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Abstract 

 

 

Most signal processing systems are based on discrete-time signals although the origin of many sources of 

information is analog. In this work we consider the task of signal representation by a set of basis 

functions. Presently, without prior knowledge of the signal beyond its samples, no bound on the potential 

representation error is available. The question raised in this paper is to what extent the sampling process 

keeps algebraic relations, such as inner product, intact. By interpreting the sampling process as a linear 

bounded operator, an upper bound on the representation error is derived and demonstrated. Based on our 

theorems, one can then determine the maximum representation error induced by the sampling process. We 

further propose a new approximation scheme for the calculation of the inner product, which is optimal in 

the sense of minimizing the maximum representation error. Our results are applicable to signal processing 

systems where analog signals are represented by their sampled versions. 
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I. Introduction 

Signal processing applications are concerned mainly with digital data, although the origin of many 

sources of information is analog. Such signals include for example speech and audio, optical signals, 

radar and sonar as well as mechanical and biomedical signals. Representing a time-continuous (analog) 

signal by its samples has been widely used since Nyquist formulated the sampling theorem. It is also well 

known that applying this representation scheme to non bandlimited signals introduces approximation 

errors: the signal does not belong to Span{sinc(·)} and the samples do not correspond to its orthogonal 

projection. Indeed, according to the sampling theorem, these errors become smaller as the sampling 

interval shortens ( [15]). However, there are cases in which achieving a low approximation error requires 

high, unrealizable, sampling rates. For this reason, mainly, alternative basis functions such as Gabor 

functions, wavelets, Hermite functions, Legendre functions, Laguerre functions and the like are often 

used instead ( [2]  [5]  [6]  [7]  [10]  [11]  [13]). 

Finding representation coefficients for these alternative bases involves inner-product calculations within 

the analog domain, rather than simply consider the sampled version of the signal itself as in the 

bandlimited case. When the signal is not given analytically, this in turn is somewhat difficult to 

implement. It is even impossible to perform in cases where the signal is already given by its samples only. 

To overcome this difficulty, it is acceptable to approximate the original inner product by the discrete-time 

approximation: 

( ) ( )∑ ⋅⋅≅
n

nTnTfTf ϕϕ, , 

where f(t) is the original signal and ϕ(t) is a known (basis) function. Here too, relying on the sampling 

theorem, the error of this approximation scheme becomes smaller as the sampling interval shortens. 

However, having no prior knowledge of the original signal f(t), except for its samples, no bounds on the 

resulted approximation error are presently available. 

With this regard of extracting the representation coefficients of a signal from its samples, several previous 

works are of relevance; In  [14] the authors address the problem of representing a discrete time signal by 

introducing the discrete Gabor representation. Their derivation is focused, however, on properly 

representing the (sampled) discrete time signal rather than properly representing the original (analog) 

signal itself. In  [13] it is shown that within the context of MRA (multi-resolution analysis), there are 
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situations in which one can extract the representation coefficients of a signal while having its sampled 

version alone.  In  [9] the authors address the problem of initialization of a MRA representation scheme, 

while having only the signal’s sampled version, as well. Nevertheless, having utilized the sampled-data 

control theory, their results assume certain a-priory knowledge on the frequency characteristics of the 

sampled signals. There are also numerous works addressing the issue of reconstructing a signal from its 

samples ( [12] and references therein), most of them assume a shift-invariant approximation model.  

Keeping the basic approximation scheme, abovementioned, the question raised and considered in this 

work is whether the sampling process keeps algebraic relations, shared within the analog domain, intact. 

We consider the operation widely used in vector representation, the inner product, and propose a new 

discrete approximation scheme for this calculation, allowing an optimal approach to this widely used 

approximation. 

II. The Problem 

We address the following problem: given a function ϕ (t)∈L2, how can one optimally approximate the 

inner product of 〈 f,ϕ 〉, by having only the samples of f(t) ? Furthermore, if calculated this way, what is 

the approximation error? 

 

Inner Product

Discrete Approximation 

for the Inner Product 

f (t)

(unknown)

ϕ (t )
(known)

{ f (nT) }n

(known)

+

-

Approximation

Error

 

Figure 1:  Statement of the problem - given a function ϕ (t), how can one optimally approximate 

the inner product of  〈 f ,ϕ 〉 , by having only the samples of f(t)? 
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III. Sampling as a Linear Operator 

We consider finite energy analog sources, i.e., ∫│f (t)│2dt < ∞. For practical reasons, it is most convenient 

to adopt the common inner product of the Hilbert space L2 given by, 

( ) ( )∫ ⋅= dttgtfgf
L2

, , 

where for simplicity, only real functions are considered. Approximating both f and ϕ by piecewise 

constant functions can be interpreted as approximating the L2 inner product by an l2 inner product of two 

sequences:  

( ) ( )
22

,,
lL

nTgTnTfgf ⋅≅ . 

This interpretation, however, should be done with much prudence (Figure 2); Sampling a function of L2 

does not necessarily yield a sequence of l2. Furthermore, functions, which are considered identical in L2, 

might give rise to distinct sequences in  l2. Those two drawbacks prevent one from interpreting the 

uniform sampling process as a bounded linear operator acting on L2 functions to yield l2 sequences.  
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Figure 2:  When uniformly sampling a function of L2, it is not guaranteed that the resulted 

sequence is also of finite energy. 

 

The following theorem addresses this issue (Fig. 3). 

 4 



Theorem 1: Let f(t) be a Sobolev function of order one, i.e.  f (t), f’(t) ∈L2. Uniformly sampling it by an 

interval T results in a sequence of finite energy, a[n], upper bounded by 

 ( ) ( ) ∞<+≤
222

'2
4

11
LLl

tfTtf
T

a  

Proof: See Appendix. 
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Figure 3: Uniformly sampling a Sobolev function of order one, i.e.  f (t), f’(t) ∈L2 , yields a 

sequence of finite energy. 

The importance of this theorem resides in the fact that the sampling process can now be thought of as a 

linear bounded operator, which can be further investigated within the framework of functional analysis. It 

so happens, however, that the set of Sobolev functions is an incomplete vector space considering the 

regular L2 norm. Nevertheless, introducing an alternative inner product, 

222
',',,

LLW
gfgfgf += , 

allows for this vector space to be complete, thus a Hilbert space. Denoting this Hilbert space by W2, it is 

the Sobolev space of order one ( [1]), and the following lemmas can be stated. 

Lemma 1: Given T > 0, the uniform sampling operator, 

( ){ }nT

T

nTffS

lWfS

=
→ 22:

  

is a bounded linear operator (Figure 4). 
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Lemma 2: The sampling operator ST  is given by, 

( ) ( )∑ ⋅−=

→

n
nWT

T

enTtutffS

lWS

2
,

: 22

 

where u(t) = e-| t | /2, and {en}is the standard basis of . 2l

Proof: The functional st 0 ( f ) = f (t0) is a bounded linear functional. By Riesz representation theorem ( [8]), 

it is also given by 

( ) ( ) ( )
20 0,

Wt ttutffs −= , 

where u (t)∈W2 is unique and the equality holds for any f (t)∈W2. Rewriting the latter in the frequency 

domain,  

( ) ( ) ( ) ( )∫∫ −− ⋅=+⋅ ωω
π

ωω
π

ωω
deFdewUwF

tjtj 00

2

1
1

2

1 2
, 

leads to U (ω)=1 / (1+ω 2), thus ( ) 2
t

etu
−=  (Figure 5). ฀ 
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Figure 4: The uniform sampling operator is a linearly bounded operator acting on the Sobolev 

space of order one to yield a sequence of l2. 
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Figure 5: u(t), shown here, describes the sampling functional in terms of a Sobolev inner 

product, i.e. f(t0)=〈f , u(t-t0)〉 W2. 

IV. Intertwining Relations of L2, l 2 and W2 Inner Products 

Lemma 3: Let b[n]∈l2 be a known sequence. Then (Figure 6), 

22

*
2 ,,,

W
TlT bSfbfSWf =∈∀  

where, 

( )( ) [ ] ( )∑ −⋅=∗

n
T nTtunbtbS  

and u(t) is given in Lemma 2. 

Proof: ST, which is a bounded linear operator of two Hilbert spaces, has an adjoint operator ( [8]), 

ST
*: l2 → W2. That is, for every b[n]∈l2, there is a unique function (ST

*b)(t) ∈ W2 such that, 

22

*
2 ,,,

W
TlT bSfbfSWf =∈∀ . 
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The adjoint operator can be found by, 

( )

( )

( )

( ) .,,,

,,

,,

,,,

2
2

2

2
2

22

2

22

W
T

Wn
ln

n W
ln

n
lnW

l

n
n

WlT

bSfnTtubef

nTtubef

benTtuf

benTtufbfS

∗=−⋅=

−⋅=

⋅−=

⋅−=

∑

∑

∑

∑
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Figure 6: Intertwining relations of the inner product of W2 and l2. Considering the uniform 

sampling operator ST and its adjoint, 〈STf , b〉l2  = 〈f , ST
* b〉W2 . ST and ST

* are given in 

Lemma 2 and Lemma 3 respectively. 

Example 1: Let f(t) be a normalized Gaussian,  

( ) 2
4

2
1 t

etf
−

=
π

, 

and let b[n] be the finite sequence, 

[ ]


 =

=
else

nn
nb

0

3,2,1
. 

Sampling f(t) at T = 0.7 yields the following (Figure 7): 

( ) ( ) ( ) 4002.11.234.127.01,
2

=⋅+⋅+⋅= fffbfS
lT , 

where the same result is obtained by 

4002.1321,,

22

1.24.17.0* =⋅+⋅+⋅= −−−−−−

W

ttt

W
T eefbSf  . 
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Figure 7: An example of the intertwining relations of W2- and l2- inner products. f(t) is a 

Gaussian function and b[n] is a finite sequence. Performing 〈STf , b〉l2  upper and 

middle) is equivalent to performing 〈f , ST
* b〉W2  (bottom). The sampling interval is 

T = 0.7. 

 9 



Lemma 4: Let ϕ (t)∈L2 be a known function. Then (Figure 8),  

22
2 ,,:

WL
ffWf ∗=∈∀ ϕϕ  , 

where ϕ*(t)∈W2 is given by the convolution ϕ*(t) = ϕ(t) ∗ u(t), and u(t) is given in Lemma 2. 

Proof:  Consider the identity operator I f = f, where I: W2 → L2. This operator is bounded since an L2-

norm is always smaller than a W2 norm. Therefore, it possesses an adjoint counterpart, I*, guarantying 

that for any ϕ (t)∈L2 there exists ϕ*(t) = I*ϕ, such that,  

( )
22

2 ,,,
WL

IfIfWtf ϕϕ ∗=∈∀ .  

Writing this relation in the frequency domain yields the equality ( ) ( ) 2* 1 ωωω +Φ=Φ . ฀ 

2
W

2
L

I

∗I

( ) •tf

( ) •t*ϕ ( )tϕ•

( )tf•

 

Figure 8: Intertwining relations of the inner products of W2 and L2. Performing 〈 f,ϕ 〉L2 is 

equivalent to performing 〈 f ,ϕ * 〉W 2. ϕ * is as given in Lemma 4. 

Example 2: Let f and ϕ be normalized Gaussian functions as in Example 1. Their L2 - inner product 

equals 1. The same result is obtained by performing the inner product in W2 (Figure 9), i.e., 

( ) 1,
2

* =
W

tf ϕ . 

Lemma 5: Let ϕ(t)∈ L2 be a known function, and let b[n] ∈ l2 be a known sequence. Then (Figure 10),  

2

*

22
2 ,,,:

W
TlTL

bSfbfSfWf −=−∈∀ ∗ϕϕ , 

where ST is the uniform sampling operator given in Lemma 2, ST*  its adjoint as given in Lemma 3: and 

ϕ*(t) is dependant on ϕ(t) as given in Lemma 4. 
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Proof: It has been shown that, 〈 f,ϕ 〉L2 = 〈 f,ϕ* 〉W2 . It has also been shown that 〈STf , b〉l2  = 〈f , ST
* b〉W2.. 

Therefore, 

2

*

2

*

222
*,,*,,,

W
T

W
TWlTL

bSfbSffbfSf −=−=− ϕϕϕ . 

 ฀ 
 

 

Figure 9: An example of the intertwining relations of W2- and L2- inner products. Performing 

〈 f,ϕ 〉L2 is equivalent to performing 〈 f,ϕ* 〉W2. f and ϕ are normalized Gaussian 

functions (dashed), and ϕ* is as given in Lemma 4 (solid). 

 

Lemma 6: Let Hf ∈ϕ, , where H is a Hilbert space. Then, 

ϕϕ ⋅= ff ,  

iff ( ) ( )ttf ϕα ⋅=  for any C∈α . 

Proof: If there is C∈α  in which ( ) ( )ttf ϕα ⋅= , then the equality immediately follows. On the other 

hand, suppose the equality holds, but there is no C∈α  for which ( ) ( )ttf ϕα ⋅= . Now, denoting f1 to be 

the orthogonal projection of f onto ϕ, and f2 = f - f1, yields 〈 f,ϕ 〉 = 〈 f1+f2,ϕ 〉 = 〈 f1,ϕ 〉. Since the latter 
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expression is equivalent to ║f║·║ϕ║, as well as to ║f1║·║ϕ║ it results in f = α ·ϕ, a contradiction, which 

proves the lemma. ฀ 

 

2
W

2
l

bfST ,

2
L

ϕ,f

*,ϕf

bSf T
*,

 

Figure 10: Intertwining relations of L2, l2 and W2 Inner Products. ϕ  is a known function of L2 and 

b is a known sequence of l2. f is an arbitrary function of W2 to be uniformly sampled. 

The inner product of L2 has a corresponding representation in W2, and the same holds 

for the l2  inner product. 

Lemma 7: Let  be a known function. Then, ( ) 2Wt ∈ϕ

22
2 ,,

LW
fMfWf ⋅≤∈∀ ϕ , 

where 
2

2

2 LW
M ϕϕ= . 

Proof: It has been shown that
222

,
WWW

ff ϕϕ ≤ , where equality is achieved iff ( ) ( )ttf ϕα ⋅=  for 

any .  thus corresponds to the ratio Ca∈ a
22 WW

f ϕ , as well as to the ratio
22 LL

ϕf  , which 

proves the lemma. ฀ 
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V. Sampling Effects on L2 Inner Product 

Theorem 2: Let ϕ(t)∈W2 be a known function. Given a sampling interval T, the following relation holds: 

222
,,,2 LlTTL

fBSfSTfWf ⋅≤⋅−∈∀ ϕϕ , 

where ST is the uniform sampling operator with an interval T . B is then given by 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2

2

2

Ln

Wn

nTtunTTtut

nTtunTTtut

B

∑

∑

−⋅⋅−∗

−⋅⋅−∗

=

ϕϕ

ϕϕ

, 

where u(t) = e-| t | /2. 

Proof: Set b[n] = T⋅ϕ(nT) in Lemma 5 and apply Lemma 7. ฀ 

Denoting ϕ*(t) = ϕ(t) ∗ u(t) and ϕ1(t) = T⋅∑ϕ(nT)⋅u(t-nt) allows one to interpret the vector relations 

shared within W2 when approximation 〈 f,ϕ 〉L2 by their samples, as shown in Figure 11. It should be noted 

that ϕ1 always resides within Span{u(t-nT}, where *ϕ  always does not. Furthermore, there are functions 

f(t)∈W2 that achieve the upper bound of Theorem 2. One simply sets f(t) = ϕ*(t)-ϕ1(t). 

The admissible functions - f(t) - considered so far are Sobolev functions of order n = 1. It can be argued, 

however, that such functions are less common in practical applications, and it would be worth considering 

smoother functions, giving rise to yet more applicable upper bounds. Such functions can be regarded as 

members of a Sobolev space of a higher order, having the following inner product: 

( ) ( ) ( )∫ +++⋅⋅= ωωωωωω
π

dGFgf n
W n

2421
2

1
,

2
L . 

Therefore, considering admissible Sobolev functions - f(t) - of order n, deriving upper bounds on the 

approximation of 〈 f,ϕ 〉L2 by their sampled versions would follow the analysis presented earlier. The key 

point for such an analysis would be to apply Theorem 2, where u(t) is the inverse Fourier transform of 

( )
n

U
2421

1

ωωω
ω

++++
=

L
. 
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Figure 11: Vector relations for approximating 〈 f,ϕ 〉L2 using their corresponding samples. ϕ * is 

such that 〈 f,ϕ 〉L2 = 〈 f,ϕ * 〉W2 and ϕ 1 is such that 〈STf , STϕ 〉l2  = 〈f , ϕ 1〉W2. ST is the 

sampling operator. ϕ*(t) = ϕ(t) ∗ u(t) and ϕ1(t) = T⋅∑ϕ(nT)⋅u(t-nt), where u(t) is as 

given in Theorem 2. 

 

With regard to U (ω), it so happens that the polynomial in the denominator has complex roots residing on 

the unit circle. Thus, u(t) would be comprised of a linear combination of shifted and modulated e-| t | 

functions (Figure 12). However, when considering the case where n reaches infinity, 

( )






≥

<−
=

∞→ 10

11
lim

2

ω

ωω
ωU

n
, 

leading to (Figure 12), 

( )

( ) ( )










=⋅

≠−
=

∞→
0

1

3

2

0
cos2sin2

lim
23

t

t
t

t

t

t

tu
n

π

ππ
. 
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Figure 12: Deriving upper bounds on the approximation error of 〈 f,ϕ 〉L2 by their sampled 

versions, where f is a Sobolev function of order n is dependant of u(t) (Theorem 2). 

u(t), in turn,  is the inverse Fourier transform of U(ω) = 1/(1+ω2+ω4+…+ω2n). Shown 

are u(t) for n = 1 (dash), 2 (dot), 3 (dashed-dot) and infinity (solid). 

An alternative expression for B of Theorem 2 can be given within the frequency domain, allowing more 

convenient calculations when considering practical situations. The numerator within the equation of B is, 

( ) ( ) ( ) ( )
2

2Wn

nTtunTTtut ∑ −⋅⋅−∗ ϕϕ . 

It can be expressed, though, within the frequency domain: 

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) .1
2

1

2

1

2

1

1

1

2

2

2

1

22

2

∫ ∑

∫ ∑

∫ ∑∑

−

−

−

−−

−⋅⋅⋅−Φ=

⋅⋅⋅−Φ=

⋅⋅⋅⋅−⋅Φ=−⋅⋅−∗

ωωϕ
π

ωϕ
π

ωϕ
π

ϕϕ

ω

ω

ω

denTT

dUenTT

dUeUnTTUnTtunTTtut

n

nTj

n

nTj

n

nTj

Wn
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A Similar expression holds for the denominator: 

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) .1
2

1

2

1

2

1

1

1

22

2

2

2

2

2

∫ ∑

∫ ∑

∫ ∑∑

−

−

−

−

−⋅⋅⋅−Φ=

⋅⋅⋅−Φ=

⋅⋅⋅−⋅Φ=−⋅⋅−∗

ωωϕ
π

ωϕ
π

ωϕ
π

ϕϕ

ω

ω

ω

denTT

dUenTT

deUnTTUnTtunTTtut

n

nTj

n

nTj

n

nTj

Ln

 

As for a general remark, Sobolev functions of an arbitrary order are dense in L2. Thus, restricting the 

admissible functions, f(t), to belong to such spaces still maintains the generality of the results. 

Example 3: Sampling Hermite functions. Those functions are defined by, 

( ) ( )
( )2241

2

!2

2

k

etH
th

n

t

k
k

π

−

= , 

where Hk(t) are the Hermite polynomials are recursively defined by, 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )







+−=+−=−=−==

⋅+=⋅ −+

K124816,128,24,2,1

2

1

24
4

3
3

2
210

11

tttHtttHttHttHtH

tHktHtHt kkk
 

Those functions constitute an orthonormal basis in L2. Therefore, the representation coefficients are then 

found by ak = 〈 f,ψ k 〉L2 , where ψ k is the Hermite function of order k (Figure 13). Having both the 

sampled versions of f and ψ k , a k  would be approximated by, 

( ) ( )∑ ⋅⋅=⋅=
n

klkTTk nTnTfTS,fSTâ ψψ
2

. 

This in turn yields an approximation error, upper bounded by B ·║f║L2 . Some bounds are shown in Figure 

15 for the first and sixth Hermite functions. For a given sampling interval, T, B corresponds to the worst-

case scenario (i.e., the approximation error would be as large as possible). In such a case f(t) =ϕ*(t)-ϕ 1(t). 

As evident from Figure 15, smaller sampling intervals than a certain threshold give rise to an asymptotic 

value of B = 1. It so happens that the basis functions are effectively bandlimited for these sampling 
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intervals, and f(t) = ϕ*(t) - ϕ 1(t) would be then orthogonal to ϕ (t)  within the analog domain. For those 

sampling intervals that are lower than the threshold, it is the W2 norm of f(t) that increases rather than the 

ratio of the W2 and the L2 norms, which maintain a constant value, leading to the asymptotic value of B. 

This observation is described in Figure 16, where the approximation error is now given in terms of the W2 

norms of both f(t) and ϕ (t). 

 

Figure 13: The Hermite functions constitute an orthonormal basis in L2. The representation coefficients are then 

found by applying consecutive inner products a k = 〈 f, ψ k 〉L2. Shown are hk(t) for k = 0,1,…,5. 

 
Figure 14: The B-spline of order 1, β 1(t) in the time domain (top) and in the frequency domain (bottom). 
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Figure 15: Upper bounds on the approximation error of 〈 f ,hk 〉 by their corresponding sampled 

versions. Here hk is the Hermite function, where k = 0 (top) and k = 5 (bottom). The 

upper bound is given by B ·║f║L 2. Shown are upper bounds where the admissible 

functions, f, are Sobolev functions of several orders (n = 5,10,15,20 and infinity). For 

further details, refer to the text of Example 3. 
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Figure 16: Upper bounds on the approximation error of 〈 f ,hk 〉 by their corresponding sampled 

versions. Here hk  is the Hermite function, where k = 0 (top) and k = 5 (bottom). The 

upper bound is given by B ·║f║W 2. Shown are upper bounds where the admissible 

functions, f, are Sobolev functions of several orders (n = 5,10,15,20 and infinity). For 

further details, refer to the text of Example 3. 
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Example 4: Sampling finite support functions, B-splines (Figure 14). A B-spline of order k is defined by 

β k(t) = β0 ∗β k-1, where β0 (t) is the box function with a support of [-½,½]. Similar to Example 3, the 

approximation error of a given inner product result is upper bounded by B ·║f║L 2  (Figure 17), or 

alternatively by B ·║f║W 2  (Figure 18). The spectral content of the B-spline function differs from that of 

the Hermite function. It decreases in an oscillatory manner rather than in a monotonically one. Thus, 

when considering relatively low sampling intervals, the spectral content of the worst case function  

f(t) = ϕ*(t)-ϕ 1(t) would occupy the same frequencies bands regardless of T, and this is the reason for the 

identical behavior evident in both Figure 17 and Figure 18. 

 

 

 

 

0 0.5 1 1.5 2 2.5 3
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Sampling Interval, T

B

n = 5

infinity

 

Figure 17: Upper bounds on the approximation error of 〈 f ,βk 〉 by their corresponding sampled versions. Here βk 

is the B-spline function of order k = 1. The upper bound is given by B ·║f║L2. Shown are upper bounds 

where the admissible functions, f, are Sobolev functions of orders n = 5 and infinity, respectively. For 

further details, refer to the text of Example 4. 
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Figure 18: Upper bounds on the approximation error of 〈 f ,βk 〉 by their corresponding sampled versions. Here βk  

is the B-spline function of order k = 1. The upper bound is given by B ·║f║W2. Shown are upper bounds 

where the admissible functions, f, are Sobolev functions of orders n = 5 and infinity, respecrively. For 

further details, refer to the text of Example 4. 

VI. Sampling Effects on L2 Inner Product - Revisited 

The standard approach to approximating 〈 f,ϕ 〉L2  by their corresponding samples is by no mean optimal, 

as shown in the next theorem. 

Theorem 3: Let ϕ(t)∈L2 be a known function. Given a sampling interval T, one can find an optimal 

b[n]∈l 2 that minimizes B with respect to the inequality 

222
,,,2 LlTL

fBbfSfWf ⋅≤−∈∀ ϕ . 

Here ST is the sampling operator with interval T, b[n] is the representation coefficients of the orthogonal 

projection, in the Sobolev sense, of u∗=ϕϕ* onto Span{u(t-nT)}n (Figure 19) and u(t) is as given in 

Theorem 2. B is as given in Theorem 2, replacing ϕ (nT) by b[n]. 
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ϕ(t), T

Compute ϕ *(t),

ϕ *(t)= ϕ(t) ∗ u(t)

Find ϕ 0(t), the projection of ϕ *(t) 

onto Span{u(t-nT)} in W2
n sense.

Extract b[n], the representation coefficients 

of ϕ 0(t) according to {u(t-nT)}
 

Figure 19: Optimal approximation of 〈f,ϕ〉 within the digital domain. Extracting b[n] as shown 

here, and applying 〈ST f , b〉  would yield the minimum possible upper bound for the 

approximation error.  

Proof: Let ϕ 0 be the orthogonal projection (in W2 sense) of ϕ* onto Span{u(t-nT}. Define, 

( ) [ ]∑ −−⋅=
n

nTt
enbt

2

1
2ϕ , 

( ) ( ) ( )ttt 20 ϕϕϕ −=∆  , 

( ) ( ) ( )ttt 0
* ϕϕϕ −=⊥ . 

It will be shown that ∆ϕ = 0 minimizes B (Figure 20) : an explicit expression for B has been shown 

previously, leading to 
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It is evident that a minimization of B with respect to ∆ϕ yields ∆ϕ = 0. ฀ 
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Figure 20: Vector relations for optimal approximation of 〈f,ϕ〉L2. ϕ* is such that 〈f,ϕ〉L2= 〈 f,ϕ * 〉W2 and ϕ 2 is any 

functions within Span{u(t-nT)}. Setting ϕ 2  to be ϕ 0, namely the orthogonal projection of ϕ* onto 

Span{u(t-nT)} would result in the minimum possible upper bound on the approximation error. 

 

There are functions f(t)∈W2 that achieve this upper bound; one simply sets f (t) = ϕ⊥ (t). It is also evident 

that the minimum possible value of B is Bmin = ║ϕ⊥║2
W 2  / ║ϕ⊥║2

L 2. In addition, Theorem 3 can be further 

utilized by considering smoother admissible functions , similar to the generalization of Theorem 2. 

However, regardless of the Sobolev order of f(t), the admissible functions to be sampled, the set {u(t-nT)} 

is not orthogonal within W2
n. Thus, in order to find the orthogonal projection of ϕ * onto Span{u(t-nT)}, 

its biorthogonal set is to be found. Denoting {wn(t)} to be its biorthogonal set, the following lemma is 

given. 

Lemma 8: {wn(t)}, the biorthogonal counterpart of {u(t-nT)} in W2 
n sense is given by, 

( ) ( )nTtwtwn −= , 

( ) ( )∑ −⋅=
k

k kTtutw α , 

( ){ }( ) ( )11 k
kTuF

Fk








= −

θ
α .  

Proof: Each {wn(t)} is a linear combination of {u(t-nT)}: 

( ) ( )∑ −⋅=
l

lmn lTtutw ,α  
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In addition, it inherits the shift-invariant characteristics of {u(t-nT)}: 

( ) ( ) ( ) ( )∑∑ −+ ==−=
l

lnl
l

nlln tutunTtwtw αα  

The biorthonormality condition can now be written by, 

( )




≠
=

=−=⋅= ∑ −
mn

mn
mnuuwu

nWl
lmlnWmn

0

1
,,

2

2
δα , 

which in turn becomes: 

( ) ( )mnlnhuu
l

ml
l

Wlnml n −=−⋅=⋅ ∑∑ −− δαα
2

, , 

where h(k) = 〈uk , u0〉W2

n. Setting k = l-m and mnn −=~ enables one to write: 
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An explicit expression for H(θ ) can be found: 
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which concludes the proof. ฀ 

Examples utilizing this optimal approximation scheme are currently under investigation. 
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VII. Conclusions 

Approximating the inner product of two analog signals by their corresponding sampled versions has been 

considered. Interpreting the sampling process as a linear bounded operator, a tight upper bound on the 

resulted error has been derived and demonstrated. The only constraint imposed is that the functions to be 

sampled would be smooth. No constraints of bandlimited are assumed. 

Furthermore, a new discrete approximation scheme for the inner product of the original signals has been 

proposed; It reduces the approximation error’s upper bound to its minimum possible value, thus optimal. 

The theorems presented in this work enable one to determine the maximum potential representation error 

induced by the sampling process. Our results are applicable to signal processing applications, where 

digital signal representation of analog signals is required, based on their sampled versions.  
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Appendix: Proof of Theorem 1 

Denote  to be the ensued sequence of sampling [ ]na ( )tf  by an interval T. The energy of  is then, [ ]na

[ ]=
l

na
2

2
∑
n

a2 . Considering the Fourier transform ( [4]) of [ ]na , 
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Relying on  [3], an upper bound on this latter expression is to be determined; the process of sampling 

yields replicas of ( )ωF , shifted by Tkπ2 . Let { }kI be the distinct intervals defined by,  
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Figure 21: The sampling process yields replicas of F(ω), shifted by 2πk/T. Shown are {Ik}, the 

replicated intervals. 

 

Based on these intervals, let ( )ωkF  to be ( )ωF  restricted to , followed by a proper shift as to be 

centered around 

kI

0=ω . The energy of [ ]na  can be now written as: 
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which can be further manipulated, 
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Denoting , one can write ( ) ( )tftg '= ( ) ( )wG
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= , and for 0≠k , 
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Using the Cauchy-Schawrtz inequality, this latter result enables one to derive the following expression: 
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which proves the theorem. ฀ 
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