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Abstract—This paper presents a new technique for 

efficient usage of small trace caches. A trace cache can 

significantly increase the performance of wide out-of-order 

processors, but to be effective, the size of the trace cache 

should be large. 

Power and timing considerations indicate that a small 

trace cache is desirable, with special mechanisms to 

increase its effectiveness despite the limited size. Hence 

several authors have proposed various filtering methods to 

select "good traces" for keeping in the trace cache, from 

among the general population of traces.  

This paper presents a new filtering technique, which is 

based on sampling. Our new technique suggests that 

instead of building all the traces and trying to select the 

good ones among them, it is more efficient to make a 

preliminary selection of traces. This selection is based on a 

random sampling approach. 

We show that the Sampling Filter improves trace cache 

and overall system performance, while reducing power 

dissipation. The Sampling Filter reduces admission of 

traces that are not used prior to their eviction from the 

cache, and prolongs the percentage of time a trace is in its 

live phase during its stay in the cache.  Moreover, the 

Sampling Filter reduces duplication between the trace 

cache and the instruction cache and thus reduces the 

overall misses in the first level of cache hierarchy. 

 
Index Terms—Trace cache, Filtering, Performance, and Power. 

1 INTRODUCTION 

The effectiveness of a single threaded out-of-order 

processor is strongly dependent on the average number of 

useful instructions it can fetch in every cycle. Trace caches are 

very effective in serving this goal by storing instructions in 

their dynamic order rather than in their static order ��[10] �[15] 

�[16]. Thus, a trace cache has two major merits: it contains 

instructions from different basic blocks that would normally 

require several accesses to the instruction cache in order to be 

fetched, and it contains only useful instructions (contrary to an 

instruction cache line that is fetched but might include 

instructions that the processor doesn’t require). The trace 

cache was found to be very effective if size and power are not 

limited. However, relatively small caches which are practical 

in term of access time and power consumption, are very 

vulnerable in terms of memory efficiency, because of several 

problems ��[11]: the same basic blocks can appear in different 

traces (duplication), some traces don't contain the maximum 

number of instructions (fragmentation), and the requested 

block might reside inside a trace and thus become inaccessible 

(Indexability). Thus, the key for efficient usage of relatively 

small trace caches is either to change the way the trace is 

constructed; i.e., the use of basic block traces ��[1], or to keep 

only the most valuable traces inside the cache and thus avoid 

their trashing by less valuable traces. This work will focus on 

the second option since the logic required to construct the 

traces out of a block-based cache is very costly in term of 

power.  

Filtering (selective admission of incoming traces to the 

cache) has already been proposed as a way to increase the 

usefulness of a limited size trace cache. In ��[12] it was 

proposed to store only traces containing taken branches, which 

cannot be fetched in one access from the instruction cache.  In 

��[13] it was proposed to filter traces based on their usage. The 

trace cache is divided into two blocks: the Filter trace Cache 

(FTC) and the Main Trace Cache (MTC). All traces are 

written to the FTC, but only traces that have been proven to be 

“useful” are inserted to the MTC. The success of this filtering 

method is based on the important observation presented there 

��[13], that most traces that are built and inserted to the trace 

cache are rarely used before eviction, and that most of the 

instructions the processor executes come from a small set of 

traces (“hot traces”). In ��[8] it was proposed to use profiling in 

order to filter out traces that are less frequent and show little 

time locality.  

This paper presents a new class of trace filtering techniques, 

which is based on statistical sampling of traces. This class of 

filters aims to improve the quality of the traces residing in a 

small trace cache, while reducing the power dissipation needed 

for maintaining the filter's bookkeeping. The paper presents 

and analyzes the performance and the power of a basic 

Sampling Filter (SF) and an enhanced version of it, and 

compares its performance and power with a regular trace cache 

and with the FTC-MTC organization.  

The rest of the paper is organized as follows: In Section 2 

the simulation environment and the characterization of traces 

are discussed; Section 3 describes the sampling filter 

architecture and compares it with the regular trace cache and 

with the FTC-MTC organization. In Section 4 the usage of the 

Sampling Filter with the FTC-MTC organization is 

demonstrated and Section 5 concludes and proposes related 

ideas for future studies. 

2 SIMULATION ENVIRONMENT AND BASIC OBSERVATIONS 

This section presents the simulation environment we used, 

and some of the basic observations that our new proposed 

technique are based upon. 

2.1 The simulation framework 

 The performance numbers presented below are based on an 

extended version of the sim-outorder simulator from the 

SimpleScalar tools set 3.0d ��[1] that was augmented with a 

detailed model of the trace cache that includes the impact of 

wrong path prediction and recovery, along with the simulation 

of the proposed filter mechanism and with a next trace 

predictor ��[6].  The power numbers presented in this paper were 

computed by an extended version of the Wattch ��[1] simulator 
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(which is based on Simple scalar) and by Cacti ��[17] that was 

used to estimate the power of new structures such as the trace 

cache, and for examining the impact of power and timing on 

caches with different configurations. The modeling of the 

leakage power in Wattch assumes that it always consumes 

10% of the maximal dynamic power. In this work, since we 

assume relatively small structures of the trace cache, we saw 

that the leakage has only minor impact on the overall power of 

the chip and so we use the same method as in Wattch.  

The structure of the traces within the trace cache we use for 

our model is similar to other works; i.e., a trace can contain up 

to 16 instructions and up to 4 branches, a trace is terminated 

also if it reaches indirect jumps, indirect branches, procedure-

calls, return instructions and interrupts. Our traces are 

composed of basic blocks and we don’t allow traces to be 

truncated unless a single basic block is larger than the trace 

capacity (in our framework: 16 instructions). We allow loop 

unrolling and don’t terminate a trace upon a backward branch. 

This allows traces to contain enough instructions to have an 

advantage over the regular fetch mechanism and yet not 

increase the number of unique traces too much. In this paper 

we focus on two sizes of the trace cache: one that contains 32 

traces, and another that contains 64 traces, both organized as 

4-way set-associative. Our trace build mechanism allows traces 

beginning at the same address, but with multiple paths, to 

coexist in the trace cache. In this case, it is up to the trace 

predictor to decide which of the traces to select. The work 

assumes a trace cache with a backing instruction cache, which 

are accessed in parallel as was described in ��[16]. 

The configuration of the baseline machine is presented in 

Table  �2.1. We chose an 8-way machine as a baseline since it 

can take advantage of the improvement in instruction supply 

and still be power efficient. 
WE USED 10 BENCHMARKS (SEE  

 

Table  �2.2) from the SPEC2000 Benchmark Suite ��[4] to 

evaluate our work. We skipped the first 500M instructions and 

simulated another billion instructions in all our experiments 

except perlbmk that was ended after 880M instructions. 

2.2 Basic observations 

We start this section by presenting basic characterization of 

the utilization of each trace in the trace cache, and 

characterization of the utilization of the trace cache itself. 

Trace Utilization (TU) is defined to be the number of times the 

system finds the trace in the trace cache per a trace build. 

Please note this definition does not require that the traces will 

be unique; i.e., if a trace is replaced and built again, we count 

it as two different traces. Also, the length of the trace does not 

affect the utilization of the trace. 

A trace cache with a high TCU is assumed to be power and 

performance efficient. For a 32-traces trace cache the average 

TCU is five. Moreover, five out of the ten benchmarks we 

examined have a TCU smaller than 2. Therefore, the power 

invested in writing traces to the trace cache is very poorly 

used. 

 

 
TABLE  �2.1  ARCH SETTINGS OF THE SIMULATED MODEL.  

Execution engine 

Decode, Issue, Commit 

width 

8 

Functional units Integer ALU’s: 8 

4 Mult/Div. 

Floating point ALU’s: 8 

4 Mult/Div. 

Instruction fetch queue size 32 

Register update unit (RUU) 128 

LSQ 64 

Memory  

L1 Data Cache 

 

64KB 8-ways LRU, 64B 

blocks. 2-cycle latency. 

L1 Instruction Cache 8KB 4-way, LRU, 32B block, 

2-cycle latency 

Trace cache 2KB (32 traces)/4KB (64 

traces) 4-way, LRU,  

2-cycle latency 

L2 Unified cache 1MB 8-ways, 64B 

blocks.LRU, 10-cycle latency 

Memory First chunk: 128 cycles 

TLB 30 cycles miss penalty 

Branch predictor 

Predictor Bimod 4k-entery 

RAS 32 

BTB 2K-entery, 4-way 

Next trace pred 4K-entery 

 

 

TABLE  �2.2  BENCHMARKS LIST.  

Benchmark Input Suite 

164.gzip input.graphic INT 

175.vpr net.in arch.in place.in INT 

176.gcc 166.i INT 

197.parser 2.1.dict –batch ref.in INT 

253.perlbmk makerand.pl INT 

255.vortex lendian1.raw INT 

256.bzip input.graphic INT 

177.mesa mesa.in mesa.ppm FP 

183.equacke inp.in FP 

168.wupsize wupwise.in FP 

      

 .
hits

TCU
writes

�
�
�

 (1) 

 

The replacement rate (RR) of traces in the traces cache is 

defined by: 

 .
replacements

RR
accesses

�
�
�

 (2) 
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Trace Utilization Breakdown (32 traces)
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Trace Utilization Breakdown (64 traces)
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Figure �2.1 Trace utilization breakdown for a 32-traces trace cache (top figure) 

and for a 64-traces trace cache (bottom figure). In both configurations the 

majority of traces that are written to the trace cache are not used prior their 

eviction from it.  
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Figure �2.2 Trace cache replacement rate.  

 

Figure �2.2 shows the replacement rate of a 32-traces and 64-

trcaes trace cache. It is clear from the figure that for some 

applications, even a small trace cache can contain the whole 

program, but for other applications such a trace cache is too 

small. On average, the replacement rate is high (34% and 22% 

for a 32-traces and 64-traces caches respectively).  

The above observations indicate that for a limited area trace 

cache, traces are replaced too frequently by less effective 

traces and cause the entire trace cache mechanism to be 

ineffective in terms of performance and power. Therefore, it is 

critical to filter "good" traces out of the general population of 

traces. 

 

3 THE SAMPLING FILTER 

Unlike other proposed filtering techniques that try to keep 

track of all traces in the program in order to classify them as 

"hot traces" (that need to be kept) or "cold traces” (that can be 

discarded), the new proposed technique uses a statistical 

approach. By using statistical methods, we suggest to 

randomly select traces, which are candidates for storing in the 

trace cache. Please note that by doing so, we do not preclude 

any other filtering techniques, which can be applied on the 

chosen subset of the traces. 

The structure of a system that supports the basic sampling 

algorithm is shown in Figure �3.1. On top of a trace cache 

system as described in ��[16] we add a sampling capability that 

chooses periodically, for example every X builds, to save a 

trace. Traces that are not sampled (selected) are discarded. The 

sampling rate is the rate at which traces are sampled i.e. if 

every tenth trace is inserted to the trace cache, the sampling 

rate is 1/10. This filtering mechanism requires minimal 

hardware and can be easily implemented. 

In order to establish the new proposed technique 

effectiveness, the next subsection provides some performance 

(IPC) and power efficiency ( 2
ED ) simulation measurements as 

well as trace cache behavior (hit rate and coverage). Next we 

will extend the discussion in order to understand why it works 

and how it can be further improved. 
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Figure �3.1  The Sampling Filter system.  

 

 

3.1 The Impact of the Sampling filter 

In this section we compare several fetch engine 

configurations. The different configurations and area budget 

are summarized in Table  �3.1. The regular trace cache 

(CTC32) and the Sampling Filter (SF32) machines all have a 

8KB backing instruction cache and a 2KB trace cache size. 

The FTC-MTC organization has also an 8KB backing 

instruction cache and a 2KB total trace cache that is divided 

equally between the FTC and the MTC. The SF32 uses a 

constant sampling rate of 1/20 for all the benchmarks.  

Figure �3.2 shows the IPC improvement of these fetch 
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engines over a machine without a trace cache, which has an 

8KB instruction cache only (I8KB). Doubling the Instruction 

cache to a 16KB cache (I16KB) improves the IPC by 10%, 

while the regular trace cache (CTC32) improves performance 

by 10.7%. The FTC-MTC achieves 12.4% improvement while 

the Sampling Filter (SF32) achieves 17.5% improvement.  

This demonstrates that the combination of a small trace cache 

(total area of 10KB) and sampling technique can outperform a 

larger instruction cache (16KB) and the other trace cache 

organizations occupying the same area. 

 
TABLE  �3.1  FETCH ENGINES CONFIGURATIONS 

CONFIGURATION 

NAME 

CONFIGURATION 

DESCRIPTION 

TOTAL AREA 

I8KB Instruction cache 8KB 

I16KB Instruction cache 16KB 

CTC32 Concurrent trace 

cache  

10KB 

FTC-MTC Filter trace cache 

+ Main trace 

cache 

10KB 

SF32 Concurrent trace 

cache with a 

sampling filter 

10KB 
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Figure �3.2  IPC improvement over a regular 8KB instruction cache.  

 

Figure �3.3 shows the reduction in energy delay squared 

( 2
ED ) of several fetch engines compared with a regular 8KB 

instruction cache. The 16KB instruction cache achieves a 

reduction of 13.6% in 2
ED . The trace cache and the FTC-

MTC organization achieve 15.8% and 18.9% reduction in 
2

ED  respectively, while the Sampling Filter achieves a 27.4% 

reduction in 2
ED . This indicates that the sampling filter is the 

most performance-power efficient among the compared 

alternatives. 
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Figure �3.3 

2
ED  reduction over a regular 8KB Instruction cache. The 

Sampling Filter proves to be the most performance-power efficient out of all 

the configurations.  

 

The impact of sampling on the trace cache behavior is 

presented in Figure �3.4. The coverage (the percentage of 

instructions originated from the trace cache) of the Sampling 

Filter configuration compared with the regular trace cache 

increases from 56.5% to 66.3%. The hit rate of the Sampling 

Filter configuration increases from 66% to 72.6%. 
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Trace cache hit rate
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Figure �3.4 Trace cache coverage (top figure) and hit rate (bottom figure) of a 

regular trace cache (CTC32) and the sampling filter organization (SF32).  

 

3.2 Why it works 

The reason that our new technique works so well is a 

combination of two effects: the reduction of pressure of new 

coming traces on the small trace cache, together with the 

impact of the LRU mechanism. As was published in some 

researches in the past, it is known that most of the instructions 

a trace cache based processor executes come from a relatively 

small number of traces (“hot traces”). These traces, regardless 

of the random selection, will be selected eventually, and will 
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be placed in the trace cache.  The main impact of the sampling 

filter is then, on the “cold traces”. In section 2 it has been 

shown that the majority of writes are of “cold traces” with zero 

TU rate. The filter reduces the number of “cold traces” writes. 

This reduces the pressure on the small trace cache and enables 

the LRU mechanism to better capture the “hot traces”, so “cold 

traces” that happened to enter the cache can be identified as 

such, and be replaced.  

In order to justify the above claims, we present a new set of 

experiments. Figure �3.5 shows the impact of using the basic 

sampling algorithm on the trace utilization (TU), and in 

particular we focus on the percentage of traces that have 

TU=0. We can observe that the sampling technique reduces 

the population of these traces dramatically from 73.8% in the 

non-filtered system to 25.6% in the sampling filter system. The 

impact of such reduction in the "useless traces" is twofold: it 

saves a lot of wasted power and it prevents cache pollution by 

inefficient traces.  
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Figure �3.5  Percentage of writes with zero TU.  

 

An important indicator for the quality of a trace is the 

proportion between its “live” time and its “decay” time as was 

defined in ��[13] �[7]. A “live” time of a trace is measured from 

the time it was saved in the trace cache till the last time it was 

used. The “decay” time of a trace is measured from the last 

time it was used, until its eviction from the trace cache. Since 

the decay time is considered to be a waste of resources, we try 

to reduce it. Figure �3.6 shows the impact of the sampling 

technique on the lifetime of traces. While in the regular trace 

cache the average “live” time of a trace is only 32%, after 

applying our new sampling technique, about 75% of the time, 

a trace is “live”. For small trace caches the utilization of the 

area is very important and so it can explain why we see a vast 

improvement in performance due to our technique.  

So far we saw that the sampling technique improves both 

the trace utilization and the “live” time of traces within the 

cache. Table  �3.2 shows that the proposed sampling technique 

also improves the overall utilization of the entire trace cache 

(TCU). This result has significance of its own. Several works 

have proposed to use hardware to optimize frequent code on 

the fly �[14] �[9]. By increasing the TCU, the sampling filter 

ensures that optimized code will be reused many times prior to 

its replacement. Therefore, costly hardware optimization can 

be applied on traces that are inserted to the trace cache 

because the number of insertions is low and the utilization rate 

is high. The trace cache utilization rate increased 21.2 times 

for a Sampling Filter configuration over the regular trace cache 

(see Table  �3.2). 
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Figure �3.6 Percentage of time traces are live in the cache.  

 
TABLE  �3.2  TCU OF A TRACE CACHE, A SF SYSTEM AND THEIR RATIO.  

BENCHMARK 

REGULAR 

TRACE 

CACHE 

SAMPLING 

FILTER 

RATIO 

gzip  5.13 160.69 31.3 

vpr  2.45 41.65 17.0 

gcc166  10.37 191.43 18.5 

parser  2.84 51.13 18.0 

perl  1.19 36.84 31.0 

vortex  0.57 14.4 25.3 

bzip  28.1 435 15.5 

mesa  0.59 15.02 25.5 

equacke  1.97 39.77 20.2 

wup  0.9 162.39 180.4 

Average 5 115 21.2 

 

3.3 Power considerations in Sampling Filter 

So far we focused on the performance aspects of the 

Sampling Filter technique. This subsection extends the 

discussion to power considerations and shows that the 

sampling technique is also advantageous in terms of power. 

The main reasons for that are the significant reduction in 

power that is used to write inefficient traces to the cache, and 

the better utilization of the trace cache that leads to fewer 

builds from the instruction cache. In Table  �3.3 the number of 

writes per 100 committed instructions is presented for a 

regular trace cache and a Sampling Filter organization. On 

average, the sampling filter organization has 29 times less 

writes to the cache than a regular trace cache. 
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TABLE  �3.3 NUMBER OF WRITES PER 100 COMMITTED INSTRUCTIONS IN A 

REGULAR TRACE CACHE , SF SYSTEM AND THEIR RATIO. 

BENCHMARK 

REGULAR 

TRACE  

CACHE 

SAMPLING 

FILTER 

RATIO 

Gzip  2.25 0.08 28.14 

vpr  3.47 0.18 18.82 

gcc166  0.71 0.04 18.79 

parser  3.22 0.18 18.28 

perl  0.79 0.03 26.51 

vortex  5.76 0.26 22.19 

bzip  0.44 0.03 15.73 

mesa  5.37 0.24 22.56 

equacke  3.58 0.16 22.74 

wup  3.48 0.04 96.00 

Average 2.91 0.12 28.98 

 

Figure �3.7 shows the fetch stage power of three equal area 

trace configurations: a regular trace cache, the FTC-MTC 

organization and the Sampling Filter organization. The FTC-

MTC filter increases the fetch stage power by 14% as it 

involves accessing two cache structures in parallel (the FTC 

and the MTC) and doesn’t reduce the number of builds 

significantly. On the other hand, the Sampling Filter reduces 

the fetch stage power by 10% over a regular trace cache, as it 

reduces the number of builds. 
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Figure �3.7  Fetch stage power of the trace cache, the FTC-MTC organization 

and the SF organization.  

 

3.4 Trace and Instruction cache decoupling  

The purpose of the sampling filter is to reduce the 

percentage of low utilization rate traces. By reducing the 

number of writes to the trace cache the sampling filter also 

accomplishes a reduction in the overall miss rate at the Level 1 

caches hierarchy (Trace cache and Instruction cache together). 

The backing instruction cache is important because it provides 

the instructions to build a trace upon a trace cache miss. 

Accessing the Level 2 cache to build traces would reduce the 

performance because of the L2 longer access time. After the 

trace is built the code is present in the trace cache as well as in 

the instruction cache. Thus, the code is duplicated and the 

Level 1 memory is not used efficiently. If the trace is 

repeatedly rebuilt then it will continue to be duplicated in both 

the trace cache and the instruction cache. The ability of the 

Level 1 backing instruction cache to provide a high percentage 

of the trace misses is essential for maintaining a high 

instruction bandwidth. The sampling filter decouples the Trace 

Cache and the Instruction Cache by prolonging the lifetime of 

traces in the trace cache. At first, the basic blocks of a trace 

that was inserted to the trace cache are present in the 

instruction cache as well. But, those basic blocks are gradually 

replaced by the LRU replacement policy of the instruction 

cache, because the trace cache holds and serves them 

repeatedly over time. Consequently, duplication among the 

caches is reduced, and the overall instruction supply out of L1 

caches is improved. In order to demonstrate the decoupling 

effect, we conduct a new set of experiments on a system with a 

small 4KB backing instruction cache. Figure �3.8 shows the 

instruction cache miss rate for various sampling rates. The 

miss rate is presented only for benchmarks that have an 

instruction cache miss rate higher than 0.5%. As the sampling 

rate decreases the decoupling effect is stronger and so the 

instruction cache miss rate decreases.  
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Figure �3.8 Instruction cache miss rate of benchmarks with a miss rate higher 

than 0.5% for various sampling rates (S.R.) 

 

The impact on the IPC is presented in Figure �3.9. The Average 

IPC over all the benchmarks is improved by 12.1% for a 

sampling rate of 1/100. The sampling filter improves the 

perlbmk benchmark by 43% over the “regular” trace cache 

(sampling rate of 1/100) as the Level 1 cache hierarchy is able 

to supply many more instructions. 
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Figure �3.9  IPC improvement over a regular trace cache for various sampling 

rates (S.R.).  
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4 COMBINING THE SAMPLING FILTER WITH THE FTC-MTC 

ORGANIZATION 

The sampling filter is orthogonal to the FTC-MTC 

principle, hence the two can be combined. By placing the 

sampling filter in front of the FTC cache (see Figure �4.1), the 

utilization rate of traces in the FTC can be improved. 

Moreover, by reducing the number of writes to the FTC it can 

better monitor the behavior of traces. The decision whether to 

discard the trace or store it in the MTC is taken after a longer 

period and thus the observation better reflects the nature of the 

trace. Figure �4.2 and Figure �4.3 show the improvement in IPC 

and the reduction in 2
ED  of several filter organizations over a 

regular trace cache. The combination of the sampling filter 

with the FTC-MTC organization improves the IPC by 9.8% 

and the 2
ED  by 20.2% while the sampling filter improves the 

IPC and 2
ED  only by 6.46% and by 14.9%, respectively. The 

combination of the sampling filter with the FTC-MTC 

organization outperforms both the sampling filter and the 

FTC-MTC organization, applied separately. 
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Figure �4.1 Sampling Filter with FTC-MTC.  

 

The Hit rate and Coverage of different trace cache 

organizations are presented in Figure �4.4 and Figure �4.5 

respectively. The combination of the sampling filter with the 

FTC-MTC organization increases the average hit rate by 17% 

over a regular trace cache (from 66% to 77.2%) while the 

sampling filter increases the hit rate only by 9.9% (from 66% 

to 72.5%). The coverage shows the same tendency, the 

coverage of the sampling filter is improved by 17.2% (from 

56.5% to 66.3%) and the combination of the sampling filter 

and FTC-MTC organization improves the coverage by 24.2% 

(from 56.5% to 70.2%) over a regular trace cache. 
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Figure �4.2 IPC improvement of different sampling techniques over a regular 

trace cache.  
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Figure �4.3 

2
ED  reduction of different sampling techniques over a regular 

trace cache.  

 

These results indicate that the ability of the FTC-MTC 

organization to capture the “hot traces” in the MTC is well 

complemented by the ability of the Sampling Filter to reduce 

the number of “cold traces” writes. 
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Figure �4.4  Hit rate of different trace caches configurations.  
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Figure �4.5 Coverage of different trace caches configurations.  
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5 DISCUSSION AND CONCLUSION 

In this paper we investigated the impact of filtering on small 

trace caches and proposed a novel filter: the sampling filter. 

Small trace caches are efficient in terms of power and access 

time but suffer from low utilization of the memory space. In 

order to increase the effectiveness of small trace caches, 

filtering mechanisms can be applied. The sampling filter is a 

novel filter that is based on a random sampling approach. 

Rather than inserting each trace to the trace cache and then 

monitoring its behavior, the sampling filter reduces the number 

of writes to the trace cache. It exploits the fact that most writes 

to the trace cache are of traces that are not used prior their 

eviction. The traces that are executed many times from the 

trace cache (and contribute most of the committed 

instructions) are captured quickly by the sampling filter and 

maintained in the cache more efficiently by the LRU 

mechanism. 

This paper showed that the sampling filter improves the 

trace cache behavior in terms of coverage and hit rate while 

the fetch stage power is reduced. The power of the fetch stage 

is reduced as the number of writes to the trace cache can be 

dramatically reduced while the number of hits in the trace 

cache increases. The coverage improvement can be especially 

beneficial for systems that store instructions in the trace cache 

after some processing, e.g. the Pentium 4 ��[5]. From a system 

perspective, the IPC and 2
ED  are improved as well. 

The sampling filter also improves the utilization of the 

Level 1 caches hierarchy (instructions cache and trace cache 

together) by decoupling the instruction cache and the trace 

cache.  

The combination of the FTC-MTC organization with the 

sampling filter yields better results than each of the filters 

alone. This leads us to believe that the sampling filter random 

selection can be replaced by a more intelligent selection. 

Future research will focus on implementing such an intelligent 

selection, based on trace utilization, while maintaining the 

filter power efficiency. We also intend to present an adaptive 

mechanism to optimize the sampling rate for each program and 

trace cache size dynamically. 
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