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Abstract

Some difficulties in the application of source-model techniques to waveg-

uide mode determination are pointed out, and shown to stem from approx-

imate spurious solutions to the characteristic equation of the waveguide.

An approach that avoids these spurious solutions is presented, yielding a

method more reliable and efficient.

1 Introduction

The Source-Model Technique (SMT) can be classified as a Method of Moments
(MoM), where the fields of discrete sources, located a distance away from the
boundaries, are used to approximate the fields (see [1] for a review). This is
in contradistinction to the probably more common, surface-formulations, that
employ continuous sources coincident with the boundaries. The SMT has been
applied to a wide range of scattering problems and is known in this context
also by many other names: “Method of Auxiliary Sources” [1], “Generalized
Multipole Technique” [2], “Method of Fundamental Solutions” [3], and so on.
Simplicity of implementation, high numerical accuracy and stability, make the
SMT a viable alternative to the surface-formulations.

Since waveguide mode determination can be thought of as a scattering prob-
lem with vanishing excitation, it is natural to assume that the SMT can be
applied to it straightforwardly. The literature on this subject, however, is quite
scarce. Indeed, only recently has the SMT been used to calculate the modes of
an elliptical metallic waveguide [3].

Although the SMT is a powerful method for waveguide mode determination,
we will show that the existence of spurious solutions can hinder its practical
application considerably.

This letter is organized as follows: Section 2 outlines the essentials of the
SMT and describes how the existence of spurious solutions in the SMT for-
mulation renders the determination of modal solutions problematic. Section 3
explains the problematic behavior by use of an analytic approximation of the
spurious solutions. Section 4 presents the proposed remedy, together with a
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numerical example that demonstrates its effectiveness. The last section is a
summary.

2 Problem Description

The problem we describe exists in a SMT analysis of a general cylindrical waveg-
uide consisting of piecewise homogeneous material which may be bounded by
perfect electric conductors. The approach presented is directly applicable to
the general geometry, and in fact, we have used it successfully in the analysis of
complex photonic-crystal fibers [4]. To avoid cluttering the presentation with
nonessential detail, we will focus on using the SMT to calculate the well-known
transverse-magnetic (TM) modes of a circular metallic waveguide. This also al-
lows us to explain the method more clearly by using an analytic approximation
of the fields due to the sources. It is worth emphasizing that this is only an
explanatory device and does not compromise the generality of the method.

In the SMT, TM modes are approximated by the fields of an array of N elec-
trical current filaments, uniformly distributed on a circle outside the waveguide,
concentric with the waveguide. The filaments carry a longitudinally varying
current, whose dependence on the longitudinal coordinate z, for exp(jωt) time
dependence, is exp(−jβz). A factor of exp (jωt − jβz) will be therefore as-
sumed and suppressed throughout. We denote the waveguide radius by R. The
radius of the circle on which the sources are located is larger than R by a factor
α (α > 1). The amplitudes of the sources are arranged in an N -tuple column

vector, denoted by ~I. These amplitudes are found by requiring the longitudinal
electric field, Ez, to be zero at a set of M testing points, uniformly distributed
on the waveguide circumference. This leads to a homogeneous matrix equation

[Z]~I = ~0, (1)

where [Z] is the M × N impedance matrix. More testing points than sources
are generally used to ensure that the boundary conditions are obeyed more
uniformly along the boundary. Throughout this work, we used twice as many
testing points as sources, so M = 2N . These are the essentials of the SMT,
needed to describe the spurious-solutions problem. Further details regarding
the implementation of the SMT up to this point can be found in [5].

Equation (1) has nontrivial solutions if and only if [Z] is singular, or as is
the case in any approximate numerical solution, close to singular. To find the
modes, a suitable measure of the singularity of [Z] must be chosen and evaluated
at the relevant values of the radial wave number, kρ, which is related to β and
ω by the separation equation

kρ =
√

(ω/c)2 − β2, (2)

where c is the speed of light in vacuo. A common measure of singularity, and
the one we employ here is the condition number of [Z]. Other measures that
have been used are the closely related, smallest singular value of [Z] [3], and the
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determinant of [Z] [5], which, however, is not directly applicable to non-square
matrices. In a typical analysis scenario, the singularity measure is sampled on
a sufficiently fine grid of kρR, yielding a graph like the one shown in Fig. 1a,
or Fig. 2 in [3]. The cut-off wave numbers, which are at the first zeros of the
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Figure 1: Singularities at the zeros of the Bessel functions. For this graph,
N = 20 and α = 1.5. A very fine sampling grid of 1500 points was needed to
reveal all the singularities.

Bessel functions, can be clearly seen as peaks of the matrix condition number.
It is interesting to note that the matrix condition number is quite high

between the peaks. The high condition number is not due to the existence of
a mode, but to the existence of a continuum of approximate spurious solutions
to (1). These solutions consist of sources of equal magnitude and alternating
sign, that generate fields strongly confined to the vicinity of the sources. Because
their Ez field is small on the waveguide boundary, they approximately solve (1),
and this is reflected by the high condition number.

The difference between a true mode and a spurious solution, is that while
both have vanishingly small fields on the boundary, the fields of the spurious
solution are also vanishingly small within the boundary. To distinguish between
the two, we define a normalized error measure, ∆E as

∆E =
rms([Z]~I)

rms([Z̃]~I)
, (3)

where [Z̃] is an impedance matrix that maps the amplitude vector ~I to the
values of Ez at a number of sampling points inside the waveguide. The points
can be arranged, for example, on a rectangular grid of reasonable density. In (3),
the 2-norm, or root-mean-square value, is denoted by rms( ). To evaluate ∆E,
the vector that solves (1) in the least-squares sense is found by a singular value

decomposition. The value of ∆E for ~I found at every kρR of Fig. 1a, is shown
in Fig. 1b, and it confirms that although the matrix is rather singular between
the peaks, there are no modes there.
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We now turn to take a closer look at the singularities shown in Fig 1. Zoom-
ing in on the first of these singularities, we see in Fig. 2, that it is very sharp
and discontinuous. This behavior has undesirable consequences. Because of the
discontinuity, there can be no efficient search algorithm to find the singularities.
There is simply no indication that a point near a singularity is in fact close, un-
less it is closer than the discontinuous edges, and the only option is to sample the
measure of singularity on a fine grid. The width of the singularity determines
the appropriate sampling resolution, and as seen in Fig. 2, the width depends
on the number and location of the sources. Note that a small change in these
parameters is enough to shrink the singularity considerably. If the sampling
grid is kept constant while the number of sources is increased, the singularity
may shrink to the point where it falls between grid points and goes undetected.
As it is often essential to verify that the results are correct by increasing the
number of sources or changing their positions slightly, this lack of reliability in
the detection is a serious drawback.
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Figure 2: Dependence of the shape of the singularity on (a) the number of
sources and (b) the distance from the waveguide boundary. In (a), α = 1.5, and
in (b), N = 30.

3 Spurious Solutions

As we will show in this section, the difficulties discussed above stem from solu-
tions to (1), in which the current filaments are all equal in amplitude, but alter-
nating in sign. To gain further insight into this configuration, we approximate it
by a z-directed cylindrical current sheet, of radius ρ0, carrying a unit-amplitude,
circularly-harmonic current, exp (jnφ). Here, n = N/2 and ρ0 = αR. The lon-
gitudinal electric field, Ez, in the region ρ < ρ0, due to this current is given
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by

Ez = −
πρ0k

2
ρ

2ωǫ0
Jn(kρρ)H(2)

n (kρρ0)e
jnφ; ρ < ρ0, (4)

where Jn is the nth order Bessel function and ǫ0 is the free-space permittiv-
ity. When n >> kρρ0, the spatial variation of the current is fast on a radial-
wavelength scale, and Ez can be approximated by

Ez ≈
k2

ρρ0

2jωǫ0n

(

ρ

ρ0

)n

ejnφ; ρ < ρ0. (5)

This shows that if the spatial variation of the current is rapid enough, its field
will be very small even when the observation point is quite close to the current
distribution.

The behavior seen in Figs. 1 and 2 can now be explained. The slope from
which the singularities protrude in Fig. 1a is due to the described spurious so-
lutions. From (5), we see that when kρ increases, the Ez field of the spurious
solution, which is its absolute boundary condition error, increases, and conse-
quently, the matrix condition number decreases. This also explains the gradual
broadening of the peaks at the right end of the figure.

As to Fig. 2, if for a fixed α, the number of sources is increased, it would
be like increasing n in (5), and if for a fixed N , α is increased, it would be
like increasing ρ0 in (5). In both cases, the absolute error of the spurious solu-
tion would decrease, contracting the singularity. To keep the singularities wide
enough, one should therefore use as few sources as possible and they should be
placed as close as possible to the boundary. While this facilitates the detection
of the singularities, the accuracy of the field approximation is bound to suffer.
As we show in the next section, the need to strike a delicate via media between
these conflicting goals is obviated by the proposed method.

4 A Spurious-Free SMT Formulation

As explained in Section 2, it is the normalized error, ∆E, which takes into ac-
count also field values inside the waveguide, that reliably indicates the existence
of a true mode. Hence, instead of evaluating ∆E for the least-squares solution
of (1), it would be better to find the vector that minimizes ∆E for a given kρR,
and then use this minimum value as the measure of singularity. Direct differen-
tiation shows that the stationary vectors of ∆E are the generalized eigenvectors
of the following generalized eigenvalue problem

[Z]†[Z]~I = ξ[Z̃]†[Z̃]~I. (6)

The generalized eigenvector ~Imin, which corresponds to the minimum generalized
eigenvalue, ξmin, yields the minimum ∆E, which is simply

√
ξmin. When kρR is

a cut-off wave number, the field due to ~Imin indeed approximates a true mode,
but the advantage of this scheme is that ~Imin and ξmin change continuously when
moving from one singularity to the next.
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The generalized eigenvalue decomposition can be carried out by a number of
methods quite efficiently, i.e., without a significant increase in the computation
time relative to any of the other measures of singularity. In this example, we
used Van Loan’s algorithm for the generalized singular value decomposition
(GSVD) [6].

To demonstrate the effectiveness of the spurious-free formulation, the plots
of Figs. 1 and 2 were recalculated with the same N and α using the GSVD.
The results are shown in Figs. 3 and 4, respectively. The slope from which
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Figure 3: Singularities at the zeros of the Bessel functions, calculated with the
spurious-free SMT formulation. For this graph, N = 20 and α = 1.5. The
sampling grid is the same as that of Fig. 1, although a much coarser grid could
have been used.
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Figure 4: The spurious-free SMT formulation. Dependence of the shape of the
singularity on the number of sources (a) and the distance from the waveguide
boundary (b). In (a), α = 1.5, and in (b), N = 30. Note that the range of the
abscissa is ten times that of Fig. 2.

the singularities protruded in Fig. 1 has disappeared in Fig. 3, and the curve is
simply a superposition of all the true singularities. The minima of the curve can
be found with far less iterations: a sampling grid of 75 points suffices to show
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all the singularities clearly (1500 points were needed in Fig. 1). After these are
found approximately, a line-search algorithm can be applied to find the cut-off
wave numbers with high accuracy.

As seen in Fig. 4, the high sensitivity of the width of the singularity to the lo-
cation and number of sources has been eliminated, making it highly improbable
that a singularity should go undetected.

5 Summary

The difficulties in SMT-based waveguide mode determination have been ex-
plained by the existence of spurious solutions in ordinary formulations. A
spurious-free formulation has been presented and shown to render the method
more reliable and efficient. These improvements could pave the way for more
widespread use of SMT in waveguide mode determination, correspondent with
its recognition in the field of scattering problems.
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