1(X,Z1,W1)) (152)

and

∑

w1

Pr{W1 = w1}qm+1(P (·|w1)) = min
F1

Ed(X,F1(Y, Z1,W1)). (153)

Thus, the necessary alphabet size of W1 is upper-bounded by

|W1| ≤ |X | · |Y| · |Z1| + 2 ≤ |X | · |Y| · |X | · |Y| + 2 ≤ (|X | · |Y| + 2)2. (154)

Following this step-by-step reduction of the alphabets of {Zk}
K
k=2 and {Wk}

K−1
k=2 we prove

the existence of auxiliary RVs with necessary alphabet sizes of

|Zk| ≤ (|X | · |Y| + 2)2k−1 (155)

and

|Wk| ≤ (|X | · |Y| + 2)2k. (156)

This completes the proof of the converse part.
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