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Abstract

We consider the Shannon cipher system in a setting where the secret key is delivered
to the legitimate receiver via a channel with limited capacity. For this setting, we
characterize the achievable region in the space of three figures of merit: the security
(measured in terms of the equivocation), the compressibility of the cryptogram, and the
distortion associated with the reconstruction of the plaintext source. Although lossy
reconstruction of the plaintext does not rule out the option that the (noisy) decryption
key would differ, to a certain extent, from the encryption key, we show, nevertheless,
that the best strategy is to strive for perfect match between the two keys, by applying
reliable channel coding to the key bits, and to control the distortion solely via rate–
distortion coding of the plaintext source before the encryption. In this sense, our result
has a flavor similar to that of the classical source–channel separation theorem. Some
variations and extensions of this model are discussed as well.

Index Terms: Shannon cipher system, key distribution, encryption, cryptography,
source–channel separation.

1 Introduction

In the classical Shannon–theoretic approach to cryptology (see, e.g., [6],[4],[10] and refer-

ences therein), two assumptions are traditionally made. The first is that the reconstruction

of the decrypted plaintext source at the legitimate receiver is distortion–free (or almost

distortion–free), and the second, which is related, is that the encryption and the decryption

units share identical copies of the same key. Yamamoto [11] has relaxed the first assump-

tion and extended the theory of Shannon secrecy systems into a rate–distortion scenario,

allowing lossy reconstruction at the legtimate receiver.
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In this correspondence, we examine also the second assumption. Referring to Fig. 1,

we consider the case where the key is delivered to the legitimate receiver across a channel,

which is cryptographically secure, but has limited capacity. For this setting, we characterize

the achievable region in the space of three figures of merit: the security level (measured

in terms of the equivocation), the compressibility of the cryptogram, and the distortion

associated with the reconstruction of the plaintext source.

One conceptually simple approach to handle such a situation would be to apply a reliable

channel code to the encryption key bits, at a rate below the capacity of the channel, and

thereby obtain, with high probability, the exact copy of the transmitted key bits at the

receiver side. With this approach, however, the effective key rate, and hence the security

level in terms of the equivocation, is limited by the channel capacity. The question that

naturally arises at this point, especially in the lossy reconstruction scenario, is whether this

is the best one can do.

To sharpen the question, let us even assume that there is an unlimited reservoir of

random key bits at the transmitter side, denoted K = (K1,K2, . . .), Ki ∈ {0, 1}, i =

1, 2, . . .. Then, perhaps one might wish to use more key rate (somewhat above capacity)

for encryption and thereby increase the security of the cryptogram at the expense of some

distortion at the reconstruction, due to the unavoidable mismatch between the encryption

and decryption keys. To explore this point, let us consider a few speculative strategies.

In the first strategy, one sends the key bits K across the channel uncodedly (assuming,

for simplicity, that the channel has a binary input–output alphabet). Referring to Fig.

1, let us take then N = n and Xi = Ki, i = 1, 2, . . .. In this case, the noisy version

of the key, obtained at the receiver side, K ′
i = Yi, is of course somewhat different from

the original key. However, since only lossy reconstruction of the plaintext is required at

the receiver side, it may seem conceivable that a reasonably small difference between the

keys at both ends could be managable and thus cause a reasonably small distortion in

the reconstruction. This is relatively easy to have if the encryption of the source precedes

compression, as proposed in [2]: One may apply, for example, a certain memoryless mapping

from the key bit stream into a stream of symbols Z1, Z2, . . . taking (two of the) values in the

alphabet of plaintext source, U . Then assuming that U is a commutative group endowed

with an addition operation ⊕ (e.g., addition modulo the alphabet size), one can create the

enctypted sequence U ′
i = Ui ⊕ Zi, i = 1, 2, . . . and then compress the block (U ′

1, . . . , U
′
n)
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with (K ′
1, . . . ,K

′
n) as side information at the receiver, using a Slepian–Wolf encoder [7]

in the lossless case, or a Wyner–Ziv code [9] in the lossy case. Assuming, for simplicity,

lossless compression, then upon decompressing the source at the receiver side and obtaining

(Ũ1, . . . , Ũn) (which is with high probability equal to (U ′
1, . . . , U

′
n)), one ‘subtracts’ the

noisy version of the key and obtain (with high probability) the reconstruction Vi = U ′
i 	Z ′

i,

i = 1, 2, . . ., where Z ′
i is the corresponding noisy version of Zi. Now, since Vi	Ui = Zi	Z ′

i,

for all i, then for a difference distortion measure d(Ui, Vi) = ρ(Vi 	 Ui), the distortion

between Ui and its reconstruction Vi is identical to the distortion between the original key

Zi and its noisy version Z ′
i.

A somewhat more sophisticated version of this scheme generates Z1, Z2, . . . from the

key bits using a simulator of a certain (memoryless) process (see, e.g., [8] and references

therein), and then applies a good source–channel code to encode (Z1, . . . , Zn) across the

channel. The reconstructed version at the receiver side, Z ′
1, Z

′
2, . . ., would then have the

minimum possible distortion relative to (Z1, . . . , Zn), given by the distortion–rate function

of {Zi} computed at the channel capacity, and therefore so would be also the distortion

between {Ui} and {Vi}. Moreover, there is an additional degree of freedom with regard

to the choice of the probability law of {Zi} for trading off between the security, which is

given by the entropy rate of {Zi}, and the distortion, i.e., distortion–rate function of {Zi}

computed at the channel capacity.

Another solution strategy may be based on the following point: Note that for the purpose

of reliable transmission and decoding of the key bits across the channel, the cryptogram

(denoted by W m in Fig. 1), which is a function of these key bits as well, may serve as

useful side information at the decoder, unless it is statistically independent of these bits.

Thus, one would speculate that it might be wise to allow some dependence between W m

and K and thus sacrifice some compression performance at the benefit gaining performance

in communicating the key across the channel. Let us assume that the bits of the key string

Km = (K1, . . . ,Km) are XORed (added modulo 2) with the bits of the compressed version

of the source. Then, if the compression algorithm is designed in such a way such the bits

of the compressed version of UN are not symmetric, then W m is correlated to Km, and

so W m can be viewed as a noisy version of Km, which was transmitted uncodedly across

a “parallel channel”. In such a case, we can then think of the key bits as being encoded

using a systematic code across the combined channel whose outputs are W m and Y n and
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the effective rate of this code is smaller than that over the original channel depicted in Fig.

1. Another way to look at this is the following: The key string Km can be compressed

by a Slepian–Wolf encoder given W m (as side information at the decoder) before being

channel coded, thus increasing the effective capacity by a factor given by the reciprocal of

the conditional entropy of the key given the cryptogram.

We show in this correspondence that none of the ideas raised in the last four paragraphs,

nor any other creative idea one may have, can work better than the first strategy we

mentioned earlier, which is the following: At the lower part of the encoder of Fig. 1 (the

“key encoder”), use a good channel code at rate below capacity, whose role is to reliably

transmit a certain amount of key bits. At the upper block of the encoder of Fig. 1, first

compress UN by an optimal rate–distortion code to obtain NR(D) bits, where R(D) is the

rate–distortion function of UN , and then encrypt the compressed bitstream with the same

bits that are fed into the channel code. At the receiver, first decode the key bits from the

channel output, and then use them to decrypt and decompress the source.

The result on the optimality of this scheme has a flavor similar to that of the classical

source–channel separation theorem in three aspects: (i) There is a complete decoupling

between source coding (for UN ) and channel coding (for the key bits) from the operative

point of view as well as from the viewpoint of code design (unlike in the other strategies

described above), (ii) the best possible strategy of controlling the distortion is only via

rate–distortion coding, and (iii) the necessary and sufficient condition for perfect secrecy is

NR(D) ≤ nC, which is of the same form as the source–channel separation theorem.

The outline of this correspondence is as follows. In Section 2, we define notation con-

ventions and give a formal definition of the problem. In Section 3, we state and prove the

main result, and in Section 4, we discuss a few variations and extensions.

2 Notation Conventions and Problem Definition

We begin by establishing some notation conventions. Throughout this paper, scalar random

variables (RV’s) will be denoted by capital letters, their sample values will be denoted by

the respective lower case letters, and their alphabets will be denoted by the respective

calligraphic letters. A similar convention will apply to random vectors and their sample

values, which will be denoted with same symbols superscripted by the dimension. Thus,

for example, UN (N – positive integer) will denote a random N -vector (U1, ..., UN ), and
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uN = (u1, ..., uN ) is a specific vector value in UN , the N -th Cartesian power of U .

Sources and channels will be denoted generically by the letter P , subscripted by the

name of the RV and its conditioning, if applicable, e.g., PU (u) is the probability function

of U at the point U = u, PY |X(y|x) is the conditional probability of Y = y given X = x,

and so on. Whenever clear from the context, these subscripts will be omitted. Information

theoretic quantities like entropies and mutual informations will be denoted following the

usual conventions of the Information Theory literature, e.g., H(UN ), I(Xn;Y n), and so

on. For single–letter information quantities (i.e., when n = 1 or N = 1), subscripts will be

omitted, e.g., H(U1) = H(U1) will be denoted by H(U), similarly, I(X1;Y 1) = I(X1;Y1)

will be denoted by I(X;Y ), and so on.

We now turn to the formal description of the model and the problem setting, as

described in the Introduction, and referring to Fig. 1. A source PU , generates a se-

quence of independent copies, U1, U2, . . . of a finite–alphabet RV, U ∈ U , whose entropy is

H(U)
∆
= −

∑
u∈U PU (u) log2 PU (u). At the same time and independently, a discrete memo-

ryless channel (DMC) PY |X receives input symbols x1, x2, . . . with coordinates taking values

in a finite alphabet X , and produces output symbols y1, y2, . . . with coordinates taking val-

ues in a finite alphabet Y, according to a conditional probability law given by the product

of single–letter transition probabilities
∏

t PY |X(yt|xt). The relative rate between the oper-

ation of the channel PY |X and that of the source is λ channel symbols per source symbol.

This means that while the source generates a block of N symbols, say, UN = (U1, . . . , UN ),

according to the above mentioned probability law, the channel conveys n = λN transmis-

sions,1 i.e., it receives a channel input block of length n, Xn = (X1, . . . ,Xn), and outputs

another block of the same length Y n = (Y1, . . . , Y
n) according to the above described

conditional probability law. Let C = maxPX
I(X;Y ) denote the channel capacity.

In addition to the source PU and the channel PY |X , yet another source, PK , henceforth

referred to as the key source, generates an infinite sequence of i.i.d. purely random bits,

K = (K1,K2, . . .), independently of the source U1, U2, . . .. The operation rate of the key

source relative to the source PU (and the channel PY |X) will be immaterial, i.e., we will

assume that the reservoir of key bits, for every finite period of time, is sufficiently large so

that it is effectively unlimited.

A block code for joint coding and encryption with parameters n and λ = n/N , consists

1Without essential loss of generality, we will assume that λN is a positive integer.
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of three mappings. The first mapping is the compressor–encrypter fN : UN × {0, 1}∞ →

{0, 1}m, where m = µN , µ > 0 being the compression rate. Upon receiving a source vector

uN ∈ UN and a key sequence k ∈ {0, 1}∞, this mapping produces a binary cryptogram

wm ∈ {0, 1}m according to wm = fN (uN ,k). The second mapping is the key–encoder gN :

{0, 1}∞ → X n, which produces a channel input vector xn according to xn = gn(k). Finally,

the third mapping is the decoder hN : {0, 1}m × Yn → VN , where V is the reproduction

alphabet. Upon receiving a cryptogram wm and a channel output vector yn, the decoder

produces a reproduction vector according to vN = hN (wm, yn).

Let d : U × V → IR+ denote a single–letter distortion measure between source symbols

and the reproduction symbols, and let the distortion between the vectors, uN ∈ UN and

vN ∈ VN , be defined additively across the corresponding components, as usual. We will

assume that d is bounded, i.e., dmax
∆
= maxu,v d(u, v) < ∞. Let R(D) denote the rate–

distortion function of the source PU with respect to d.

An (n, λ,D,Rc, h) code for joint coding and encryption is a block code with parameters

n and λ, as above, which also satisfies the following requirements:

1. The expected distortion between the source and the reproduction satisfies

N∑

i=1

Ed(Ui, Vi) ≤ ND. (1)

2. The rate of the cryptogram satisfies

µ =
m

N
≤ Rc. (2)

3. The equivocation of the source satisfies

H(UN |W m) ≥ Nh. (3)

For a given λ, a triple (D,Rc, h) is said to be achievable if for every ε > 0, there is a

sufficiently large n for which (n, λ,D + ε,Rc + ε, h − ε) block codes for joint coding and

encryption exist. Our purpose, in this paper is to characterize the achievable region of

triples (D,Rc, h), i.e., the set of all achievable triples (D,Rc, h).

3 Main Result

Our main coding theorem is the following:
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Theorem 1 A triple (D,Rc, h) is achievable if and only if the following conditions are both

satisfied:

(a) h ≤ h∗(D)
∆
= H(U) − [R(D) − λC]+, where [a]+

∆
= max{a, 0}.

(b) Rc ≥ R(D).

It should be noted that for a given D, there is no conflict (or interaction) between

maximizing h and minimizing Rc: As is well known, Rc is lower bounded by R(D) even if

there is no security requirement, but on the other hand, even in the presence of the highest

possible security level requirement, of h∗(D), the compression ratio R(D) is still achievable

[11]. By the same token, and as will be evident from the proof, h is upper bounded by

h∗(D) even if there is no compressibility requirement, yet it remains achievable even if the

compression ratio of R(D) is required.

The remaining part of this section is devoted to the proof of Theorem 1.

Proof. We begin with the converse part. Let an (n, λ,D + ε,Rc + ε, h − ε) block code for

joint coding and encryption be given. Now, since

h∗(D) = H(U) − [R(D) − λC]+ = min{H(U),H(U) − R(D) + λC}, (4)

we have to prove that both h ≤ H(U) and h ≤ H(U) − R(D) + λC. The first bound is

trivial since

N(h − ε) ≤ H(UN |W m) ≤ H(UN ) = NH(U), (5)

where the first inequality is by definition of an (n, λ,D + ε,Rc + ε, h − ε) block code for

joint coding and encryption. The inequality h ≤ H(U) now follows from the arbitrariness

of ε > 0. As for the second bound, we have

N(h − ε) ≤ H(UN |W m)

= H(UN |W m, Y n) + I(UN ;Y n|W m)

= H(UN |W m, Y n, V N ) + H(Y n|W m) − H(Y n|W m, UN )

≤ H(UN |V N ) + H(Y n) − H(Y n|W m, UN ,Xn)

= H(UN ) − I(UN ;V N ) + H(Y n) − H(Y n|Xn)

≤ NH(U) − NR(D + ε) + I(Xn;Y n)

≤ N [H(U) − R(D + ε)] + nC, (6)
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where the second line is a standard identity, the third is because V N is a function of

(W m, Y n), the fourth is because conditioning reduces entropy (used thrice), the fifth is

due to the fact that (UN ,W m) → Xn → Y n is a Markov chain, the sixth is due to the

memorylessness of the source and the fact that R(D) = min{I(U ;V ) : Ed(U, V ) ≤ D}

(which is also convex), and the last line is due to the memorylessness of the channel and the

fact that C = maxPX
I(X;Y ). Again, dividing by N , and using the arbitrariness of ε > 0

as well as the continuity of R(D), we get the second bound on h, and so, the necessity of

condition (a) follows.

The proof of the necessity of condition (b) is similar to the proof of the converse to

the ordinary rate–distortion coding theorem, except that the presence of Y n (which is

independent of UN ) at the decoder has to be taken into account:

N(Rc + ε) ≥ H(W m)

≥ H(W m|Y n)

≥ I(UN ;W m|Y n)

=

N∑

i=1

[H(Ui|U
i−1, Y n) − H(Ui|U

i−1,W m, Y n)]

≥

N∑

i=1

[H(Ui) − H(Ui|W
m, Y n)]

=
N∑

i=1

I(Ui;W
m, Y n)

≥

N∑

i=1

I(Ui;Vi)

≥ NR(D + ε), (7)

where the first line is by definition of an (n, λ,D+ε,Rc +ε, h−ε) block code for joint coding

and encryption, the second, third, fourth and sixth are standard identities and inequalities,

the fifth is based on the memorylessness of the source and its independence of Y n, the

seventh is based on the data processing inequality and the fact that Vi is a function of

(W m, Y N ), and the last inequality is again by the informational definition of R(D) and its

convexity. Taking again ε to zero, this completes the proof of the converse part of Theorem

1.

As for the direct part, consider the following (conceptually) simple coding scheme. For a

given arbirarily small ε > 0, let ` = min{n(C − ε), N [R(D)+ ε]} and let xn = gN (k1, . . . , k`)
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be given by a channel code whose error probability is below some δ > 0, provided that n

is sufficiently large. Since the rate of this code never exceeds C − ε, such a channel code

exists by the classical channel coding theorem. As for fN , first apply a rate–distortion code

for UN , whose rate is Rc = R(D) + ε, and then encrypt ` of the resulting m = N [R(D) + ε]

bits by (k1, . . . , k`) (using the ordinary bit–by–bit XOR). As for the equivocation, we have

H(UN |W m) = H(UN ) − I(UN ;W m)

= NH(U) − H(W m) + H(W m|UN )

≥ NH(U) − N [R(D) + ε] + H(W m|UN )

= NH(U) − N [R(D) + ε] + `

= NH(U) − N [R(D) + ε] + min{n(C − ε), N [R(D) + ε]}

≥ N (H(U) − [R(D) − λC]+ − 2εmax{1, λ}) , (8)

where the first inequality follows from the fact that the rate–distortion code is at rate

R(D) + ε, and the following equality is due to the fact that ` bits of the compressed bit

string are encrypted. At the decoder, first, the ` key bits (k1, . . . , k`) are decoded, and then

the decoded key bits (k̂1, . . . , k̂`) are used to decrypt wm and then use the rate–distortion

decoder to produce vN . With probability at least 1 − δ, the decoded key bits (k̂1, . . . , k̂`)

agree with the original ones (k1, . . . , k`) and then wm is decrypted correctly to produce

the appropriate reproduction vector vN within distortion D. At the event of erroneous

decoding of (k1, . . . , k`), the distortion can only be bounded by dmax, but this should be

weighed by the probability of error, which is upper bounded by δ, and hence contributes

only an arbitrarily small additional distortion. This completes the proof of Theorem 1.

4 Discussion

In this section, we discuss a few variations and extensions of the model considered.

4.1 Source–Channel Separation

We have already mentioned in the Introduction that Theorem 1 has the spirit of a separation

theorem, from several points of view. Among them is the immediate observation that

perfect security (in the sense that h = H(U)) can be achieved if and only if R(D) ≤ λC,

an inequality of the very same form as that of the classical joint source–channel separation
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theorem. In this context, we should also point out that it is straightforward to extend

our setup to a situation of ordinary joint source–channel coding, corresponding to the case

where the cryptogram wm needs to be transmitted via a noisy channel, independent of the

key distribution channel. The only modification to Theorem 1 would be to replace Rc in

part (b) by the capacity of the main channel. Thus, we have a two–fold separation theorem.

4.2 Simple Coding and Decoding in Special Cases

Suppose that the compressibility of the cryptogram is not an issue, in other words, Rc

is immaterial and we are only interested in the tradeoff between D and h. In this case,

there exist situations where optimal performance can be achieved using very simple coding

systems, similiarly to the well–known special cases, where this can be done in the context

of classical joint source–channel coding (see, e.g., [1]). Let us suppose, for example, that

U = X = Y = V, λ = 1, and that the distortion measure d is a difference distortion measure,

i.e., d(u, v) = ρ(v 	 u) for a well–defined subtraction operation (cf. the corresponding

discussion in the Introduction). Suppose further that PU , which is the uniform distribution

over U , is the capacity–achieving input for the channel PY |X and that PY |X in turn achieves

the rate–distortion function of PU at distortion level D, i.e., R(D) = C. For example, PU

may be the BSS and PY |X may be the BSC with crossover probability D. Then one can

easily achieve perfect secrecy, h = H(U) = log |U|, at the minimum possible distortion, i.e.,

D = R−1(C) (R−1(·) being the distortion–rate function of U) in the following manner, which

is similar to one of the strategies discussed in the Introduction: Let Z1, Z2, . . . be a simulated

memoryless process, generated from K, with the same (uniform) distribution as U1, U2, . . ..

Note that when |U| is a power of 2, this is very easy to implement since U is uniform. For

encryption, let Wi = Ui ⊕Zi. Then, obviously, H(UN |W N ) = NH(U) = N log |U| since Ui

and Zi are uniformly distributed and independent, and so, perfect secrecy is guaranteed. As

for the key transmission, let us send {Zi} uncodedly across the channel, i.e., Xi = Zi. Since

PY |X achieves the rate–distortion of {Ui}, and hence also that of {Zi}, then the channel

output {Yi} will have distortion D relative to {Zi}. At the the decoder, we simply apply

the equation Vi = Wi 	 Yi. Since Vi 	 Ui = Zi 	 Yi, then Ed(Ui, Vi) = Eρ(Vi 	 Ui) =

Eρ(Zi 	 Yi) = D = R−1(C). Thus, optimal performance is achieved using a very simple

system once we have an independent copy of {Ui} as a key.
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4.3 A Wider Class of Joint Encoders

Another point regarding the case where Rc is immaterial, is the following: It turns out that

part (a) of Theorem 1 (both the necessity and the sufficiency) would still apply even if we

broaden the scope to a wider class of encoders that allow both xn and wm to depend on

both uN and k. This means that gN is redefined as gN : {0, 1}∞ × UN → X n, and so,

xn = gN (k, uN ). The direct part would use the same scheme as before. As for the converse

part, note that eq. (6) is general enough to allow this setup. The conclusion then is that

if only D and h are the figure of merits of interest, then a good key code gN need not

really use its accessibility to uN . The situation becomes somewhat more involved when the

compressibility is brought back into the picture, because then the encoder has two paths

through which it can pass descriptions of the source. Note that if R(D) ≤ λC, the encoder

can transmit the entire description via the key distribution channel, without using the main

channel at all, thus Rc = 0.

4.4 Securing the Reproduction Sequence

Consider the case where one is interested not only to guarantee a certain security level h

with regard to the original source, but also to guarantee a security level h′ with regard to the

reproduction V N . This makes sense because it is actually V N the part of the information

that is communicated to the legitimate receiver and thus has to be protected (see also

[5]). To derive necessary conditions for securing V N at level h′, we consider two chains of

inequalities. The first is the following:

N(h′ − ε) ≤ H(V N |W m)

≤ H(V N )

≤

N∑

i=1

H(Vi)

= NH(V |J)

≤ NH(V ) (9)

where J is random variable taking values in the set {1, . . . , N} with the uniform distribution

and V
∆
= VJ . Thus, our first necessary condition for security level h′ is that there exists a

random variable V with alphabet V (jointly distributed with U) such that h′ ≤ H(V ). The
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second chain of inequalities is as follows:

N(h′ − ε) ≤ H(V N |W m)

= H(V N |W m, Y n) + I(Y n;V N |W m)

= I(Y n;V N |W m)

≤ H(Y n|W m)

≤ H(Y n)

≤

n∑

i=1

H(Yi)

= nH(Y |J ′)

≤ nH(Y ), (10)

where J ′ is random variable taking values in the set {1, . . . , n} with the uniform distribution

and Y
∆
= YJ ′ . The second equality is due to the fact that V N is a function of (W m, Y n)

and so H(V N |W m, Y n) = 0. Thus, another necessary condition is the existence of random

variable Y at the output of the channel PY |X (which means the existence of a channel input

variable X that induces Y via PY |X) such that h′ ≤ λH(Y ). The combination of the two

necessary conditions then gives h′ ≤ min{H(V ), λH(Y )}.

A restatement of the necessity part of Theorem 1 would then be the following: If

(D,Rc, h, h′) is achievable then there exist a channel PV |U and a source PX such that

the following conditions are simultaneously satisfied:

(a) h ≤ H(U) − [I(U ;V ) − λI(X;Y )]+,

(b) h′ ≤ min{H(V ), λH(Y )},

(c) Rc ≥ I(U ;V ),

(d) D ≥ Ed(U, V ).

Note that in contrast to Theorem 1, we are no longer taking the minimum of I(U ;V ) to

obtain R(D), nor do we take the maximum of I(X;Y ) to obtain C. The reason is that such

optimizations might be in partial conflict with the need to achieve large values of H(V )

and H(Y ) in order to meet condition (b). Thus, there are more complicated compromises

in the choice of X and V when the tradeoff involves the additional parameter h′.
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The achievability of this set of conditions remains open in general. However, for the

special case where the channel PY |X is deterministic, that is, Y is a deterministic function of

X, and so I(X;Y ) = H(Y ), the achievability scheme is essentially the same as before (but

with general choices of PX and PV |U ) as long as the required security h′ does not exceed the

level min{I(U ;V ), λI(X;Y )} = min{I(U ;V ), λH(Y )}. If it is higher, and if λH(Y ) exceeds

I(U ;V ) the additional key bits beyond NI(U ;V ) (but not more than H(V )) conveyed by the

channel can be used to control the (secret) choice of the rate–distortion codebook among up

to 2NH(V |U) distinct codebooks that exist (cf. [3],[5]) and thereby achieve the extra security

needed with regard to V N .

Note that here, the separation principle no longer holds as before, in the strong meaning

of this term, because now, the choice of PX and PV |U involves compromises where there is

an interaction between the source coding of UN and the channel coding of K.

4.5 Feedback

Finally, consider the scenario of the previous subsection, where in addition, there is noiseless

feedback from the channel output to the transmitter. In this case, it is clear too how to

secure V N to the level of h′ = min{H(V ), λH(Y )}, and it is also clear that this value cannot

be further improved upon. Here, the encoder and the decoder simply share identical copies

of {Yi} as a common key at both ends, and there is no longer use for the original key, {Ki}.

By the same token, in this case, the equivocation of UN can be enhanced to the level of

h = H(U)− [I(U ;V )−λH(Y )]+, but not more. Thus, although feedback does not increase

the capacity of a DMC, it certainly improves its effectiveness when this channel serves for

key delivery.

4.6 Continuous Alphabets

In our derivations this far, we have limited ourselves to finite alphabet sources and channels,

primarily for reasons of convenience. Theorem 1 extends quite straightforwardly to the

continuous alphabet case as well. One comment is in order, however: In the continuous

alphabet case, it no longer makes sense to measure equivocation in terms of conditional

(differential) entropy, which can be negative. It still makes sense, nonetheless, to define

it by the complementary quantity - the mutual information, I(W m;UN ), which is always

non–negative. Thus, part (a) of Theorem 1 would be restated to assert that [R(D)− λC]+

13



is an achievable lower bound to I(W m;UN )/N .
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Figure 1: A cipher system with capacity–limited key distribution.
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