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Abstract

People and animals fuse auditory and visual information to obtain robust perception.

A particular benefit of such cross-modal analysis is the ability to localize visual events

associated with sound sources. We aim to achieve this using computer-vision aided by a

single microphone. Past efforts encountered problems stemming from the huge gap be-

tween the dimensions involved and the available data. This has led to solutions suffering

from low spatio-temporal resolutions. We present a rigorous analysis of the fundamental

problems associated with this task. Then, we present a stable and robust algorithm

which overcomes past deficiencies. It grasps dynamic audio-visual events with high spa-

tial resolution, and derives a unique solution. The algorithm effectively detects the pixels

that are associated with the sound, while filtering out other dynamic pixels. It is based

on canonical correlation analysis (CCA), where we remove inherent ill-posedness by ex-

ploiting the typical spatial sparsity of audio-visual events. The algorithm is simple and

efficient thanks to its reliance on linear programming and is free of user-defined param-

eters. To quantitatively assess the performance, we devise a localization criterion. The

algorithm capabilities were demonstrated in experiments, where the algorithm overcame

substantial visual distractions and audio noise.

Keywords: CCA (Canonical Correlation Analysis), Sparse Representation, Localiza-

tion, Multi-Modal Processing.
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1 Introduction

There is a growing interest in multi-sensor processing. A particularly interesting sensor com-

bination involves visual motion in conjunction with associated audio. Activity in computer

vision involving audio analysis has various research aspects [5, 35], including lip reading [3, 34],

analysis and synthesis of music from motion [31], audio filtering based on motion [8], and

source separation based on vision [20, 24, 28, 32, 36]. We note that physiological evidence and

analysis of biological systems show that fusion of audio-visual information is used to enhance

perception [14, 18, 23].

In this work, we focus on accurately pinpointing the visual localization of image pixels that

are associated with audio sources. These pixels should be distinguished from other moving

objects. We do not limit the problem to talking faces [3, 5, 28, 32] or other specific classes

of sources [31], but seek a general and effective algorithm to achieve this goal. Some existing

methods use several microphones (emulating binaural hearing), where stereo triangulation

indicates the spatial location of the sources [2, 25, 33, 37]. In contrast, we seek a very sharp

spatial localization of the sound source, using a single microphone (monaural hearing) and a

video stream. Moreover, we wish the localization method to perform well, even if interfering

sounds exist, unrelated to the desired object.

As indicated in Fig. 1, audio and visual data are inherently difficult to compare because of

the huge dimensionality gap between these modalities. To overcome this, a common practice

is to project each modality into a one-dimensional (1D) subspace [28, 34, 36]. Thus, two 1D

variables represent the audio and the visual signals. Localization algorithms typically seek

1D representations that best correlate [24, 28, 34]. However, as shown in this paper, this

approach has a fundamental flaw. The projection of the visual data is controlled by many

degrees of freedom. Hence, a substantial amount of data is necessary to reliably learn the

cross-relationships. For this reason, some methods use a very aggressive pre-pruning of visual

areas or features [3, 5, 34] to reduce the number of unknowns. Others consider acquisition of

very long sequences to ensure sufficient data quantities [8, 28]. Those approaches result in a

severe loss of either spatial or temporal resolutions, or both.

Audio-visual association can also be performed by optimizing the mutual information (MI)

of modal representations [19], while trading off ℓ2-based regularization terms. This approach

requires multiple tune-up parameters, and suffers from the complexity of estimating MI using
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Figure 1: The audio data [Top] is sequential, requiring O(104) samples/sec. Corresponding video

frames [Bottom] are highly parallel (multi-pixel), requiring O(107) samples/sec. Pinpointing the

sound source in the images by correlation requires dimensionality reduction of the visual signal.

This reduction involves of too many degrees of freedom.

Parzen windows. While MI better indicates cross-modal statistical dependency, there is no

guarantee for a unique solution, due to the non-convexity of MI.

In this paper we describe an algorithm that overcomes all those difficulties. It results in high

spatio-temporal localization, which is unique and stable. We exploit the fact that typically

visual cues that correspond to audio sources are spatially localized, and thus sparsity of the

solution is an appropriate prior. This makes the problem well-posed, even-though the analysis

is based on very short time intervals. The resulting sparsity does not compromise at all the full

correlation of audio-visual signals. The algorithm is essentially free of user-defined parameters.

The numerical scheme is efficient, based on linear programming. To analyze performance, we

propose a quantitative criterion for the visual localization of sounds. We then demonstrate

the merits of the algorithm in experiments using real data.

This paper is organized as follows. Sec. 2 describes the tool of canonical correlation analysis

(CCA), which is a natural choice in multi-modal processing. In Sec. 3 we show an alternative

yet equivalent formulation to CCA. This formulation serves our method, as it highlights the

ill-posedness of the problem in a clear form, exhibiting a need for regularization. Sec. 4 is

dedicated to the exploration of several standard regularizations. We argue that while such reg-

ularizations lead to unique solutions, the results are far from satisfactory in general. In Sec. 5
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we present the main contribution of this paper, describing how sparsity of the solution can

lead to more effective localization and fully correlated results. In Sec. 6 we extend the analysis

to cases where no solution is fully correlated. Sec. 7 unveils the fundamental chorus ambiguity.

Sec. 8 presents a measure of locality that enables us to evaluate localization performance when

comparing different algorithms. Sec. 9 presents some experimental demonstrations based on

real data. We conclude in Sec. 10 with a brief discussion.

2 Canonical Correlation: Limitations

An important tool for understanding the relationship between sound and video is canonical

correlation analysis (CCA). In this section we describe CCA, and the reason for its importance

and popularity in multi-modal analysis. We then expose a fundamental limitation of it in the

context of our problem.

CCA deals with correlation between two random vectors. The vectors can be of different

nature, such as audio and visual signals. Let v represent an instantaneous visual signal

corresponding to a single frame, e.g., by pixel values or by wavelet coefficients. Let a represent

a corresponding audio signal, e.g., by the intensity of different audio bands (temporal slices

of the periodogram) covering a temporal interval that matches a video frame. Both signals

are considered as random vectors, due to their temporal variations.1 Each of these vectors

is projected onto a one dimensional subspace wv and wa, respectively. The result of these

projections is a pair of random variables, vTwv and aTwa, where T denotes transposition. The

normalized correlation coefficient of these two variables defines the canonical correlation [26,

27] between v and a,

ρ ≡
E

[
wT

v vaTwa

]

√
E [wT

v vvTwv] E [wT
a aaTwa]

=
wT

v Cvawa√
wT

v CvvwvwT
a Caawa

, (1)

where E denotes expectation. Here Cvv and Caa are the covariance matrices of v and a,

respectively, while Cva is the cross-covariance matrix of the vectors.

Maximization of the correlation seeks the subspaces wv and wa that optimize Eq. (1). Note

that the solution is scale invariant due to the normalization. This optimization problem has

1Each of the vectors v and a is assumed to have zero expectation. Numerically, this can be achieved by

removal of each vectors’ mean.

4



a closed form solution since it can be posed as an eigenvalues problem [26]:

C−1
vv CvaC

−1
aa Cavwv = ρ2wv

C−1
aa CavC

−1
vv Cvawa = ρ2wa .

(2)

Maximizing the absolute correlation |ρ| is equivalent to finding the largest eigenvalue and

its corresponding eigenvectors. Inspecting the optimal wv, the components which have the

largest magnitude indicate the visual components that best correlate with the projection of

a, and vice-versa. We should note that a correlation ρ and its opposite −ρ correspond to the

same eigenvalue and eigenvectors, and thus to the same solution. Hence, the range 0 ≤ ρ ≤ 1

is equivalent to −1 ≤ ρ ≤ 0.

At first sight, CCA may appear as a good tool for correlating audio and visual signals.

The projection of feature vectors can bridge the huge dimensionality gap between sound and

pictures. Moreover, CCA amounts to an eigensystem solution. Owing to these attractive

characteristics, methods based of projections of feature vectors have been the core of several

audio-visual algorithms [20, 24, 28, 34]. However, CCA and its related methods [28] have a

serious shortcoming. The fundamental problem is the scarcity of data available in short time

intervals, which is often insufficient for reliably estimating the statistics of the signals. To

see this, note that Cvv, Caa and Cva should be learned from the data. In practical, Cvv is

estimated as the empirical matrix

Ĉvv = (1/NF )
NF∑

t=1

v(t)vT (t) , (3)

where v(t) is the vector of visual features at time (frame) t and NF is the total number of frames

used for the estimation. For a reliable representation of typical images, at least thousands of

visual features are needed. To reliably learn the statistics of v and invert Ĉvv (making Eq. (3)

full rank), we must use at least that number of frames. This imposes minutes-long sequences,

while assuming stationarity.

To grasp dynamic events, short time intervals should be used (small NF ), but then we

run into a problem of data shortage. The matrix Ĉvv becomes highly rank deficient, hence

Eq. (2) cannot be solved, making CCA ill-posed. Technically, the rank deficiency of Ĉvv can be

bypassed by regularization, e.g., by weighted averaging of Ĉvv with an identity matrix [1, 6, 30].

Such operations do not overcome the fundamental problem of unreliable statistics. They yield

an arbitrary solution, which somewhat compromises the correlation ρ. As we show in Sec. 4,

such regularization suffers from serious shortcomings, in the context of our problem.
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The gap between the amount of data and degrees of freedom is not limited to CCA. It affects

methods based on MI as well [19]. Hence, very small images O(50 × 50) have been commonly

used [3, 28, 32, 34], out of which only a few dozen features were selected by aggressive pruning

or face detection algorithms (the latter limiting audio analysis to speech). In contrast, we

seek localization of general unknown audio-visual sources, while handling intricate details and

motion.

3 An Equivalent Formulation

Before approaching our suggested solution, let us first present an equivalent formulation to

CCA that provides insight. The motivation for this alternative formulation will become evi-

dent as we turn to the end of Secs. 4 and 5, to handle the ill-posedness of CCA. Let Nv be the

number of visual features. Define the matrix V ∈ RNF×Nv , where row t contains the vector

vT (t). Similarly, define A ∈ RNF×Na , where row t contains the coefficients of the audio signal

aT (t), and Na is the number of audio features. Defining the empirical covariances matrices

Ĉvv = VTV, Ĉaa = ATA and Ĉva = ĈT
av = VTA, the empirical canonical correlation2 (Eq. 1)

becomes

ρ̂ =
wT

v (VTA)wa√
wT

v (VTV)wvwT
a (ATA)wa

. (4)

CCA seeks to maximize |ρ̂|. As we show next, maximizing |ρ̂| is equivalent to minimizing the

penalty function

G(wv,wa) =
‖Vwv − Awa‖2

2

‖Vwv‖2
2 + ‖Awa‖2

2

(5)

with respect to wv and wa, where ‖ · ‖2 is the ℓ2-norm.3 To prove this, we null the derivatives

of G(wv,wa):
∂

∂wv

G(wv,wa) = 0 ,
∂

∂wa

G(wv,wa) = 0 . (6)

Eq. (6) yields,

2VT (Vwv − Awa)(‖Vwv‖2 + ‖Awa‖2) − 2VTVwv‖Vwv − Awa‖2 = 0 (7)

−2AT (Vwv − Awa)(‖Vwv‖2 + ‖Awa‖2) − 2ATAwa‖Vwv − Awa‖2 = 0 (8)

2Strictly speaking, the definition for Ĉvv, Ĉaa and Ĉva should be normalized by NF . However, this constant

is factored out in Eq.(4), and is thus discarded throughout the paper.
3Note that 0 ≤ G(wv,wa) ≤ 2. The proof is given in App. A.
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leading to

VTVwv − VTAwa =
‖Vwv − Awa‖2

‖Vwv‖2 + ‖Awa‖2
VTVwv (9)

−ATVwv + ATAwa =
‖Vwv − Awa‖2

‖Vwv‖2 + ‖Awa‖2
ATAwa . (10)

Using the empirical covariances matrices and G,

Ĉvvwv − Ĉvawa = GĈvvwv (11)

implying

wv =
1

1 − G
Ĉ−1

vv Ĉvawa . (12)

Analogously,

−Ĉavwv + Ĉaawa = GĈaawa (13)

implying

wa =
1

1 − G
Ĉ−1

aa Ĉavwv . (14)

Eqs. (12) and (14) yield the following set of equations,

Ĉ−1
vv ĈvaĈ

−1
aa Ĉavwv = (1 − G)2wv

Ĉ−1
aa ĈavĈ

−1
vv Ĉvawa = (1 − G)2wa .

(15)

Note that Eq. (15) is equivalent to the CCA set of equations given in Eq. (2), with ρ2 = (1 − G)2.

Thus, an extremum of G is equivalent to an extremum of ρ. Moreover, finding the maximum

correlation (e.g., the largest eigenvalue ρ2) is equivalent to finding the minimal4 G. It can be

shown that the range of 0 ≤ G ≤ 1 is equivalent to the range 0 ≤ ρ ≤ 1, while 1 ≤ G ≤ 2 is

equivalent to −1 ≤ ρ ≤ 0. As we discussed in Sec. 2, these two ranges are equivalent. Thus,

the solution that maximizes G in the domain 1 ≤ G ≤ 2 is equivalent to the one minimizing

G when 0 ≤ G ≤ 1. Hence, in this paper we can focus on minimizing G towards zero.

One way to obtain intuition into this equivalence is by noting that minimizing Eq. (5)

implies that the projected video Vwv should be as close as possible to the projected audio

Awa in the ℓ2 sense. It means that we are looking for linear dependency between Vwv and

Awa, which is what we indeed expect in high correlation. The denominator in Eq. (5) serves

4Note that G is real and non-negative, by definition.
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to avoid trivial solutions, and to properly use the energies of the two projections. This is in

analogy to the correlation normalization in Eq. (1).

Before proceeding, we would like to note that there is an alternative formulation to CCA,

called principal angles [7, 21, 38]. For the principal angles approach an alternative formulation

was proposed in [38], which is the constraint optimization

max
wa,wv

{wT
v VTAwa} subject to ‖Vwv‖2 = 1, ‖Awa‖2 = 1 (16)

The Ill-Posedness of CCA

CCA has limitations, when working with a rank deficient matrix V. This occurs in audio-

visual correlation, when short time intervals are used. The number of representation features

(at each frame) is expected to be much larger than the number of frames in the time interval

(NF ≪ Nv). Let us analyze this ill-posedness using a formulation based on the minimization

of G. First, we focus on the cases where Na = 1, i.e., the audio is characterized by a single

feature. Multiple audio bands cases, i.e., Na > 1, are treated in Sec. 5.2.

When Na = 1 we may set wa = 1 (where wa is a scalar), since the penalty function in (5) is

scale invariant (multiplying wv and wa by the same constant does not change the function’s

value). Thus, Eq. (5) becomes,

G(wv) =
‖Vwv − A‖2

2

‖Vwv‖2
2 + ‖A‖2

2

. (17)

We assume that A 6= 0 (audio modulation exists). Hence the denominator of Eq. (17) cannot

be nulled. Thus, we can concentrate on the numerator and minimize

g(wv) = ‖Vwv − A‖2
2 . (18)

As shown later, the denominator is usually unimportant.

Suppose for a moment that a vector wv exists such that g(wv) = 0. This vector yields

G(wv,wa) = 0 since the denominator of Eq. (5) is necessarily non-zero.5 Hence, this solution

yields complete coherence, |ρ̂| = 1, as desired. Requiring g(wv) = 0 implies

Vwv = A . (19)

Since Na = 1, A is a column vector of length NF . Eq. (19) is illustrated in Fig. 2. As

discussed in Sec. 2, Nv ≫ NF , where Nv is the length of wv. Therefore, in the set of linear

5This is true since A is a non-zero vector.
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Figure 2: Illustration of Eq. (19). Each row in V represents visual features of a single frame. There

are NF temporal slices (frames) that are analyzed simultaneously. Since Nv ≫ NF the number of

rows (equations) is much smaller than the number of unknowns, yielding an underdetermined linear

set of equations. Here A is the vector of temporal audio samples.

equations (19), the number of equations is much smaller than the number of unknowns,

yielding an underdetermined linear set of equations. The number of possible solutions is

infinite. To conclude: due to the scarce data, there are infinite number of combinations of

visual features that appear to completely correlate with the audio!

How probable is the scenario of having g(wv) = 0 ? For Nv ≫ NF , most chances are that

rank(V) = NF , guaranteeing that A is in the span of the V column space. Thus, it is highly

probable that g(wv) has a zero. In fact, noise in the visual data guarantees this outcome, as

it causes the rank to become full. However, visual noise implies strong correlation of “junk”

features to the audio. A similar situation occurs in the case where g(wv) cannot be zero. We

prove this is Sec. 6.

4 Attempting Standard Regularization

There are several ways to overcome the ill-posedness of CCA. Since we have infinite number

of solutions to CCA of scarce data, some kind of regularization should be imposed. Regular-

ization has the role of choosing the best vector among the infinite space of potential solutions,

according to some criterion. Next, several types of standard regularization techniques are

discussed, as well as their weaknesses. Our alternative approach, which is stronger in the

context of our scenario, is introduced in Sec. 5.
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4.1 Regularization Using an ℓ2 Term

A common regularization of underdetermined problems is to prefer the minimal energy solu-

tion [17, 21]. In our case this would be

min ‖wv‖2 subject to Vwv = A . (20)

The constraint Vwv = A nulls the numerator of Eq. (17), thus leading to a solution having full

correlation. The ℓ2 term in Eq. (20) is the imposed regularization. We may find the wv that

solves Eq. (20) using several techniques, as pseudo inverse, SVD, and QR factorization [21].

Here we shall simply show the pseudo-inverse solution. The rest minimize ‖wv‖2 as well, and

thus suffer from the same major weakness, as we detail in the following.

Pseudo-Inverse

To solve Eq. (20), define the Lagrangian

L(wv, λ) =
1

2
‖wv‖2

2 + λT (Vwv − A) . (21)

Minimization of Eq. (21) implies,

0 =
∂L

∂wv

= wv + VT λ , 0 =
∂L

∂λ
= Vwv − A . (22)

Combining the above equations yields the ŵv having a minimum ℓ2-norm, i.e., the least square

solution

ŵLS
v = V+A , (23)

where

V+ = VT (VVT )−1 (24)

is the pseudo-inverse of matrix V.

In the context of the audio-visual problem, this results in visual poor localization. The

reason is that the ℓ2 criterion seeks to spread the energy of wv over many small-valued visual

components, rather than concentrating energy on a few dominant ones. To obtain some

intuition, this phenomenon is depicted in Fig. 3 for Nv = 2 and NF = 1. In this figure,

a straight line describes the linear constraint Vwv = A. The minimum of the ℓ2-norm is

obtained in point B, which has substantial energy in all components. This nature is contrary to

common audio-visual scenarios, where visual events associated with sound are often very local.

They typically reside in small areas (few components) of the frame. Indeed, the inadequacy

of this criterion is demonstrated in the experiments detailed in Sec. 9.
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Figure 3: A 2D example of optimization under ℓ2-norm. The dashed contours represent iso-norm lev-

els. On the linear constraint Vwv = A (solid line), point B minimizes ‖wv‖2, but it has a substantial

energy in all components.

4.2 Regularization Using the Identity Matrix

As described in Eq. (2), CCA may involve inversion of matrix6 Ĉvv. While the audio stream per

frame may often be represented by a small number of features, the video representations needs

a large number of features, i.e., Nv ≫ NF . The covariance matrix Ĉvv, defined by Ĉvv = VTV,

is a huge low rank (and thus singular) matrix. Solving CCA using (2) is impossible due to

the inability to invert Ĉvv. One way to overcome this problem is to regularize matrix V, and

hence Ĉvv as follows.

We may use the identity matrix and define an invertible version as

C̃vv = Ĉvv + ǫ I , (25)

where I is the identity matrix and ǫ is an arbitrary small number [1, 6, 30]. Such regularization

brings the covariance matrix to be a huge full rank matrix, and thus invertible.7 Inserting the

regularized version of the covariance matrix C̃vv into the correlation expression given in (1) we

see that it enlarges the denominator of (1). Hence, this regularization reduces the correlation

value (destroying the complete coherence). Thus, we expect that such an operation will lead

to results that have lower correlation.

Another way to judge this regularization is to examine the penalty function. Recalling that

6Inversion of Caa is not a problem in our audio-visual localization problem. The reason is that the number

of audio features is comparable to the number of temporal samples, i.e., Na ∼ NF .
7The covariance matrix in its new formulation (25) can be inverted efficiently using the Sherman-Morrison

theorem. However, we still have to face a huge eigenproblem.
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Ĉvv = VTV, we can obtain Eq. (25) by defining a matrix Ṽ of size Nv ×Nv, having the form

Ṽ =

[
VNF×Nv√

ǫ I(Nv−NF )×Nv

]
, (26)

and then C̃vv = ṼT Ṽ. Suppose we use C̃vv and Ṽ defined by Eqs. (25,26) instead of the

original matrices V and Ĉvv. Inserting matrix Ṽ into Eq. (17) yields

G̃(wv) =
‖Ṽwv − Ã‖2

2

‖Ṽwv‖2
2 + ‖Ã‖2

2

=
‖Vwv − A‖2

2 + ǫ‖wv‖2
2

‖Vwv‖2
2 + ‖A‖2

2 + ǫ‖wv‖2
2

(27)

where

Ã =

[
A

0Nv−NF

]
. (28)

Since ǫ is chosen as a small number, while the audio data given in A is assumed to contain

significant energy, then ǫ‖wv‖2
2 ≪ ‖A‖2

2. Thus, the term ǫ‖wv‖2
2 can be neglected in the

denominator. However, it can not be neglected in the numerator since ‖Vwv −A‖2
2 is a small

number (as we are close to full correlation). The penalty function becomes

G̃(wv) ≈
‖Vwv − A‖2

2 + ǫ‖wv‖2
2

‖Vwv‖2
2 + ‖A‖2

2

= G(wv) + ǫ̃‖wv‖2
2 , (29)

where G(wv) is the penalty function in the non-regularized case and ǫ̃ is an arbitrary small

number

ǫ̃ =
ǫ

‖Vwv‖2
2 + ‖A‖2

2

. (30)

Recall that maximizing the correlation is equivalent to minimizing G. Hence minimization

of (29) tends to minimize ‖wv‖2
2 and not only G. Thus, we can see that such a regularization

has resemblance to the ℓ2 regularization given in (20), hence suffering from a similar weakness.

This brings us to the next section where we propose a different way to rectify the ill-posedness

of our problem.

5 Sparsity as A Key

“Out of clutter, find simplicity.

From discord, find harmony.” - Albert Einstein

As we showed in the previous section, solving the audio-video correlation problem using the

traditional ℓ2-norm solution, leads to poorly localized results. We now describe our approach,
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which leads to a unique solution based on a spatial sparsity criterion. We progress by first

looking at cases where Na = 1, i.e., the audio is characterized by a single feature. In Sec. 5.2

we extend the analysis to multiple audio bands.

5.1 A Single Audio Band

With a single audio band our goal is to minimize Eq. (17). We start by first discussing the

case where the minimum of the this function is zero. The case of a non-zero cost function

value is discussed in Sec. 6.

As discussed in Sec. 4.1, Eq. (17) suffers from poor localization. To overcome this problem,

we express locality as a requirement that the sought solution should be sparse.8 Our goal is

that the optimal solution will have a minimal number of components. Thus, out of the entire

space of possible correlated projections, we aim to solve:

min ‖wv‖0 subject to Vwv = A , (31)

where ‖ · ‖0 is the ℓ0-norm of a vector space (the number of non-zero vector coefficients).

In the simple example depicted on the left of Fig. 4, the optimal solution according to this

criterion (point A) has a single component. Unfortunately, this criterion is not convex, and

the complexity of its optimization is exponential [10, 16, 22] in Nv.

We bypass this difficulty by convexizing the problem and solving

min ‖wv‖1 subject to Vwv = A , (32)

where ℓ1 is used instead of ℓ0. In the right part of Fig. 4, the solution optimizing this criterion

has a single component (point A), just as under the ℓ0 criterion. All other points in the linear

constraint Vwv = A have a larger ℓ1-norm. Thus, it appears that there is some equivalence

between ℓ0 and ℓ1 since both lead to the same optimal vector. Moreover, this figure illustrates

the convexity of the ℓ1 criterion.

In general, the equivalence of the ℓ0 and ℓ1 problems (31,32) has been studied in depth during

the last couple of years from a pure mathematical perspective. Preliminary contributions in

this direction considered deterministic sufficient conditions for this equivalence [10, 15, 16, 22].

More recently, a probabilistic approach has been introduced, showing that equivalence holds

true far beyond the limits determined by these sufficient conditions [9]. Further details about

8Sparsity is enhanced using a wavelet representation of temporal-difference images.
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represent iso-norm levels. On the linear constraint Vwv = A (solid line), point A is the sparsest

(minimum ‖wv‖0), and also minimize ‖wv‖1. The ℓ1 criterion is convex, in contrast to ℓ0.

the equivalence and its conditions are given in App. B. Owing to this theoretical progress,

formulating sparsity using the ℓ1-norm is reliable.

The newly defined formulation (32) can be posed as a linear programming problem, and

thus can be solved efficiently even for Nv ≫ 1. This formulation influences the solution energy

to concentrate on few visual features which strongly correlate with the audio. It penalizes

for dispersed components, such as the random “junk” features described at the end of Sec. 3,

e.g., image noise. Moreover, the solution is unique, because of the convexity of the ℓ1-norm,

except for special cases discussed in Sec. 7.

5.2 Multiple Audio Bands

We now generalize the single-band analysis of Sec. 5.1 to audio signals that are divided into

multiple bands. We postpone to Sec. 6 the analysis of scenarios in which the optimal value

of the cost function G is non-zero. Here, we analyze cases where the cost function has zeros.

This allows us to concentrate on the numerator of Eq. (5). The numerator is zero if and only

if

Vwv = Awa . (33)

As before, if rank(V) = NF , a zero solution of G is guaranteed. As we have claimed in Sec. 5.1,

this is a highly probable event, especially for noisy visual data. In the unlikely event that

no intersection exists between the subspace spanned by the columns of V and the subspace

spanned by A, the cost function G cannot be nulled (See Sec. 6).

Similarly to Sec. 5.1, Eq. (33) is prone to a scale ambiguity. To overcome this problem and
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avoid the trivial solution wa = 0, we use normalization. A way to achieve this is to limit the

search to the audio ℓ1-ball, ‖wa‖1 = 1. The set ‖wa‖ = 1 is not convex. To keep enjoying the

benefits of a convex problem formulation, the following process is performed. We break the

problem into 2Na separate ones, where each handles a single face of the audio ℓ1-ball and is

thus convex. As depicted in Fig. 5, the optimization over each face q ∈ [1, 2Na ] can be posed

as

sq = min ‖wv‖1 subject to

{
Vwv = Awa , hT

q wa = 1 , Hqwa ≥ 0
} (34)

where hq is a vector and Hq is a diagonal matrix whose diagonal is hq. The vector set

{hq}2Na

q=1 comprises the 2Na different combinations of the Na-tuples binary sequences with ±1

as their entries. Since all the constraints are linear, Eq. (34) is solved for each q using linear

programming.

Recall that for our audio-visual localization method, we should optimize the visual sparsity

over the audio ℓ1-ball. This is done by running Eq. (34) over all9 values of q, and then selecting

the optimal q by

q̂ = arg min sq . (35)

The unique vectors wv and wa which we seek are then derived by using this specific q̂ in

Eq. (34). We stress that our goal is to localize visual events (based on audio cues), while

processing of audio is of secondary importance here. This distinction enables us to use a

coarse representation of the audio. Hence, only a small number of audio bands Na is required.

For this reason, the computations are tolerable despite the O(2Na) complexity.

6 A Non-Zero Cost Function Value

So far we considered solutions wv that null g(wv). We stress that this nulling is very likely

due to noise in V, as explained in Sec. 3. In this section we refer to the case where no solution

is fully correlated, i.e., g(wv) 6= 0 for all wv. Indeed, in our experiments we did not encounter

such cases. Still, for the sake of completeness we show that this case can be handled well by

our approach.

9Actually, there is no need to scan all 2Na values of q. Due to the scale ambiguity mentioned above, hq

and −hq will yield the same results. Hence it is sufficient to scan 2Na−1 nonequivalent values of q.
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Figure 5: A 2D illustration of the faces of the ℓ1-ball in the audio space.

6.1 A Single Audio Band

It follows from Sec. 3 that [min g(wv)] 6= 0 only if rank(V) < NF , and if A is not in the

column span of V. In such cases we can decompose A as A = A‖ + A⊥. Here A‖ is in the

subspace spanned by the columns of V, while A⊥ is orthogonal to V. Thus, the function

g(wv) becomes

g(wv) = ‖Vwv − A‖2 = ‖Vwv − A‖‖2 + ‖A⊥‖2, (36)

and Eq. (17) becomes

G(wv) =
‖Vwv − A‖2

2

‖Vwv‖2
2 + ‖A‖2

2

=
‖Vwv − A‖‖2

2 + ‖A⊥‖2
2

‖Vwv‖2
2 + ‖A‖‖2

2 + ‖A⊥‖2
2

. (37)

Note that the audio component A⊥ does not correlate with any of the visual features. As

such, it can be discarded as irrelevant. The remaining audio signal A‖ is a projected version of

the original audio for which the solution to Vwv = A‖ exists. Thus, A is essentially projected

to the column space of V, as a “denoising” pre-process. This explanation suggests that we

handle the rank-deficient V matrix case by such a projection, and then proceed as in Eq. (32)

when we use A‖ instead of A.

As we show now, that line of reasoning is in fact optimal up to a scale. We are interested

in characterizing the set of minimizers wv of (37). Recall that A⊥ is not spanned by the

columns of V, thus no matter what wv is, the term Vwv is necessarily orthogonal to A⊥. In

general, the solutions wv satisfies the relation Vwv = αA‖ + Z, where α is a scalar, and Z is

an arbitrary vector perpendicular to both A‖ and A⊥. Thus, G(wv) in Eq. (37) becomes the
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function G(α,Z),

G(α,Z) =
‖αA‖ + Z − A‖‖2

2 + ‖A⊥‖2
2

‖αA‖ + Z‖2
2 + ‖A‖‖2

2 + ‖A⊥‖2
2

. (38)

We need to find α and Z that minimize this function. We thus derive equations that null the

partial derivatives of G(α,Z) with respect to α and Z. Handling Z first, we rearrange G

G(α,Z) =
(α − 1)2‖A‖‖2

2 + ‖Z‖2
2 + ‖A⊥‖2

2

(1 + α2)‖A‖‖2
2 + ‖Z‖2

2 + ‖A⊥‖2
2

=
(α − 1)2 +

‖Z‖2

2

‖A‖‖
2

2

+
‖A⊥‖2

2

‖A‖‖
2

2

(1 + α2) +
‖Z‖2

2

‖A‖‖
2

2

+
‖A⊥‖2

2

‖A‖‖
2

2

. (39)

Here we have exploited the fact that the ℓ2-norm is separable when dealing with two orthogonal

vectors (A‖ and Z in this case). To simplify this expression, let us define r ≡ ‖A⊥‖2
2/‖A‖‖2

2

and k(Z) ≡ ‖Z‖2
2/‖A‖‖2

2,

G(α,Z) =
(α − 1)2 + k(Z) + r

(1 + α2) + k(Z) + r
. (40)

Thus,

∂G(α,Z)

∂Z
=

2Z

‖A‖‖2
2

· 2α

[(1 + α2) + k(Z) + r]2
(41)

where we used the relation ∂k(Z)/∂Z = 2Z/‖A‖‖2
2. Nulling this derivative leads to Z = 0 as

the solution. Handling α leads

∂G(α)

∂α
=

2(α2 − 1 − k(Z) − r)

[(1 + α2) + k(Z) + r]2
, (42)

hence,
∂G(α)

∂α
= 0 ⇒ αopt =

√
1 + k(Z) + r , (43)

i.e.,

αopt =

√√√√1 +
‖Z‖2

2

‖A‖‖2
2

+
‖A⊥‖2

2

‖A‖‖2
2

. (44)

Since we obtained that Z = 0, then

αopt =

√√√√1 +
‖A⊥‖2

2

‖A‖‖2
2

. (45)

We proved that if Vwv = αA‖ + Z, minimization of Eq. (37) as a function of Z and α

yields Z = 0 and α =
√

1 + ‖A⊥‖2
2/‖A‖‖2

2. This result means that the correlated audio-visual

features satisfy

Vwv = αA‖ =
(√

1 + ‖A⊥‖2
2/‖A‖‖2

2

)
· A‖ . (46)
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Thus, if G cannot be nulled, the set of minimizers wv of (37) is given by (46). Since (46)

minimizes G, it maximizes the correlation. The scalar α does not influence the localization

result, but only the overall scale of wv. Thus, the results obtained using our algorithm are

consistent, up to a scale.

6.2 Multiple Audio Bands

In the multiple audio band problem, the vector wa is unknown. However, from the single

band analysis discussed in the previous section, we know that whatever the optimal wa is,

the eventual solution Vwv must be parallel to Awa. Thus, we should force this parallelism

in Eq. (34), and rephrase the problem to the case where the penalty function is non-zero.

Let the space spanned by the columns of A be A. Decompose this space into two orthogonal

subspaces A‖ and A⊥, where A‖ spans the projected audio subspace Awa. Define A‖ and A⊥

as matrices whose columns span A‖ and A⊥, respectively. Similarly to Eq. (46), parallelism

means that

Vwv = βA‖wv (47)

where β is a scalar. Thus, the inner product between Vwv and the orthogonal audio space

spanned by A⊥ must be zero

A⊥ · Vwv = 0 . (48)

We use (47) and (48) as new constrains. Combining these constraints, Eq. (34) becomes

sq = min ‖wv‖1 subject to
{
Vwv = A‖wa , A⊥ · Vwv = 0 , hT

q wa = 1 , Hqwa ≥ 0
}

.
(49)

7 The Chorus Ambiguity

Consider a chorus of identical people singing in synchrony the same song. In this case the

audio track corresponds well to several spatially distinct clusters of pixels (faces of the chorus

members). Which pixels would you choose as the ones achieving successful localization? We

claim that this scenario poses a fundamental ambiguity for any localization algorithm: the

result could pinpoint any single person or several of them. In this special scenario all these

results are equally acceptable. Thus, we term this phenomenon as the chorus ambiguity.

Our algorithm (32,34,35) has this characteristic, just as well. Referring to Fig. 4, this

case occurs when the linear constraint Vwv = A aligns with a face of a visual ℓ1 ball.
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Figure 6: The chorus ambiguity under the ℓ1-norm. The top row is the two pixels scene and

the bottom shows a human chorus. (a) Detecting the left person (b) Detecting the right person

(c) Detecting both.

Mathematically, this implies that for this special scenario, the problem in (32) does not have

a unique solution, but rather a set of them. This case is demonstrated in Fig. 6 for a two-

pixels scene (top row) and for a chorus of two people (bottom row). In this illustration, three

solution types in the two-pixels scene are represented, denoted by A, B and C. Types A and B

represent exclusive detection of only a single pixel, while type C represents all solutions that

are a convex superposition of A and B. Analogously, in the two people chorus, types A and B

represent an exclusive detection of a single person, while type C represents detection of the

entire chorus (with some weight ratio between members).

We can see that the problem of (31) has only one type of solutions, as demonstrated in

Fig. 7 - that of exclusive detection. In the general chorus case, the ℓ0 criterion can lock into

any single person in the chorus, while the ℓ1 result can spread the detections between several

of them. Thus, in this case the equivalence between ℓ1 and ℓ0 breaks down. A mathematical

insight to this phenomenon can be found in [10, 16, 22]. Still, this effect does not hinder the

optimization process (32,34,35): the linear programming converges to one of these solutions,

depending on the initialization.
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Figure 7: The chorus ambiguity under the ℓ0-norm. There are only exclusive detections, which

correspond to points A and B in Fig. 7.

8 A Quantitative Localization Criterion

So far we discussed approaches to solve the audio-visual correlation problem, where the signals

are represented by some visual and audio features. Once the problem is solved, the results

should be transferred from the feature space back into the image domain (pixels domain). In

this section we describe this transformation and develop a quantitative criterion to measure

performance.

8.1 Back to the Image Domain

The output of the localization algorithm is a weight wv(k) for each component k of the vector

v. The weights are transformed into an image wImage
v . For example, if wavelets are the domain

of v, then an inverse wavelet transform of wv brings it to the pixel domain:

wImage
v = W−1wv . (50)

Note that the image wImage
v can have positive and negative components. We thus display the

energy of the components:

e(~x) = |wImage
v (~x)|2 , (51)

where ~x is the pixel coordinate vector.

8.2 Defining A Quantitative Criterion

The energy distribution described in (51) forms the basis for a localization criterion. High

localization is obtained if most of the energy of the image e(~x) is concentrated in small areas

that are correct.
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Figure 8: The candidate dynamic pixels occupy areas F1 and F2. Some of them are detected by the

audio-visual localization algorithm (marked here in black). If detection is based on a multiresolution

representation, then the area of detected pixels typically comprises of blocks of several fixed sizes.

Before audio-visual localization is attempted, all the dynamic pixels10 are candidates for

detection. In Fig. 8, they are depicted as residing in regions F1 and F2. It must be stressed

that all the pixels in those regions are dynamic, since pixels having values with negligible

temporal variation are excluded. The pixels detected by the localization algorithm have

e(~x) > 0. Some of them are in irrelevant areas. We determine a correct detection by manually

defining F1 as the area (of dynamic pixels) corresponding to the sound. For instance, in the

sequence appearing in Fig. 1, F1 includes only pixels in which the hand is moving. The set of

correctly detected pixels

Dc
.
= {~x : e(~x) > 0 and ~x ∈ F1} (52)

occupies a cumulative area Fc. The localization criterion is

Lc =

∑
~x∈Dc

e(~x)
∑

~x e(~x)
· F1 + F2

Fc

. (53)

It can be easily seen that if there is no preference for localization at the correct region, then

Lc = 1. The case where Lc < 1 indicates failure, as most of the energy is outside the correct

region. We seek Lc ≫ 1, meaning that the energy is concentrated in small areas of correct

identity.

10The dynamic areas can have a variety of features. These features are not limited for pixels or wavelet

components. Features can be corners detected by preprocessing.

21



9 Experiments

In this section we present results of experiments based on real video sequences. The sequences

were sampled at 25 frames/sec at resolution of 576 × 720 pixels.11 The audio was sampled

at 44.1KHz. Movie #1 features a hand playing a guitar and then a synthesizer. Such an

example gives a good demonstration of dynamics. The hand playing motion is distracted

by a rocking wooden-horse. Some raw data of this sequence appears in Fig. 1. Movie #2

features a talking face and a distracting rocking wooden-horse as well. The audio plot and a

representative frame of this sequence are shown in Fig. 9. Both movies can be linked through

http://www.ee.technion.ac.il/∼ yoav/AudioVisual.html .

The experiments had the following features, aimed at demonstrating the capability of our

approach:

• Handling dynamics. Each sequence was ≈ 10 seconds long. However, analysis was

performed on intervals of NF = 32 frames (≈ 1 second).

• Handling false-positives and noise. The sequences deliberately include strong visual

distractions (a rocking wooden-horse), challenging the algorithm. Moreover, in some exper-

iments we added strong audio noises (SNR=1), in the form of unseen talking people (via a

recording), broadband noise, or background beats.

• High spatial resolution (localization). In some of the prior work, pruning of visual fea-

tures had been very aggressive, greatly decreasing spatio-temporal resolution. Our algorithm

does not need this, thanks to the sparsity criterion. Nevertheless, memory limits currently

restricted the number of visual features to Nv = 3000. The dynamic pixels in our frames were

effectively represented by wavelet coefficients of such dimensions, as described below. The

dynamic pixels are shown in Fig. 10. It is stressed that pruning was done only for reducing

the computational load. However, we observed in experiments that using a larger number

of features has a diminishing return. We aim to demonstrate high spatial resolution in the

resulting visual localization.

• No parameters to tweak. The implementation has essentially no parameters. The

selection of NF = 32 represents our desire to localize brief events, but longer time intervals

can be used as well. The selection of Nv = 3000 stems from hardware limits, but the results

11We used only the pixel intensities, and discarded the chromatic channels.
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Figure 9: Movie #2 includes a talking face and a moving wooden horse. [Top] The audio signal.

[Bottom] Sample frames.

of our experiments were robust to this choice, as verified in experiments.

• Simple audio representation. Our experiments did not attempt to filter sounds, but

rather to filter the visual signals. Hence, only a few audio bands were used. We analyzed the

sequences using a single wide band (Na = 1), averaging sound energy at each frame (1/25’th

second). We then re-analyzed the data using Na = 4 audio bands, selected as the strongest

periodogram coefficients.

Since a sparse representation is desired, we worked on temporal-difference images, applying

a wavelet transform to each of these difference-frames [13, 29]. We choose to use wavelet

decomposition up to level 3. Coarser levels may inclines the algorithm to choose coarser level

coefficients, which reduces the ℓ1 value but expands the spatial spread in the image domain.

Fig. 11 shows sample frames resulting from the analysis of Movie #1. At each frame, we

overlaid the energy distribution of the detected pixels e(~x) with the corresponding raw image.

The algorithm pinpointed the source of the sound on the motion of the fingers, demonstrating

both high spatial accuracy and temporal resolution. Compared to the large area occupied by

dynamic pixels in Fig. 10, the detected pixels in Fig. 11 are concentrated in much smaller

areas. Thus, high localization is achieved. Note that the algorithm handls dynamics. First,

the guitar is detected, corresponding its audio tones. When the hand played the synthesizer,
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Figure 10: Dynamic pixels expressed by the wavelet components, using level 3, in [Left] Movie #1

[Middle] Movie #2 [Right] Movie #3. Graylevels indicate the temporal average of pixels values.

Black regions represent static pixels.

Using ℓ1-norm Using ℓ2-norm

Movie #1 58 ± 20 4.0 ± 0.8

Movie #2 81 ± 20 2.9 ± 0.6

Table 1: The localization criterion Lc obtained in the experiments. The reported numbers are the

mean and standard deviation of the measurements. The use of the ℓ1-norm leads to sharp localization,

much better than that resulting from ℓ2.

the algorithm managed to shift its focus accordingly. The motion distractions (rocking horse)

were successfully filtered out by our audio-visual localization algorithm.

Similarly, Fig. 12 shows sample frames resulting from the analysis of Movie #2. Here

pixels in the mouth were predominantly detected as correlated with the audio. Similarly to

the results of Movie #1, the motion distractions are successfully filtered out.

To judge the results, we compare our algorithm to the performance obtained using ℓ2

regularization, as in (20). Typical sample frames are shown in Fig. 13. They suffer from very

poor localization and detection rate: there are many false-positives (especially detection of

the moving horse), while the energy spreads over a large area. Table 1 reports the temporal

mean and standard deviation of the empirical localization values Lc, resulting from the use

of either the ℓ1 or ℓ2-based localization algorithms. These quantitative results indicate that

using the ℓ2-based solution achieves poor localization, compared to the ℓ1-norm counterpart.

As mentioned above, we repeated our experiments by sequentially adding three types of

audio disturbances. The results were within the standard deviation of the Lc values reported

in Table 1. Moreover, the multiple audio representation using Na = 4 was tested. The

performance was very similar to that described in Figs. 11, 12 and Table 1.
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Frame 146 Frame 169

Frame 42Frame 9 Frame 68

Frame 115

Figure 11: The algorithm results, when run on Movie #1. For visualization, we overlayed the

detected energy distribution with the corresponding sample raw frames. Localization concentrates on

the playing fingers, which dynamically move from the guitar to the synthesizer. Sporadic detections

exist in other areas, usually with much lower energies.

Frame 83

Frame 177Frame 106

Frame 51

Figure 12: Sample frames resulting from the algorithm, when run on Movie #2. The visualization

is as described in Fig. 11. Localization in the mouth area is consistent. Sporadic detections exist in

other areas, usually with much lower energies.
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Frame 146 Frame 83

Figure 13: Typical results of using ℓ2 as a criterion. Compared to the corresponding frames shown

in Fig. 11 and 12, the detected energy is much more spread, particularly in non-relevant areas (see

the wrong detection of the horse on the right frame).

Post Processing for Visualization

The algorithm described above hardly exploits spatial coherence and temporal consistency,

which are typical to audio-visual events. Still, it yields good results. Nevertheless, the per-

formances can be improved by further development of these aspects. This can be done by

reformulating the optimization problem using priors expressing spatial coherence and tempo-

ral consistency. That option is elegant, but solving it is complex. We opted for an alternative

option, in which post-processing is applied to the results of our algorithm, to filter out in-

consistent behavior in time and space. This option is simpler and faster, since it involves

concatenation of two relatively simple stages. As the post processing stage, we performed

temporal median filtering (in windows of 10 frames), followed by spatial convolution with a

5 × 5 Gaussian kernel. The first step deletes temporal outliers, while the second stabilizes

spatial positions and filters out fluctuations. Samples of resulting frames are shown in Fig. 14

and Fig. 15.

10 Discussion

We have presented a robust approach for audio-visual dynamic localization, based on a single

microphone. It overcomes the lack of sufficient data (ill-posedness) associated with short time

intervals. The algorithm exploits the spatial sparsity of audio-visual events. Furthermore,

leaning on recent results that show the relation between sparsity and the ℓ1-norm, we are able

to convexize the problem. Our algorithm is parameter-free, and is thus robust to scenario

variability. Nevertheless, the principles posed here can become the base for a more elaborate
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Figure 14: Results of post processing of the algorithm output when the input is Movie #1. Compared

to Fig. 11, the detected regions are much more stable and contain much less false-positives. Movie

results are linked via http://www.ee.technion.ac.il/∼yoav/AudioVisual.html .
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Frame 177Frame 106

Frame 51

Figure 15: Results of post processing of the algorithm output when the input is Movie #2. Compared

to Fig. 11, the detected regions are much more stable and contain much less false-positives.
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localization approach, that uses spatial temporal consistency as a prior, as done in tracking

methods.

It is possible to extend this approach, e.g., by a kernel version for treating nonlinear relations

between the modalities [1, 30, 38]. One may go further and generalize audio-visual localization

to multiple simultaneous visual events. In addition, time-lag between the audio and the video

data can be introduced as a variable in the optimization. Based on the speed of sound, this

would enable estimation of object distances from the camera. Furthermore, our sparsity-

based approach may be helpful in other scientific domains that aim to correlate arrays of

measurement vectors (unrelated to sound), such as climatology.

A Bounds of G

In this appendix we prove that the penalty function given by (5) is bounded by 0 and 2.

Looking at G(wv,wa) in (5) it is clear that this nonnegative function becomes zero when

Vwv = Awa. Hence, the lower bound of G is zero.

For the upper bound, consider the special case Vwv = −Awa. Using this in (5) yields

G(wv,wa) = 2. Next, we prove that G(wv,wa) cannot be larger then 2.

‖Vwv − Awa‖2

‖Vwv‖2 + ‖Awa‖2
≤ (‖Vwv‖ + ‖Awa‖)2

‖Vwv‖2 + ‖Awa‖2
= 1 +

2‖Vwv‖‖Awa‖
‖Vwv‖2 + ‖Awa‖2

(54)

≤ 1 +

√
‖Vwv‖2‖Awa‖2

(‖Vwv‖2 + ‖Awa‖2)/2
≤ 1 +

(‖Vwv‖2 + ‖Awa‖2)/2

(‖Vwv‖2 + ‖Awa‖2)/2
= 2 .

The last inequality is valid since the geometric average is always smaller or equal to the

corresponding arithmetic average. As explained in Sec. 3, the ranges 0 ≤ G ≤ 1 and 1 ≤ G ≤ 2

are equivalent.

B Sparsity using ℓ1

Suppose we seek to solve

min ‖wv‖0 subject to Vwv = A . (55)

This task is highly complex (known to be NP-hard) [10, 16, 22], being a combinatorial problem

whose complexity grows exponentially with the number of columns in V. Fortunately we may
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use an approximation method that replaces the ℓ0-norm with an ℓ1 norm, yielding

min ‖wv‖1 subject to Vwv = A . (56)

This approximation is known as the basis pursuit algorithm [11, 12]. Replacing the ℓ0-norm

with ℓ1-norm can be seen as a way of convexizing the target problem (55). The advantage

of such a change is that it can be cast as a linear programming problem and be solved by

modern interior point methods, even for very large Nv.

Recent studies have established that if the solution of (55) is sparse enough, then (i) no other

solution exists with the same or lower cardinality (uniqueness); and (ii) solving Eq. (56) yields

a solution which is identical to the solution of Eq. (55) (equivalence) [22]. Both the uniqueness

and the equivalence results are derived from the properties of the matrix V. Defining vn as

the n-th column in this matrix, the mutual incoherence is defined as

M = max
n6=j

|vT
nvj|

‖vn‖2‖vj‖2

(57)

for n, j = 1, 2, ..., Nv. The work reported in [10] shows that uniqueness and equivalence of

Eqs. (55) and (56) hold true if the solution satisfies12

‖woptimal
v ‖0 < 0.5

(
1 +

1

M

)
(58)

In this case, the solution is considered to be a highly sparse solution, and solving Eq. (56) can

replace Eq. (55). Thus, if we obtain the solution of Eq. (56) and observe that it happens to

be sparse beyond the threshold (Eq. 58), then we know that we have also solved (55).

The bound in Eq. (58) is rather restrictive. It is very conservative since it relates to worst-

case scenarios. There are, however, cases where this restriction in meaningless. Consider

an extreme case where the matrix V includes two identical columns. In this case, Eq. (57)

yields M = 1, implying that uniqueness and equivalence hold true for wv vectors having less

than a single non-zero component (i.e., the entire vector is zero). Such observation is useless.

Apparently, in this special case, the equivalence between (55) and (56) may break down if

we rely only on the bound in Eq. (58). However, empirical tests show that the basis pursuit

algorithm (56) recovers the solution of (55) for cases far exceeding this bound.

Encouraged by these empirical observations, very recent theoretical analysis [4, 9, 16] ad-

dressed the above questions from a probabilistic point of view. This analysis has replaced a

12It can be shown [10] that
√

Nv−NF

NF (Nv−1) ≤ M ≤ 1.
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deterministic claim of “guaranteed uniqueness and equivalence” with a claim of “guaranteed

uniqueness and equivalence with probability one”. These studies establish a much higher

bound on the cardinality of the solution to guarantee success.13 These new results stand as

support to our experiments (Sec. 9), where basis pursuit succeeded in locking on a very sparse

solution.
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