

 1

Abstract—This paper presents a new technique for

efficient usage of small trace caches. A trace cache can

significantly increase the performance of wide out-of-order

processors, but to be effective, the size of the trace cache

should be large.

Power and timing considerations indicate that a small

trace cache is desirable, with special mechanisms to

increase its effectiveness despite the limited size. Hence

several authors have proposed various filtering methods to

select "good traces" for keeping in the trace cache, from

among the general population of traces.

This paper presents a new filtering technique, which is

based on sampling. Our new technique suggests that

instead of building all the traces and trying to select the

good ones among them, it is more efficient to make a

preliminary selection of traces. This selection is based on a

random sampling approach.

We show that the Sampling Filter improves trace cache

and overall system performance, while reducing power

dissipation. The Sampling Filter reduces admission of

traces that are not used prior to their eviction from the

cache, and prolongs the percentage of time a trace is in its

live phase during its stay in the cache. Moreover, the

Sampling Filter reduces duplication between the trace

cache and the instruction cache and thus reduces the

overall misses in the first level of cache hierarchy.

Index Terms—Trace cache, Filtering, Performance, and Power.

1 INTRODUCTION

The effectiveness of a single threaded out-of-order

processor is strongly dependent on the average number of

useful instructions it can fetch in every cycle. Trace caches are

very effective in serving this goal by storing instructions in

their dynamic order rather than in their static order ��[10] �[15]

�[16]. Thus, a trace cache has two major merits: it contains

instructions from different basic blocks that would normally

require several accesses to the instruction cache in order to be

fetched, and it contains only useful instructions (contrary to an

instruction cache line that is fetched but might include

instructions that the processor doesn’t require). The trace

cache was found to be very effective if size and power are not

limited. However, relatively small caches which are practical

in term of access time and power consumption, are very

vulnerable in terms of memory efficiency, because of several

problems ��[11]: the same basic blocks can appear in different

traces (duplication), some traces don't contain the maximum

number of instructions (fragmentation), and the requested

block might reside inside a trace and thus become inaccessible

(Indexability). Thus, the key for efficient usage of relatively

small trace caches is either to change the way the trace is

constructed; i.e., the use of basic block traces ��[1], or to keep

only the most valuable traces inside the cache and thus avoid

their trashing by less valuable traces. This work will focus on

the second option since the logic required to construct the

traces out of a block-based cache is very costly in term of

power.

Filtering (selective admission of incoming traces to the

cache) has already been proposed as a way to increase the

usefulness of a limited size trace cache. In ��[12] it was

proposed to store only traces containing taken branches, which

cannot be fetched in one access from the instruction cache. In

��[13] it was proposed to filter traces based on their usage. The

trace cache is divided into two blocks: the Filter trace Cache

(FTC) and the Main Trace Cache (MTC). All traces are

written to the FTC, but only traces that have been proven to be

“useful” are inserted to the MTC. The success of this filtering

method is based on the important observation presented there

��[13], that most traces that are built and inserted to the trace

cache are rarely used before eviction, and that most of the

instructions the processor executes come from a small set of

traces (“hot traces”). In ��[8] it was proposed to use profiling in

order to filter out traces that are less frequent and show little

time locality.

This paper presents a new class of trace filtering techniques,

which is based on statistical sampling of traces. This class of

filters aims to improve the quality of the traces residing in a

small trace cache, while reducing the power dissipation needed

for maintaining the filter's bookkeeping. The paper presents

and analyzes the performance and the power of a basic

Sampling Filter (SF) and an enhanced version of it, and

compares its performance and power with a regular trace cache

and with the FTC-MTC organization.

The rest of the paper is organized as follows: In Section 2

the simulation environment and the characterization of traces

are discussed; Section 3 describes the sampling filter

architecture and compares it with the regular trace cache and

with the FTC-MTC organization. In Section 4 the usage of the

Sampling Filter with the FTC-MTC organization is

demonstrated and Section 5 concludes and proposes related

ideas for future studies.

2 SIMULATION ENVIRONMENT AND BASIC OBSERVATIONS

This section presents the simulation environment we used,

and some of the basic observations that our new proposed

technique are based upon.

2.1 The simulation framework

 The performance numbers presented below are based on an

extended version of the sim-outorder simulator from the

SimpleScalar tools set 3.0d ��[1] that was augmented with a

detailed model of the trace cache that includes the impact of

wrong path prediction and recovery, along with the simulation

of the proposed filter mechanism and with a next trace

predictor ��[6]. The power numbers presented in this paper were

computed by an extended version of the Wattch ��[1] simulator

Michael Behar, Avinoam Kolodny, Avi Mendelson

Trace Cache Sampling Filter

lesley
Text Box
 CCIT Report #527 April 2005

 2

(which is based on Simple scalar) and by Cacti ��[17] that was

used to estimate the power of new structures such as the trace

cache, and for examining the impact of power and timing on

caches with different configurations. The modeling of the

leakage power in Wattch assumes that it always consumes

10% of the maximal dynamic power. In this work, since we

assume relatively small structures of the trace cache, we saw

that the leakage has only minor impact on the overall power of

the chip and so we use the same method as in Wattch.

The structure of the traces within the trace cache we use for

our model is similar to other works; i.e., a trace can contain up

to 16 instructions and up to 4 branches, a trace is terminated

also if it reaches indirect jumps, indirect branches, procedure-

calls, return instructions and interrupts. Our traces are

composed of basic blocks and we don’t allow traces to be

truncated unless a single basic block is larger than the trace

capacity (in our framework: 16 instructions). We allow loop

unrolling and don’t terminate a trace upon a backward branch.

This allows traces to contain enough instructions to have an

advantage over the regular fetch mechanism and yet not

increase the number of unique traces too much. In this paper

we focus on two sizes of the trace cache: one that contains 32

traces, and another that contains 64 traces, both organized as

4-way set-associative. Our trace build mechanism allows traces

beginning at the same address, but with multiple paths, to

coexist in the trace cache. In this case, it is up to the trace

predictor to decide which of the traces to select. The work

assumes a trace cache with a backing instruction cache, which

are accessed in parallel as was described in ��[16].

The configuration of the baseline machine is presented in

Table �2.1. We chose an 8-way machine as a baseline since it

can take advantage of the improvement in instruction supply

and still be power efficient.
WE USED 10 BENCHMARKS (SEE

Table �2.2) from the SPEC2000 Benchmark Suite ��[4] to

evaluate our work. We skipped the first 500M instructions and

simulated another billion instructions in all our experiments

except perlbmk that was ended after 880M instructions.

2.2 Basic observations

We start this section by presenting basic characterization of

the utilization of each trace in the trace cache, and

characterization of the utilization of the trace cache itself.

Trace Utilization (TU) is defined to be the number of times the

system finds the trace in the trace cache per a trace build.

Please note this definition does not require that the traces will

be unique; i.e., if a trace is replaced and built again, we count

it as two different traces. Also, the length of the trace does not

affect the utilization of the trace.

A trace cache with a high TCU is assumed to be power and

performance efficient. For a 32-traces trace cache the average

TCU is five. Moreover, five out of the ten benchmarks we

examined have a TCU smaller than 2. Therefore, the power

invested in writing traces to the trace cache is very poorly

used.

TABLE �2.1 ARCH SETTINGS OF THE SIMULATED MODEL.

Execution engine

Decode, Issue, Commit

width

8

Functional units Integer ALU’s: 8

4 Mult/Div.

Floating point ALU’s: 8

4 Mult/Div.

Instruction fetch queue size 32

Register update unit (RUU) 128

LSQ 64

Memory

L1 Data Cache

64KB 8-ways LRU, 64B

blocks. 2-cycle latency.

L1 Instruction Cache 8KB 4-way, LRU, 32B block,

2-cycle latency

Trace cache 2KB (32 traces)/4KB (64

traces) 4-way, LRU,

2-cycle latency

L2 Unified cache 1MB 8-ways, 64B

blocks.LRU, 10-cycle latency

Memory First chunk: 128 cycles

TLB 30 cycles miss penalty

Branch predictor

Predictor Bimod 4k-entery

RAS 32

BTB 2K-entery, 4-way

Next trace pred 4K-entery

TABLE �2.2 BENCHMARKS LIST.

Benchmark Input Suite

164.gzip input.graphic INT

175.vpr net.in arch.in place.in INT

176.gcc 166.i INT

197.parser 2.1.dict –batch ref.in INT

253.perlbmk makerand.pl INT

255.vortex lendian1.raw INT

256.bzip input.graphic INT

177.mesa mesa.in mesa.ppm FP

183.equacke inp.in FP

168.wupsize wupwise.in FP

 .
hits

TCU
writes

�
�
�

 (1)

The replacement rate (RR) of traces in the traces cache is

defined by:

 .
replacements

RR
accesses

�
�
�

 (2)

 3

Trace Utilization Breakdown (32 traces)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gz
ip vp

r

gcc
16

6

pa
rs

er
pe

rl

vo
rt
ex

bzi
p

m
es

a

eq
ua

ck
e

w
up

A
ve

ra
ge

T
U

 b
re

a
k
d

o
w

n

TU>2

TU=2

TU=1

TU=0

Trace Utilization Breakdown (64 traces)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gz
ip vp

r

gc
c1

66

par
se

r
pe

rl

vo
rt
ex

bz
ip

m
es

a

eq
uac

ke
w

up

A
ve

ra
ge

T
U

 b
re

a
k

d
o

w
n

TU>2

TU=2

TU=1

TU=0

Figure �2.1 Trace utilization breakdown for a 32-traces trace cache (top figure)

and for a 64-traces trace cache (bottom figure). In both configurations the

majority of traces that are written to the trace cache are not used prior their

eviction from it.

Replacement Rate

0%

10%

20%

30%

40%

50%

60%

70%

80%

gzi
p

vp
r

gcc
16

6

par
se

r
per

l

vo
rt
ex

bzi
p

m
es

a

eq
ua

ck
e

w
up

A
ve

ra
ge

re
p

la
c

e
m

e
n

t
ra

te 32 traces

64 traces

Figure �2.2 Trace cache replacement rate.

Figure �2.2 shows the replacement rate of a 32-traces and 64-

trcaes trace cache. It is clear from the figure that for some

applications, even a small trace cache can contain the whole

program, but for other applications such a trace cache is too

small. On average, the replacement rate is high (34% and 22%

for a 32-traces and 64-traces caches respectively).

The above observations indicate that for a limited area trace

cache, traces are replaced too frequently by less effective

traces and cause the entire trace cache mechanism to be

ineffective in terms of performance and power. Therefore, it is

critical to filter "good" traces out of the general population of

traces.

3 THE SAMPLING FILTER

Unlike other proposed filtering techniques that try to keep

track of all traces in the program in order to classify them as

"hot traces" (that need to be kept) or "cold traces” (that can be

discarded), the new proposed technique uses a statistical

approach. By using statistical methods, we suggest to

randomly select traces, which are candidates for storing in the

trace cache. Please note that by doing so, we do not preclude

any other filtering techniques, which can be applied on the

chosen subset of the traces.

The structure of a system that supports the basic sampling

algorithm is shown in Figure �3.1. On top of a trace cache

system as described in ��[16] we add a sampling capability that

chooses periodically, for example every X builds, to save a

trace. Traces that are not sampled (selected) are discarded. The

sampling rate is the rate at which traces are sampled i.e. if

every tenth trace is inserted to the trace cache, the sampling

rate is 1/10. This filtering mechanism requires minimal

hardware and can be easily implemented.

In order to establish the new proposed technique

effectiveness, the next subsection provides some performance

(IPC) and power efficiency (2
ED) simulation measurements as

well as trace cache behavior (hit rate and coverage). Next we

will extend the discussion in order to understand why it works

and how it can be further improved.

Level 2

cache

Level 1

Instruction

Cache

Trace Cache

Hit logic

To

Execution

Engine
Sampling Filter

memory

Instruction buffer

Level 2

cache

Level 1

Instruction

Cache

Trace Cache

Hit logic

To

Execution

Engine
Sampling FilterSampling Filter

memory

Instruction buffer

Figure �3.1 The Sampling Filter system.

3.1 The Impact of the Sampling filter

In this section we compare several fetch engine

configurations. The different configurations and area budget

are summarized in Table �3.1. The regular trace cache

(CTC32) and the Sampling Filter (SF32) machines all have a

8KB backing instruction cache and a 2KB trace cache size.

The FTC-MTC organization has also an 8KB backing

instruction cache and a 2KB total trace cache that is divided

equally between the FTC and the MTC. The SF32 uses a

constant sampling rate of 1/20 for all the benchmarks.

Figure �3.2 shows the IPC improvement of these fetch

 4

engines over a machine without a trace cache, which has an

8KB instruction cache only (I8KB). Doubling the Instruction

cache to a 16KB cache (I16KB) improves the IPC by 10%,

while the regular trace cache (CTC32) improves performance

by 10.7%. The FTC-MTC achieves 12.4% improvement while

the Sampling Filter (SF32) achieves 17.5% improvement.

This demonstrates that the combination of a small trace cache

(total area of 10KB) and sampling technique can outperform a

larger instruction cache (16KB) and the other trace cache

organizations occupying the same area.

TABLE �3.1 FETCH ENGINES CONFIGURATIONS

CONFIGURATION

NAME

CONFIGURATION

DESCRIPTION

TOTAL AREA

I8KB Instruction cache 8KB

I16KB Instruction cache 16KB

CTC32 Concurrent trace

cache

10KB

FTC-MTC Filter trace cache

+ Main trace

cache

10KB

SF32 Concurrent trace

cache with a

sampling filter

10KB

IPC improvement

0%

10%

20%

30%

40%

50%

gzi
p

vp
r

gcc
16

6

par
se

r
per

l

vo
rt
ex

bzi
p

m
es

a

eq
ua

ck
e

w
up

A
ve

ra
ge

ip
c

 i
m

p
ro

v
e

m
e

n
t I16KB

CTC32

FTC_MTC

SF32

Figure �3.2 IPC improvement over a regular 8KB instruction cache.

Figure �3.3 shows the reduction in energy delay squared

(2
ED) of several fetch engines compared with a regular 8KB

instruction cache. The 16KB instruction cache achieves a

reduction of 13.6% in 2
ED . The trace cache and the FTC-

MTC organization achieve 15.8% and 18.9% reduction in
2

ED respectively, while the Sampling Filter achieves a 27.4%

reduction in 2
ED . This indicates that the sampling filter is the

most performance-power efficient among the compared

alternatives.

EDD reduction

-10%

0%

10%

20%

30%

40%

50%

60%

gz
ip vp

r

gc
c1

66

pa
rs

er
per

l

vo
rt
ex

bz
ip

m
es

a

eq
uac

ke
w
up

A
ve

ra
ge

E
D

D
 r

e
d

u
c

ti
o

n

I16KB

CTC32

FTC_MTC

SF32

Figure �3.3

2
ED reduction over a regular 8KB Instruction cache. The

Sampling Filter proves to be the most performance-power efficient out of all

the configurations.

The impact of sampling on the trace cache behavior is

presented in Figure �3.4. The coverage (the percentage of

instructions originated from the trace cache) of the Sampling

Filter configuration compared with the regular trace cache

increases from 56.5% to 66.3%. The hit rate of the Sampling

Filter configuration increases from 66% to 72.6%.

Coverage

0%
10%
20%

30%
40%
50%
60%

70%
80%

90%
100%

gzi
p

vp
r

gcc
16

6

par
se

r
per

l

vo
rt
ex

bzi
p

m
es

a

eq
ua

ck
e

w
up

A
ve

ra
ge

c
o

v
e

ra
g

e

CTC32

SF32

Trace cache hit rate

0%

10%

20%

30%

40%

50%
60%

70%

80%

90%

100%

gzi
p

vp
r

gcc1
66

pars
er

perl

vo
rt
ex

bzi
p

m
esa

eq
uac

ke
w

up

A
ve

ra
ge

h
it

 r
a
te

CTC32

SF32

Figure �3.4 Trace cache coverage (top figure) and hit rate (bottom figure) of a

regular trace cache (CTC32) and the sampling filter organization (SF32).

3.2 Why it works

The reason that our new technique works so well is a

combination of two effects: the reduction of pressure of new

coming traces on the small trace cache, together with the

impact of the LRU mechanism. As was published in some

researches in the past, it is known that most of the instructions

a trace cache based processor executes come from a relatively

small number of traces (“hot traces”). These traces, regardless

of the random selection, will be selected eventually, and will

 5

be placed in the trace cache. The main impact of the sampling

filter is then, on the “cold traces”. In section 2 it has been

shown that the majority of writes are of “cold traces” with zero

TU rate. The filter reduces the number of “cold traces” writes.

This reduces the pressure on the small trace cache and enables

the LRU mechanism to better capture the “hot traces”, so “cold

traces” that happened to enter the cache can be identified as

such, and be replaced.

In order to justify the above claims, we present a new set of

experiments. Figure �3.5 shows the impact of using the basic

sampling algorithm on the trace utilization (TU), and in

particular we focus on the percentage of traces that have

TU=0. We can observe that the sampling technique reduces

the population of these traces dramatically from 73.8% in the

non-filtered system to 25.6% in the sampling filter system. The

impact of such reduction in the "useless traces" is twofold: it

saves a lot of wasted power and it prevents cache pollution by

inefficient traces.

Percentage of Writes with zero TU

0%

20%

40%

60%

80%

100%

120%

gzi
p

vp
r

gcc
16

6

par
se

r
per

l

vo
rt
ex

bzi
p

m
es

a

equ
ac

ke
w

up

A
ve

ra
ge

p
e

rc
e

n
ta

g
e

 o
f

w
ri

te
s

Trace cache

Samplig Filter

Figure �3.5 Percentage of writes with zero TU.

An important indicator for the quality of a trace is the

proportion between its “live” time and its “decay” time as was

defined in ��[13] �[7]. A “live” time of a trace is measured from

the time it was saved in the trace cache till the last time it was

used. The “decay” time of a trace is measured from the last

time it was used, until its eviction from the trace cache. Since

the decay time is considered to be a waste of resources, we try

to reduce it. Figure �3.6 shows the impact of the sampling

technique on the lifetime of traces. While in the regular trace

cache the average “live” time of a trace is only 32%, after

applying our new sampling technique, about 75% of the time,

a trace is “live”. For small trace caches the utilization of the

area is very important and so it can explain why we see a vast

improvement in performance due to our technique.

So far we saw that the sampling technique improves both

the trace utilization and the “live” time of traces within the

cache. Table �3.2 shows that the proposed sampling technique

also improves the overall utilization of the entire trace cache

(TCU). This result has significance of its own. Several works

have proposed to use hardware to optimize frequent code on

the fly �[14] �[9]. By increasing the TCU, the sampling filter

ensures that optimized code will be reused many times prior to

its replacement. Therefore, costly hardware optimization can

be applied on traces that are inserted to the trace cache

because the number of insertions is low and the utilization rate

is high. The trace cache utilization rate increased 21.2 times

for a Sampling Filter configuration over the regular trace cache

(see Table �3.2).

Precentage of Time traces are live in the cache

0%

20%

40%

60%

80%

100%

120%

gzi
p

vp
r

gcc
16

6

par
se

r
per

l

vo
rt
ex

bzi
p

m
es

a

eq
uac

ke
w

up

A
ve

ra
ge

li
v

e

No-Filter

Sampling Filter

Figure �3.6 Percentage of time traces are live in the cache.

TABLE �3.2 TCU OF A TRACE CACHE, A SF SYSTEM AND THEIR RATIO.

BENCHMARK

REGULAR

TRACE

CACHE

SAMPLING

FILTER

RATIO

gzip 5.13 160.69 31.3

vpr 2.45 41.65 17.0

gcc166 10.37 191.43 18.5

parser 2.84 51.13 18.0

perl 1.19 36.84 31.0

vortex 0.57 14.4 25.3

bzip 28.1 435 15.5

mesa 0.59 15.02 25.5

equacke 1.97 39.77 20.2

wup 0.9 162.39 180.4

Average 5 115 21.2

3.3 Power considerations in Sampling Filter

So far we focused on the performance aspects of the

Sampling Filter technique. This subsection extends the

discussion to power considerations and shows that the

sampling technique is also advantageous in terms of power.

The main reasons for that are the significant reduction in

power that is used to write inefficient traces to the cache, and

the better utilization of the trace cache that leads to fewer

builds from the instruction cache. In Table �3.3 the number of

writes per 100 committed instructions is presented for a

regular trace cache and a Sampling Filter organization. On

average, the sampling filter organization has 29 times less

writes to the cache than a regular trace cache.

 6

TABLE �3.3 NUMBER OF WRITES PER 100 COMMITTED INSTRUCTIONS IN A

REGULAR TRACE CACHE , SF SYSTEM AND THEIR RATIO.

BENCHMARK

REGULAR

TRACE

CACHE

SAMPLING

FILTER

RATIO

Gzip 2.25 0.08 28.14

vpr 3.47 0.18 18.82

gcc166 0.71 0.04 18.79

parser 3.22 0.18 18.28

perl 0.79 0.03 26.51

vortex 5.76 0.26 22.19

bzip 0.44 0.03 15.73

mesa 5.37 0.24 22.56

equacke 3.58 0.16 22.74

wup 3.48 0.04 96.00

Average 2.91 0.12 28.98

Figure �3.7 shows the fetch stage power of three equal area

trace configurations: a regular trace cache, the FTC-MTC

organization and the Sampling Filter organization. The FTC-

MTC filter increases the fetch stage power by 14% as it

involves accessing two cache structures in parallel (the FTC

and the MTC) and doesn’t reduce the number of builds

significantly. On the other hand, the Sampling Filter reduces

the fetch stage power by 10% over a regular trace cache, as it

reduces the number of builds.

Fetch Stage Power

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

3.50E+09

gzi
p

vp
r

gcc
16

6

par
ser

per
l

vo
rt
ex

bzi
p

m
es

a

eq
uac

ke

w
up

A
ver

ag
e

p
o

w
e

r

Trace Cache

FTC_MTC

Sampling Filter

Figure �3.7 Fetch stage power of the trace cache, the FTC-MTC organization

and the SF organization.

3.4 Trace and Instruction cache decoupling

The purpose of the sampling filter is to reduce the

percentage of low utilization rate traces. By reducing the

number of writes to the trace cache the sampling filter also

accomplishes a reduction in the overall miss rate at the Level 1

caches hierarchy (Trace cache and Instruction cache together).

The backing instruction cache is important because it provides

the instructions to build a trace upon a trace cache miss.

Accessing the Level 2 cache to build traces would reduce the

performance because of the L2 longer access time. After the

trace is built the code is present in the trace cache as well as in

the instruction cache. Thus, the code is duplicated and the

Level 1 memory is not used efficiently. If the trace is

repeatedly rebuilt then it will continue to be duplicated in both

the trace cache and the instruction cache. The ability of the

Level 1 backing instruction cache to provide a high percentage

of the trace misses is essential for maintaining a high

instruction bandwidth. The sampling filter decouples the Trace

Cache and the Instruction Cache by prolonging the lifetime of

traces in the trace cache. At first, the basic blocks of a trace

that was inserted to the trace cache are present in the

instruction cache as well. But, those basic blocks are gradually

replaced by the LRU replacement policy of the instruction

cache, because the trace cache holds and serves them

repeatedly over time. Consequently, duplication among the

caches is reduced, and the overall instruction supply out of L1

caches is improved. In order to demonstrate the decoupling

effect, we conduct a new set of experiments on a system with a

small 4KB backing instruction cache. Figure �3.8 shows the

instruction cache miss rate for various sampling rates. The

miss rate is presented only for benchmarks that have an

instruction cache miss rate higher than 0.5%. As the sampling

rate decreases the decoupling effect is stronger and so the

instruction cache miss rate decreases.

Instruction cache miss rate

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

vpr gcc166 perl vor mesa equ

m
is

s
 r

a
te

No filter

S.R. 1/2

S.R. 1/5

S.R. 1/10

S.R. 1/25

S.R. 1/50

S.R. 1/100

Figure �3.8 Instruction cache miss rate of benchmarks with a miss rate higher

than 0.5% for various sampling rates (S.R.)

The impact on the IPC is presented in Figure �3.9. The Average

IPC over all the benchmarks is improved by 12.1% for a

sampling rate of 1/100. The sampling filter improves the

perlbmk benchmark by 43% over the “regular” trace cache

(sampling rate of 1/100) as the Level 1 cache hierarchy is able

to supply many more instructions.

IPC improvement

-10%

0%

10%

20%

30%

40%

50%

gzi
p

vp
r

gcc
16

6
par

per
l

vo
r

bzi
p

m
es

a
eq

u
w

up

A
ver

ag
e

IP
C

 i
m

p
ro

v
e
m

e
n

t

S.R. 1/2

S.R. 1/5

S.R. 1/10

S.R. 1/25

S.R. 1/50

S.R. 1/100

Figure �3.9 IPC improvement over a regular trace cache for various sampling

rates (S.R.).

 7

4 COMBINING THE SAMPLING FILTER WITH THE FTC-MTC

ORGANIZATION

The sampling filter is orthogonal to the FTC-MTC

principle, hence the two can be combined. By placing the

sampling filter in front of the FTC cache (see Figure �4.1), the

utilization rate of traces in the FTC can be improved.

Moreover, by reducing the number of writes to the FTC it can

better monitor the behavior of traces. The decision whether to

discard the trace or store it in the MTC is taken after a longer

period and thus the observation better reflects the nature of the

trace. Figure �4.2 and Figure �4.3 show the improvement in IPC

and the reduction in 2
ED of several filter organizations over a

regular trace cache. The combination of the sampling filter

with the FTC-MTC organization improves the IPC by 9.8%

and the 2
ED by 20.2% while the sampling filter improves the

IPC and 2
ED only by 6.46% and by 14.9%, respectively. The

combination of the sampling filter with the FTC-MTC

organization outperforms both the sampling filter and the

FTC-MTC organization, applied separately.

Level2

cache

Level1

Instruction

Cache

To Execution

Engine

Sampling filter

memory

Instruction buffer

FTC MTC

hit

Level2

cache

Level1

Instruction

Cache

To Execution

Engine

Sampling filterSampling filter

memory

Instruction buffer

FTC MTC

hit

Figure �4.1 Sampling Filter with FTC-MTC.

The Hit rate and Coverage of different trace cache

organizations are presented in Figure �4.4 and Figure �4.5

respectively. The combination of the sampling filter with the

FTC-MTC organization increases the average hit rate by 17%

over a regular trace cache (from 66% to 77.2%) while the

sampling filter increases the hit rate only by 9.9% (from 66%

to 72.5%). The coverage shows the same tendency, the

coverage of the sampling filter is improved by 17.2% (from

56.5% to 66.3%) and the combination of the sampling filter

and FTC-MTC organization improves the coverage by 24.2%

(from 56.5% to 70.2%) over a regular trace cache.

IPC Improvement

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

gzi
p

vp
r

gcc
16

6

par
se

r
per

l

vo
rt
ex

bzi
p

m
es

a

eq
ua

ck
e

w
up

A
ve

ra
ge

IP
C

 i
m

p
ro

v
e

m
e

n
t FTC_MTC

Sampling Filter

SF + FTC_MTC

Figure �4.2 IPC improvement of different sampling techniques over a regular

trace cache.

EDD reduction

-10%

0%

10%

20%

30%

40%

50%

60%

gzi
p

vpr

gcc
16

6

pars
er

per
l

vo
rt
ex

bzi
p

m
es

a

eq
uac

ke
w
up

A
ve

ra
ge

E
D

D
 r

e
d

u
c
ti

o
n

FTC_MTC

Sampling Filter

SF+FTC_MTC

Figure �4.3

2
ED reduction of different sampling techniques over a regular

trace cache.

These results indicate that the ability of the FTC-MTC

organization to capture the “hot traces” in the MTC is well

complemented by the ability of the Sampling Filter to reduce

the number of “cold traces” writes.

Trace cache hit rate

30%

40%

50%

60%

70%

80%

90%

100%

110%

gzi
p

vp
r

gcc
16

6

par
se

r
per

l

vo
rt
ex

bzi
p

m
es

a

eq
uac

ke
w

up

A
ver

ag
e

h
it
 r

a
te

Trace cache

FTC_MTC

Sampling Filter

SF+FTC_MTC

Figure �4.4 Hit rate of different trace caches configurations.

Coverage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gzi
p

vp
r

gcc
16

6

par
se

r
per

l

vo
rt
ex

bzi
p

m
es

a

eq
uac

ke
w
up

A
ver

ag
e

c
o

v
e
ra

g
e

Trace Cache

FTC_MTC

Sampling Filter

SF+FTC_MTC

Figure �4.5 Coverage of different trace caches configurations.

 8

5 DISCUSSION AND CONCLUSION

In this paper we investigated the impact of filtering on small

trace caches and proposed a novel filter: the sampling filter.

Small trace caches are efficient in terms of power and access

time but suffer from low utilization of the memory space. In

order to increase the effectiveness of small trace caches,

filtering mechanisms can be applied. The sampling filter is a

novel filter that is based on a random sampling approach.

Rather than inserting each trace to the trace cache and then

monitoring its behavior, the sampling filter reduces the number

of writes to the trace cache. It exploits the fact that most writes

to the trace cache are of traces that are not used prior their

eviction. The traces that are executed many times from the

trace cache (and contribute most of the committed

instructions) are captured quickly by the sampling filter and

maintained in the cache more efficiently by the LRU

mechanism.

This paper showed that the sampling filter improves the

trace cache behavior in terms of coverage and hit rate while

the fetch stage power is reduced. The power of the fetch stage

is reduced as the number of writes to the trace cache can be

dramatically reduced while the number of hits in the trace

cache increases. The coverage improvement can be especially

beneficial for systems that store instructions in the trace cache

after some processing, e.g. the Pentium 4 ��[5]. From a system

perspective, the IPC and 2
ED are improved as well.

The sampling filter also improves the utilization of the

Level 1 caches hierarchy (instructions cache and trace cache

together) by decoupling the instruction cache and the trace

cache.

The combination of the FTC-MTC organization with the

sampling filter yields better results than each of the filters

alone. This leads us to believe that the sampling filter random

selection can be replaced by a more intelligent selection.

Future research will focus on implementing such an intelligent

selection, based on trace utilization, while maintaining the

filter power efficiency. We also intend to present an adaptive

mechanism to optimize the sampling rate for each program and

trace cache size dynamically.

REFERENCES

[1] Bryan Black, Bohuslav Rychlik, and John Paul Shen. “The block-based

trace cache”. Proceedings of the 26th Annual Intl. Symposium on

Computer Architecture, May 1999.

[2] David Brooks and Vivek Tiwari and Margaret Martonosi, " Wattch: a

framework for architectural-level power analysis and optimizations", in

ISCA 2000 pages 83-94.

[3] Douglas C. Burger and Todd M. Austin. The SimpleScalar Tool Set,

Version 2.0. University of Wisconsin, Madison Tech. Report. June

1997.

[4] J. Henning. SPEC CPU2000: Measuring CPU Performance in the New

Millennium. IEEE Computer, pp. 28-35, 2000.

[5] G. Hinton et al., “The microarchitecture of the Pentium 4 processor,” in

Intel TechnologyJournal, 2001

[6] Q. Jacobson, E. Rotenberg, J. E. Smith, “ Path- Based Next Trace

Prediction,” in Proceedings of the 30th International Symposium on

Microarchitecture, pp. 14-23, December 1997.

[7] S. Kaxiras, Z. Hu and M. Martonosi, "Cache Decay: Exploiting

Generational Behavior to Reduce Cache Leakage Power", in Proc. of the

Int'l Symposium on Computer Architecture, 2001, pp.240--251.

[8] O. Kosyakovsky, A. Mendelson and A. Kolodny, “The Use of Profile-

based Trace Classification for Improving the Power and Performance of

Trace Cache Systems”, in 4th Workshop on Feedback-Directed and

Dynamic Optimization, Dec. 2001.

[9] S. Patel and S. Lumetta, “rePlay: A Hardware Framework for Dynamic

Optimization”, in IEEE Trans. on Computers, 50(6), pp 590-608, June

2001

[10] A. Peleg and U. Weiser. “Dynamic Flow Instruction Cache Memory

Organized Around Trace Segments Independent of Virtual Address

Line”, U.S. Patent 5,381,533, Jan. 1995.

[11] M. Postiff, G. Tyson and T. Mudge, “Performance Limits of Trace

Caches”, in Journal of Instruction-Level Parallelism, vol. 1, Oct. 1999.

[12] A. Ramirez, J.L. Larriba-Pey and M. Valero, “Trace Cache Redundancy:

Red and Blue Traces”, in Proc. 6th Intern. Symp. on High-Performance

Computer Architecture, pp. 325-333, 2000.

[13] R. Rosner, A. Mendelson, and R. Ronen, “Filtering Techniques to

Improve Trace-Cache Efficiency”, in Proceedings of the International

Conference on Parallel Architectures and Compilation Techniques,

pages 37-48, September 2001.

[14] Roni Rosner, Yoav Almog, Micha Moffie, Naftali Schwartz, Avi

Mendelson: "PARROT: Power Awareness Through Selective

Dynamically Optimized Traces", in PACS 2003: 196-214

[15] E. Rotenberg, S. Bennett and J. Smith, “A Trace Cache

Microarchitecture and Evaluation”, in IEEE Trans. on Computers,

48(2), pp 111–120, Feb. 1999

[16] E. Rotenberg, S. Bennett, and J. Smith, "Trace Cache: A Low Latency

Approach to High Bandwidth Instruction Fetching", 29th International

Symposium on Microarchitecture (MICRO-29), Dec. 1996

[17] S.J.E. Wilton and N.P. Jouppi. “CACTI: An enhanced cache access and

cycle time model.” IEEE Journal of Solid-State Circuits, Vol.

31(5):677-688, May 1996.

	PointTmp
	OLE LINK21
	OLE LINK22
	OLE LINK34
	OLE LINK53
	OLE LINK52

